NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR

DEPARTMENT OF CHEMISTRY

Revised Curriculum and Syllabi for the Degree of 2 Yr. M. Sc. in CHEMISTRY

(To be effective from the batches admitted in the Academic Session 2020-2021 Onwards) Revision Approved in PGAC meeting on 28/08/2020

Date: 28th August, 2020

DEPARTMENT OF CHEMISTRY

NATIONAL INSTITUTE OF CHEMISTRY

Vision and Mission of the Department:

Vision

To be a globally recognized department in scientific and technical education through value-added teaching, research and innovation and producing quality human resources who can meet the challenges of the ever-changing, technology-based society.

Mission

Producing highly qualified, well- rounded, motivated and technologically sound students possessing fundamental understanding and knowledge in chemical science and technology, who will deliver service and leadership to the ever changing chemical world and can fulfil the technological and socio-economic need of industry, government and society.

Programme:

2 yr M. Sc. course in Chemistry

Programme Educational Objectives:

PEO1	Fundamental understanding in the subject of Chemistry and to emphasize on its
	interdisciplinary nature
PEO2	Development of fundamental knowledge coupled with experimentation,
	observation and analytical capability suitable for pursuing higher education and
	research in the frontiers of chemistry.
PEO3	Grooming students with scientific knowledge and technical knowhow of
	instrumentation for a successful and productive carrier in Chemistry related
	industry.
PEO4	Making students aware of our environment and how to protect it for sustainable
	development.
PEO5	Development of effective communication skill to convey chemical information to
	all stakeholders in the society and cultivating a sense of togetherness with the
	whole chemical community.

Programme Outcomes:

PO1	Scientific knowledge: Understanding fundamental theory of the classical subjects in
	chemistry. It includes various domains in the field of physical, organic, inorganic, biological,
	environmental, analytical, computational chemistry and material science.
PO2	Understanding chemical methods: To learn modern analytical and spectroscopic tools and
	their applications to different disciplines of chemistry
PO3	Knowledge on emerging areas in Chemistry: To be acquainted with the latest frontiers in
	Chemistry and to be able to adapt with the ever-changing chemical world.
PO4	Problem analysis: Appling the fundamental knowledge to identify, formulate, and analyse a
	chemical problem.
PO5	Design/development of solutions: Providing an effective and environmentally sustainable
	solution to any chemical problem with the help of experimentation and computational
	modelling.
PO6	Technological knowhow: Understanding the underlying principle of modern scientific
	instruments and their operational procedure.
PO7	Computational advancement: To acquaint with modern computational facility to understand
	and follow various types of chemical reactions and processes.
PO8	Thrive in higher education and research: With a vivid understanding of the present day
	research frontlines in the field of chemistry, students will be confident and well- motivated
	to pursue higher education and research as their next goal.
PO9	Carrier in chemical industry: With fundamental and applied knowledge in chemistry,
	building up a successful carrier in industry related to chemistry.
PO10	Understanding Chemistry of environment: To understand the chemistry responsible for
	environmental degradation and to formulate its remedy for sustainable development.
PO11	Collaborative mindset: Understanding the interdisciplinary nature of chemistry, students to
	get trained and motivated towards collaborative team work.
PO12	Lifelong learning and ethical application of chemical understanding for inclusive socio-
	economic development.

	PEO1	PEO2	PEO3	PEO4	PEO5
Producing highly qualified, well-	3	3	3		3
rounded, motivated and technologically					
sound students					
Imparting fundamental understanding	3	3	3	3	
and knowledge in chemical science and					
technology					
Students to deliver service and	3	3	3	3	3
leadership to the ever changing chemical					
world					
Students to fulfil the technological and		3	3	3	3
socio-economic need of industry,					
government and society					

Mapping of Departmental mission statements to PEO's:

Mapping of PO's to PEO's

	PEO1	PEO2	PEO3	PEO4	PEO5
PO1	3	3	3	3	
PO2	3	3	3	3	
PO3	3	3	3		
PO4			3	3	
PO5		3	3	3	3
PO6	3	3	3		
PO7	3	3	3		
PO8	3	3		2	
PO9			3		
PO10				3	2
PO11	3				3
PO12	3	3	2		3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Curriculum for 2 yr M.Sc. in Chemistry:

Semester	<u>– I</u>						
S1.	Code	Subject	L	Т	S	С	Η
1	CY1101	Quantum Chemistry and Spectroscopy	3	1	0	4.0	4
2	CY1102	Inorganic Reaction Mechanisms and Magnetochemistry	3	1	0	4.0	4
3	CY1103	Concept of Organic Synthesis and Asymmetric Synthesis	3	1	0	4.0	4
4	CY1104	Group theory and Electronic spectroscopy of transition metal complexes	2	0	0	2.0	2
5	CY1105	Mathematical and Computational Chemistry	3	0	0	3.0	3
6	CY1151	Spectrophotochemical Analysis	0	0	3	2.0	3
7	CY1152	Spectrophotometric Estimation of Cations and Anions	0	0	3	2.0	3
8	CY1153	Separation and Identification of Organic Compounds from Binary Mixture	0	0	3	2.0	3
		TOTAL	14	3	9	23.0	26
Semester	– II			1	1		
S1.	Code	Subject	L	Т	S	С	Η
1	CY2101	Chemical, Statistical Thermodynamics and Electrochemistry	3	1	0	4.0	4
2	CY2102	Organometallic Compounds and Bioinorganic Chemistry	3	1	0	4.0	4
3	CY2103	Pericyclic Reactions and Organic Photochemistry	3	1	0	4.0	4
4	CY2104	Structural elucidation by spectroscopic method	3	0	0	3.0	3
5	CY2151	Advanced Physical Chemistry Practical	0	0	3	2.0	3
6	CY2152	Synthesis and Characterisation of Complex Compounds	0	0	3	2.0	3
7	CY2153	Chromatographic Separation of Organic Compounds	0	0	3	2.0	3

	2 Y	R. MSC IN CHEMISTRY (DEPARTMENT OF C	CHE	MIST	RY)		
		TOTAL	12	3	9	21.0	24
Semester	– III						
S1.	Code	Subject	L	Т	S	С	Н
1	CY3101	Structure and function of biomolecules	2	0	0	2.0	2
2	CY91	Departmental elective -1	3	1	0	4.0	4
3	CY91	Departmental elective -2	3	1	0	4.0	4
4	CY91	Departmental elective -3	3	1	0	4.0	4
5	CY91	Departmental elective -4	3	1	0	4.0	4
6	CY915-	Elective Practical	0	0	3	2.0	3
7	CY3151	Project- I	0	0	4	4.0	4
8	CY3152	Comprehensive Viva Voce - I	0	0	0	1.0	0
		TOTAL	14	4	7	25.0	25
		Den ortmantal ale stives of					
		Departmental electives:					
	CY9111	Advanced Quantum Chemistry and					
		Application of Group Theory					
	CY9112	Non-Equilibrium Thermodynamics and					
		Biophysical Chemistry					
	CY9113	Material Chemistry and Advanced					
		Spectroscopy					
	CV 0114	Surface chemistry, electrode kinetics and					
	C 19114	Corrosion Science					
	CY9121	Advanced Green Chemistry and Analytical					
	CY9122	Synthetic Methodology for Metal Complexes					
		and Coordination Aggregates					
	CY9123	Small Molecule Activation and Nuclear					
		Chemistry					
		Group theory, Applied Electrochemistry and					
	CY9124	X-ray Structure Analysis					

	2 Y	R. MSC IN CHEMISTRY (DEPARTMENT OF C		MIST	RY)		
	CY9131	Application of some Important Reactions in					
	01/101	Synthetic Organic Chemistry					
	CY9132	Natural Products and Drug Design					
	CY9133	Bioorganic Chemistry					
		Advanced Stereochemistry and Structure-					
	CY9134	reactivity Correlation					
		Elective Practical:					
	CY9151	Advanced Physical Chemistry-II Laboratory					
	CY9152	Environmental Sample Analysis					
		Multi Step Synthesis and Characterization of					
	CY9153	Organic Compounds					
Semester	– IV						
S1.	Code	Subject	L	Т	S	С	Η
1	CY4101	Chromatographic Separation and	2	0	0	2.0	2
-	011101	Instrumental Methods of Analysis	-	Ū	0	2.0	-
2	CY4102	Modern aspects of environmental chemistry	2	0	0	2.0	2
3	CY4103	Molecular modelling in chemistry	1	1	0	2.0	2
3	CY4151	Project – II	0	0	12	12.0	12
4	CY4152	Seminar & Viva voce-II	0	0	0	2.0	0
		TOTAL	5	1	12	20.0	18

Credit unit of the programme:

Semester	Ι	II	III	IV	TOTAL
Credit Unit	23	21	25	20	89

Curricular component:

Category	Credit	Percentage weightage
Core courses	40	45%
Elective courses	16	18%
Laboratory	14	16%
Project work	19	21%
Total	89	

FIRST SEMESTER:

Course	Title of the	course	Program Core	Total Number of contact hours				
Code			(PCR) /	Lecture	Tutorial	Practical	Total	
			Electives	(L)	(T)	(P)	Hours	
			(PEL)					
CY1101	Quantum		PCR	3	1	0	4	4
	Chemistry	and						
	Spectrosco	ору						
Pre-requis	ites		Course Assessm	ent method	ds (Continu	ous (CT) an	d end ass	essment
			(EA))					
NIL			CT+EA					
Course	• CC	01: Four	ndation in quantu	m mechar	nics to ren	nind the dif	fference	between
Outcome	ma	croscop	ic (classical) and r	nicroscopi	c (quantum) world.		
(The	• CC	02: Und	erstand the conce	ept of qua	ntization o	of energy a	nd wave	-particle
students v	vill dua	ality						
master	the • CC	03: Solvi	ing Schrödinger w	ave equation	on for mod	el quantum s	systems.	
following) • CC	04: Unde	erstand the bases	behind interaction of light and matter and account				
	for	most co	ommon spectrosco	opic methods.				
	• CC	05: Ana	lyzing microscopic intramolecular interactions and properties of					
	mo	lecules						
Topics	Funda	mentals	of quantum mecha	anics: opera	ators, funct	ions, basic p	ostulates	5 Lec
Covered	Time-i	ndepend	lent Schrödinger e	equation, fi	ee particle	, particle in	a box of	various
	dimens	sions,						3 Lec
	Tunne	lling effe	ect					2 Lec
	Rigid 1	otation	in a plane					2 Lec
	Rotatio	on of dia	tomic molecule, s	pherical ha	rmonic fun	ctions		3 Lec
	Harmo	nic osci	llator					2 Lec
	Electro	onic wav	e function of hydrogen and hydrogen like atom					3 Lec
	Magne	tic effec	et on electron mov	on electron movement				2 Lec
	Raisin	g and lo	wering operators					2 Lec
	Many	electron	theory, Slater dete	y, Slater determinant, Pauli exclusion principle				2 Lec

