		Department of Electrical Eng	ineering			
	(Curriculum of M Tech Prog (Specialization: Power Electronics &		Drives)	1	1
SI. No.	Subject Code	Name of the Subject	L	т	Р	СР
Semeste	er I					
1	EE1011	ADVANCED POWER ELECTRONICS - I	3	1	0	4
2	EE1012	MACHINE DRIVES - I	3	1	0	4
3	EE1013	MACHINE ANALYSIS	3	1	0	4
4		ELECTIVE I	3	1	0	4
5		ELECTIVE II	3	1	0	4
6	EE1061	ADVANCED POWER ELECTRONICS LABORATORY	0	0	4	2
7	EE1062	COMPUTATION LABORATORY	0	0	4	2
Tota	I Credit				I	24
Semeste	er II					
1	EE2011	ADVANCED POWER ELECTRONICS - II	3	1	0	4
1	EE2012	MACHINE DRIVES - II	3	1	0	4
3	EE2013	ADVANCED CONTROL SYSTEMS	3	1	0	4
4		ELECTIVE III	3	1	0	4
5		ELECTIVE IV	3	0	0	3
6	EE2061	MACHINE DRIVES LABORATORY	0	0	4	2
7	EE2062	ADVANCED CONTROL LABORATORY	0	0	4	2
8	EE2063	PROJECT-I	0	0	2	1
Total Cr	edit				1	24
Semeste	er III					
	EE3061					44
1		PROJECT-II				11
2 Total Cru	EE3062	PROJECT SEMINAR - I				2
Total Cre						13
Semeste	er IV					
1	EE4061	PROJECT-III PROJECT SEMINAR - II & VIVA-				11
2	EE4062	VOCE				3
Total Cr	ealt	1				14
т	OTAL					75

LIST OF ELECTIVES

SI. No.	Subject Code	Name of the Subject
1	EE9011	POWER SYSTEM STABILITY
2	EE9012	POWER SYSTEM RELIABILITY
3	EE9013	DISTRIBUTED ENERGY SYSTEMS
4	EE9014	POWER SYSTEM OPTIMIZATION
5	EE9015	POWER SYSTEM MODELING
6	EE9016	SPECIAL ELECTRICAL MACHINES
7	EE9017	LINEAR CONTROL THEORY
8	EE9018	REAL TIME SYSTEMS DESIGN
9	EE9019	PROCESS INSTRUMENTATION & CONTROL
10	EE9020	ELECTRICAL VEHICLES
11	EE9021	MICROPROCESSOR BASED INDUSTRIAL CONTROL
12	EE9022	ROBOTICS & AUTOMATION
13	EE9023	INTELLIGENT CONTROL
14	EE9024	DIGITAL SIGNAL PROCESSING
15	EE9025	SOFT COMPUTING TECHNIQUES
16	EE9026	EMBEDDED SYSTEMS
17	EE9027	VLSI SYSTEMS
18	EE9028	BIOMEDICAL INSTRUMENTATION

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER			
CODE						
EE1011	Advanced Power	4 (3-1-0)	Prof. S. Banerjee			
	Electronics - I		and Dr. T. K. Saha			
	wer Electronic Systems,	Overview of S				
Semiconductor			[4]			
-	electronic converters, Swit					
U	Power Supplies, Control	-	-			
0	n considerations, Protection					
Gate and Bas	e Drive circuits for Powe	er Devices, Introd	luction to Multilevel			
Converters			[6]			
	verters, Different PWM tech	iniques for Inverter	-			
technique.			[8]			
	DC Drives & AC Drives,					
Electrical Weldi	d Industrial Applications:	Electronic ballast	t, Induction Heating, [15]			
Text Books:	11g.		[13]			
	/. Erickson & D. Maksimovic	c. Fundamentals of	Power Electronics.			
	Academic Publisher	,	200001 20000 010000,			
	n, T. M. Underland & Riobbi	ns. Power Electron	ics: Converters.			
	Applications & Design, John-Wiley					
Reference Boo	ê î					
1. L. Uman	and, Power Electronics, Esse	entials & Applicatio	ns, Wiley India Pvt.			
Ltd.						
2. E. Acha,	V.G.Agelidis, O. Anaya-Lara	and T.J.E.Miller,	Power Electronic			
	n Electrical Systems, Newnes					
	nittington, Switch Mode Pow		n and Construction,			
D 1						

Research Studies Press.

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPE	R			
CODE							
EE1012	MACHINE DRIVES-I	4 (3-1-0)	Mr. J. C. Bar	man			
Review of electr	Review of electric drive systems, electrical machines, power converters and control						
system.				[2]			
Different types of	of loads encountered in mod	ern drive applicati	ons.	[2]			
Dynamics of dri	Dynamics of drive systems, starting, braking, speed-control [3]						
Closed loop dc	Closed loop dc motor drives - phase controlled and chopper controlled dc drives,						
controller design. [8]							
Closed loop ind	Closed loop induction motor drives - Review of dynamic modelling of induction						
machine, space phasor model. [6							
Closed loop induction motor drives – V/f control, need for vector control.							
Basic structure	Basic structure and modeling of different electric drives and power converter [19]						
Text Books:							

- 1. Werner Leonhard, Control of Electrical Drives, 3rd edition, Springer 2001.
- 2. R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, Prentice Hall, edition 1, 2001.

Reference Books:

- 1. Power Electronics and Motor Control Shepherd, Hulley, Liang II Edition, Cambridge University Press .
- 2. Control of Electric Machines and Drives System-Seung Ki Su-Wiley

CODE		CREDIT	DEVELOPER
EE1013	MACHINE ANALYSIS	4 (3-1-0)	Dr. S. N. Mahato

Generalized Machines:

Kron's primitive machine, Voltage, power and torque equations of Kron's primitive machine, Basic two-pole machine diagrams [5]

Reference Frame theory: Equations of transformation, 3-axis to 2-axis transformation, Park's transformation, Clarke's transformation, Stanley's equations. [4]

Theory of symmetrical Induction machines:

Voltage and torque equations in machine variables, dynamic modeling of threephase induction machine, commonly used reference frames. [4]

Generalized model of three-phase induction machine in arbitrary reference frame, derivation of induction machine model in stator, rotor and synchronously rotating reference frames from the arbitrary reference frame model, steady-state equivalent circuit from dynamic equations. [6]

Dynamic performance during sudden change in load torque, per unit system, normalized model of induction machine, space-phasor model of induction machine, linearized equations of Induction machine, small-signal equations of induction machine, small displacement stability, eigenvalues. [8]

Synchronous Machines:

Stator and rotor flux linkages, Voltage and torque equations in machine variables, mathematical modeling of synchronous machine, Swing equation, state-space representation of Swing equation. [6]

