		Department of Electrical Engineerin				
	Currici	ulum of M Tech Programme (Specialization	: Powe	er Syste	ems)	
SI. No.	Subject Code	Name of the Subject	L	Т	Р	СР
Seme	ster I					
1	EE1001	EHV TRANSMISSION	3	1	0	4
2	EE1002	POWER SYSTEM OPERATION	3	1	0	4
3	EE1003	HIGH VOLTAGE ENGINEERING	3	1	0	4
4		ELECTIVE I	3	1	0	4
5		ELECTIVE II	3	1	0	4
6	EE1051	HIGH VOLTAGE LABORATORY	0	0	4	2
7	EE1052	COMPUTATION LABORATORY	0	0	4	2
Tota	al Credit					24
Seme	ester II					
1	EE2001	POWER SYSTEM PROTECTION AND TRANSIENTS	3	1	0	4
1	EE2002	POWER SYSTEM CONTROL & INSTRUMENTATION	3	1	0	4
3	EE2003	FLEXIBLE AC TRANSMISSION SYSTEMS	3	1	0	4
4		ELECTIVE III	3	1	0	4
5		ELECTIVE IV	3	0	0	3
6	EE2051	POWER SYSTEM PROTECTION & INSTRUMENTATION LABORATORY	0	0	4	2
7	EE2052	POWER SYSTEM SIMULATION LABORATORY	0	0	4	2
8	EE2053	PROJECT-I	0	0	2	1
Total	Credit					24
Seme	ster III					
1	EE3051	PROJECT-II				11
2	EE3052	PROJECT SEMINAR - I				2
	Credit		l	I	l	13
Seme	ester IV					
1	EE4051	PROJECT-III				11
2	EE4052	PROJECT SEMINAR - II & VIVA-VOCE			3	
	Credit		<u> </u>	1	<u> </u>	14
Т	OTAL					75

Part time

SI. No.	Subject Code	Name of the Subject	L	Т	Ρ	СР
Semes	ter I					
1	EE1001	EHV TRANSMISSION	3	1	0	4
2	EE1002	POWER SYSTEM OPERATION	3	1	0	4
3		ELECTIVE I	3	1	0	4
4	EE1052	COMPUTATION LABORATORY	0	0	4	2
Tot	al Credit			1		14
Semes	ter II					
1	EE2001	POWER SYSTEM PROTECTION AND TRANSIENTS	3	1	0	4
2	EE2002	POWER SYSTEM CONTROL & INSTRUMENTATION	3	1	0	4
3		ELECTIVE III	3	1	0	4
4	EE2051	POWER SYSTEM PROTECTION & INSTRUMENTATION LABORATORY	0	0	4	2
Total C	credit			1		14
Semes	ter III					
1	EE3001	HIGH VOLTAGE ENGINEERING	3	1	0	4
2		ELECTIVE II	3	1	0	4
3	EE3051	HIGH VOLTAGE LABORATORY	0	0	4	2
Total C	redit	•	•	•	•	10
Semes	ter IV					
1	EE2003	FLEXIBLE AC TRANSMISSION SYSTEMS	3	1	0	4
2		ELECTIVE IV	3	0	0	3
3	EE2052	POWER SYSTEM SIMULATION LABORATORY	0	0	4	2
4	EE2053	PROJECT-I	0	0	2	1
Total C	redit					10
Semes	tor V					L
	1			1		44
1	EE3051	PROJECT-II				11

2	EE3052	PROJECT SEMINAR - I			2
Total Credit					
Semes	ter VI		<u> </u>		1
1	EE4051	PROJECT-III			11
2	EE4052	PROJECT SEMINAR - II & VIVA-VOCE			3
Total Credit					14
Т	OTAL				75

LIST OF ELECTIVES

SI. No.	Subject Code	Name of the Subject
1	EE9011	POWER SYSTEM STABILITY
2	EE9012	POWER SYSTEM RELIABILITY
3	EE9013	DISTRIBUTED ENERGY SYSTEMS
4	EE9014	POWER SYSTEM OPTIMIZATION
5	EE9015	POWER SYSTEM MODELING
6	EE9016	SPECIAL ELECTRICAL MACHINES
7	EE9017	LINEAR CONTROL THEORY
8	EE9018	REAL TIME SYSTEMS DESIGN
9	EE9019	PROCESS INSTRUMENTATION & CONTROL
10	EE9020	ELECTRICAL VEHICLES
11	EE9021	MICROPROCESSOR BASED INDUSTRIAL CONTROL
12	EE9022	ROBOTICS & AUTOMATION
13	EE9023	INTELLIGENT CONTROL
14	EE9024	DIGITAL SIGNAL PROCESSING
15	EE9025	SOFT COMPUTING TECHNIQUES
16	EE9026	EMBEDDED SYSTEMS
17	EE9027	VLSI SYSTEMS
18	EE9028	BIOMEDICAL INSTRUMENTATION

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER				
CODE							
EE1001	EHV Transmission	4 (3-1-0)	Prof. S. Ghosh				
AC Transmission: Role of EHV transmission, standard transmission voltages,							
power handling	capacity and line loss, cal	culation of line an	d ground parameters,				
_	tances and capacitances.		[4]				
Voltage gradien	ts on conductors: field of li	ine charges, surfac	ce voltage gradient on				
conductors, cha	arge potential relations for m	ulti-conductor line	es, maximum gradient				
on actual lines.			[4]				
calculation of e circuit, induced Overvoltages in overvoltages ca capacitive curre Power frequence voltage condition	ld of EHV lines: Electric she lectrostatic field of AC lines voltages in insulated groun EHV lines caused by swit- used by interruption of 1 ents, ferroresonance overvolt by voltage control and over ons and charging current,	, electrostatic indu id wires. ching operations: ow inductive curr tages, calculation c voltages: Generaliz power circle diag	[4] origin of overvoltages, rents, interruption of of switching surges.[5] zed constant, no-load gram, voltage control				
0.0	nous condensers, shunt a	nd series compen	·				
compensating s			[6]				
AC systems. T	on: Advantages and disadva ypes of DC links, Schema e converter unit. Recent trer	tic diagram of typ	bical HVDC converter				
-	dge Converters: 6-pulse Br						
-	o. Inversion; Equations fo		-				
	ailure; Control of Converter link. DC Circuit Breakers.	rs: Control charac	teristics, starting and [12]				
Smoothing Rea	ctor: Prevention of simple,	, consequent and	double commutation				
failures.			[2]				
Harmonics Ana	lysis: Characteristic and Un	characteristic harr	nonics in twelve pulse				
converters, Causes and suppression of uncharacteristic harmonics. [3]							
HVDC Circuit Breakers[1]							
Text Books:							
<u>ک</u> ، Ľ. W.	Kinibark, Direct Current In						

Reference Books:

1. K. R. Padiyar, *HVDC Power Transmission Systems*, New Age International (P) Limited

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER			
EE1002	Power System Operation	4 (3-1-0)	Prof. S. P. Ghoshal & Prof. S. S. Thakur			
Load Flow Studies: Network model formulation, formulation of the problem, Classification of buses, Gauss-Seidel and Network-Raphson methods of solution,						

considerations for voltage controlled buses. Fast decoupled method of solution.
Calculation of line flows and slack bus power, optimal load flow study, DC load flow
study. [7]
Introduction to power system state Estimation: Formulation of the problem and
solution technique. Introduction to detection and identification of bad data. [5]
Economic Load Dispatch: Formulation of problem without and with network losses,
various methods of solution. [7]
Unit Commitment: Introduction, Constraints in Unit Commitment, Unit
Commitment Solution Methods [3]
Hydrothermal Scheduling: Long-Range Hydro-Scheduling, Short-Range Hydro-
Scheduling The Short-Term Hydrothermal Scheduling Problem, Short-Term Hyrdo-
Scheduling: A Gradient Approach Dynamic-Programming Solution to the
Hydrothermal Scheduling Problem, Hydro-Scheduling Using Linear Programming
[4]
Power Systems Stability Studies: Swing equation, equal area criterion, solution
methods of swing equation. [4]
Short-circuit Studies: Studies on asymmetrical shunt and series faults. [4]
Automatic Generation Control: Models of governor, turbine, power system and tie-
line; multi-area load frequency control and state representation, Q-V loop by AVR.
Introduction to Power Systems Security: Introduction, Factors Affecting Power
System Security, Contingency Analysis: [2]
Optimal Power Flow: Definition of optimal power flow and application of evolutionary techniques for optimal power flow [3]
Text Books:
1. Power Generation, Operation and Control By: A. J. Wood and B. F.
Woolenberg, John Wiley & Sons, Inc.
2. Modern-Power-Systems-Analysis-By: D. P. Kothari and I. J. Nagrath. Tata
McGraw Hill Education private Limited, New Delhi.
Reference Books:
1. Electric Energy Systems Theory An Introduction By: O. I. Elgerd McGraw
Hill Education.
2. Computer Methods in Power Systems Analysis By: G. W. Stagg and A. H. El-
Abiad McGraw-Hill Kogakusha, Ltd.
3. Power System Engineering By: D. P. Kothari and I. J. Nagrath. Tata
McGraw-Hill Education.