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)								
	Time-dependent Schrödinger equation	2 Lec							
	Atomic and molecular term symbol	2 Lec							
	Atomic spectra 2								
	Pure rotational and vibrational spectra of diatomic and polyatomic molecu	iles 3 Lec							
	Vibrational-rotational coupling								
	Raman spectroscopy of molecules, concept of molecular polarizability								
	Electronic spectra of molecules	2 Lec							
Text Books,	1. Quantum Chemistry by Levine								
and/or	2. Physical Chemistry: A Molecular approach by Donald A. McQuart	rie							
reference	3. Introductory quantum chemistry by A. K. Chandra								
material	4. Chemical applications of Group theory by F. A. Cotton								
	5. Molecular Quantum Mechanics By Atkins and Friedman, Oxford								
	6. Fundamentals of molecular spectroscopy By Barnwell and McCasl	1.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	2	2	3	3	2	2	1	1
CO2	3	2	3	2	2	2	3	3	2	2	1	1
CO3	3	2	3	2	2	2	3	3	2	2	1	1
CO4	3	3	3	2	2	3	3	3	2	3	1	1
CO5	3	3	3	2	2	3	3	3	2	3	1	1

Course	Title of the course	Program	Total Nu	mber of co	ntact hours		Credit	
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total		
		Electives	(L)	(T)	(P)	Hours		
		(PEL)						
CY1102	Inorganic reaction	PCR	3	1	0	4	4	
	mechanisms and							
	magnetochemistry							
Pre-requisites		Course Asse	ssment m	ethods (C	Continuous	(CT) a	nd end	
		assessment (EA))						

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)								
NIL	CT+EA								
Course	• CO1: Basic concept of inorganic reaction mechanism associated with								
Outcome	octahedral and square planar complexes.								
(The students	• CO2: Types of electron transfer reactions of the complexes including the detail								
will master	mechanism								
the	• CO3: Solving the problems related to Marcus theory.								
following)	• CO4: Types of magnetic substances and their magnetic properties.								
	• CO5: Quantum numbers and origin of magnetic moments; microstates and								
	derivation of Russel-Saunders Terms for various electronic configuration,								
	Lande Interval Rule, Hole formalism and equivalency.								
	• CO6: Determination methods of magnetic susceptibility of various metal								
	complexes, multiplet widths and derivation of various equations to determine								
	magnetic moments, orbital magnetic moment quenching, concept of high-, low-								
	, intermediate- and admixed-spin state and their interactions.								
Topics	(i) Stoichiometric mechanism, second order limiting rate constant, base hydrolysis,								
Covered	Effects of non-leaving ligands, proton exchange, activation parameters 5Lec								
	(ii) Stereochemistry of octahedral substitution reactions, racemisation reaction								
	(Bailar twist and Ray –Dutt twist) 4Lec								
	(iii) Square planar complexes: Ligands substitution reactions, General features,								
	significance of rate law, effect of entering and leaving ligands, The trans effect,								
	theories of trans effect, grounds state effects, transition effect, steric effects of non-								
	leaving ligands, catalysis of substitution by redox process. 4Lec								
	(iv) Electron transfer reaction: Types of electron transfer reaction, outer sphere								
	electron transfer process: electron transfer and reorganisation and chemical								
	activation, potential energy diagram, Marcus theory for outer sphere cross reaction.								
	5Lec								
	(v) Inner sphere electron transfer process: steps, rate law, types of inner sphere								
	electron transfer process, bridging ligand, remote attack, the chemical mechanism.								
	4Lec								
	(vi) Definition of magnetic properties, types of magnetic bodies, sources of								
	paramagnetism: orbital and spin effects, Diamagnetism and Pascal's constant,								
	diamagnetic correction of ligands and metal complexes 3Lec								

	(vii) Quantum numbers and vectors, Mutual inclination of electron orbits and
	resultant vectors, Russel-Saunders coupling and j-j coupling, Ground State Term
	Symbol and Hund's rules 2Lec
	(viii) Microstates and derivation of Russel-Saunders Terms for p^2 , d^2 and pd
	configuration, Spin-orbit interaction 2Lec
	(ix) Lande Interval Rule, Hole formalism and equivalency, Hund's third rule and
	energies of J levels, Russel-Saunders coupling of d2 system and j-j coupling 3Lec
	(x) Thermal energy and magnetic property, Magnetic moments for different
	multiplet widths i.e for multiplet width large compared to KT, small compared to
	KT and comparable to KT 3Lec
	(xi) Magnetic properties of Lanthanides, first transition series metal ions and
	actinides 2Lec
	(xii) Determination of magnetic susceptibility: Gouy's method, Faraday's method,
	NMR method and their advantage and disadvantages, magnetic anisotropy. 3Lec
	(xiii) Magnetic properties of complexes with different geometries based on crystal
	field model, spin-state equilibrium in octahedral stereochemistry, magnetic
	properties of high-spin, low-spin, intermediate-spin and admixed-spin state
	concept. 2Lec
	(xiv) Quenching of Orbital magnetic moment by crystal field, loss of orbital
	degeneracy and quenching of orbital magnetic moment, valence bond and crystal
	field interpretation of magnetic moment, shortcomings of crystal field theory.
	2Lec
Text Books,	1. Inorganic chemistry, Shriver & Atkins, Oxford.
and/or	2. Concept and models of inorganic Chemistry, Douglas, Mcdeniel, Alexander,
reference	Wiley.
material	3. Inorganic Chemistry, Huheey, Kieter, kieter, Medhi, Pearson education
	4. Concise Inorganic chemistry, Lee, Wiley india Pvt. Ltd
	5. Elements of magnetochemistry by Dutta & Shyamal
	6. Mechanisms of Inorganic Reactions by Fred Basolo and Ralph Pearson

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3			1	3	3			
CO2	3		3	3				3	1	1	1	1
CO3	3	1	3	3				3			1	1
CO4	3	2	3	2	2	1	3	3	3	3	1	1
CO5	3	2	3	3	2	1	3	3	3	3	1	1
CO6	3	2	3	3	2	3	3	3	3	3	1	1

Course	Tit	tle of the course	Program Core	Total Nu	mber of co	ntact hours		Credit		
Code			(PCR) /	Lecture	Tutorial	Practical	Total			
			Electives	(L)	(T)	(P)	Hours			
			(PEL)							
CY1103	Co	ncept of	PCR	3	1	0	4	4		
	Or	ganic								
	Syr	nthesis and								
	Asy	ymmetric								
	Syr	nthesis								
Pre-requis	sites		Course Assessment methods (Continuous (CT) and end assessment							
			(EA))							
NIL			CT+EA							
Course		• CO1: U	Understanding the	e various	tactics, s	trategies a	nd contr	ol over		
Outcome		chemos	electivity, regiosel	gioselectivity, streoselectivity while carrying out organic						
(The		synthese	es							
students v	will	• CO2: F	oundation in the	role of end	olates, enol	equivalents	s, organo	metallic		
master	the	reagents	s, vinyl anion e	quivalents,	, allyl cat	ion equiva	lents, Pa	alladium		
following)	catalyse	d coupling reaction	ons, carboc	ations, carl	benes and ra	dicals in	making		
		C-C sin	gle bonds							
		• CO3: Understanding the concept of retro synthesis, synthones and synthe								
		equivale	ents, functional gro	oup interco	nversions a	and order of	events in	organic		
		synthesis								
		• CO4: C	oncept of classic e	xamples of	total synth	esis of some	e natural j	products		

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)	
	CO5: Concept of various aspects of methodologies used for making	ing chiral
	organic molecules. This includes asymmetric induction via	substrate,
	reagents and catalysis	
Topics	Planning Organic Syntheses:	2 Lec
Covered	Tactics, Strategy and Control; Slectivity: chemoselectivity,	
	regioselectivity, streoselectivity	
	Enolates, homoenolates, extenddenolates, nitrogen analogues of enols and	
	enolates, acyl anion equivalents, allyl anions, specific enol equivalents,	10 Lec
	Michael reaction, σ -complexes of metals, orgnometallic reagents, aldol	
	addition and condensation reactions, Mukaiyama aldol condusation,	
	control of facial reactivity, Claisen and Dieckmann condensation,	
	conjugate addition, orthostrategy for aromatic compounds, reactions	
	involving carbocation, carbenes and radicals, vinyl anion equivalent, allyl	
	cation equivalent, Palladium catalysed coupling reactions, Olefination	
	reactions – wittig and related reactions, Julia olefination. Sulfenylation	
	and selenenylation, hydroalumination, carboalumination, ROMP and	
	Synthones and synthetic equivalents, functional group interconversions	
	and order of events in organic synthesis. One group - C-X and two groups	
	C-X disconnections, chemoselectivity, reversal of polarity, cyclisation	01
	reactions, amine synthesis. One group C–C and two group C–C	8 Lec
	assonmections (typical examples), use of acetylenes and annualic intro	
	difunctionalized compounds of Bungeturated corbonyl compounds	
	control in carbonyl condensation Michael addition and Pohinson	
	annealation Ring synthesis: saturated betarooyales synthesis of 3 4 5	
	and 6-membered rings aromatic heterocycles in organic synthesis	
	and o memoried migs, aromatic neterocycles in organic synthesis	
	Strategies and synthesis of some classic examples of total synthesis	
	Periplanone B. penicillin V reservine ervthronolide B thienamycin	10 Lec
	biotin, menthol, strychnine by Woodwards method	