DC machines:

DC generator: Motional inductance, steady-state analysis, transient analysis under different conditions. [6]

DC motor: Steady-state analysis, transient analysis under different conditions, sudden application of inertia load. [6]

Text Books:

- 1. Analysis of Electrical Machinery: P. C. Krause
- 2. Electric Motor Drives, Modelling Analysis and Control: R. Krishnan

- 1. General Theory of Electrical Machines: Adkins
- 2. Modern Power Electronics and AC Drives: B. K. Bose
- 3. Generalized Theory of Electrical Machines: P. S. Bimbhra

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER
EE1061	Advanced Power Electronics Laboratory	2 (0-0-2)	Prof. S. Banerjee & Dr. T. K. Saha

- 1. Microprocessor Based Single Phase Firing Angle Controller for AC-DC, AC-AC converter
- 2. Single Phase Bridge Inverter Using IGBT
- 3. Three Phase SCR Module for AC-DC, AC-AC converter
- 4. Speed Control of 3Ø AC Induction Motor Using IPM and MICRO-2407
- 5. DSP Based Induction Motor Control
- 6. Speed Control of DC Motor by Using Single Phase Triggering and Device module
- 7. Speed Control of DC Motor using SMPC and IPM
- 8. MOSFET Based Buck-Boost Converter and SMPS trainer
- 9. Four Quadrant Operation of DC-DC Chopper using IGBT
- 10. Simulation of Basic DC-DC Converters by Using Multisim/PSPICE
- 11. Modeling and control of Buck and Boost Converter by Using MATLAB

References:

- 1. Laboratory Manuals
- 2. PSpice and Multisim Manuals.

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER
EE1062	Computation Laboratory	2 (0-0-2)	Dr. P. Acharjee

- 1. Numerical solution of nonlinear equation, using Bisection Method/ Fixed point iteration/ Newton's method, by computer programming
- 2. (i) Numerical Solution of linear algebraic equations by computer programming using forwarding Gaussian elimination,

(ii) Numerical Solution of linear algebraic equations by computer programming using Newton-Raphson method

- 3. (i) Numerical Integration by computer programming using trapezoidal rule/ Simpson's 1/3 rule
 - (ii) Numerical solution of ordinary differential equations by computer programming using Runge-Kutta method
- 4. Power flow control with FACTS device (STATCOM) using differential evolutionary technique on MATLAB platform
- 5. Considering loss and cost, evaluate the economic load dispatch for IEEE test system using MATLAB.
- 6. Optimization of distributed systems based on some evolutionary techniques
- 7. Using artificial neural network, analysis L-G fault for IEEE 14-bus test system.
- 8. Considering practical security constraints, solve power flow using MiPower Simulation / MATLAB.

- 9. (i) Representation of a signal, analysis and processing of a continuous-time/discrete-time signal using signal processing toolbox in MATLAB
 (ii) Representation of a continuous-time/discrete-time system, Time domain analysis and response study, with MATLAB programming
- 10.(i) Study the behaviors of signals and systems in MATLAB/SIMULINK environment using especially "simpower" toolbox library

References:

1. Laboratory Manuals

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER
CODE			
EE 2011	Advanced Power	4 (3-1-0)	Prof. S. Banerjee
	Electronics - II		
Review of Switch	n Mode Power Converters		[4]
	amics and Control: State ot of controller design, stabi		
Some advance	d converters : Modeling	& control of 7	Tri-state, Interleaved,
-	igher order converters		[6]
	erters: fundamental topolog		
-	verter, Cascaded Multileve	l Converters, Oth	0
source inverters			[8]
modulation, car shifted multicar	dulation techniques for rier based modulation, Pha rier modulation, third harm	se shifted multican conic injection PWM	rrier modulation, level A. [6]
	erters: Classification of Re		
	Resonant Converter Topolog		
0	E Interference (EMI) and	0	1 0 ()
and Specificatio	luction At Source, EMI Filt	ters, Emi Screenii.	ig, Emi measurement
-	applications, literature stud	hy simulation and	
power electronic		iy, sinuation and	[5]
Text Books:			[0]
1. Robert W	7. Erickson & D. Maksimov Academic Publisher	vic, Fundamentals	of Power Electronics,
2. N. Moha	n, T. M. Underland & R	iobbins, <i>Power El</i>	lectronics: Converters,
Applicatio	ons & Design, John-Wiley		
Reference Bool	ks:		
1. E. Acha,	V.G.Agelidis, O. Anaya-L	ara and T.J.E.Mi	ller, Power Electronic
Control ir	a Electrical Systems, Newnes	5	
	hittington, Switch Mode Po	ower Supplies, Des	ign and Construction,
	Studies Press.		
3. L. Uman Ltd	and, Power <i>Electronics, Ess</i>	sentials & Applicat	tions, Wiley India Pvt.

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER			
CODE						
EE 2012	Machine Drives-Ii	4 (3-1-0)	Dr. S. N. Mahato &			
			Dr. T. K. Saha			
Reference frame theory and transformation. : Three-phase transformations, a-b-c						
axis to d-q axis	axis to d-q axis transformation, Space vectors and transformation. Dynamic					
analysis of the	ree-phase Induction mach	ine. Machine mo	del in arbitrary d-q			
Reference fram	ne, synchronously rotating	g reference frame	es, steady-state and			
transient model	and simulation using MAT	LAB.	[5]			
Direct and Ind	irect Vector Control of Squ	uirrel Cage Induc ⁻	tion Machine (SQIM).			
Sensor less Vec	tor Control of SQIM.		[8]			
Direct torque co	ontrol (DTC) of SQIM		[2]			
Vector control o	f Wound Rotor Induction M	achine.	[4]			
Control of Induc	ction Generator.		[4]			
Synchronous m	achines:					
Introduction, m	nathematical modelling, vol	tage and torque e	equations in machine			
variables, arbit	trary reference frame var	riables and rotor	reference variables,			
	ree-phase synchronous ma		[5]			
Vector control	of Permanent magnet sy	nchronous mach	ine, different control			
strategies, flux	weakening operation, c	onstant torque n	node controller, flux			
U	roller, sensorless control.		[9]			
°	notor variable speed drives	-	•			
synchronous r	synchronous motors, self-controlled synchronous motor drive using load-					
commutated thyristor inverter. [4]						
	Switched reluctance motor drives: Basic principle of operation, analysis, power					
	rol of switched reluctance n	notor drives.	[4]			
Text Books:						
	Power Electronics and AC D					
2. Electric M	Motor Drives, Modelling Ana	lysis and Control -	- R. Krishnan			

Reference Books:

- 1. Advanced Electrical Drives- De Doncker, Rik, Pulle, Duco W.J., Veltman, André
- 2. Power Electronics and Variable Frequency Drives- B. K. Bose