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER		
EE1003	High Voltage	4 (3-1-0)	Prof. N. K. Roy		
	Engineering				
Overview of High	Voltage Engineering, Air a	as an Insulation	, Concept of Dielectric		
Strength, Electric	e field and electrode config	uration, Paramo	eters for dependence of		
Dielectric strengt	h, Introduction to Breakdov	vn of Insulation.	[5]		
Breakdown of Ga	ses, Solids, Liquids and Vac	cuum	[7]		
Generation of AC	Generation of AC high voltages and DC High Voltages				
Generation of im	pulse voltages and current	s:- Analysis of	different circuits, Marx		
multi-stage impu	multi-stage impulse generator [5]				
Methods of measuring high voltage and high currents of power frequency and D.C					
and Impulse			[5]		

Introduction to Lightning phenomenon, Insulation Co-ordination. Brief reviews of
high voltage testing-Methods for different power system equipment[8]Introduction to H.V. testing transformer design. Capacitive voltage transformer
Introduction to partial discharge. and partial discharge testing[5]Planning & design of a high voltage laboratory, Introduction of virtual Laboratory
and ICT enabled concept for high voltage testing[5]

Text Books:

- 1. C.L.Wadhwa, High Voltage Engineering
- 2. M S Naidu & Kamraju, High Voltage Engineering

Reference Books:

- 1. Kueffel & Zangel, Introduction in High Voltage Engineering
- 2. J Lucas, High Voltage Engineering

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER
EE1051	High Voltage Laboratory	2 (0-0-4)	Prof. N. K. Roy

- 1. Calibration of power frequency high voltage by sphere-sphere gap arrangement
- 2. Study the BDV strength of air for various pressure and vacuum with different geometrical configuration of electrode
- 3. To study the characteristics of impulse voltage and the wave shape of lightning impulse voltage
- 4. (a) Measurement of capacitance and $\tan\delta$ of insulating material with the help of Schering bridge

(b) To study the BDV strength of insulating oils

- 5. (a) To study the (i) variation of resistivity of transformer oil with temperature and (ii) variation of insulation resistance of paper with applied voltage
 - (b) To study the ratio and phase angle error measurement of transformer
- 6. (a) To study the four terminal sensing method for measuring very low resistances using micro-ohm meter

(b) To study the partial discharges in an 300 kV AC systems

- 7. Survey of lightning in the class room and spatial magnetic field in the vicinity of overhead power lines
- 8. To study the insulation resistance for paper, impregnated oil paper and paper with moisture

Reference Books:

1. Laboratory manuals

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER
EE1052	Computation Laboratory	2 (0-0-4)	Dr. P. Acharjee
1 To Solvo F	conomic Load Dispate	n without loggo	and with logges by
1. 10 Solve E	conomic Load Dispate.	i without losses	and with losses by
Evolutionary	Techniques		
2 Determinatio	on of Optimal Power Flow	solutions for the	IFFF systems based on

2. Determination of Optimal Power Flow solutions for the IEEE systems based on cost optimization, transmission loss optimization and total voltage deviation optimization and the combined optimization. Apply Genetic algorithm

- 3. Determination of Optimal Reactive Power Dispatch applied to the solution of various IEEE systems, transmission loss optimization and total voltage deviation optimization and the combined optimization, using PSO technique
- 4. To determine Optimal Hydrothermal Scheduling for short-range fixed head and variable head hydrothermal systems based on Differential Evolutionary Technique
- 5. To determine Small Signal stability analysis based on various types of power system stabilizers, evolutional technique based optimization and Application of Fuzzy Logic
- 6. To determine Optimal Automatic Generation Control and Optimal AVR control based on evolutionary techniques and Fuzzy logic
- 7. Optimization of distributed systems based on some evolutionary techniques
- 8. Using artificial neural network, analysis L-G fault for IEEE 14-bus test system.

1. Laboratory	<u>manuals</u>		
SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER
CODE			
EE2001	Power System	4 (3-1-0)	Dr. S. S. Thakur &
	Protection and		Dr. P. S. Bhowmik
	Transients		

Normal Switching Transients: Circuit breaker making and breaking transients, Resistance switching, Load Switching, Capacitance Switching, Reactor Switching, [5]

Abnormal Switching Transients: Current chopping, Arc furnace switching, Transformer Magnetizing Inrush Current, Arcing Ground Phenomenon, Current Limiting Static Circuit Breaker [5]

Lightning Protection: Mechanism of Lightning, over voltage due to lightning, protection of electrical apparatus against lightning strokes, behaviour of machine windings under transient conditions, Kilometric Fault. [5]

Lighting protection schemes: Arrestors, Surge absorbers, Neutral Grounding. LightingOver voltagesand Protection of Substation Equipment, Switching Over voltages in EHVSubstations, Switching Overvoltage in Medium Voltage Substations, Rating of Surge Arrester, Installation as Surge Arresters, Overhead Shielding Screen, Protective Angle [5]

Introduction to Insulation coordination, Over voltages and their Significance, Standard Voltage Levels, Insulation Levelof anEquipment, Insulation Co-ordination of a Substation. [4]

Protective Relays:

Reference Books:

Basic requirement; classification on applications; principles of operation. Over current relays; directional relays, characteristics and connections; distance relays impedance, reactance and mho types. Differential relays and percentage differential relays- voltage and current balance types. Biased beam relay; Negative sequence relay. [8]

Protection of transmission lines:

Unit and non-unit types; time and current graded systems; setting of relays for coordination; distance protection- impedance, reactance and mho types; three zone distance protection; pilot wire protection using current and voltage balance; Translay system; carrier current protection. [4] Protection of transformer: Types of faults- faults in auxiliary equipments, winding faults, overloads and external short circuits. Gas actuated devices- pressure relief and pressure relay, rate of rise pressure relay, gas accumulator relay. Biased differential protection for different transformer connections; earth fault protection. Over current protection.

Protection of generator:

Types of faults- stator faults, rotor faults, abnormal running conditions. Biased differential protection for different stator connections. Protection against earth fault, turn to turn fault, rotor earth fault, loss of field excitation. Negative sequence protection. [4]

Text books:

1. C. R. Mason, The Art and Science of Protective Relaying, Wiley Eastern Limited.

2. 2. A. Greenwood, Electrical transients in Power Systems, *Wiley Interscience* **Reference Books:**

- 1. D. P. Kothari and I. J. Nagrath, *Power System Engineering*, Tata McGraw Hill.
- 2. C. S. Indulkar and D. P. Kothari, Power system transients: A Statistical approach, *PHI*
- 3. 3. Warrington, A.R.v.C. (1962) Protective Relays, The Theory and Practice, Vol. 1, Chapman and Hall, London/John Wiley & Sons, Inc., New York.

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER					
CODE								
EE2002	Power System Control	4 (3-1-0)	Dr. P. Acharjee and					
	and Instrumentation		Dr. C. Koley					
Overview of Po	Overview of Power System, Optimal Power Flow, Power System Stability,							
Conventional Con	ntrol Scheme for Power Syst	em;	[1+1+1]					
Automatic Gen	eration Control: Automa	tic Voltage Re	egulator (AVR), Load					
Frequency Contro	ol (LFC) with tuning of Cont	roller parameter	s; [1+1+2]					
Power Flow Con	trol: Compensators for por	wer flow contro	ol, Unified Power Flow					
Controller, Interli	ine Power Flow Controller;		[1+1+2+1]					
Phasor Measurer	ment Unit (PMU): Overview	of Synchro pha	sor, PMU architecture,					
PMU placement,	PMU Applications;		[1+2+2+1]					
Smart Grid (SC	G): SG concept, Impact of	of SG for pow	ver system control &					
Measurement, Sy	ystems & Functions of SG		[1+1+2+2]					
Power systems in	strumentation:							
Measurement, E	errors, Statistical Analysis of	f Errors,	[4]					
Signal Condition	ing Circuit, Converters, Opt	ical Insulator, S	ensor and Transducer;					
Instrument trans	sformers: C.T. and P. T., p	orinciple, charac	eteristics, construction,					
errors, and trans	ient behaviour etc.;		[5]					
Power System M	leasurement: Voltage, Curre	ent, Phase, Pow	er, Energy, Frequency,					
Power factor etc.;	, ,		[3]					
Supervisory control and data acquisition system: Functional blocks, Software and								
Hardware features, operation, PLCs and DCS; [6]								
Measurement of transients and harmonic distortion: THD, Power Quality meter;								
Phasor Monitor	ing Unit (PMU): block	diagram repr	esentation, functions,					
characteristics.			[4]					
Text Books:								

[4]

- 1. S. Sivanagaraju & G. Sreenivasan, "Power System operation and Control", Pearson 2010.
- 2. Ernest O. Doebelin, Measurement system, Tata McGraw-Hill Education.