	2 Y	R. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)							
	Contr	ol of stereochemistry, chiral pool, asymmetric induction via							
	reagen	nts, asymmetric induction via substrate, asymmetric induction via 8 Lec							
	cataly	sis, kinetic resolution, enantiomerically pure compounds and							
	sophis	scticated synthesis							
Text Books,	1.	Organic Chemistry : J. Clayden, N. Greeves, S. Warren & P. Wothers,							
and/or	2.	2. Organic synthesis strategy and control : P. Wyatt & S. Warren							
reference	3.	Advanced Organic Chemistry : F.A. Carey & R.J. Sundberg							
material	4.	Principles of Organic Synthesis : R.O.C. Norman & J.M. Coxon.							
	5.	Organic synthesis : Michael B Smith,							
	6.	Classics in Total Synthesis: Targets, strategies and Methods : K.C. Nicolaou	u						
		& E.J. Sorensen							
	7.	Modern Methods in Organic Synthesis : W. Carruthers,							
	8.	Protective Groups in Organic Synthesis : T.W. Green & P.G.M. Wuts							

Mapping of CO (Course outcome) and PO (Programme Outcome)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	2	2	3	3	2	3	3
CO2	3	3	3	3	3	2	2	3	3	2	3	3
CO3	3	3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	3	2	3	3	3	3	3	3
CO5	3	3	3	3	3	2	3	3	3	3	3	3

Course	Title of the course	Program Core	Total Nu		Credit		
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives	(L)	(T)	(P)	Hours	
		(PEL)					
CY1104	Group theory	PCR	2	0	0	2	2
	and Electronic						
	Spectroscopy of						
	transition metal						
	complexes						

Pre-requisites	Cour	se Assessment methods (Continuous (CT) and end asses	sment		
	(EA))			
NIL	CT+	EA			
Course	CO1: Develop the fun	lamental concept of symmetry and symmetry operations	5.		
Outcome	CO2: Develop the con	cept of Group theory and how molecular properties depe	ndent		
(The	on symmetry.				
students will	CO3: Learn to constru	ct and know the importance of Character table.			
master the	CO4: Learn to deve	elop Reducible and Irreducible representation and	their		
following)	importance.				
	CO5: Basic techniques	to explain the electronic spectra of transition metal con	mplex		
	using molecular symm	etry			
	CO6: Distinction of sp	ectra of d-block and f-block transition complex			
	Topic	Lec	ture		
	Fundamental concept	of symmetry and probable application in chemistry	01		
	Different symmetry operations with examples				
	Properties of symmetry	y operations and concept and characteristics of Classes	04		
Topics	Concept of Group and	their properties with examples	02		
Covered	Systematic determinat	on of Group for a molecule	01		
	Reducible and Irreduc	ble representation and character table	04		
	Introduction of Electro	nic spectroscopy of coordination compounds:	01		
	Microstates and free-io	on terms for electron configurations	02		
	selection rule for elect	onic transition	01		
	Correlation diagrams:	Orgel and Tanabe-Sugano diagrams	02		
	Jahn-Teller Distortion	s and Spectra:	02		
	Symmetry labels for co	onfigurations, Charge transfer spectra.	01		
	Electronic spectra of la	inthanide and actinide complexes	03		
Text Books,	1. Group theory and ch	emistry by Bishop			
and/or	2. Chemical application	n of group theory by F A Cotton			
reference	3. Molecular theory an	d group theory by R. L. Carter			
material	4. Inorganic Chemistry	, Huheey, Kieter, Medhi, Pearson education			
	5. Inorganic chemistry	, Shriver & Atkins, Oxford			
	6. Concept and mode	ls of inorganic Chemistry, Douglas, Mcdeniel, Alexa	ander,		
	Wiley				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	1	3	3	1	2	2	2
CO2	3	2	2	3	2	1	3	3	1	2	2	2
CO3	3	2	2	3	2	1	3	3	1	2	2	2
CO4	3	3	2	3	2	1	3	3	1	3	2	2
CO5	3	2	2	3	2	1	3	3	1	2	2	2
CO6	3	3	2	3	2	1	3	3	1	3	2	2

Course	Ti	tle of the course	Program	Total Nu	mber of co	ntact hours		Credit		
Code			Core (PCR) /	Lecture	Tutorial	Practical	Total			
			Electives	(L)	(T)	(P)	Hours			
			(PEL)							
CY1105	Μ	athematical and	PCR	3	0	0	3	3		
	co	mputational								
	chemistry									
Pre-requisites			Course Asse	ssment m	ethods (C	Continuous	(CT) a	nd end		
			assessment (EA))							
NIL			CT+EA							
Course		• CO1: Founda	tion in basic m	athematica	l technique	s that are co	ommonly	used in		
Outcome		chemistry.								
(The		• CO2: Learn t	he art of scientif	fic progran	nming to so	lve chemica	al problem	ns.		
students v	vill	• CO3: Write	simple program	ms for m	atrix diago	onalisation,	solve nu	umerical		
master	the	differentiation	n, integration an	d elementa	ary differen	tial equation	18.			
following)	• CO4: Apply	computational	methods t	o complex	problems	of group	theory,		
		quantum cher	quantum chemistry, molecular spectroscopy, chemical kinetics and other to							
		CO5: Introdu	• CO5: Introduction to computational chemistry software packages for quant							
		mechanical a	nd macromolect	ular model	ling.					

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)						
Topics	Complex numbers in chemistry: representation of complex number, Euler's formula,						
Covered	rotational operators, periodicity, periodicity in circle, Periodicity in line, rotation in						
	quantum mechanics. 2 Lec						
	Linear algebra in quantum mechanics and symmetry operation: Vector space,						
	determinants, matrix and liner transformations, orthogonal transformation,						
	symmetry operations, matrix eigenvalue problem etc. 3 Lec						
	Differential equation and chemistry: rate process, harmonic oscillator, wave						
	equation for harmonic oscillator, particle in box, particle in a ring 2 Lec						
	The Legendre equation, Legendre polynomials, associated Legendre polynomial,						
	orthogonality and normalisation, Hermite equation, Laguerre equation, associated						
	Laguerre functions, separable equation in chemical kineties.2 Lec						
	Partial differential equation: general solution, separation of variable, particle in a						
	rectangular box, in a circle box, hydrogen atom, vibrating string, normal modes o						
	vibration. 3 Lec						
	Function in three dimension: spherical polar coordinates, Density functions, atomic						
	orbitals, volume integrals, average value, Maxwell velocity distribution, Laplacian						
	operator etc. 3 Lec						
	Fourier Transform in IR and NMR spectroscopy and X ray diffraction: orthogonal						
	expansions and Fourier analysis, Fourier series, periodicity, Fourier transforms,						
	Fourier transform pairs and application in IR, NMR and X-rays diffraction. 3 Lec						
	Introduction to Fortran/Python language: data types, integer, complex, character,						
	logical constants and variables. Arithmetic statements, expressions, library function,						
	relational operators. 2 Lec						
	Input and output statements, I/O format statements, different types of control						
	statements. 1 Lec						
	Loop structures, subscribed variables and arrays. Writing and executing of simple						
	example programmes. 2 Lec						
	Programming exercises to chemical problems 5 Lec						
	Application of Density Functional Theory using Gaussian (or similar) software in						
	chemistry. 5 Lec						
	Basic concept on macromolecule modelling software. 3 Lec						

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)
Text Books,	1. The Chemistry Maths Books, Erich Steiner, Oxford
and/or	2. Mathematics for chemistry, Doggett and Suiclific, Logman.
reference	3. Mathematical for Physical chemistry: F. Daniels, Mc. Graw Hill.
material	4. Chapman, Fortran 95/2003 for Scientists and Engineers, McGraw-Hill
	International Edition, New York (2006).
	5. V. Rajaraman, Computer Programming in Fortran 90 and 95, PHI Learning
	Pvt. Ltd, New Delhi (1997).
	6. W. H. Press, S. A. Teukolsky, W. H. Vetterling, B. P. Flannery, Fortran
	Numerical Recipes (Fortran 90), Cambridge University Press (1996)
	7. User Reference Manual for Gaussian 09 software

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	3	3	3	2	1	2	3
CO2	3	3	3	2	2	3	3	3	2	1	2	3
CO3	3	3	3	2	3	3	3	3	2	1	2	2
CO4	3	3	3	2	3	3	3	3	2	1	2	2
CO5	3	3	3	2	3	3	3	3	2	1	2	2

Course	Title of the course	Program	Total Nu	mber of co	ntact hours		Credit	
Code		Core	Lecture	Tutorial	Practical	Total		
		(PCR)/	(L)	(T)	(P)	Hours		
		Electives						
		(PEL)						
CY1151	Spectrophotochemical	PCR	0	0	3	3	2	
	Analysis	(Practical)						
Pre-requis	sites	Course Assessment methods (Continuous (CT) and end						
		assessment (EA) along with Viva-Voce)						
NIL		CT and Viva voce						
Course	CO1: Basic concepts of spectrophotometric				ation			
Outcome								