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER
EE 2013	Advanced Control systems	4 (3-1-0)	Prof. S. Banerjee & Dr. J. Dey
Tratura des ations		•	

Introduction

Sample Data System, The sampling process, Discrete-time signals and their classifications, Representation of discrete-time signals as sequences, Sampling Process; Sampling Theorem; Aliasing Sampling of Continuous-time signals, Signal reconstruction, Discrete-time Systems and their classifications, Finite dimensional LTI systems [5]

Difference equations, z -transform theory, z -transfer functions (pulse transfer functions), inverse z -transform and response of linear discrete systems, z - transform analysis of sampled data control systems, z and s domain relationship[8] Stability analysis in z-plane, Jury's stability criteria, Root Locus Analysis, Frequency Response of Sample data system, Bilinear Transformation, Bode diagram in w-plane [8]

Digital Controllers Feedback Control, Classical Controller P, PI, PID, Lead and Lag State Space Representation of Discrete-time Systems:

[4]

State model state models for linear discrete time systems, conversion of state variables models to transfer functions in z-domain, solutions of state equations, state transition matrix, state transition flow graphs, eigenvalues, eigenvectors and stability similarity transformation, decompositions of transfer functions, canonical state variable models, controllability and observability, state feedback and pole placement, MATLAB tools and case studies [8]

Nonlinear Systems and Control:

Fundamentals of Nonlinear systems, dynamics, concept of stability and equilibrium point, domain of convergence, Lypunov stability, Jacobian matrix and stability, Phase plane analysis, describing function [12]

Text Books:

- 1. Digital Control And State Variable Methods, M. Gopal
- 2. Discrete Time Control Systems, K Ogata
- 3. Nonlinear System, H. K. Khalil

Reference Books:

- 1. Digital Control System, B. C. Kuo
- 2. Digital Control Of Dynamic Systems, G.Franklin, J.Powell, M.L. Workman.

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER
CODE			
EE 2061	Machine Drives	2 (0-0-4)	Dr. S. N. Mahato
	Laboratory		
1. Speed contr	ol of three-phase induction DSP controller.	n motor using the	ree level inverter and

- 2. Speed control of three-phase induction motor using IPM and Micro 2812 DSP controller.
- 3. Speed control of three-phase induction motor using three level inverter and Micro 28335 DSP controller.
- 4. Speed control of three-phase induction motor using IPM and Micro 28335 DSP controller.
- 5. Speed control of BLDC motor using three level inverter and Micro 2812 DSP controller.
- 6. Speed control of BLDC motor using three level inverter and Micro 28335 DSP controller.
- 7. Speed control of BLDC motor using IPM and Micro 2812 DSP controller.
- 8. Speed control of BLDC motor using IPM and Micro 28335 DSP controller.

Reference:

1. Laboratory Manuals.

	BJECT	SUBJECT NAME	CREDIT	DEVELOPER
-	ODE			
EE	2062	Advanced Control	2 (0-0-4)	Prof. S. Banerjee &
		Laboratory		Dr. J. Dey
	vare expe			
0		l-time implementation of PII		ontrollers for
1.	Digital C	art-inverted pendulum syste	em	
2.	Digital T	vin rotor MIMO system		
3.	Digital M	agnetic levitation (MAGLAV)	system	
4.	Digital Se	ervo system		
Softw	are Expe	<u>riments:</u>		
1.	Design o	of a suitable controller for	a given time o	delayed unity negative
	feedback	closed loop system using ro	ot locus techniqu	le.
2.	Design o	f lead, lag, lead-lag contro	ller for a given u	unity negative feedback
	closed lo	op system using frequency o	lomain design me	ethods.
3.	Design of	f linear quadratic optimal co	ontroller for a giv	en continuous-time LT
	plant.		-	
4.	Design o	f optimal state feedback co	ntroller for LTI p	lant where some of the
	0	e not measurable.	-	
5.	Design o	f Kalman estimator when t	he sensors give	noisy measurement for
	problem		0	0
6.	-	H_{α} full information control	ler for a given LTI	plant.
	0	f digital controller using fr	0	-
	0	gative feedback closed loop		• ·
	plant.			8
Refer	1			
		ry Manuals.		
1 ,	Laborato	<i>y</i> manaab,		

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER	
CODE				
EE 9011	Power System Stability	4 (3-1-0)	Prof. S. P. Ghoshal	
			and Prof. S. Ghosh	
Small Signal S	tability: Small Signal stat	oility of a singl	e machine infinite bus	
system, Effects	of excitation system, Power	· system stabiliz	er, Small-signal stability	
of multi mac	hine systems and very	large systems,	Small-signal stability	
enhancement.			[6]	
Steady State S	Steady State Stability: Analysis of steady state stability of unregulated and			
regulated system	regulated systems. [6]			
Transient Stability: An elementary view of transient stability, Numerical integration				
methods, Simulation of power system dynamic response, Analysis of unbalanced				
faults, Performa	ance of protective relaying,	Case study of	transient stability of a	
large system, Direct method of transient stability analysis, Transient stability				
enhancement.			[10]	
Voltage Stabilit	ty: Basic concepts related	to voltage sta	ability, Voltage stability	

analysis, Voltage collapse, Examples of Voltage collapse, Prevention of voltage
collapse. [12]
Subsynchronous Oscillations: Turbine-generator torsional characteristics,
Torsional interaction with power system controls, Subsynchronous resonance,
Impact of network-switching disturbances, Torsional interaction between closely
coupled units, Hydro generator torsional characteristics. [5]
Mid-term and Long-term Stability: Nature of system response to severe upsets,
Distinction between mid-term and long-term stability, Power plant response during
severe upsets, Simulation of long-term dynamic response, Case studies of severe
system upsets. [6]

- 1. PrabhaKundur, Power System Stability and Control, TMH
- 2. P. M. Anderson & A. A. Fouad, Power System Control and Stability, IEEE Series on Power Engineering.

- 1. Power Systems Stability, Vol. -1 E. W. Kimbark, Dover Publications, New York.
- 2. Power Systems Stability, Vol. -2 E. W. Kimbark, Dover Publications, New York.
- 3. Power Systems Stability, Vol. 3 E. W. Kimbark, Dover Publications, New York.