- 1. Stuart A., Supervisory Control and Data Acquisition, Boyer International Society of Automation
- 2. Surya Santoso, Mark F. McGranaghan, Roger C. Dugan, H. Wayne Beaty, Electrical Power Systems Quality, Access Engineering.
- 3. Andres Carvallo, John Cooper, "The Advanced Smart Grid: Edge Power Driving Sustainability", Artech House, Boston London, 2011.

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER		
CODE					
EE2003	Flexible Ac	4 (3-1-0)	Prof. S. P. Ghoshal		
	Transmission Systems				
FACTS concept a	nd General System of Consi	iderations:	[1]		
Checklist of poss	sible benefits from FACTS te	echnology.	[1]		
Lumped/Distrib	uted model analysis for Seri	ies and Shunt co	ompensation. [4]		
Methods of Cont	rollable Var Generation:				
Variable Imped	ance Type Static Var G	enerators, lum	ped/distributed model		
analysis, TCR, TS	SR, TSC, FC-TCR.		[6]		
	verter Type Var Gener				
- /	ted model analysis, basic co	nverter configur	ations. [6]		
Static Series Con	-	00 0000 1			
	of operation of TSSC, TC	SC, SSSC, 1um			
analysis Applicat			[6]		
0	nd Phase angle regulators: R, lumped/distributed mode	l opolygia Appli	institute [7]		
Combined Comp		analysis, Appli	ications. [7]		
-	Flow Controller (UPFC), ba	sic operating n	rinciples conventional		
	trol capabilities. Functional		-		
	control systems for P and				
analysis.		Q control, run	[10]		
5	teady state analysis and co	ontrol. oscillation			
	. Transient stability contro				
UPFC.	5	5 ,	[4]		
Text Books:					
1. Y.H. Song	1. Y.H. Song and A.T. Johns," Flexible AC Transmission Systems (FACTS), IET				
Power and Energy Series, Shankar's Book Agency Publisher (Indian Edition).					
2. K.R. Padyyar," FACTS Controller in Power Transmission and Distribution",					
Reference Books:					
1. Mey Ling Sen, Kalyan K. Sen," Introduction To FACTS Controllers – Theory, Modeling And Applications, Wiley (IEEE) Publisher.					
9	gorani & L. Gyugyi, "Ui	,	ACTS: Concepts and		
	y of Flexible AC Transmissio	0	concepto and		

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER
EE2051	Power System Protection &	2 (0-0-4)	Prof. S. S. Thakur
	Instrumentation Laboratory		

- 1. Determination of Characteristics of IDMT Non-directional and Directional overcurrent Relays
- 2. Parallel Feeder Protection
- 3. Protection against short-circuit faults and ground faults in power lines
- 4. Determination of Characteristic of Differential Relay
- 5. Transformer protection by Differential Relay
- 6. Restricted Earth Fault Protection for Transformer
- 7. (a) To study Numerical Distance Relay (Areva make) for different types of power system faults
 - (b) To study Numerical Distance Relay (ABB make) for different types of power system faults
- 8. (a) To study different types of power system faults using Eurostag Software(b) To study different types of power system faults using MiPower Software

Reference Books:

1. Laboratory manuals

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER
EE2052	Power System Simulation Laboratory	2 (0-0-4)	Dr. P. Acharjee

- 1. Load Flow Studies using Gauss-Seidel, Newton-Raphson and Fast Decoupled Methods
- 2. Study of Economic Load Dispatch Problems, considering various non-linearities and constraints
- 3. Study of Automatic Voltage Regulator using MATLAB
- 4. Study of Power System Stabilizer Using MATLAB
- 5. Study of Automatic Generation Control of multi-area power systems
- 6. Study of Static State Estimation by EUROSTAG software
- 7. Study of power systems by EUROSTAG software
- 8. Protection against simulated power system faults by Numerical Relay
- 9. Power System Analysis using MiPower Software

10. Power Flow Control using TCSC

Reference Books:

1. Laboratory manuals

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER
CODE			
EE 9011	Power System Stability	4 (3-1-0)	Prof. S. P. Ghoshal
			and Prof. S. Ghosh

Small Signal Stability: Small Signal stability of a single machine infinite bus system, Effects of excitation system, Power system stabilizer, Small-signal stability of multi machine systems and very large systems, Small-signal stability enhancement. [6]

Steady State Stability: Analysis of steady state stability of unregulated and regulated systems. [6]

Transient Stability: An elementary view of transient stability, Numerical integration methods, Simulation of power system dynamic response, Analysis of unbalanced faults, Performance of protective relaying, Case study of transient stability of a large system, Direct method of transient stability analysis, Transient stability enhancement. [10]

Voltage Stability: Basic concepts related to voltage stability, Voltage stability analysis, Voltage collapse, Examples of Voltage collapse, Prevention of voltage collapse. [12]

Subsynchronous Oscillations: Turbine-generator torsional characteristics, Torsional interaction with power system controls, Subsynchronous resonance, Impact of network-switching disturbances, Torsional interaction between closely coupled units, Hydro generator torsional characteristics. [5]

Mid-term and Long-term Stability: Nature of system response to severe upsets, Distinction between mid-term and long-term stability, Power plant response during severe upsets, Simulation of long-term dynamic response, Case studies of severe system upsets. [6]

Text Books:

- 1. PrabhaKundur, Power System Stability and Control, TMH
- 2. P. M. Anderson & A. A. Fouad, Power System Control and Stability, IEEE Series on Power Engineering.

- 1. Power Systems Stability, Vol. -1 E. W. Kimbark, Dover Publications, New York.
- 2. Power Systems Stability, Vol. -2 E. W. Kimbark, Dover Publications, New York.
- 3. Power Systems Stability, Vol. 3 E. W. Kimbark, Dover Publications, New York.

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER
EE 9012	Power System Reliability	4 (3-1-0)	Prof. S. P. Ghoshal
Fundamentals of	[3]		
Binomial, Poisson and normal distribution;			[3]
Sampling theory			[3]
General reliabili	ity function		[1]

Exponential distribution	[1]
Mean time to failure	[3]
Markov processes	[4]
Recursive techniques	[6]
Loss of load probability method	[2]
Load forecast uncertainty	[3]
Loss of energy probability method	[2]
Spinning capacity evaluation	[4]
Derated capacity levels	[3]
Transmission system reliability	[4]
Interconnected system generating capacity reliability evaluation	[3]
Text Books:	

1. R. Billinton, Power System Reliability, Gordon & Breach

Reference Books:

- 1. M. Cepin, Assessment of Power System Reliability: Methods and Applications, Springer
- 2. A. A. Chowdhury and D. O. Koval, Power Distribution System Reliability, IEEE Press

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER	
CODE	Sobobol Minik	ORDDIT	DEVELOIER	
EE 9013	Distributed Energy	4 (3-1-0)	Prof. N. K. Roy	
	Systems			
Evolution of wo	orld energy consumption, N	onrenewable ar	nd Renewable resources,	
Transformation	of energy;		[4]	
Solar thermal,	Solar radiation at the Earth	i's surface, Flat	plate and concentrating	
type collectors,	, Solar energy storage, So	olar pond, Sola	ar heating and cooling	
techniques, Sol	ar thermal power plant, Sol	lar photo voltaio	c conversion, Solar cells,	
PV applications	•		[8]	
Basic principles	s of wind energy conversion	n, Basic compo	nents of a Wind Energy	
Conversion Sys	stem (WECS), classification	n of WECS, I	Details of wind turbine	
generator, Perfo	ormance, Safety and Environ	mental aspects	applications; [5]	
Classification of	f Small Hydro Power Plants	, Components, '	Turbines and generators	
for small scale h	nydroelectric power plant Pr	otection and cor	ntrol [4]	
Geothermal Er	ergy, Ocean Thermal Ele	ctric Conversio	n (OTEC), Tidal Power	
Generation, Fue	el Cells, Magneto Hydro Dyn	amic (MHD) Pov	wer Generation, Thermo-	
electric power, 7	Thermionic generation;		[8]	
Integration of renewable energy sources with the grid using Modern Power Electronics Technologies; Introduction to Distributed Generation & Intentional Islanding, Transient Analysis of Distributed Generators connected with grid, Micro- grid. [6]				
Text Books:				
Delhi, 20				
2. N. G. Clavert, Wind Power Principle, their application on small scale, Calvert Technical Press.				