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)							
(The students	• CO2: Learning about handling of spectrophotometer and fluorescence							
will master the	spectrometer and their basic theory.							
following)	• CO3: To develop laboratory skills and the ability to work independently as well							
	as in a group.							
	• CO4: Knowing presentation, analysis and interpretation of data, source of error							
	and error analysis.							
	• CO5: To understand the interconnection between experimental foundation and							
	underlying theoretical principles.							
	CO6: To develop the ability of scientific communications through oral quizzes,							
	written reports and presentations.							
Topics	1. Determination of stoichiometry of Ferric salicylic acid complex							
Covered	by Job's method							
	2. Determination of indicator constant of methyl orange							
	3. Determination of concentration of Cu^{2+} and Fe^{3+} photometrically							
	by titrating with EDTA							
	4. Determination of arsenic (III) and antimony (IV) simultaneously							
	in a mixture spectrophotometrically.							
	5. Determination of molar extinction coefficient							
	6. Determination of fluorescence quantum yield.							
	7. Fluorescence quenching experiment: determination of micellar							
	aggregation number.							
	Some additional experiments as decided by the Instructor.							
Text Books,	1. Instruction manual provided by the Instructor							
and/or	2. Experiments in Physical Chemistry by Carl Garland, Joseph Nibler, David							
reference	Shoemaker							
material	3. Practicals in Physical Chemistry by P S Sindhu							
	4. Practical Physical Chemistry by Viswanathan and Raghavan							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									
CO2	3	3		2	2	3		2	2		1	
CO3						2		2	2		3	3

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)										
CO4	3	3		3	3		1	3			
CO5								3	3		
CO6								3	3	2	2

Course	Title	e of the course	Program	Total Nu	mber of co	ntact hours		Credit		
Code			Core	Lecture	Tutorial	Practical	Total			
			(PCR)/	(L)	(T)	(P)	Hours			
			Electives							
			(PEL)							
CY1152	Spe	ctrophotometric	PCR	0	0	3	3	2		
	esti	mation of	(Practical)							
	cati	ons and anions								
Pre-requis	sites		Course Ass	essment r	nethods (Continuous	(CT) a	nd end		
			assessment (EA) along	with Viva-	Voce)				
NIL			CT and Viva	voce						
Course		• CO1: Basic c	concepts of spe	ctrophoton	netric estim	nation				
Outcome		• CO2: Unders	stand to evalua	te the estim	nation of io	n mixture				
(The stuc	lents	• CO3: Learnin	ng about handl	ing of spec	trophotom	eter				
will m	aster	• CO4: Under	stand the fund	lamental, s	scientific b	asis, prepar	ation of	sample,		
the follow	ving)	sampling me	thod and analytical methods for water and waste water samples.							
		• CO5: Studen	its will also accumulate idea about the permissible limit, present							
		concentration	n etc. of differe	ent environ	mental imp	urities.				
Topics		Estimation of M	$nO4^{-}-Cr_{2}O_{7}^{2-}$	mixture						
Covered		Estimation of Cu	1 ⁺² –Zn ⁺² mixtu	re						
		Estimation of NO	$D_3^ PO_4^{3-} mix$	ture						
		Estimation of Ti	⁺⁴ –V ⁺⁵ mixture	•						
		Estimation of dis	ssolved oxyger	and oxyge	en demand	(BOD and C	COD)			
		of Environmenta	l Samples							
		Some more exp	periments fror	n the foll	owings as	decided by	y the			
		Instructor.								
		(i) Determ	nination of Ni	ination of Ni in steel (Gravimetrically).						
		(ii) Analy	sis of Brass an	d Aluminu	m in Bronz	ze,				
		(iii) Spectr	oscopic detern	nination of	Iron in Ba	uxite				

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)							
Text Books,	1. An Advanced Course in Practical Chemistry by Nad, Ghosal and							
and/or	Mohapatra, New Central Book agency.							
reference	2. A Manual of Practical Chemistry for Degree Classes (Vol I & II) by R. C.							
material	Bhattacharya,							
	3. College Practical chemistry by Ahluwalia, Dingra and Gulati.							
	4. Vogels textbook of quantitative chemical analysis By J Mendham, R. C.							
	Denney, M. Thomas and D. J. Barnes, Pearson India.							
	5. APHA, A, WEF, (1998). Standard Methods for the Examination of Water							
	and Wastewater. American Public Health Association, American Water							
	Works Association, Water Pollution Control Federation, Washington DC.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	3	3		3	2	1	1	
CO2	3	2	1	2	1	2	1	3	2	2	1	1
CO3	3	2	3	2		3	3	3	2	2	1	
CO4	3	3	3	3	3	2	1	3	3	3	2	3
CO5	3	2	3	2	3	2	1	3	3	3	3	3

Course	Title of the course	Program Core	Total Nu	mber of co	ntact hours		Credit	
Code		(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives	(L)	(T)	(P)	Hours		
		(PEL)						
CY1153	Separation and	PCR	0	0	3	3	2	
	Identification of							
	Organic							
	Compounds							
	from Binary							
	Mixture							
Pre-requisites		Course Assessment methods (Continuous (CT) and end assessment						
		(EA) along with	Viva-Voc	e)				

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)						
NIL	CT and Viva voce						
Course	• CO1: Scientific knowledge on principle of separation techniques to reach a						
Outcome	targeted pure separate component from a binary mixture,						
(The	• CO2: Become skilled to optimise the uses of solvent obeying the principle of						
students will	green chemistry.						
be enriched	• CO3: Separation and purification techniques, like phase transfer, crystallization,						
with)	GC-Mass and other spectroscopic method will be adopted						
	• CO4: Understand the basic concept behind separation process for most common						
	different methodology and their principles like; distillation, sublimation,						
	crystallization and solvent extraction will be adopted.						
	• CO5: To reach a maximum yield with minimum uses of solvent, reagents and						
	energy like; heat and electricity (Green chemistry).						
Topics	1. Aniline and benzil (Liquid and solid)						
Covered	2. Ethylacetoacetate and Benzoic acid (Liquid and solid)						
	3. Benzil and Benzoic acid (solid and solid)						
	4. <i>p</i> -chlorobenzoic acid and aniline (solid-liquid)						
	5. Cyclohexanone/cyclohexanol and <i>N</i> , <i>N</i> dimethyl aniline (liquid and liquid)						
	In each case, separation and identification of individual components, preparation						
	of derivatives of each component, their purification and characterization.						
Text Books,							
and/or	1. Vogel's Textbook of practical organic chemistry, 5th Edition						
reference	2. Advanced <i>practical</i> chemistry, 3rd ed.: Subas C. Das						
material	3. An Advanced Curse in Practical Chemistry, New Central Book Agency;						
	3rd ed.: <u>Nad, Mahapatra</u> and <u>Ghoshal</u>						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	2	2	1	3	2	2	1	2
CO2	3	3	2	2	2	2	2	3	2	2	2	2
CO3	3	2	3	2	2	2	2	2	2	2	1	2
CO4	3	2	3	2	2	3	1	3	2	3	1	2
CO5	3	3	2	2	2	3	2	3	2	3	1	2

Course	Tit	le of the course	Program Total Number of contact hours Cred						
Code			Core (PCR)	Lecture	Tutorial	Practical	Total		
			/ Electives	(L)	(T)	(P)	Hours		
			(PEL)						
CY2101	Ch	nemical,	PCR	3	1	0	4	4	
	Sta	atistical							
	Th	ermodynamics							
	an	d							
	Ele	ectrochemistry							
Pre-requis	ites		Course Asses	ssment meth	nods (Conti	nuous (CT)	and end ass	sessment	
			(EA))						
NIL			CT+EA						
Course		• CO1: unders	tand the thern	nodynamics	of ideal,	non-ideal an	nd multico	mponent	
Outcome		systems.							
(The		• CO2: unders	tand the conce	ept of entro	opy of a s	ystem at ab	solute zero	and its	
students		implication.							
should	be	• CO3: accoun	t for physical i	nterpretation	n of partitio	on functions	and able to	analyse	
able to)		thermodynam	nic properties of	of model sy	stems with	using Boltz	zmann, Feri	ni-Dirac	
		and Bose-Ein	stein statistics.						
		• CO4: unders	stand the ioni	c propertie	s in solut	ion, like di	ffusion, m	igration,	
		conduction a	nd their interrel	lation.					
		• CO5: apply	these knowle	edge to un	derstand p	orinciple bel	nind separa	ation of	
		macromolecu	ıles, like sedim	entation/ult	racentrifuga	ation.			
		• CO6: account	t for fundamen	tal ideas of	Debye-Huc	kel theory a	nd its applie	cation.	
Topics		Third law of class	ssical thermody	namics and	their appli	cations.		02 Lec	
Covered		Thermodynamic	s of ideal and	non ideal	binary solu	tions: free e	energy and	04 Lec	
		entropy of mixir	ng, partial mola	ar quantities	and their of	determinatio	n, fugacity		
		and its determina	ation,						

Gibbs-Duhem equation, Duhem- Margules equation, equilibrium constant,	03 Le
temperature dependent equilibrium constant	05 20
Thermodynamic excess functions. Experimental determination of activity	03 I e
coefficient of electrolytes and non electrolytes	03 LC
testistisel There a duranties:	
Statistical Thermodynamics:	3 I
distribution loss Bartitian famatian	2 Lec
distribution laws. Partition function.	.
Comparison among Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein	2 Lec
Statistics.	
Statistical mechanics on the thermodynamics of mono, diatomic and	4 Lec
polyatomic ideal gas-contribution of rotation, vibration and translation to	
partition function. Concept of residual entropy.	
Electronic contribution to the specific heat of diatomic gases.	1 Lec
Solids-vibrational contribution to the specific heat of solids.	1 Lec
Statistical treatment of Black-body radiation.	1 Lec
Maxwell-Boltzmann probability distribution of molecular velocities and	1 Lec
speeds.	
Dynamics of chemical reaction in solution-transition state theory using	1 Lec
partition functions.	
Electrochemistry:	
Some preliminary concept of electrostatics.	3 Lec
Ion-solvent interaction: Born equation, Electrostriction and partial molar	4 Lec
volume. Solvation number of electrolytes. Dielectric constant of solution.	
Effect of nonelectrolyte on ion-solvent interaction. Ion-dipole interaction.	
Ion-ion interaction: Debye-Huckel-Onsagar theory of inter-ionic interaction,	4 Lec
thickness of ionic atmosphere. Debye-Huckel limiting law.	4 Lec
Ion transport in solution: Fick's first and second law of diffusion, Molecular	
Ion transport in solution: Fick's first and second law of diffusion, Molecular interpretation of diffusion, Migration of ion under electric field, Effect of	
Ion transport in solution: Fick's first and second law of diffusion, Molecular interpretation of diffusion, Migration of ion under electric field, Effect of viscosity and diffusion on ionic migration. Relaxation of ionic atmosphere,	
Ion transport in solution: Fick's first and second law of diffusion, Molecular interpretation of diffusion, Migration of ion under electric field, Effect of viscosity and diffusion on ionic migration. Relaxation of ionic atmosphere, Effect of high electric field and high frequency of ionic conduction.	
Ion transport in solution: Fick's first and second law of diffusion, Molecular interpretation of diffusion, Migration of ion under electric field, Effect of viscosity and diffusion on ionic migration. Relaxation of ionic atmosphere, Effect of high electric field and high frequency of ionic conduction. Rate process approach towards ionic migration: Nernst-Planck Flux equation	2 Lec