SUBJECT	SUBJECT NAME	CREDIT	DE	EVELOPER	
CODE					
EE 9012	Power System	4 (3-1-0)	Prof.	S. P. Ghos	hal
	Reliability				
Fundamentals of	of probability and statisti	cs			[3]
Binomial, Poisse	on and normal distribution	on;			[3]
Sampling theory	7				[3]
General reliabili	ty function				[1]
Exponential dis	tribution				[1]
Mean time to fa	ilure				[3]
Markov processes				[4]	
Recursive techniques				[6]	
Loss of load pro	bability method				[2]
Load forecast up	Load forecast uncertainty				[3]
Loss of energy p	probability method				[2]
Spinning capacity evaluation				[4]	
Derated capacity levels				[3]	
Transmission sy	vstem reliability				[4]
Interconnected system generating capacity reliability evaluation				[3]	
Text Books:	Text Books:				
1. R. Billint	on, Power System Reliabi	lity, Gordon & F	Breach		
Reference Boo	ks:				
1. M. Cepi	in, Assessment of Po	ower System	Reliability:	Methods	and
Applicati	ons, Springer				

2. A. A. Chowdhury and D. O. Koval, Power Distribution System Reliability, IEEE Press

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER	
CODE				
EE 9013	Distributed Energy	4 (3-1-0)	Prof. N. K. Roy	
	Systems			
Evolution of wo	orld energy consumption, N	onrenewable ar	nd Renewable resources,	
Transformation	of energy;		[4]	
Solar thermal,	Solar radiation at the Earth	n's surface, Flat	plate and concentrating	
type collectors,	Solar energy storage, So	olar pond, Sola	ar heating and cooling	
techniques, Sol	ar thermal power plant, Sol	lar photo voltaio	c conversion, Solar cells,	
PV applications	•		[8]	
Basic principles	s of wind energy conversion	n, Basic compo	nents of a Wind Energy	
Conversion Sys	stem (WECS), classification	n of WECS, I	Details of wind turbine	
generator, Perfo	rmance, Safety and Environ	mental aspects,	applications; [5]	
Classification of	f Small Hydro Power Plants	, Components, '	Turbines and generators	
for small scale h	nydroelectric power plant Pro	otection and cor	ntrol [4]	
Geothermal En	ergy, Ocean Thermal Ele	ctric Conversio	n (OTEC), Tidal Power	
Generation, Fue	el Cells, Magneto Hydro Dyn	namic (MHD) Pov	wer Generation, Thermo-	
electric power, 7	Thermionic generation;		[8]	
0	renewable energy sources	Ũ	0	
	hnologies; Introduction to			
	sient Analysis of Distributed	l Generators cor		
grid. Text Books:			[6]	
	i Non-conventional energy	v resources K	hanna Publishers New	
1. G.D. Rai, Non-conventional energy resources, Khanna Publishers, New Delhi, 2003.				
2. N. G. Clavert, Wind Power Principle, their application on small scale, Calvert				
Technical Press.				
Reference Bool				
1. Fuel Cell	Handbook, Parsons Inc.			
	st and T. Wizelius, Wind P	Power Plants an	d Projects development,	

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER
EE 9014	Power System	4 (3-1-0)	Prof. S. P. Ghoshal
	Optimization		
Economic Load	Dispatch without losses and	d with losses;	[4]
Optimal Power Flow applied to the solution of various IEEE systems, cost			
optimization,	transmission loss optimi	ization and t	otal voltage deviation
optimization, m	ulti-objective optimization;		[6]
Optimal Reactive Power Dispatch applied to the solution of various IEEE systems,			
			[6]
Transmission lo	oss optimization and total	voltage deviation	on optimization and the
combined optim	lization;		[4]

Optimal load shedding;	[4]
Optimal Hydrothermal Scheduling for short-range fixed head and variable	head
hydrothermal systems; multi-objective generation scheduling;	[4]
Small Signal stability analysis based on various types of power system stabilized	ers;
	[4]
Optimal Automatic Generation Control,	[8]
Optimal AVR control;	[2]
Optimization of distributed systems; Evolutionary Programming.	[3]

- 1. D.P. Kothari and J.S. Dhillon, *Power System Optimzation*, , Prentice Hall of India
- 2. J. A. Momoh, *Electric Power system Applications of Optimization*, CRC Press

Reference Books:

1. J. Zhu, Optimization of power system operation, John Wiley & Sons

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER		
CODE					
EE 9015	Power System Modeling	4 (3-1-0)	Dr. P. Acharjee		
Static Analysis	and Model: background,	motivation for	modelling of physical		
systems, hybrid	dynamic model, power syst	em architecture	. [4]		
Network Model: 1	lines and cables, transform	ners (single and	three phase), series and		
shunt elements,	load, generator.		[6]		
Formulation: ne	etwork equations, equality	and inequality	constraints, active and		
reactive power fl	low with in-phase transfor	rmers and phas	se shifting transformers,		
decoupling prope	erties, ac and DC power flow	w model.	[5]		
Fault analysis: t	ransients on a transmissi	on line, short o	circuit of a synchronous		
machine, genera	ator model and Takahas	shi method for	short circuit studies,		
examples.			[5]		
Power System D	ynamics and Stability: pov	ver system stab	ility, dynamics of power		
system and their	modelling, examples.		[5]		
Synchronous Ma	Synchronous Machine Models: Design and operating principle of rotor, stator and				
magnetic torque	magnetic torque, stationary and dynamic operation of single phase equivalent				
circuit, phasor di	circuit, phasor diagram, operational limits. [6]				
Power Swings is	Power Swings in a Simple Power System: swing equation and its solutions,				
qualitative analy	sis, stable and unstable s	olutions, equal	area criterion, lyapunov		
stability, small si	ignal analysis, oscillations i	in multi-machin	e systems. [6]		
Control of Elec	tric Power Systems: Con	trol of Active	Power and Frequency,		
Spinning reserve	e, Supplementary reserves,	Back-Up Reser	rves; Control of Reactive		
Power and Voltag	ge, Reactive Power Control	Voltage; Contro	ol Supervisory Control of		
Electric Power Sy	Electric Power Systems. [6]				
Protections in El	Protections in Electric Power Systems: Design of Protections, Distance Protections,				
Out of Step Protections, System Protections. [4]					
Text Books:					
1. S. Krishna , "An Introduction to Modelling of Power System Components", springer, 2014.					
2. Nasser D. Tleis, "Power Systems Modelling and Fault Analysis", Elsivier,					

2008

Reference Books:

- 1. G"oran Andersson, "Modelling and Analysis of Electric Power Systems", ETH Z[•]urich, 2008.
- 2. Mircea Eremia, Mohammad Shahidehpour, "Handbook of Electrical Power System Dynamics: Modeling, Stability, and Control", Wiley-IEEE Press, 2013
- 3. Milano, Federico, "Power System Modelling and Scripting", Springer, 2010.