- 1. Fuel Cell Handbook, Parsons Inc.
- 2. I. Earnest and T. Wizelius, Wind Power Plants and Projects development, PHI.

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER	
EE 9014	Power System	4 (3-1-0)	Prof. S. P. Ghoshal	
	Optimization	. (0 _ 0)		
Economic Load	Dispatch without losses and	d with losses;	[4	4]
Optimal Power	· Flow applied to the sol	lution of vario	us IEEE systems, co	st
optimization,	transmission loss optim	ization and t	otal voltage deviatio	on
optimization, m	ulti-objective optimization;		[6	6]
Optimal Reactiv	ve Power Dispatch applied to	the solution of	various IEEE systems,	
				6]
Transmission l	oss optimization and total	voltage deviation	on optimization and th	ne
combined optim	nization;		[4	4]
Optimal load sh	nedding;		[4	4]
Optimal Hydrot	thermal Scheduling for sho	ort-range fixed	head and variable hea	ad
hydrothermal sy	ystems; multi-objective gene	eration scheduli	ng; [4	4]
Small Signal sta	ability analysis based on var	rious types of po	wer system stabilizers;	
			[4	4]
Optimal Automa	atic Generation Control,		[8]
Optimal AVR control; [
Optimization of	distributed systems; Evolut	ionary Program	ming. [3]
Text Books:				
1. D.P. Kot India	hari and J.S. Dhillon, Powe	er System Optin	nzation, , Prentice Hall	of

2. J. A. Momoh, Electric Power system Applications of Optimization, CRC Press

Reference Books:

1. J. Zhu, Optimization of power system operation, John Wiley & Sons

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER		
CODE					
EE 9015	Power System Modeling	4 (3-1-0)	Dr. P. Acharjee		
Static Analysis	and Model: background,	motivation for	modelling of physical		
systems, hybrid	dynamic model, power syst	em architecture	. [4]		
Network Model:	lines and cables, transform	ners (single and	three phase), series and		
shunt elements	, load, generator.		[6]		
Formulation: r	network equations, equality	and inequality	constraints, active and		
reactive power	flow with in-phase transfor	rmers and phas	e shifting transformers,		
decoupling properties, ac and DC power flow model. [5]					
Fault analysis:	Fault analysis: transients on a transmission line, short circuit of a synchronous				
machine, generator model and Takahashi method for short circuit studies					
examples. [5]					
Power System Dynamics and Stability: power system stability, dynamics of power					
system and thei	r modelling, examples.		[5]		

Synchronous Machine Models: Design and operating principle of rotor, stator and
magnetic torque, stationary and dynamic operation of single phase equivalent
circuit, phasor diagram, operational limits.[6]Power Swings in a Simple Power System: swing equation and its solutions,
qualitative analysis, stable and unstable solutions, equal area criterion, lyapunov
stability, small signal analysis, oscillations in multi-machine systems.[6]Control of Electric Power Systems: Control of Active Power and Frequency,
Spinning reserve, Supplementary reserves, Back-Up Reserves; Control of Reactive
Power and Voltage, Reactive Power Control Voltage; Control Supervisory Control of
Electric Power Systems.[6]

Protections in Electric Power Systems: Design of Protections, Distance Protections, Out of Step Protections, System Protections. [4]

Text Books:

- 1. S. **Krishna**, "An Introduction to Modelling of Power System Components", springer, 2014.
- 2. Nasser D. Tleis, "Power Systems Modelling and Fault Analysis", Elsivier, 2008

Reference Books:

- 1. G"oran Andersson, "Modelling and Analysis of Electric Power Systems", ETH Z"urich, 2008.
- 2. Mircea Eremia, Mohammad Shahidehpour, "Handbook of Electrical Power System Dynamics: Modeling, Stability, and Control", Wiley-IEEE Press, 2013
- 3. Milano, Federico, "Power System Modelling and Scripting", Springer, 2010.

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER
CODE			
EE 9016	Special Electrical Machines	4 (3-1-0)	Dr. S. N. Mahato

STEPPER MOTORS: Constructional features, Principle of operation, Permanent magnet stepper motor, Variable reluctance motor, Hybrid motor, Single and multistack configurations, Torque equations, Modes of excitations, Characteristics, Drive circuits, Control of stepping motors. [10]

HIGH-SPEED OPERATION OF STEPPER-MOTORS: Pull-out torque/speed, characteristics of Hybrid stepper motors, calculation of pull-out torque, pull-out torque/speed characteristics for the VR stepper-motors, calculation of the pull out torque. [5]

SWITCHED RELUCTANCE MOTORS: Constructional features – Principle of operation – Torque production, Steady state performance prediction, Power Converters, Methods of Rotor position sensing, Closed loop control of SRM. [8] DRUSHUESS D.C. MOTORS: Construction Types Principle of operation Magnetic

BRUSHLESS D.C. MOTORS: Construction, Types, Principle of operation, Magnetic circuit analysis, Motor characteristics and control. [7]

PERMANENT MAGNET SYNCHRONOUS MOTORS: Principle of operation, EMF and Torque equations, Synchronous Reactance, Phasor diagram, Torque/speed characteristics, Power controllers, Converters, Control of motors. [7] LINEAR INDUCTION AND SYNCHRONOUS MOTORS: Development of a Doublesided LIM from Rotary type IM, Schematic of LIM drive for electric traction,

bevelopment of one-sided LIM, Equivalent circuit of LIM, Linear Synchronous motor. [5] SINGLE-PHASE SYNCHRONOUS MOTORS: Single Phase Reluctance and hysteresis motors. [3]

Text Books:

- 1. K. Venkataratnam, Special Electric Machines, Universities Press.
- 1. T. Kenjo and A. Sugawara, Stepping Motors and Their Microprocessor Controls, Claredon Press.

Reference Books:

- 1. T. Kenjo and S. Nagamori, Permanent Magnet and Brushless DC Motors, Claredon Press.
- 2. T.J.E. Miller, Brushless Permanent Magnet and Reluctance Motor Drives, Clarendon Press, Oxford, 1989.