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)
	Sedimentation and ultracentrifugation, Transport of ion through membrane: 2Lec
	Donan equilibrium
	Dielectric relaxation in liquid water. 1 Lec
Text Books,	1. Modern electrochemistry: Ionics (Part 1); and Electrodics (Part 2) by Bockris
and/or	and Reddy
reference	2. An introduction to statistical thermodynamics by T. L. Hill
material	3. Physical Chemistry: Statistical Mechanics by H. Metiu (Taylor and Francis)
	4. Physical Chemistry: Thermodynamics by H. Metiu (Taylor and Francis)
	5. Chemical Thermodynamics: Principles and Applications; and Advanced
	Applications by Ott and Goates

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3			2		2	3	3	2	2	1	1
CO2	3			2		2	3	3	2	2	1	1
CO3	3		2	2		2	3	3	2	2	1	1
CO4	3	3	3	2	2	3	3	3	2	3	1	1
CO5	3	3	3	2	3	3	3	3	2	3	1	1
CO6	3			3	1							

Course	Title of the course	Program Core	Total Nu	Credit				
Code		(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives	(L)	(T)	(P)	Hours		
		(PEL)						
	Organometallic	PCR	3	1	0	4	4	
CV2102	compounds and							
C 1 2102	Bioinorganic							
	Chemistry							
Pre-requis	sites	Course Assessment methods (Continuous (CT) and end assessmen						
		(EA)						
NIL		CT+EA						

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)
Course	• CO1: knowledge of s, p and d block organometallics in respect of synthesis,
Outcome	structure and bonding in different ligand environment.
(Students	• CO2: knowledge of different types of reactions of organometallics compounds
will be	and their role in different catalytic cycles related to industrial processes.
enriched by)	• CO3: understanding the role of trace elements in health and environment,
	chemistry of metal cytotoxicity and its remedy.
	• CO4: knowledge the structure and function of metalloenzymes and
	metalloproteins with special emphasis of iron storage, oxygen transport and
	photosynthesis.
	• CO5: application of modern spectroscopic tools to elucidate the active sites of
	metalloenzymes and metalloproteins.
Topics	Gr. I and Gr. II organometallics: synthesis, properties and application. 2 lec
Covered	d -metal organometallics: History, stable electronic configuration, 18 and 16
	electronic system, electron count and oxidation state, Nomenclature, π - acid ligands
	and low oxidation states 3 lec
	Metal carbonyl: Binary carbonyl: synthesis, bonding, spectroscopic characterisation
	of carbonyl compounds, 4 lec
	Substituted carbonyl: phosphine, isocyanide, nitrosyl, dinitrogen, carbenes,
	hydrides, and dihydrogen, $\eta 1$ alkyl, alkenyl, alkynyl, aryl, $\eta 2$ alkene, alkyne,
	nonconjugateddiene, , butadiene, cyclobutadiene, cyclotetracene, allyllgand,
	cyclpopentadiene, and cycloheptatriene, Metallocenes: synthesis, reactivity and
	bonding of ferrocene etc.6 lec
	Reactions: ligand substitution oxidative addition and reductive elimination, σ -bond
	metathesis, 1,1 migratory insertion, 1,2 insertion, β -hydride elimination,
	Homogeneous catalysis: hydrogenation catalyst, hydro formylation, Wacker
	oxidation of alkenes, asymmetric oxidation, metathesis 5 lec
	Cage and metal clusters.3 lec
	Bio-inorganic:
	Occurrence and availability of inorganic elements in organisms; essential, beneficial
	and trace elements, Synergistic and antagonistic relationship of metal ions, Element
	deficiency and toxicity, Metal poisoning detoxification 1 lec
	Biological ligands for metal ions: Nucleobases, nucleotides and nuclic acids (DNA,
	RNA) as ligands, tetrapyrrole ligands and other macrocycles (chlorin, corrin),

	Concept of protein structures: primary, secondary, tertiary and quaternary;
	Coordination of proteins and comments on enzymatic catalysis 1 lec
	Cobalamins including vitamin and Coenzyme B12: History and structural
	characterisation; Reactions of the alkylcobalamins (a) One-electron reduction and
	oxidation, (b) Co-C bond cleavage, (c) Mutase activity of Coenzyme B12 and (d)
	alkylation reactions of Methylcobalamins; Model systems and the role of the
	Apoenzyme 3 lec
	Metals at the center of photosynthesis: Total efficiency of photosynthesis; Primary
	processes in photosynthesis such as (a) Light absorption, (b) Exciton Transport, (c)
	Charge separation and electron transport (Photosystem-I, Photosystem-II, Z-
	Scheme); Manganese catalysed oxidation of H ₂ O to O ₂ 4 lec
	The dioxygen molecule, O2 Uptake, transport and storage: Molecular and chemical
	properties of O ₂ , Oxygen transport and storage through Hemoglobin and Myoglobin,
	Alternative oxygen transport by some lower animals by Hemerythrin and
	Hemocyanin, Active site structure elucidation using magnetism, light absorption,
	vibrational spectroscopy and Mössbauer spectroscopy 4 lec
	Uptake, transport and storage of an essential elements as exemplified by Iron: Iron
	mobilization problemOxidation states, solubility and medical relevance;
	Siderophores (Fe uptake by microorganism), Phytosiderophores (Fe uptake by
	plants), Transport and storage of iron (Transferrin, Ferritin, Hemosiderin) 4 lec
	Copper containing proteins as an alternative to biological iron: Type 1 blue copper
	center, Type 2 and Type 3 copper centers in O_2 activating proteins, Copper proteins
	as Oxidases/Reductases, Cytochrome c Oxidase, Cu-Zn and Ni superoxide
	dismutases. 4 lec
Text Books,	1. Concept and models of inorganic Chemistry, Douglas, Mcdeniel, Alexander,
and/or	2. Inorganic chemistry, Shriver & Atkins, Oxford
reference	3. Inorganic Chemistry, Huheey, Kieter, kieter, Medhi, Pearson education.
material	4. The Organometallic Chemistry of the Tr. Metals by Robert H. Carbtree.
	5. Bioinorganic chemistry by Bertini, Gray, Lippard and Valentine.

		2 `	YR. MS	SC IN C	HEMIS	STRY (DEPAF	RTMEN	T OF C	CHEMIS	TRY)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	2	2	2	3	3	2	1	1
CO2	2	2	3	2	2	2	2	3	3	1	1	1
CO3	2	3	3	2	2	2	2	3	3	3	1	1
CO4	3	3	3	1	2	2	3	3	3	3	1	1
CO5	3	3	3	1	1	3	3	3	3	2	1	1

Course	Ti	tle of the course	Program Core	Total Nu	Credit					
Code			(PCR) /	Lecture	Tutorial	Practical	Total			
			Electives	(L)	(T)	(P)	Hours			
			(PEL)							
	Per	ricyclic	PCR	3	1	0	4	4		
CV2103	Rea	actions and								
C12105	Or	ganic								
	Ph	otochemistry								
Pre-requis	sites		Course Assessm	ent method	ds (Continu	ous (CT) an	d end ass	essment		
			(EA)							
NIL			CT+EA							
Course		• CO1: Unde	stand the basic principles of pericyclic and organic photochemical							
Outcome		reactions								
(The		• CO2: Unde	rstand the classifi	cation of c	lifferent typ	pes of peric	yclic and	organic		
students v	vill	photochemi	cal reactions							
master	the	• CO3: Solvi	ng mechanism of	pericyclic a	and organic	photochem	ical react	tions		
following)	• CO4: Unde	erstand the appli	cation of	pericyclic	and organi	c photoc	hemical		
		reactions								
Topics		Pericyclic Reac	tions (18L):							
Covered	Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3-butadiene							e, 1,3,5-		
		hexatriene and allyl system.								
		Classification of pericyclic reactions. Woodward-Hoffmann correlation diag								
		FMO & PMO a	pproach.							
		Electrocyclic re	actions-conrotator	ry and disro	otatory mot	ions. 4n, 4n	+2 system	n,		