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER		
CODE					
EE 9016	Special Electrical	4 (3-1-0)	Dr. S. N. Mahato		
	Machines				
	ORS: Constructional featu				
	motor, Variable reluctance	-	-		
_	tions, Torque equations, Mo	des of excitation			
,	l of stepping motors.		[10]		
	OPERATION OF STEPP		1,1,		
	of Hybrid stepper motors,	-			
torque/speed cl	haracteristics for the VR ste	epper-motors, ca			
torque.	torque. [5]				
SWITCHED RE	ELUCTANCE MOTORS: Co	onstructional f	eatures – Principle of		
operation – To	orque production, Steady	state performa	ance prediction, Power		
Converters, Met	thods of Rotor position sensi	ing, Closed loop	control of SRM. [8]		
BRUSHLESS D	.C. MOTORS: Construction,	Types, Principl	e of operation, Magnetic		
circuit analysis,	circuit analysis, Motor characteristics and control. [7]				
PERMANENT MAGNET SYNCHRONOUS MOTORS: Principle of operation, EMF and					
Torque equation	Torque equations, Synchronous Reactance, Phasor diagram, Torque/speed				
	characteristics, Power controllers, Converters, Control of motors. [7]				
	LINEAR INDUCTION AND SYNCHRONOUS MOTORS: Development of a Double-				
sided LIM from Rotary type IM, Schematic of LIM drive for electric traction,					
-	f one-sided LIM, Equivaler	nt circuit of LL	-		
	motor. [5] SINGLE-PHASE SYNCHRONOUS MOTORS: Single Phase Reluctance and hysteresis				
motors.	SINCHKONOUS MOTORS:	Single Phase R	[3]		
Text Books:					
1. K. Venkataratnam, Special Electric Machines, Universities Press.					

- ataratham, Special Electric Machines, Press. Universities.
- 1. T. Kenjo and A. Sugawara, Stepping Motors and Their Microprocessor Controls, Claredon Press.

- 1. T. Kenjo and S. Nagamori, Permanent Magnet and Brushless DC Motors, Claredon Press.
- 2. T.J.E. Miller, Brushless Permanent Magnet and Reluctance Motor Drives, Clarendon Press, Oxford, 1989.

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER
EE 9017	Linear Control Theory	4 (3-1-0)	Prof. S. Banerjee & Dr. J. Dey
Introduction			[2]

Historical Perspective, Open loop Control, Development of Feedback/
Servomechanism/ Closed-loop Control
Dynamic System Representation [2]
Mathematical Modelling, Transfer Function/ matrix
Performance Objectives/ Goals [4]
Response and Loop Goals, Stabilization, Pole-placement, Tracking, Robustness,
Disturbance Rejection, Noise Attenuation
Performance Analysis and Tests [4]
Time Domain Analysis, Internal Model Principle (IMP), Frequency Response
analysis by bode diagram and Nyquist criterion, Loop Shaping Techniques,
Sensitivity analysis, Utilities of Gain and Phase Margin determination [4]
Feedforward Control, Feedback Control, Classical Controller P, PI, PID, Lead and
Lag, One degree-of-freedom (1 DOF) control, Two DOF configuration, Linear State
Variable Feedback (LSVF) control
State Space Representation of Continuous-time Systems [14]
State model state models for linear discrete time systems, conversion of state
variables models to transfer functions in z-domain, solutions of state equations,
state transition matrix, state transition flow graphs, eigenvalues, eigenvectors and
stability similarity transformation, decompositions of transfer functions, canonical
state variable models, controllability and observability, state feedback and pole
placement, MATLAB tools and case studies
Robust and Optimal Control [15]
Linear Quadratic Regulator (LQR), Linear Quadratic Guassian (LQG), LQR with
state estimator, Kalman filter/state estimator, Loop Transfer Recovery (LTR), H_2
and H_{∞} control, Linear Matrix Inequality (LMI) technique
Text Books:
1. Modern Control Engineering, K. Ogata
2. Feedback Control Theory, John Doyle, Bruce Francis, Allen Tannenbaum

3. Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P Andrews

- 1. *Linear Control System Analysis And Design With MATLAB*, John J. D'Azzo and Constantine H. Houpis and Stuart N. Sheldon
- 2. Linear Robust Control, Michael Green and David J.N. Limebeer

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER		
EE 9018	Real Time Systems	4 (3-1-0)	Dr. C. Koley		
	Design				
Fundamentals	of Real-Time Systems: Histo	ory, Concepts, I	Definitions for Real-Time		
Systems, Divers	Systems, Diverse field of Applications, Modern Real-Time Systems [7]				
Hardware for	Real-Time Systems: Di	fferent microp	rocessor, classification,		
architecture, ge	eneral feature, multi-core p	processors, Inte	rfacing, memory, digital		
input and outpu	it, analog input and output.		[7]		
Memory Access	and Layout Issues, Hiera:	rchical Memory	Organization, Pipelined		
Instruction Processing. [6]					
Real-Time Oper	Real-Time Operating Systems, Software Architecture, Round Robin- Round Robin				
with interrupts	with interrupts -Function Queue, Scheduling, Tasks and Task States -Tasks and				

Data -Semaphores and Shared Data Message Queues -Mail Boxes and pipes -TimerFunctions -Events -Memory Management, Interrupt Routines.[8]Handling Resource sharing among real-time tasks, Priority, handling priority[5]Scheduling Real-Time Tasks in Multiprocessor and Distributed systems,[5]Introduction, system architecture design option.[5]Real-Time Communication[4]Real-Time Databases[4]

Text Books:

- 1. Real-Time Systems Design and Analysis: Tools for the Practitioner, 4th Edition, Phillip A. Laplante, Seppo J. Ovaska, Wiley-IEEE Press
- 2. Real-Time Systems: Design Principles for Distributed Embedded Applications, Authors: Kopetz, Hermann, Publisher: Springer, 2011

Reference Books:

1. Raj Kamal, *Embedded Systems Architecture*, Programming and Design, TMH

2. D. E. Simon, An Embedded Software Primer, Pearson Education

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER
EE 9019	Process Instrumentation and Control	4 (3-1-0)	Dr. C. Koley

Measurement of Process Variables: Pressure, Flow, Temperature, Liquid Level, Strain, Force, Torque, Linear and angular displacement/speed etc.; [8] Programmable Logic Controller (PLC): Introduction, Application, Physical and functional components, Timers, Counters, Shift Registers, Memory, Ladder Diagram, PLC Programming, Interfacing with sensors and actuators. Advance PLCs, analog input output, HMI, SCADA, Communication protocols, PID control through PLC; Data Acquisition Systems: Objective of a DAS, single channel DAS, Multi-channel DAS, Components used in DAS- Converter Characteristics-Resolution-Non-linearity, settling time, Monotonicity; [8] Optical Fiber Based Instrumentation: General principles of optical fiber, brag grating fiber, amplitude modulating FO sensors, measurement of high current and voltage, temperature etc.; Power System Instrumentation: Measurement of Voltage, Current Frequency Phase and Transmission line Transients; [4] Ultrasonic Instrumentation: Ultrasonic transmitter and receiver properties, propagation through medium and interfaces, application in Non-destructive Testing (NDT), measurement of process variables such as flow, level, thickness etc.; [5] Digital Measurement Techniques and instrumentations: Different Digital Instrumentation, Digital Measurement of Power Factor, Frequency and Time Period, Counters; [3] Recorders and Data Loggers: General Description, Measuring Parts and Recording Means: [3] Based Instruments: Embedded Microprocessor systems, Microprocessor/Microcontrollers, classification, different field of application, design of microcontroller based measuring instrument. Industrial Process Control, ON-OFF Control, P, PI and PID control of interacting and non-interacting process.