HistoricalPerspective, Openloop Loop ControlDevelopment Dynamic System Representation[2]Mathematical Modelling, Transfer Function/ matrix[2]Mathematical Modelling, Transfer Function/ matrix[4]Performance Objectives/ Goals[4]Response and Loop Goals, Stabilization, Pole-placement, Tracking, Robustness, Disturbance Rejection, Noise Attenuation[4]Performance Analysis and Tests[4]Time Domain Analysis, Internal Model Principle (IMP), Frequency Response analysis by bode diagram and Nyquist criterion, Loop Shaping Techniques, Sensitivity analysis, Utilities of Gain and Phase Margin determination Compensation[4]Feedforward Control, Feedback Control, Classical Controller P, PI, PID, Lead and Lag, One degree-of-freedom (1 DOF) control, Two DOF configuration, Linear State Variable Feedback (LSVF) control[14]State Space Representation of Continuous-time Systems[14]State models to transfer functions in z-domain, solutions of state equations, state transition matrix, state transition flow graphs, eigenvalues, eigenvectors and stability similarity transformation, decompositions of transfer functions, canonical state variable models, controllability and observability, state feedback and pole placement, MATLAB tools and case studies[15]Robust and Optimal Control[15]Linear Quadratic Regulator (LQR), Linear Quadratic Guassian (LQG), LQR with state estimator, Kalman filter/state estimator, Loop Transfer Recovery (LTR), H_2 and H_{∞} control Engineering, K. Ogata2.Feedback Control Engineering, K. Ogata3.Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P <th>SUBJECT</th> <th>SUBJECT NAME</th> <th>CREDIT</th> <th>DEVELOPER</th>	SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER			
Dr. J. Dey Introduction [2] Historical Perspective, Open loop Control, Development of Feedback/ Servomechanism/ Closed-loop Control Dynamic System Representation [2] Mathematical Modelling, Transfer Function/ matrix [2] Performance Objectives/ Goals [4] Response and Loop Goals, Stabilization, Pole-placement, Tracking, Robustness, Disturbance Rejection, Noise Attenuation [4] Performance Analysis and Tests [4] Time Domain Analysis, Internal Model Principle (IMP), Frequency Response analysis by bode diagram and Nyquist criterion, Loop Shaping Techniques, Sensitivity analysis, Utilities of Gain and Phase Margin determination Compensation [4] Feedforward Control, Feedback Control, Classical Controller P, PI, PID, Lead and Lag, One degree-of-freedom (1 DOF) control, Two DOF configuration, Linear State Variable Feedback (LSVF) control State model state models for linear discrete time systems, conversion of state variables models to transfer functions in z-domain, solutions of state equations, state transition matrix, state transition flow graphs, eigenvalues, eigenvectors and tability similarity transformation, decompositions of transfer functions, canonical state variable models, controllability and observability, state feedback and pole placement, MATLAB tools and case studies Robust and Optimal Control [15] Linear Quadratic Regulator (LQR), Linear Quadratic Guassian (LQG), LQR with s							
Introduction [2] Historical Perspective, Open loop Control, Development of Feedback/ Servomechanism/ Closed-loop Control Dynamic System Representation [2] Mathematical Modelling, Transfer Function/ matrix [4] Response and Loop Goals, Stabilization, Pole-placement, Tracking, Robustness, Disturbance Rejection, Noise Attenuation [4] Performance Analysis and Tests [4] Time Domain Analysis, Internal Model Principle (IMP), Frequency Response analysis by bode diagram and Nyquist criterion, Loop Shaping Techniques, Sensitivity analysis, Utilities of Gain and Phase Margin determination Compensation [4] Feedforward Control, Feedback Control, Classical Controller P, PI, PID, Lead and Lag, One degree-of-freedom (1 DOF) control, Two DOF configuration, Linear State Variable Feedback (LSVF) control State model state models for linear discrete time systems [14] State models to transfer functions in z-domain, solutions of state equations, state transition matrix, state transition flow graphs, eigenvalues, eigenvectors and stability similarity transformation, decompositions of transfer functions, canonical state variable models, controllability and observability, state feedback and pole placement, MATLAB tools and case studies Robust and Optimal Control [15] Linear Quadratic Regulator (LQR), Linear Quadratic Guassian (LQG), LQR with state estimator, Kalman filter/state estimator, Loop Transfer Recovery (LTR), H ₂ and H _w control, Linear Matrix I	EE 9017	Linear Control Theory	4 (3-1-0)	•			
HistoricalPerspective, Openloop Loop ControlDevelopment 				Dr. J. Dey			
Mathematical Modelling, Transfer Function/ matrix Performance Objectives/ Goals [4] Response and Loop Goals, Stabilization, Pole-placement, Tracking, Robustness, Disturbance Rejection, Noise Attenuation Performance Analysis and Tests [4] Time Domain Analysis, Internal Model Principle (IMP), Frequency Response analysis by bode diagram and Nyquist criterion, Loop Shaping Techniques, Sensitivity analysis, Utilities of Gain and Phase Margin determination Compensation [4] Feedforward Control, Feedback Control, Classical Controller P, PI, PID, Lead and Lag, One degree-of-freedom (1 DOF) control, Two DOF configuration, Linear State Variable Feedback (LSVF) control State Space Representation of Continuous-time Systems [14] State model state models for linear discrete time systems, conversion of state variables models to transfer functions in z-domain, solutions of state equations, state transition matrix, state transition flow graphs, eigenvalues, eigenvectors and stability similarity transformation, decompositions of transfer functions, canonical state variable models, controllability and observability, state feedback and pole placement, MATLAB tools and case studies Robust and Optimal Control [15] Linear Quadratic Regulator (LQR), Linear Quadratic Guassian (LQG), LQR with state estimator, Kalman filter/state estimator, Loop Transfer Recovery (LTR), H_2 and H_{∞} control, Linear Matrix Inequality (LMI) technique Text Books: 1. Modern Control Engineering, K. Ogata 2. Feedback Control Theory, John Doyle, Bruce Francis, Allen Tannenbaum 3. Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P Andrews	Historical Per Servomechanist						
Response and Loop Goals, Stabilization, Pole-placement, Tracking, Robustness, Disturbance Rejection, Noise Attenuation Performance Analysis and Tests [4] Time Domain Analysis, Internal Model Principle (IMP), Frequency Response analysis by bode diagram and Nyquist criterion, Loop Shaping Techniques, Sensitivity analysis, Utilities of Gain and Phase Margin determination Compensation [4] Feedforward Control, Feedback Control, Classical Controller P, PI, PID, Lead and Lag, One degree-of-freedom (1 DOF) control, Two DOF configuration, Linear State Variable Feedback (LSVF) control State Space Representation of Continuous-time Systems [14] State model state models for linear discrete time systems, conversion of state variables models to transfer functions in z-domain, solutions of state equations, state transition matrix, state transition flow graphs, eigenvalues, eigenvectors and stability similarity transformation, decompositions of transfer functions, canonical state variable models, controllability and observability, state feedback and pole placement, MATLAB tools and case studies Robust and Optimal Control [15] Linear Quadratic Regulator (LQR), Linear Quadratic Guassian (LQG), LQR with state estimator, Kalman filter/state estimator, Loop Transfer Recovery (LTR), H_2 and H_{∞} control. Linear Matrix Inequality (LMI) technique Text Books: 1. Modern Control Engineering, K. Ogata 2. Feedback Control Theory, John Doyle, Bruce Francis, Allen Tannenbaum 3. Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P Andrews		-	/ matrix	[2]			
analysis by bode diagram and Nyquist criterion, Loop Shaping Techniques, Sensitivity analysis, Utilities of Gain and Phase Margin determination Compensation [4] Feedforward Control, Feedback Control, Classical Controller P, PI, PID, Lead and Lag, One degree-of-freedom (1 DOF) control, Two DOF configuration, Linear State Variable Feedback (LSVF) control State Space Representation of Continuous-time Systems [14] State model state models for linear discrete time systems, conversion of state variables models to transfer functions in z-domain, solutions of state equations, state transition matrix, state transition flow graphs, eigenvalues, eigenvectors and stability similarity transformation, decompositions of transfer functions, canonical state variable models, controllability and observability, state feedback and pole placement, MATLAB tools and case studies Robust and Optimal Control [15] Linear Quadratic Regulator (LQR), Linear Quadratic Guassian (LQG), LQR with state estimator, Kalman filter/state estimator, Loop Transfer Recovery (LTR), H_2 and H_{∞} control, Linear Matrix Inequality (LMI) technique Text Books: 1. Modern Control Engineering, K. Ogata 2. Feedback Control Theory, John Doyle, Bruce Francis, Allen Tannenbaum 3. Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P Andrews	Response and Disturbance Re Performance Ar	Loop Goals, Stabilization, jection, Noise Attenuation alysis and Tests	-	, Tracking, Robustness, [4]			
Feedforward Control, Feedback Control, Classical Controller P, PI, PID, Lead and Lag, One degree-of-freedom (1 DOF) control, Two DOF configuration, Linear State Variable Feedback (LSVF) controlState Space Representation of Continuous-time Systems[14]State model state models for linear discrete time systems, conversion of state variables models to transfer functions in z-domain, solutions of state equations, state transition matrix, state transition flow graphs, eigenvalues, eigenvectors and stability similarity transformation, decompositions of transfer functions, canonical state variable models, controllability and observability, state feedback and pole placement, MATLAB tools and case studies[15]Robust and Optimal Control[15]Linear Quadratic Regulator (LQR), Linear Quadratic Guassian (LQG), LQR with state estimator, Kalman filter/state estimator, Loop Transfer Recovery (LTR), H_2 and H_{∞} control, Linear Matrix Inequality (LMI) technique Text Books: 1. Modern Control Engineering, K. Ogata 2. Feedback Control Theory, John Doyle, Bruce Francis, Allen Tannenbaum 3. Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P Andrews	analysis by bo Sensitivity anal	ode diagram and Nyquist	criterion, Loo	p Shaping Techniques, ermination			
State model state models for linear discrete time systems, conversion of state variables models to transfer functions in z-domain, solutions of state equations, state transition matrix, state transition flow graphs, eigenvalues, eigenvectors and stability similarity transformation, decompositions of transfer functions, canonical state variable models, controllability and observability, state feedback and pole placement, MATLAB tools and case studies Robust and Optimal Control [15] Linear Quadratic Regulator (LQR), Linear Quadratic Guassian (LQG), LQR with state estimator, Kalman filter/state estimator, Loop Transfer Recovery (LTR), H_2 and H_{∞} control, Linear Matrix Inequality (LMI) technique Text Books: 1. Modern Control Engineering, K. Ogata 2. Feedback Control Theory, John Doyle, Bruce Francis, Allen Tannenbaum 3. Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P Andrews	Lag, One degre	e-of-freedom (1 DOF) contro		ler P, PI, PID, Lead and			
variables models to transfer functions in z-domain, solutions of state equations, state transition matrix, state transition flow graphs, eigenvalues, eigenvectors and stability similarity transformation, decompositions of transfer functions, canonical state variable models, controllability and observability, state feedback and pole placement, MATLAB tools and case studies Robust and Optimal Control [15] Linear Quadratic Regulator (LQR), Linear Quadratic Guassian (LQG), LQR with state estimator, Kalman filter/state estimator, Loop Transfer Recovery (LTR), H_2 and H_{∞} control, Linear Matrix Inequality (LMI) technique Text Books: 1. Modern Control Engineering, K. Ogata 2. Feedback Control Theory, John Doyle, Bruce Francis, Allen Tannenbaum 3. Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P Andrews							
 stability similarity transformation, decompositions of transfer functions, canonical state variable models, controllability and observability, state feedback and pole placement, MATLAB tools and case studies Robust and Optimal Control [15] Linear Quadratic Regulator (LQR), Linear Quadratic Guassian (LQG), LQR with state estimator, Kalman filter/state estimator, Loop Transfer Recovery (LTR), H₂ and H_∞ control, Linear Matrix Inequality (LMI) technique Text Books: Modern Control Engineering, K. Ogata Feedback Control Theory, John Doyle, Bruce Francis, Allen Tannenbaum Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P Andrews 	variables mode	ls to transfer functions in	z-domain, solut	tions of state equations,			
 state variable models, controllability and observability, state feedback and pole placement, MATLAB tools and case studies Robust and Optimal Control [15] Linear Quadratic Regulator (LQR), Linear Quadratic Guassian (LQG), LQR with state estimator, Kalman filter/state estimator, Loop Transfer Recovery (LTR), H₂ and H_∞ control, Linear Matrix Inequality (LMI) technique Text Books: Modern Control Engineering, K. Ogata Feedback Control Theory, John Doyle, Bruce Francis, Allen Tannenbaum Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P Andrews 				-			
 Robust and Optimal Control [15] Linear Quadratic Regulator (LQR), Linear Quadratic Guassian (LQG), LQR with state estimator, Kalman filter/state estimator, Loop Transfer Recovery (LTR), H₂ and H_∞ control, Linear Matrix Inequality (LMI) technique Text Books: Modern Control Engineering, K. Ogata Feedback Control Theory, John Doyle, Bruce Francis, Allen Tannenbaum Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P Andrews 	state variable	models, controllability and					
 Linear Quadratic Regulator (LQR), Linear Quadratic Guassian (LQG), LQR with state estimator, Kalman filter/state estimator, Loop Transfer Recovery (LTR), H₂ and H_∞ control, Linear Matrix Inequality (LMI) technique Text Books: Modern Control Engineering, K. Ogata Feedback Control Theory, John Doyle, Bruce Francis, Allen Tannenbaum Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P Andrews 	-			[15]			
 Modern Control Engineering, K. Ogata Feedback Control Theory, John Doyle, Bruce Francis, Allen Tannenbaum Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P Andrews 	Linear Quadratic Regulator (LQR), Linear Quadratic Guassian (LQG), LQR with state estimator, Kalman filter/state estimator, Loop Transfer Recovery (LTR), H_2 and H_{∞} control, Linear Matrix Inequality (LMI) technique						
 Feedback Control Theory, John Doyle, Bruce Francis, Allen Tannenbaum Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P Andrews 	Text Books:						
3. Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P Andrews		1. Modern Control Engineering, K. Ogata					
Reference Books:	3. Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P						
	Reference Books:						