	T. Weenanish of Organic Chemistry Dy Feter Systes
material	4 Mechanism of Organic Chemistry By Peter Syles
motorial	S. Fnotoenennisuly and reneyene Reactions by Jaguaniba Singh, New Age
anu/UI	2. Tencychic reaction by S. Sankararanian whey VCII, 2003.
and/or	 Pericyclic reaction By S. Sankararaman Wiley VCH 2005
Text Books	1 Molecular Orbitals and Organic Chemical Reactions By I. Fleming, Wiley
	Organomettalic photochemistry, photochemistry of vision.
	photooxidation, di- π methane rearrangement, photochemistry of areanes.
	Photodegradation of polymers, photosubstitution, photoreduction of ketones,
	Photochemical formation of smog.
	rearrangement, Barton reaction, Singlet molecular oxygen reactions.
	photochemical reactions: Photo-fries reactions of anilides, photo-fries
	Aromatic compounds: Isomerisations, additions and substitutions. Miscellaneous
	dimerisation and oxetane formation.
	compounds. Cycolhexadienones, Intermolecular cycloaddition reactions,
	compounds saturated, cyclic and acyclic, β , γ -unsaturated and α , β -unsaturated
	Photochemistry of Carbonyl compounds: Intramolecular reactions of carbonyl
	isomerism, cyclisation reactions, rearrangement of 1,4- and 1,5-dienes.
	Photochemistry of alkenes: Intramolecular reactions of the olefinic bond-geometrical
	Types of photochemical reactions: Photo-dissociation, gas phase photolysis.
	unsaturated compounds.
	Norrish tyoe-I, type-II processes, Paterno-Buchi reaction, photochemistry of
	photochemical reactions. Jablonski-diagram, photo-sensitisation and quenching.
	General information, Photo-chemical energy, effect of light intensity on the rate of
	Organic Photochemistry (20L):
	Recent advances from current literature.
	cope and aza-cope carbon rearrangements. Fluxional tautomerism, Ene reactions.
	shifts involving carbon moieties, 3,3- and 5,5 sigmatropic rearrangements. Claisen,
	Sigmatropic rearrangements-suprafacial and antarafacial shifts of H, Sigmatropic
	addition of ketenes, 1,3 dipolar cycloadditions and cheletropic reactions.
	Cycloaddition - antarafacial and suprafcial additions, 4n and 4n+2 systems, 2+2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	3	1	3	2	1	2	2
CO2	3	3	3	2	2	3	1	3	3	1	1	2
CO3	3	3	3	3	3	3	2	3	3	2	2	3
CO4	3	3	3	3	3	3	2	3	3	3	2	3

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	Title of the course	Program Core	Total Nu	mber of co	ntact hours		Credit				
Code		(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives	(L)	(T)	(P)	Hours					
		(PEL)									
CY2104	Structural	PCR	3	0	0	3	3				
	elucidation by										
	spectroscopic										
	method										
Pre-requis	ites	Course Assessm	ent method	ds (Continu	ous (CT) an	d end ass	essment				
		(EA))									
CY1101		CT+EA									
Course	• CO1: U	Inderstanding the	principle	and applic	cations of U	UV-VIS,	IR and				
Outcome	Raman	spectroscopy to elucidate the structure of different organic and									
(The	inorgani	c molecules.									
students v	vill • CO2: U	nderstanding the principles of ESR spectroscopy and its application									
master	the in the	structure determ	ination of	f inorgani	c complex	es and	reactive				
following) intermed	liates involved in	organic and	d inorganic	reactions.						
	• CO3: U	Inderstanding the	basic cor	ncept of M	lössbauer S	pectrosco	opy and				
	usefulne	usefulness of this technique to the studies of bonding and structu									
	inorgani	inorganic compounds.									
	• CO4: U	nderstand the cor	e concept	of Mass S	pectroscopi	c techniq	ues and				
	their co	ntribution to the	methods of	of structure	elucidation	n of orga	nic and				
	inorgani	inorganic species.									
[

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)	
	• CO5:Understand the different aspect of Nuclear Magnetic R	esonance
	spectroscopy and its application in the field of structure determi	nation of
	organic and inorganic species	
Topics	Applications of UV-VIS, IR and Raman spectroscopy to elucidate the	4 Lec
Covered	structure of different organic and inorganic molecules.	
		4 Lec
	ESR spectroscopy: Hyperfine coupling, Spin polarization for atoms and	
	transition metal ions, Spin-orbit coupling and significance of g-tensors,	
	application to transition metal complexes including free radicals.	
		4 Lec
	Mössbauer Spectroscopy	
	Basic principles, spectral parameters and spectrum display. Application of	
	the technique to the studies of i) bonding and structures of $\mbox{Fe}^{\mbox{II}}$, $\mbox{Fe}^{\mbox{III}}$	
	compounds including those of intermediate- spin, ii) $\mathrm{Sn}^{\mathrm{II}}$ and $\mathrm{Sn}^{\mathrm{IV}}$	
	compounds, nature of M-L bond, coordination number and structure and	
	iii) detection of oxidation states.	8 Lec
	Mass Spectroscopy	
	Generation of ions and detection; EI, CI, FD, FAB, plasma desorption etc;	
	fragmentation pattern in EI, GC-MS, MS-MS, LC-MS. Application of	15 Lec
	UV, IR, NMR and MS in structure elucidation.	
	NMR Spectroscopy	
	Long-range spin-spin interaction. Interpretation of non-first order NMR;	
	double resonance, Lanthanide shift reagent, spin-tickling, INDOR, NOE,	
	effect of solvents (aliphatic and aromatic), preliminary idea on ¹⁹ F, ³¹ P,	
	¹⁴ N, ¹⁵ N, ¹⁷ O. NMR of solids, NMR imaging.	
	¹³ C NMR Spectroscopy: Introduction, theory, instrumentation, chemical	
	shift, coupling constants, application in organic molecules.	
Text Books,	1. Elements of magnetochemistry: Dutta and Shyamal	
and/or	2. Fundamental concept of Inorganic Chemistry (Vol-7): A. K. Das	
reference	3. Structural methods in molecular inorganic chemistry: Rankin, Mitz	zel,
material	Mosrision	

2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)										
	4.	NMR spectroscopy (Basic Principles, concepts and application in chemistry):								
		H. Gunther								
	5.	Spectrometric identification of organic compounds: Robert Silverstein								
	6.	Organic spectroscopy: Kemp								
	7.	Structural methods in Inorganic Chemistry : Ebsworth, Rankin and								
		Cradock								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3

Course	Title of the course	Program Core	Total Nu	mber of co	ntact hours		Credit			
Code		(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives	(L)	(T)	(P)	Hours				
		(PEL)								
CY2151	Advanced	PCR			3	3	2			
	Physical									
	Chemistry									
	Practical									
Pre-requis	ites	Course Assessment methods (Continuous (CT) and end assessment								
		(EA))								
CY1151		CT and viva-voce								
Course	CO1: Basi	c concepts of spe	ctrophotor	netric estin	nation and	IR spect	roscopy.			
Outcome	Experiment	tal knowledge on	the influen	ce of react	ion paramet	ers on the	e rate of			
(The	the reaction	n, and analysis the	reon.							
students v	vill • CO2: Learn	ning about handli	ng of spec	trophotome	eter and IR	spectrom	eter and			
	their basic	theory.								

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)
master the	• CO3: To develop laboratory skills and the ability to work independently as well
following)	as in a group.
	• CO4: Knowing presentation, analysis and interpretation of data, source of error
	and error analysis.
	• CO5: To understand the interconnection between experimental foundation and
	underlying theoretical principles.
	• CO6: To develop the ability of scientific communications through oral quizzes,
	written reports and presentations.
Topics	1. Determination of isoelectric pH of gelatin.
Covered	2. Rate constant of alkaline hydrolysis of crystal violet
	3. Salt effect on the rate of alkaline hydrolysis of crystal violet
	4. Solvent effect on the rate of alkaline hydrolysis of crystal violet
	5. Micellar effect on the rate of alkaline hydrolysis of crystal violet
	6. Intermolecular hydrogen bonding in benzyl alcohol using IR spectroscopy
	7. Thermodynamics of micellization.
	8. Determination of activation parameter of a reaction.
	9. Determination of mean ionic activity coefficient of HCl by emf measurement.
Text Books,	1. Instruction manual provided by the Instructor
and/or	2. Experiments in Physical Chemistry by Carl Garland, Joseph Nibler, David
reference	Shoemaker
material	3. Practicals in Physical Chemistry by P S Sindhu
	4. Practical Physical Chemistry by Viswanathan and Raghavan

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									
CO2	3	3		2	2	3		2	2		1	
CO3						2		2	2		3	3
CO4	3	3		3	3		1	3				
CO5								3	3			
CO6								3	3		2	2

Course	Tit	le of the course	Program Core	Total Nu	mber of co	ntact hours		Credit			
Code			(PCR) /	Lecture	Tutorial	Practical	Total				
			Electives	(L)	(T)	(P)	Hours				
			(PEL)								
CY2152	Syı	nthesis and	PCR			3	3	2			
	Ch	aracterisation									
	of	Complex									
	Compounds										
Pre-requis	ites		Course Assessm	nent metho	ds (Continu	ious (CT) an	d end ass	essment			
			(EA))								
NIL			CT+ Viva voce								
Course		Course out	come accounts of								
Outcome		• CO1: Coor	dination complex synthesis maintaining molarity.								
(The stude	ents	• CO2: Cryst	tallization techniques to purify the synthesized materials.								
will ma	ster	• CO3: Deco	omposition and estimation of metal ion(s) using spectrophotometry.								
the		• CO4: Char	aracterization of synthesized materials using FTIR, UV-Vis and EPR								
following)	spectroscop	by and CHN analy	ysis.							
		• CO5: Spec	tral data interpreta	ation.							
Topics		Synthesis of a)	[VO(acac) ₂]; b)	[Co(NH ₃) ₅	(N ₃)]; c) [M	In(acac) ₃]; o	d) (NH ₄) ₂	[MnF ₅];			
Covered		e) Mohr's sal	t and other com	plexes an	d their ch	aracterizatio	on using	various			
		spectroscopic methods. Estimation of metal ion of suitable complexes.									
Text Boo	oks, 1. Advanced Inorganic Experiments, By G. N. MUKHERJI										
and/or											
reference											
material											

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	3	3	2	2	1	3	3	3	1	1
CO2	2	2	3	3	2	1	1	3	3	3	1	1
CO3	1	3	3	3	2	2	1	3	3	3	1	1

2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)												
CO4	3	3	3	3	2	2	1	3	3	3	1	1
CO5	3	2	3	3	2	3	1	3	3	3	1	1