Text Books:

- 1. A. D. Helfrick and William David Cooper, *Modern electronic instrumentation and measurement techniques*, Prentice Hall
- 2. John-G. Webster (ed.), The Measurement, Instrumentation, and Sensors: Handbook, Springer

- 1. Curtis D. Johnson, Process control instrumentation technology, Prentice Hall
- 2. Robert N. Thurston and Allan D. Pierce, *Ultrasonic measurement methods*, Academic Press
- 3. William Bolton, Programmable Logic Controllers, Newness
- 4. Stuart A. Boyer, *Supervisory Control And Data Acquisition*, International Society of Automation
- 5. T. V. Kenneth and B. T. Meggitt, Optical Fiber Sensor Technology, Springer.

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER	
CODE				
EE 9020	Electrical Vehicles	4 (3-1-0)	Mr. J. C. Barman	
Introduction t	o Hybrid Electric Vehic	les: History c	of hybrid and electric	
vehicles, soc	ial and environmental	importance of	f hybrid and electric	
vehicles, impa	ct of modern drive-trains	on energy sup	plies. [6]	
Conventional V	/ehicles: Basics of vehicle	e performance	, vehicle power source	
characterizatio	on, transmission charact	eristics, and n	nathematical models to	
describe vehic	ele performance.		[6]	
Hybrid-Electric	vehicles: Concept and arch	nitecture of hyb	rid electric drive trains,	
series and para	allel of hybrid electric drive	e trains, torque	and speed coupling of	
hybrid electric d	lrive trains.	-	[6]	
Electric Propu	lsion unit: Introduction to	electric comp		
-	vehicles, Configuration	-	•	
	and control of Induction M			
0	Magnet Motor drives,		0	
	otor drives, drive system e	0	[12]	
	e: Introduction to Energy S	2		
	es, Battery based energy		-	
	based energy storage and its analysis, Super Capacitor based energy			
00	s analysis, Flywheel bas	· •		
0	Hybridization of different energy storage devices. [8]			
-	Sizing the drive system: Matching the electric machine and the internal			
	combustion engine (ICE), Sizing the propulsion motor, sizing the power			
electronics, selecting the energy storage technology, Communications,				
supporting subsystems. [7]				
Text Books:				
1. Iqbal Husain, "Electric and Hybrid Vehicles Design Fundamentals" Published				
by: CRC Press, Boca Raton, Florida, USA, 2003.				
Reference Books: 1. Chan, " <i>Modern Electric Vehicle Technology</i> ", Oxford 2002				
1. Chan, "M	ioaern Electric Vehicle Techn	ology", Oxford 2	002	

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER	
CODE				
EE 9021	Microprocessor Based	4 (3-1-0)	Dr. C. Koley	
	Industrial Control			
INTRODUCTION	N: Block Diagram of a typica	al microprocesso	or based system pointing	
out the role of n	nicroprocessor and other pe	ripheral blocks,	functions; [4]	
Microprocessor	and Microcontroller: 68000	, 8051, PIC16XX	XX, ARM controllers [8]	
Interfacing I/C	D Devices I/O Controller	s, Programmat	ole Peripheral Devices,	
Interfacing, mer	mory management;		[4]	
INTERFACING:	Interfacing of Digital I/O De	evices: Handsha	king Logic, Programmed	
I/O, Interrupt d	lriven I/O, Direct memory ad	ccess,	[3]	
U	vice Interfacing – Wave shap	ing, Driving and	l level shifting, Isolation;	
Interfacing of ar	-		[3]	
D/A Converter	(MC1408 8-bit D/A, DAC 12	208 12-bit D/A),	[2]	
A/D Converter	(ADC0808 8-bit ADC, ICL71	09 12-bit ADC),	Signal Conditioning; [2]	
	COMMUNICATION: Asynchronous serial data communication, Serial Data			
	nethods and standards, US	SART, RS-232C		
IEEE 488;			[2]	
MICROPROCESSOR BASED INDUSTRIAL SYSTEMS: Sensors: measurement of				
phase, frequency, power factor, temperature, flow, liquid level, pressure; [4]				
	chanical and solid state		0	
	e; Controller: Digital ON-OF			
PLC, DCS; Data Acquisition System: Functional block diagram, characteristics, and				
functions; Data Logger: Configuration, characteristics; Recorders: Functional block				
diagram, characteristics, and functions; [6]				
APPLICATION OF MICROPROCESSOR BASED SYSTEM: PID control of electrical				
heater using solid state Relays, Speed Control of DC and Induction Motor, and				
Phasor Measurement Unit. [6]				
Text Books:				

- 1. Douglas V. Hall, Microprocessors & Interfacing, Tata McGraw-Hill
- 2. M. Predko, Programming & Customising 8051 Microcontroller, TMH

- 1. John Uffenbeck, Microcomputers and Microprocessors, Pearson Education
- 2. Michel Slater, Microprocessor Based Design, PHI

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER
EE 9022	Robotics and	4 (3-1-0)	Prof. S. Banerjee &
	Automation		Dr. J. Dey
BASIC CONCER	TS: Definition and origin o	f robotics - diff	erent types of robotics -
various generations of, robots – degrees of freedom – Asimov's laws of robotics –			
dynamic stabilization of, robots. [6]			
POWER SOURCES AND SENSORS: Hydraulic, pneumatic and electric drives -			
determination of HP of motor and gearing ratio - variable speed arrangements -			
path determination – micro machines in robotics –machine vision – ranging – laser			
- acoustic – magnetic, fiber optic and tactile sensors. [8]			

MANIPULATORS, ACTUATORS AND GRIPPERS: Construction of manipulators – manipulator dynamics and force control – electronic and pneumatic manipulator control circuits – end effectors – U various types of grippers –design considerations. [8]

KINEMATICS AND PATH PLANNING: Solution of inverse kinematics problem – multiple solution jacobian work envelop – hill climbing techniques – robot programming languages [8]

CONTROL SYSTEMS: The manipulator Control problem, Linear control schemes, Linear model of a manipulator joint, Joint actuators, PID control scheme, Computed torque control, Force control strategies, Hybrid position/force control architecture, Impedance force/torque control, Adaptive Control. [10]

CASE STUDIES: Mutiple robots – machine interface – robots in manufacturing and non-manufacturing applications – robot cell design – selection of robot. [5] **Text Books:**

- 1. L. Sciavicco and B. Siciliano, *Modeling and Control of Robot Manipulators*, Springer
- 2. K. S. Fu, R. C. Gonzalez and C. S. G Lee, *Robotics: Control, Sensing, Vision, and Intelligence*, McGraw-Hill Inc.
- 3. Mikell P. Weiss G.M., Nagel R.N., Odraj N.G., Industrial Robotics, McGraw-Hill, Singapore, 1996.