1. Linear Control System Analysis And Design With MATLAB, John J. D'Azzo

and Constantine H. Houpis and Stuart N. Sheldon 2. *Linear Robust Control*, Michael Green and David J.N. Limebeer

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER	
CODE				
EE 9018	Real Time Systems	4 (3-1-0)	Dr. C. Koley	
	Design			
Fundamentals	of Real-Time Systems: Hist	ory, Concepts, I	Definitions for Real-Time	
Systems, Divers	se field of Applications, Mode	ern Real-Time S	ystems [7]	
Hardware for	Real-Time Systems: Di	fferent microp	rocessor, classification,	
architecture, ge	eneral feature, multi-core j	processors, Inte	rfacing, memory, digital	
input and outpu	ut, analog input and output		[7]	
Memory Access	and Layout Issues, Hiera	rchical Memory	Organization, Pipelined	
Instruction Prod	cessing.		[6]	
Real-Time Oper	ating Systems, Software Ar	chitecture, Rou	nd Robin- Round Robin	
with interrupts	-Function Queue, Schedul	ing, Tasks and	Task States -Tasks and	
Data -Semapho	res and Shared Data Messa	ge Queues -Mai	l Boxes and pipes -Timer	
Functions -Even	nts -Memory Management, I	nterrupt Routin	es. [8]	
Handling Resou	rce sharing among real-time	e tasks, Priority,	, handling priority [5]	
Scheduling Real-Time Tasks in Multiprocessor and Distributed systems,				
Introduction, sy	stem architecture design op	otion.	[5]	
Real-Time Com	munication		[4]	
Real-Time Databases [4]				
Text Books:				
1 Deal Tim	e Systems Design and Ar	alveis. Tools f	or the Practitioner 4th	

- 1. Real-Time Systems Design and Analysis: Tools for the Practitioner, 4th Edition, Phillip A. Laplante, Seppo J. Ovaska, Wiley-IEEE Press
- 2. Real-Time Systems: Design Principles for Distributed Embedded Applications, Authors: Kopetz, Hermann, Publisher: Springer, 2011

- 1. Raj Kamal, Embedded Systems Architecture, Programming and Design, TMH
- 2. D. E. Simon, An Embedded Software Primer, Pearson Education

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER
CODE			
EE 9019	Process	4 (3-1-0)	Dr. C. Koley
	Instrumentation and		
	Control		
Measurement of	of Process Variables: Press	sure, Flow, Ten	nperature, Liquid Level,
Strain, Force, T	orque, Linear and angular d	lisplacement/sp	eed etc.; [8]
Programmable	Logic Controller (PLC): Ir	ntroduction, Ap	plication, Physical and
functional com	ponents, Timers, Counte	rs, Shift Regi	sters, Memory, Ladder
Diagram, PLC	Diagram, PLC Programming, Interfacing with sensors and actuators. Advance		
PLCs, analog ir	nput output, HMI, SCADA,	Communication	n protocols, PID control
through PLC; D	Data Acquisition Systems: C	Dbjective of a DA	AS, single channel DAS,
Multi-channel	DAS, Components used	in DAS- Con	nverter Characteristics-
Resolution-Non-	-linearity, settling time, Mor	notonicity;	[8]

Optical Fiber Based Instrumentation: General principles of optical fiber, brag grating fiber, amplitude modulating FO sensors, measurement of high current and voltage, temperature etc.; Power System Instrumentation: Measurement of Voltage, Current Frequency Phase and Transmission line Transients; [4] Ultrasonic Instrumentation: Ultrasonic transmitter and receiver properties, propagation through medium and interfaces, application in Non-destructive Testing (NDT), measurement of process variables such as flow, level, thickness etc.; [5] Digital Measurement Techniques and instrumentations: Different Digital Instrumentation, Digital Measurement of Power Factor, Frequency and Time Period, Counters; [3] Recorders and Data Loggers: General Description, Measuring Parts and Recording Means;

Means;[3]MicroprocessorBasedInstruments:Embeddedsystems,Microprocessor/Microcontrollers, classification, different field of application, designof microcontroller based measuring instrument.[4]

Industrial Process Control, ON-OFF Control, P, PI and PID control of interacting and non-interacting process. [10]

Text Books:

- 1. A. D. Helfrick and William David Cooper, *Modern electronic instrumentation and measurement techniques*, Prentice Hall
- 2. John-G. Webster (ed.), The Measurement, Instrumentation, and Sensors: Handbook, Springer

- 1. Curtis D. Johnson, Process control instrumentation technology, Prentice Hall
- 2. Robert N. Thurston and Allan D. Pierce, *Ultrasonic measurement methods*, Academic Press
- 3. William Bolton, Programmable Logic Controllers, Newness
- 4. Stuart A. Boyer, *Supervisory Control And Data Acquisition*, International Society of Automation
- 5. T. V. Kenneth and B. T. Meggitt, Optical Fiber Sensor Technology, Springer.