Course	Tit	le of the course	Program Core	Total Nu	mber of co	ntact hours		Credit				
Code			(PCR) /	Lecture	Tutorial	Practical	Total					
			Electives	(L)	(T)	(P)	Hours					
			(PEL)									
	Chr	omatographic	PCR									
CV2153	Sep	aration of		0	0	3	2.0	3				
C12133	Org	ganic		0	0	5	2.0	5				
	Compounds											
Pre-requis	sites		Course Assessn	nent metho	ds (Continu	ious (CT) ar	d end ass	essment				
			(EA)									
NIL			CT+ Viva voce									
Course		• CO1: Unde	rstand the workir	ng principle	es of differe	ent types of	chromato	graphy.				
Outcome		• CO2: Lear	n the sampling method including derivatization for analysis									
(The stude	ents	• CO3: Mast	ter the techniques and application of thin layer, paper and column									
will ma	ster	chromatog	aphy									
the		• CO4: Lear	rn to analyze the chromatograms of GC and HPLC									
following)											
Topics		Thin Layer Chr	omatography									
Covered		Determina	ation of R _f values and identification of organic compounds.									
		Preparatio	on and separation	of DNP de	rivatives of	f carbonyl c	ompound	S				
		Separation	n of a mixture of	dyes using	cyclohexar	ne and ethyl	acetate (8.5:1.5).				
		Paper Chromato	ography: Ascendi	ng and Cire	cular							
		Determina	ation of R _f values	of R_f values and identification of organic compounds.								
		Separation	n of a mixture of	amino acid	S							
		Separation	n of sugars	ars								
		Column Chrom	atography:									
		Separation	n of Fluorescein a	in and methylene blue								
		Separation	n of aniline and N	of aniline and N,N dimethyl aniline								
		Separation	n of Lycopene and	e and β -carotene								

2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)										
	Demonstration of chromatographic separation by GC & HPLC.									
Text Books,	1. Fundamentals of analytical chemistry, Skoog, West, Holler and Crouch, 8th									
and/or	edition, Thomson									
reference										
material										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3		3	3	3	3	3
CO2	2	3	3	3	3	3		3	3	3	3	3
CO3	1	3	3	3	3	3		3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3
THIRD SEMESTER:

Course	Title of the course	Program	Total Number of contact hours						
Code		Core (PCR)/	Lecture	Tutorial	Practical	Total			
		Electives	(L)	(T)	(P)	Hours			
		(PEL)							
CY3101	Structure and	PCR	2	0	0	2	2		
	function of								
	biomolecules								
Pre-requis	sites	Course Assess	sment meth	ods (Conti	nuous (CT) a	and end as	sessment		
		(EA))							
NIL		CT+EA							
Course	CO1: Unde	rstanding the Ch	emistry bel	hind biolog	ical process	es			
Outcome	• CO2: Deve	lopment of basic	knowledge	e of cell str	ucture and f	unction			
(The stude	ents • CO3: Lear	ming of different	ent chemi	cal aspect	s of biom	olecules	such as		
will ma	ster Carbohydra	tes, Lipids, Prote	eins, Nucle	ic acids					
the	• CO4: Gene	ration of concept	ts on moleo	cular mecha	anics among	gst biomol	ecules as		
following) a stepping s	tone towards Bio	ophysical C	Chemistry.					
Topics	Cell Structure	and Function	s: Structu	re of pro	okaryotic a	ind 5	Lec		
overed	eukaryotic cel	eukaryotic cells, intracellular organelles and their functions,							
	Overview of me	Overview of metabolic process catabolism and anabolism. ATP – the							
	biological energy	y currency. Origin of life – chemical evolution and							
	rise of living sy	stems. Introduction to biomolecules, building blocks							
	of biomolecule	8							
	Carbohydrates	: Conformation	of monos	accharides,	structure a	ind			
	functions of it	mportant monos	saccharides	like glyc	osides, deo	xy			
	sugars, myoino	sitol amino sugar	rs. N-acetyl	lmuramic a	cid, sialic ac	id, 8	Lec		
	disaccharides	and polysacchar	ides. Strue	ctural poly	saccharides	_			
	cellulose and cl	nitin. Storage pol	lysaccharid	les - starch	and glycoge	en.			
	Structure and	biological fun	ctions of	glucosami	inoglycans	or			
	mucopolysacch	arides. Carbol	nydrates	of glyco	proteins a	ind			
	glycolipids. Ro	le of sugars in l	biological	recognition	. Blood gro	oup			
	substances. As	corbic acid. Carb	ohydrate n	netabolism	: Kreb's cyc	ele,			

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)	
	glycolysis, glycogenesis and glycogenolysis, gluconeogenesis,	
	pentose phosphate pathway	
	Lipids: Fatty acids, essential fatty acids, structure and function of	
	triacyl glycerols, glycerophospholipids, sphingolipids, cholesterol,	6 Lec
	bile acids, prostaglandins. Lipoproteins- composition and function,	
	role in atherosclerosis. Properties of lipid aggregates - micelles,	
	bilayers, liposomes and their possible biological functions.	
	Biological membrane. Fluid mosaic model of membrane structure.	
	Lipid metabolism – oxidation of fatty acids.	
	Amino Acids, Peptides and Proteins: Chemical and enzymatic	
	hydrolysis of proteins to peptides, amino acid sequencing. Secondary	8 Lec
	structure of proteins, forces responsible for holding of secondary	
	structures. α -helix, β -sheets, super secondary structure, triple helix	
	structure of collagen. Tertiary structure of protein - folding and	
	domain structure. Quaternary structure. Structure validation by	
	Ramachandran plot. Metalloprotein.	
	Amino acid metabolism – degradation and biosynthesis of amino	
	acids, sequence determination: chemical/ enzymatic/ mass spectral,	
	racemization/ detection.	
	Nucleic Acids: Purine and pyrimidine bases of nucleic acids, base pairing via H-bonding. Structure of RNA and DNA, double helix model of DNA and forces responsible for holding it. Chemical and enzymatic hydrolysis of nucleic acids. The chemical basis of heredity, an overview of replication of DNA, transcription, translation and genetic code. Chemical synthesis of mono and trinucleoside.	5 Lec
	Molecular mechanics: Molecular potentials, bonding potentials, non- bonding potentials, electrostatic interactions, dipole-dipole interactions, van der Waal's interaction, hydration and hydrophobic effect. Hydrogen bonds and their effect on stabilizing interactions in macromolecules. Steric interactions, cooperative allosteric effect.	5 Lec
Text Books,	1. Principles of Biochemistry by Lehninger	
and/or	2. Biochemistry byVoet & Voet.	
reference	3. Principles of Physical Biochemistry by K. E. van Holde, C. Jol	nnson and P. S.
material	Ho (Pearson).	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	2	2	1	1	3	3	2	3	1
CO2	3	1	2	1	1	1	1	3	2	2	3	1
CO3	3	3	3	2	2	3	1	3	3	2	3	1
CO4	3	3	3	3	2	3	2	2	1	1	2	1

Course	Title of the course	Program	Total Number of contact hours				
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total	
		Electives	(L)	(T)	(P)	Hours	
		(PEL)					
CY9111	Advanced	PEL	3	1	0	4	4
	Quantum						
	Chemistry and						
	Application of						
	Group Theory						
Pre-requisit	tes	Course Asse	ssment m	ethods (C	Continuous	(CT) a	nd end
		assessment (E	A))				
CY1101, 1	104	CT+EA					
Course	CO1: Different t	CO1: Different time dependent and time independent approximation meth					
Outcome	solve various mol	ecular problems	when Sch	rödinger wa	ve equation	cannot b	e solved
(The	exactly.						
students wi	ill CO2: Born-Opp	enheimer appr	oximation	to separa	te nuclear	and el	ectronic
master th	ne components from	molecular Ham	iltonian.				
following)	CO3: Detailed un	derstanding on t	he interacti	on of radia	tion with ma	atter and s	election
	rules for transition	n among differen	nt molecula	ar energy le	evels.		
	CO4: Hückel theo	ory in conjugate	d system a	nd it applic	ations		
	CO5: Developme	CO5: Development of concept of GOT, SALC from symmetry aspect and their					
	application	application					
	CO6: Application	CO6: Applications of group theory in spectroscopy, chemical bonding					
Topics	Variation and tim	ariation and time independent perturbation theory (nondegenerate and degenerate					
Covered	cases): Application	on towards differ	rent system	ıs.			08 lec

2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)	
Antisymmetric and exclusion principle, Slater determinal wave function, spir	n-orbital
interaction: LS and JJ coupling, Term symbol and spectroscopic states.	04 lec
Molecules and chemical bonding:	
Born-Oppenheimer approximation: MO and VB treatment of diatomic mole	cules.
	04 lec
Directed valence and hybridization in simple polyatomic molecules. Idea	of self-
consistent field.	04 lec
Time dependent perturbation theory: Transition dipole moment. Fermi's Gold	len rule.
Einstein's coefficients for induced and spontaneous emission.	04 lec
Hückel theory of conjugated systems. Bond order and charge density calcu	ulations.
Applications to ethylene, butadiene, cyclopropenyl radical, cyclobutadiene.	06 lec
Group theory: GOT, SALC: Their applications: representation of molecular	orbitals
and shape	04 lec
Application of Group theory in developing selection rules in spectroscopy	02 lec
Application in crystal field theory and molecular orbital theory	02 lec
Concept of orbital symmetry and application in chemical bonding	03 lec
Probability and efficiency of transitions in IR and Raman spectroscopy	03 lec
1. Quantum Chemistry by Levine	
2. Physical Chemistry: A Molecular approach by Donald A. McQuarrie	
3.Introductory quantum chemistry by A. K. Chandra	
4. Group theory and chemistry by Bishop	
5. Chemical application of group theory by F A Cotton	
6. Molecular theory and group theory by R. L. Carter	
	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY) Antisymmetric and exclusion principle, Slater determinal wave function, spir interaction: LS and JJ coupling, Term symbol and spectroscopic states. Molecules and chemical bonding: Born-Oppenheimer approximation: MO and VB treatment of diatomic molecu- Directed valence and hybridization in simple polyatomic molecules. Idea consistent field. Time dependent perturbation theory: Transition dipole moment. Fermi's Gold Einstein's coefficients for induced and spontaneous emission. Hückel theory of conjugated systems. Bond order and charge density calcu Applications to ethylene, butadiene, cyclopropenyl radical, cyclobutadiene. Group theory: GOT, SALC: Their applications: representation of molecular and shape Application of Group theory in developing selection rules in spectroscopy Application in crystal field theory and molecular orbital theory Concept of orbital symmetry and application in chemical bonding Probability and efficiency of transitions in IR and Raman spectroscopy 1. Quantum Chemistry by Levine 2.Physical Chemistry: A Molecular approach by Donald A. McQuarrie 3.Introductory quantum chemistry by A. K. Chandra 4. Group theory and chemistry by Bishop 5. Chemical application of group theory by F A Cotton