Reference Books:

- 1. J. J. Craig, Introduction to Robotics, Mechanics and Control, Addison Wesley
- 2. R. J. Schilling, Fundamentals of Robotics Analysis and Control, Prentice Hall.
- 3. Deb.S.R., Robotics technology and flexible Automation, John Wiley, USA 1992.

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER
CODE			
EE 9023	Intelligent Control	4 (3-1-0)	Prof. S. Banerjee &
			Dr. J. Dey

A challenge to automatic control, Definition of intelligent control, Advance in intelligent control, Structural theories of intelligent control, Research and applications of intelligent control, Methodology of Knowledge representation, General interference principles, Hierarchical control systems. [6] Expert control systems; Mathematical foundation for fuzzy control, fuzzy logic, crisp sets and fuzzy sets, fuzzy set operations and approximate reasoning, Fuzzification, inferencing and defuzzification. Fuzzy knowledge and rule bases, Architecture of fuzzy controllers, Design of fuzzy controllers, properties of fuzzy controllers, Fuzzy modeling and control schemes for nonlinear systems, Selforganizing fuzzy logic control, Fuzzy logic control for nonlinear time-delay system, Implementation of fuzzy logic controller using Matlab Stability analysis of fuzzy control systems, applications. [15]Concept of Artificial Neural Networks and its basic mathematical model,

Concept of Artificial Neural Networks and its basic mathematical model, McCulloch-Pitts neuron model, simple perceptron, Adaline and Madaline, Feedforward Multilayer Perceptron, Learning and Training the neural network, Data Processing, Fourier transformation, principal-component analysis and wavelet transformations ANN Networks: Hopfield network, Self-organizing network and Recurrent network. Structural Schemes of neurocontrol systems, Neural Network based controller. [12]

Case studies: Identification and control of linear and nonlinear dynamic systems using Matlab, Stability analysis of Neural-Network interconnection systems, Integration of Fuzzy logic, NN and expert systems for control, Paradigms of NNbased control system; Basic concept of Genetic algorithm and detail algorithmic steps, adjustment of free parameters, Solution of typical control problems using genetic algorithm. Concept on some other search techniques like tabu search and ant-colony search techniques for solving optimization problems. [12]

Text Books:

- 1. Large-Scale Systems: Modeling, Control and Fuzzy Logic, Author:Mo Jamshidi (on line)
- 2. L. A. Zadeh, *Fuzzy Sets and Applications*, John Wiley & Sons
- 3. Simon Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall

- 1. Jyh-Shing Roger Jang, Chuen-Tsai Sun & Eiji Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice Hall
- 2. S. Rajasekaran and G. A. Vijayalakshmi Pai, Neural Networks, Fuzzy Logic and genetic Algorithm Synthesis and Applications, PHI
- 3. Intelligent Control Systems, Using Soft Computing Methodologies, Editors: Ali Zilouchian, Mo Jamshidi (on line).

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER	
CODE				
EE 9024	Digital Signal	4 (3-1-0)	Prof. S. P. Ghoshal	
	Processing			
Discrete time si	gnals and systems, properti	es, convolution,	analysis of discrete time	
systems in time	-domain;		[4]	
Frequency dom	ain representation of disc	erete time syste	ems and signals, Gibbs	
phenomenon,	band limited signals, sar	npling theorem	n aliasing sampling of	
continuous time	e signals;		[4]	
Z- transforms,	region of convergence, Z	- transform th	eorems and properties,	
methods of Inve	erse Z-transforms, analysis	of discrete time		
Z-domain, pole-	zero plots, stability;		[4]	
Realization of F	IR Systems and IIR systems	;	[6]	
	Fourier transform of discr	-	s and systems, Inverse	
discrete time Fo	ourier transform, Eigen func	tion,	[4]	
Discrete Fourier	Discrete Fourier transform (DFT), properties of DFT, Linear convolution using DFT,			
Computation of DFT by FFT algorithms like decimation in frequency and				
	decimation in time; [6]			
	Various Filter design techniques for FIR and IIR filters; [8]			
Sampling rate conversion, up rate and down rate sampling, interpolation and				
decimation; [3]				
	Introduction to discrete Hilbert Transform, Complex Capstrum, Application of			
Capstral analysis; [4]				
Practical application	ations of DSP, DSP processo	ors.	[2]	

- 1. J. G. Proakis & D. G. Manolakis, *Digital Signal Processing: Principles, Algorithms and Applications*, Prentice Hall of India.
- 2. E. Ifeachor & B.W. Jervis, *Digital Signal Processing, A practical Approach*, Pearson Education Ltd.

- 1. S. K. Mitra, Digital Signal Processing, McGraw Hill Co. Inc.
- 2. S, Poornachandra & B. Sasikala, *Digital Signal Processing*, Tata McGraw-Hill Education Pvt. Ltd.