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER
CODE			
EE 9020	Electrical Vehicles	4 (3-1-0)	Mr. J. C. Barman
Introduction t	o Hybrid Electric Vehic	les: History c	of hybrid and electric
vehicles, soc	ial and environmental	importance of	f hybrid and electric
vehicles, impa	ct of modern drive-trains	on energy sup	plies. [6]
Conventional V	Vehicles: Basics of vehicle	e performance	, vehicle power source
characterizatio	on, transmission charact	teristics, and n	nathematical models to
describe vehic	ele performance.		[6]
Hybrid-Electric vehicles: Concept and architecture of hybrid electric drive trains,			
series and para	allel of hybrid electric drive	e trains, torque	and speed coupling of
hybrid electric d	lrive trains.		[6]
Electric Propu	lsion unit: Introduction to	electric comp	onents used in hybrid
and electric	vehicles, Configuration	and control	of DC Motor drives,
Configuration	and control of Induction M	lotor drives, co	nfiguration and control

of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency [12]Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices. [8] Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems. [7]

Text Books:

1. Iqbal Husain, "*Electric and Hybrid Vehicles Design Fundamentals*" Published by: *CRC Press*, Boca Raton, Florida, USA, 2003.

Reference Books:

1. Chan, "Modern Electric Vehicle Technology", Oxford 2002

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER	
CODE				
EE 9021	Microprocessor Based	4 (3-1-0)	Dr. C. Koley	
	Industrial Control			
INTRODUCTION	N: Block Diagram of a typica	al microprocesso	or based system pointing	
out the role of n	out the role of microprocessor and other peripheral blocks, functions; [4]			
Microprocessor	and Microcontroller: 68000	, 8051, PIC16XX	XX, ARM controllers [8]	
Interfacing I/C	D Devices I/O Controller	s, Programmat	ole Peripheral Devices,	
Interfacing, mer	mory management;		[4]	
INTERFACING:	Interfacing of Digital I/O De	evices: Handsha	king Logic, Programmed	
I/O, Interrupt d	lriven I/O, Direct memory ac	ccess,	[3]	
High Power Dev	rice Interfacing – Wave shap	ing, Driving and	l level shifting, Isolation;	
Interfacing of an	nalog devices:		[3]	
D/A Converter	(MC1408 8-bit D/A, DAC 12	208 12-bit D/A),	[2]	
A/D Converter (ADC0808 8-bit ADC, ICL7109 12-bit ADC), Signal Conditioning; [2]				
COMMUNICATION: Asynchronous serial data communication, Serial Data				
transmission methods and standards, USART, RS-232C Serial Data Standard,				
IEEE 488;			[2]	
MICROPROCES	SOR BASED INDUSTRIAL	SYSTEMS: Se	nsors: measurement of	
phase, frequence	phase, frequency, power factor, temperature, flow, liquid level, pressure; [4]			
Actuators: Mee	chanical and solid state	Relays, AC R	egulator, and Variable	
Frequency Drive	e; Controller: Digital ON-OF	F and PID contr	oller, [3]	
PLC, DCS; Data	Acquisition System: Functi	onal block diag	cam, characteristics, and	
functions; Data	Logger: Configuration, char	racteristics; Rec	orders: Functional block	
diagram, charac	cteristics, and functions;		[6]	
APPLICATION (OF MICROPROCESSOR BA	SED SYSTEM:	PID control of electrical	
heater using so	olid state Relays, Speed Co	ontrol of DC an	d Induction Motor, and	
Phasor Measure	ement Unit.		[6]	
Text Books:				
1. Douglas V. Hall, Microprocessors & Interfacing, Tata McGraw-Hill				

2. M. Predko, Programming & Customising 8051 Microcontroller, TMH

Reference Books:

- 1. John Uffenbeck, Microcomputers and Microprocessors, Pearson Education
- 2. Michel Slater, Microprocessor Based Design, PHI

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER
CODE			
EE 9022	Robotics and	4 (3-1-0)	Prof. S. Banerjee &
	Automation		Dr. J. Dey
BASIC CONCE	PTS: Definition and origin o	of robotics - diff	erent types of robotics -
various generat	tions of, robots – degrees o	f freedom – Asi	mov's laws of robotics -
dynamic stabili	zation of, robots.		[6]
POWER SOUR	CES AND SENSORS: Hydr	aulic, pneumat	ric and electric drives -
determination (of HP of motor and gearing	g ratio – variabl	e speed arrangements -
path determina	tion – micro machines in ro	botics –machine	e vision – ranging – laser
– acoustic – ma	gnetic, fiber optic and tactile	e sensors.	[8]
MANIPULATOR	S, ACTUATORS AND GRIP	PERS: Constru	ction of manipulators –
manipulator dy	mamics and force control -	- electronic and	pneumatic manipulator
control circuits	- end effectors - U various t	types of grippers	s -design considerations.
			[8]
	AND PATH PLANNING: Sol		-
-	on jacobian work envelor	o – hill climbi	
programming la	0 0		[8]
	TEMS: The manipulator Co	—	
	of a manipulator joint,		
	ue control, Force control s		
architecture, Impedance force/torque control, Adaptive Control. [10]			
	S: Mutiple robots – machine		6
Text Books:	<u>uring applications – robot ce</u>	ii desigii – selec	
	cco and B. Siciliano, Modelir	na and Control o	f Robot Manipulators.
Springer			, 1.0.000 1.100 of parators of ,
	R. C. Gonzalez and C. S. G	Lee, Robotics: C	Control, Sensing, Vision,
	lligence, McGraw-Hill Inc.	,	, , ,
	Weiss G.M., Nagel R.N., Od	raj N.G., Indust	rial Robotics, McGraw-
	gapore, 1996.	- /	
Reference Boo			
1. J. J. Cra	ig, Introduction to Robotics, I	Mechanics and O	Control, Addison Wesley
2. R. J. Sch	nilling, Fundamentals of Rob	otics Analysis a	nd Control, Prentice Hall.
	, Robotics technology and flo	-	
1000			-

1992.

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER
EE 9023	Intelligent Control	4 (3-1-0)	Prof. S. Banerjee & Dr. J. Dey

A challenge to automatic control, Definition of intelligent control, Advance in intelligent control, Structural theories of intelligent control, Research and applications of intelligent control, Methodology of Knowledge representation, General interference principles, Hierarchical control systems. [6] Expert control systems; Mathematical foundation for fuzzy control, fuzzy logic, crisp sets and fuzzy sets, fuzzy set operations and approximate reasoning, Fuzzification, inferencing and defuzzification. Fuzzy knowledge and rule bases, Architecture of fuzzy controllers, Design of fuzzy controllers, properties of fuzzy controllers, Fuzzy modeling and control schemes for nonlinear systems, Selforganizing fuzzy logic control, Fuzzy logic control for nonlinear time-delay system, Implementation of fuzzy logic controller using Matlab Stability analysis of fuzzy control systems, applications. [15]

Concept of Artificial Neural Networks and its basic mathematical model, McCulloch-Pitts neuron model, simple perceptron, Adaline and Madaline, Feedforward Multilayer Perceptron, Learning and Training the neural network, Data Processing, Fourier transformation, principal-component analysis and wavelet transformations ANN Networks: Hopfield network, Self-organizing network and Recurrent network. Structural Schemes of neurocontrol systems, Neural Network based controller. [12]

Case studies: Identification and control of linear and nonlinear dynamic systems using Matlab, Stability analysis of Neural-Network interconnection systems, Integration of Fuzzy logic, NN and expert systems for control, Paradigms of NNbased control system; Basic concept of Genetic algorithm and detail algorithmic steps, adjustment of free parameters, Solution of typical control problems using genetic algorithm. Concept on some other search techniques like tabu search and ant-colony search techniques for solving optimization problems. [12]

Text Books:

- 1. Large-Scale Systems: Modeling, Control and Fuzzy Logic, Author:Mo Jamshidi (on line)
- 2. L. A. Zadeh, *Fuzzy Sets and Applications*, John Wiley & Sons
- 3. Simon Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall

- 1. Jyh-Shing Roger Jang, Chuen-Tsai Sun & Eiji Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice Hall
- 2. S. Rajasekaran and G. A. Vijayalakshmi Pai, Neural Networks, Fuzzy Logic and genetic Algorithm Synthesis and Applications, PHI
- 3. Intelligent Control Systems, Using Soft Computing Methodologies, Editors: Ali Zilouchian, Mo Jamshidi (on line).

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER
CODE			
EE 9024	Digital Signal	4 (3-1-0)	Prof. S. P. Ghoshal
	Processing		
Discrete time signals and systems, properties, convolution, analysis of discrete time			
systems in time	-domain;		[4]
Frequency dom	ain representation of disc	rete time syste	ems and signals, Gibbs
phenomenon,	band limited signals, sar	npling theorem	aliasing sampling of

continuous time signals; [4]
Z- transforms, region of convergence, Z- transform theorems and properties,
methods of Inverse Z-transforms, analysis of discrete time signals and systems in
Z-domain, pole-zero plots, stability; [4]
Realization of FIR Systems and IIR systems; [6]
Discrete time Fourier transform of discrete time signals and systems, Inverse
discrete time Fourier transform, Eigen function, [4]
Discrete Fourier transform (DFT), properties of DFT, Linear convolution using DFT,
Computation of DFT by FFT algorithms like decimation in frequency and
decimation in time; [6]
Various Filter design techniques for FIR and IIR filters; [8]
Sampling rate conversion, up rate and down rate sampling, interpolation and
decimation; [3]
Introduction to discrete Hilbert Transform, Complex Capstrum, Application of
Capstral analysis; [4]
Practical applications of DSP, DSP processors. [2]
Text Books:
1. J. G. Proakis & D. G. Manolakis, Digital Signal Processing: Principles,
Algorithms and Applications, Prentice Hall of India.
2. E. Ifeachor & B.W. Jervis, Digital Signal Processing, A practical Approach,
Pearson Education Ltd.

Reference Books:

- 1. S. K. Mitra, Digital Signal Processing, McGraw Hill Co. Inc.
- 2. S, Poornachandra & B. Sasikala, *Digital Signal Processing*, Tata McGraw-Hill Education Pvt. Ltd.

SUBJECT CODE	SUBJECT NAME	CREDIT	DEVELOPER
EE 9025	Soft Computing	4 (3-1-0)	Dr. P. Acharjee
	Techniques		
Introduction to	soft-computing techniques	and its necessity	· [1]

uction to soft-computing techniques and its necessity Fundamentals of genetic algorithm, Genetic algorithm, Encoding, Fitness function, Reproduction, Genetic modelling, Cross Over, Inversion and Deletion, Mutation operator, Bit-wise operators, examples. [1+3+2+1+1]Basic Steps in Particle Swarm Optimization algorithm, Bird flocking & fish schooling, velocity, inertia weight factor, pbest solution, gbest solution, local optima, global optima, examples, new modifications of PSO, Parameter Selection in PSO. [1+2+2+2+1]Fundamentals of Differential Evolution algorithm, difference vector and its significance, Mutation and crossover, comparisons among DE, PSO and GA, Examples, new modifications of DE, Improved DE schemes for noisy optimization problems. [1+1+2+1+2+1]Fuzzy set theory, Fuzzy systems, crisp sets and fuzzy sets, fuzzy set operations and approximate reasoning, Fuzzification, inferencing and defuzzification, Fuzzy knowledge and rule bases, examples. [1+2+2+2+1]Biological neural networks, Model of an artificial neuron, neural network architecture, Characteristics of neural network, learning methods, Taxonomy of neural network architecture, Back propagation networks, architecture of a back propagation network, back propagation learning, Examples, RBF network, Associative memory, Adaptive resonance theory. [1+1+2+2+2+1]

Applications of Soft Computing to various fields of engineering.

[2]

[4]

Text Books:

- 1. Devendra K. Chaturvedi, "Soft Computing- techniques and its application in electrical engineering", Springer, 2008.
- 2. Carlos A. Coello,Garry B. Lamont, David A. van Veldhuizen, "Evolutionary Algorithms for solving Multi-objective Problems", Second Edition, Springer, 2007.

Reference Books:

- 1. Jyh-Shing Roger Jang, Chuen-Tsai Sun & EijiMizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice Hall
- 2. S. Rajasekaran and G. A. VijayalakshmiPai, Neural Networks, Fuzzy Logic and genetic Algorithm Synthesis and Applications, PHI
- 3. Simon Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall
- 4. L. A. Zadeh, Fuzzy Sets and Applications, John Wiley & Sons

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER
CODE			
EE 9026	Embedded Systems	4 (3-1-0)	Dr. C. Koley
Introduction to Embedded systems:			
Introduction - Features - Microprocessors - ALU - Von Neumann and Harvard			
Architecture, Cl	e, Classification, SPP, ASIC, ASIP		[4]
$OIOO \rightarrow 1$ DIOO Instantia in this E: 1 mint of EI states into a 1 EI state of EI states (2)			

CISC and RISC - Instruction pipelining. Fixed point and Floating point processor[3] General characteristics of embedded system, introduction to different components etc. [6]

Microcontroller 89CX51/52 Series: Characteristics and Features, Overview of architectures, and Peripherals, Timers, Counters, Serial communication, Digital I/O Ports. [4]

Microcontroller PIC Series: Characteristics and Features, Overview of architectures, and Peripherals, Interrupts, Timers, watch-dog timer, I/O port Expansion, analogto-digital converter, UART, I2C and SPI Bus for Peripheral Chips, Accessories and special features. [5]

ARM Architecture: Evolution, Characteristics and Features, Overview of
architectures, Modes, Registers etc[8]

Digital Signal Processor

Software architecture and RTOS:

Software Architecture: Round Robin- Round Robin with interrupts -Function Queue. Scheduling

Architecture RTOS: Architecture -Tasks and Task States -Tasks and Data -Semaphores and Shared Data Message Queues -Mail Boxes and pipes -Timer Functions -Events -Memory Management, Interrupt Routines.

Basic design using a real time operating system:

Overview. General principles. Design of an embedded system.

Development Tool: Cross-Compiler, Cross-Assemblers, Linker/locator. PROM Programmers, ROM, Emulator, In-Circuit Emulators. Debugging Techniques. Instruction set simulators. The assert macro. [6]

[6]

Text Books:

1. Raj Kamal, Embedded Systems Architecture, Programming and Design, TMH

2. D. E. Simon, An Embedded Software Primer, Pearson Education

Reference Books:

1. J. B. Peatman, Design with PIC Microcontrollers, Pearson Education

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER
CODE			
EE 9027	VLSI Systems	4 (3-1-0)	Prof. S. P. Ghoshal
Physics and Mo	delling of MOSFETS		[4]
Fabrication and	Layout of CMOS Integrated	l Circuits;	[4]
The CMOS Inverter: Analysis and Design		[6]	
Switching Prope	witching Properties of MOSFETS		[6]
Static Logic Gates;		[6]	
Dynamic Logic Circuit Concepts		[6]	
CMOS Dynamic Logic Families		[6]	
CMOS Differential Logic Families		[6]	
Issues in Chip Design		[4]	
Text Books:			

1. John P. Uyemura, CMOS Logic Circuit Design, Kluwer Academic Publishers

- 1. Sung-Mo (Steve) Kang & Yusuf Leblebici, CMOS Digital Integrated Circuits Analysis and Design, McGraw-Hill Education
- 2. Christian Piguet, Low-Power CMOS Circuits, Technology, Logic Design and CAD Tools, Taylor & Francis.

SUBJECT	SUBJECT NAME	CREDIT	DEVELOPER
CODE			
EE 9028	Biomedical	3 (3-0-0)	Dr. Suman Halder
	Instrumentation		
Organization of	Cell, Cellular Constituent	s, Cellular Org	anelles, Cell Membrane
Structure, Cellu	llar Transport Processes		[5]
Generation of Nernst Potential, Establishment of diffusion potential, Goldmann			
Equation, Meas	Equation, Measurement of membrane potential, resting potential, action potential,		
role of voltage g	voltage gated channels for controlling action potentials. [5]		
Role of sinus node for generation of ECG, ECG Transmission Process, Ectopic pacemakers, Analysis of ECG. [4]			
Use of electrod	Use of electrodes for measurement of biopotentials, polarization in electrodes		
principle of ope	principle of operation of Ag/Agcl electrode, Equivalent circuit of electrode, motion		
artifact, various	types of electrodes for biope	otential measure	ement. [4]
Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads			

ECG amplifiers, Problems encountered in ECG recording [5]
Pacemakers, Different types of pacing modes, Physiological effects of electric
currents. Defibrillators. [4]
Measurement of blood pressure, measurement of blood pH, measurement of blood
flow, measurement of heart sounds, chemical tests on blood cells. [5]
X ray instrumentation. Ultrasonography, Magnetic Resonance Imaging, Application
of telemetry in patient care. [4]
Text Books:
1. John Enderle. Joseph Brinzino, Introduction to Biomedical Engineering,
Elsevier, 2012.
2. John G Webster, Medical Instrumentation, Application & Design, John Wiley
& Sons, 2009.
Reference Books:
1. L. Cromwell, Fred J. Weibell, Erich A. Pfeiffer, , Biomedical Instrumentation
& Measurements, PHI, 2014

2. Arthur C Guyton, John E Hall, Textbook of Medical Physiology, Elsevier, 2006.