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER
CODE			
EE 9025	Soft Computing	4 (3-1-0)	Dr. P. Acharjee
	Techniques		
Introduction to	soft-computing techniques a	and its necessity	/ [1]
Fundamentals of	of genetic algorithm, Genetic	c algorithm, En	coding, Fitness function,
Reproduction,	Genetic modelling, Cross (Over, Inversion	and Deletion, Mutation
operator, Bit-wi	se operators, examples.		[1+3+2+1+1]
Basic Steps in	n Particle Swarm Optimiz	ation algorithm	, Bird flocking & fish
schooling, velo	city, inertia weight factor,	pbest solution	n, gbest solution, local
optima, global o	ptima, examples, new mod	ifications of PSC), Parameter Selection in
PSO.			[1+2+2+2+1]
Fundamentals	of Differential Evolution	algorithm, dif	ference vector and its
significance, M	utation and crossover, co	omparisons amo	ong DE, PSO and GA,
Examples, new	modifications of DE, Impro	oved DE scheme	es for noisy optimization
problems.			[1+1+2+1+2+1]
Fuzzy set theory	y, Fuzzy systems, crisp sets	and fuzzy sets,	fuzzy set operations and
approximate re	easoning, Fuzzification, in	nferencing and	defuzzification, Fuzzy
knowledge and	rule bases, examples.		[1+2+2+2+1]
Biological neur	ral networks, Model of a	an artificial n	euron, neural network
architecture, C	haracteristics of neural ne	twork, learning	methods, Taxonomy of
neural network	architecture, Back propag	ation networks	, architecture of a back
propagation ne	etwork, back propagation	learning, Ex	amples, RBF network,
Associative men	nory, Adaptive resonance th	eory.	[1+1+2+2+2+1]
Applications of	Soft Computing to various fi	elds of engineer	ing. [2]
Text Books:			
1. Devendra K. Chaturvedi, "Soft Computing- techniques and its application in			
electrical engineering", Springer, 2008.			
2. Carlos A	. Coello,Garry B. Lamont,	David A. van V	eldhuizen, "Evolutionary
	ns for solving Multi-objectiv	ve Problems", S	econd Edition, Springer
2007.			
Reference Boo			
1. Jyh-Shin	g Roger Jang, Chuen-Tsai S	Sun &EijiMizuta	ni, Neuro-Fuzzy and Soft
Computi	ng: A Computational A	pproach to L	earning and Machine

- 1. Jyh-Shing Roger Jang, Chuen-Tsai Sun & Eiji Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice Hall
- 2. S. Rajasekaran and G. A. VijayalakshmiPai, Neural Networks, Fuzzy Logic

and genetic Algorithm Synthesis and Applications, PHI

- 3. Simon Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall
- 4. L. A. Zadeh, Fuzzy Sets and Applications, John Wiley & Sons

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER	
EE 9026	Embedded Systems	4 (3-1-0)	Dr. C. Koley	
	Embedded systems:	- (/		
	Features – Microprocessors	s – ALU - Von	Neumann and Harvard	
	assification, SPP, ASIC, ASI		[4]	
CISC and RISC	- Instruction pipelining. Fix teristics of embedded system	ed point and Flo	oating point processor[3]	
etc.			[6]	
Microcontroller	89CX51/52 Series: Char	acteristics and	Features, Overview of	
architectures, a I/O Ports.	and Peripherals, Timers, C	ounters, Serial	communication, Digital [4]	
Microcontroller	PIC Series: Characteristics	and Features, O	verview of architectures,	
	, Interrupts, Timers, watch		-	
_	rter, UART, I2C and SPI Bu			
special features			[5]	
ARM Architec	ture: Evolution, Characte	eristics and	Features, Overview of	
architectures, M	Iodes, Registers etc		[8]	
Digital Signal F	Processor		[4]	
Software archite	ecture and RTOS:			
Software Archi	tecture: Round Robin- Ro	ound Robin wit	th interrupts -Function	
Queue. Schedul	ling			
Architecture R'	TOS: Architecture -Tasks	and Task Stat	es -Tasks and Data -	
Semaphores ar	nd Shared Data Message (Queues -Mail B	Boxes and pipes -Timer	
Functions -Even	nts -Memory Management, I	nterrupt Routin	es. [6]	
Basic design us	ing a real time operating sys	stem:		
Overview. Gene	ral principles. Design of an e	embedded syste	m.	
Development	Tool: Cross-Compiler, Cro	ss-Assemblers,	Linker/locator. PROM	
-	ROM, Emulator, In-Circu			
Instruction set simulators. The assert macro. [6]				
Text Books:				
 Raj Kamal, <i>Embedded Systems Architecture</i>, Programming and Design, TMH D. E. Simon, <i>An Embedded Software Primer</i>, Pearson Education 				
Reference Books:				
1. J. B. Peatman, <i>Design with PIC Microcontrollers</i> , Pearson Education				
SUBJECT SUBJECT NAME CREDIT DEVELOPER				
CODE				
EE 9027	VLSI Systems	4 (3-1-0)	Prof. S. P. Ghoshal	
	delling of MOSFETS	· - /		
			[4]	

[4]

Physics and Modelling of MOSFETS Fabrication and Layout of CMOS Integrated Circuits;

The CMOS Inverter: Analysis and Design	
Switching Properties of MOSFETS	
Static Logic Gates;	[6]
Dynamic Logic Circuit Concepts	[6]
CMOS Dynamic Logic Families	[6]
CMOS Differential Logic Families	[6]
Issues in Chip Design	

1. John P. Uyemura, CMOS Logic Circuit Design, Kluwer Academic Publishers

Reference Books:

- 1. Sung-Mo (Steve) Kang & Yusuf Leblebici, CMOS Digital Integrated Circuits Analysis and Design, McGraw-Hill Education
- 2. Christian Piguet, Low-Power CMOS Circuits, Technology, Logic Design and CAD Tools, Taylor & Francis.

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER	
CODE				
EE 9028	Biomedical	3 (3-0-0)	Dr. Suman Halder	
	Instrumentation			
Organization of	f Cell, Cellular Constituent	ts, Cellular Org	anelles, Cell Membrane	
Structure, Cellu	ılar Transport Processes		[5]	
Generation of 1	Nernst Potential, Establish	ment of diffusion	on potential, Goldmann	
Equation, Meas	surement of membrane pote	ential, resting po	otential, action potential,	
role of voltage g	ated channels for controlling	g action potentia	als. [5]	
Role of sinus a pacemakers, Ar	node for generation of EC alysis of ECG.	G, ECG Transn	nission Process, Ectopic [4]	
Use of electroc	les for measurement of b	iopotentials, po	larization in electrodes,	
principle of ope	eration of Ag/Agcl electrode	, Equivalent cire	cuit of electrode, motion	
	types of electrodes for biop			
Measurement o	f ECG, Einthoven triangle n	nethod, unipolar	r and bipolar limb leads,	
	, Problems encountered in E	0	[5]	
	offerent types of pacing r	nodes, Physiolo	0	
currents. Defibr			[4]	
	Measurement of blood pressure, measurement of blood pH, measurement of blood			
flow, measurement of heart sounds, chemical tests on blood cells. [5] X ray instrumentation. Ultrasonography, Magnetic Resonance Imaging, Application				
-		lagnetic Resonai	nce Imaging, Application [4]	
of telemetry in patient care. [4] Text Books:				
1. John Enderle. Joseph Brinzino, Introduction to Biomedical Engineering,				
Elsevier, 2012.				
2. John G Webster, Medical Instrumentation, Application & Design, John Wiley				
& Sons, 2009.				
Reference Books:				
1. L. Cromwell, Fred J. Weibell, Erich A. Pfeiffer, , Biomedical Instrumentation				
& Measurements, PHI, 2014				

2. A. C Guyton, John E Hall, Textbook of Medical Physiology, Elsevier, 2006.