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	3	3	1	3	3	3	2	1	1
CO2	3	1	3	3	3	1	3	3	3	2	1	1
CO3	3	1	3	3	3	1	3	3	3	2	1	1
CO4	3	1	3	3	3	1	3	3	3	2	1	1

		2`	YR. MS	C IN C	HEMIS	STRY (I	DEPAR	TMEN	T OF C	HEMIS	TRY)	
CO5	3	3	2	3	2	1	3	3	2	1	2	3
CO6	3	3	2	3	2	1	3	3	2	1	2	3

Course	Ti	tle of the course	Program	Tota	al Number o	of contact he	ours	Credit		
Code			Core (PCR)/	Lecture	Tutorial	Practical	Total			
			Electives	(L)	(T)	(P)	Hours			
			(PEL)							
CY9112	No	on-Equilibrium	PEL	3	1	0	4	4		
	Th	ermodynamics								
	aı	nd Biophysical								
		Chemistry								
Pre-requis	ites		Course Assess	ment meth	ods (Contin	nuous (CT) a	and end as	sessment		
			(EA))							
CY2101			CT+EA							
Course		• CO1: differe	CO1: difference between equilibrium and non-equilibrium thermodynamics and							
Outcome		the significa	nce of the later.	Understan	ding of dif	ferent conce	pts and th	neories in		
(The stude	ents	non-equilibr	ium thermodyna	amics.						
will know	:)	CO2: Conce	ept on stationary	v state, cou	pled transf	fer (like dif	fusion and	d electric		
		charge, heat	and electric ch	arge), entr	opy produ	ction and a	oplication	of these		
		concepts.								
		• CO3: Learni	ng of different b	piophysical	processes	inside impo	rtant bion	olecules		
		• CO4: Develo	op knowledge or	n various in	strumental	techniques u	used in Bio	ophysical		
		Chemistry								
Topics		Non-equilibriun	n thermodynami	cs:			1.	5 Lec		
Covered		Postulates and n	nethodologies, f	orces and f	fluxes, line	ar laws, Gib	bs			
		equation, Onsa	gar reciprocal	theory. C	urie-Prigog	ine princip	le,			
		diffusion, effusion, sedimentation, chemical affinities, membrane								
		properties. Thermoelectric effects.								
		Stationary state	s: time variation	n of entrop	py producti	ion, minimu	ım			
		entropy product	entropy production, stability of stationary state. Fluctuation.							
		Biophysical Cher	Biophysical Chemistry:							

	Enzyme kinetics and Enzyme inhibition: Introduction of Enzyme, 5 Lec
	Enzyme-substrate Kinetics, Enzyme inhibition, Reversible inhibition,
	Irreversible inhibition, Competitive Inhibitor, Allosteric Inhibitor,
	Non-Competitive Inhibitor, Biophysical and kinetics studies of
	enzyme-inhibitor complex, Enzymes as drug targets,
	pharmacokinetics, pharmacodynamics, ADMET profile, examples of
	enzyme targeted drug discovery.
	Nucleic acid structure and therapeutics: Biophysical of nucleic acid, 2 Lec
	sensing and anti-sensing of nucleotides, interactions between strands
	of nucleic acid, strand-displacement assay as sensor.
	Techniques for macromolecular separation: Ion exchange, gel 3 Lec
	filtration chromatography, sedimentation, electrophoresis and
	isoelectric focusing,
	Bio-analytical Chemistry:
	(i) Applications of X-ray, AFM, UV-Vis, CD, fluorescence, NMR in 10 Lec
	characterization of biological macromolecules.
	(ii) Applications of the FRET and AUC to study conformational
	dynamics of protein and nucleoprotein complexes.
	(iii) Applications of UV-Vis and ITC to study the kinetics and
	thermodynamics of protein-ligand binding.
	(iv) Application of different gel-based assays (SDS-PAGE, Native
	PAGE, denaturing PAGE, Agarose) to determine nucleic acid
	stability and DNA repair process.
	(v) Application of pull-down method and sequencing to analyze
	protein-DNA interaction.
Text Books,	1. Introduction to Thermodynamics of Irreversible Processes by I. Prigogine
and/or	 Principles of Physical biochemistry by Holde, Johnson and Ho Experimental biophysical Chemistry By Copeland, R. A.
reference	
material	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2	2				3	2	1	1	
CO2	3		2	2				3	2	1	1	
CO3	3	3	3	2	2	3	2	3	2	2	2	1
CO4	3	3	3	2	3	2	2	3	2	2	1	1

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	Title of the course	Program	Tota	l Number o	of contact he	ours	Credit		
Code		Core (PCR)/	Lecture	Tutorial	Practical	Total			
		Electives	(L)	(T)	(P)	Hours			
		(PEL)							
CY9113	Material	PEL	3	1	0	4	4		
	chemistry and								
	advanced								
	spectroscopy								
Pre-requis	sites	Course Assess	ment meth	ods (Contin	nuous (CT) a	and end as	sessment		
		(EA))							
CY1101, 2	2101, 2104	CT+EA							
Course	• CO1: Funda	• CO1: Fundamentals of laser and application in science and industry							
Outcome	CO2: Prop	erties and ap	plications	of semi	conductors,	superco	nductors,		
(The stude	ents nanomateria	ls and many oth	er industria	ally relevan	t materials.				
will ma	ster • CO3: Physic	al chemistry of	polymer.						
the	• CO4: scienc	e behind many r	nodern spe	ctroscopic	methods and	d applicat	ions		
following)								
Topics	Laser: Fundan	nentals and a	pplications	, Time	resolved la	aser spec	etroscopy		
Covered	(picosecond, fe	(picosecond, femtosecond laser spectroscopy) and its application to investigate							
	different photop	different photophysical processes like photo-dissociation, photoisomerization (with							
	a reference to vi	a reference to vision process) and related topics. 07 lec							
	Free electron ga	ree electron gas theory of solids: Fermi level, density of states. 04 lec							
	Semiconductor	and superconduc	ctor: prope	rties and ap	plications.		03 lec		

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)
	Physical Chemistry of polymers: Kinetics of polymerization, thermodynamics of
	macromolecular systems. Determination of molar masses and studies of
	conformations and morphologies, thermomechanical properties of polymers.
	Sedimentation and ultracentrifugation of macromolecules. 07 lec
	Fluorescence sensor, solar and fuel cell, supercritical fluid, ionic liquids,
	Nanomaterials. 05 lec
	Kinetics of diffusion controlled reactions, photophysical quenching processes,
	excited state pH and acidity constant, Charge-transfer processes (Marcus theory).
	Experimental methods to observe kinetics of fast reactions in solution: stopped flow
	and relaxation methods. 06 lec
	Advanced spectroscopy: NMR, X-ray photoelectron spectroscopy, Auger
	spectroscopy, Mossbouer spectroscopy, SEM 06 lec
Text Books,	1. Modern spectroscopy by J M Hollas
and/or	2. Solid state chemistry and its application by West
	3. Chemical Kinetics by K. J. Laidler
reference	4. Organic and physical Chemistry of Polymers by Y Gnanou and M. Fontaanille, Wiley
material	5 Atkin's Physical Chemistry by P Atkins and I de Paula (7 th ed.)
	6 Fundamentals of molecular spectroscopy By Banwell and McCash
	 Fundamentals of photochemistry By Rohatgi and Mukherjee.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	2	1	3	3		1	1
CO2	3	3	3	2	2	2	1	3	3	2	2	1
CO3	3	3	3	2	2	2	1	3	3	2	2	1
CO4	3	3	3	2	2	2	1	3	3	2	2	1

Course	Title of the course	Program Core	Total Nu	mber of co	ntact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives	(L)	(T)	(P)	Hours	
		(PEL)					

	2 YR. M	SC IN CHEMISTRY (DEPARTM	ENT OF CI	HEMISTRY)						
CY9114	Surface	PEL	3	1	0	4.0	4				
	Chemistry,										
	Electrode										
	kinetics	and									
	corrosion scie	nce									
Pre-requis	sites	Course Assess	Course Assessment methods (Continuous (CT) and end assessment								
		(EA))	(EA))								
CY2101		CT+EA	CT+EA								
Course	• CO1:	process of adsorption	ess of adsorption and various adsorption isotherms involving different								
Outcome	types	of adsorbate-adsorbe	sorbate-adsorbent combination. Application of adsorption isotherm								
(The	to det	ermine catalytic effici	ne catalytic efficiency.								
students v	vill • CO2:	CO2: basics of surfactants and micelles and their application in science and									
master	the techno	ology.	ogy.								
following) • CO3:	concept of electrical	double laye	r, zeta pote	ntial and its	role for o	colloidal				
	stabili	ty.									
	• CO4:	kinetics of reaction at the electrode surface and its relevance towards									
	indust	strially important hydrogen evolution from dissociation of water.									
	• CO5:	corrosion of various	rosion of various metals under different environmental conditions and								
	mitiga	tion methods.	i methods.								
Topics	Surface C	hemistry:									
Covered	BET, Ha	kins-Jura and Gibbs	adsorption	isotherms,	surface ter	nsion and	surface				
	pressure,	contact angle: interfac	cial tension,	Hysteresis		2	l lec				
	Micelles a	and microemulsions: I	Phase diagra	m of micel	lar system. N	Aass actic	on model				
	and pseud	dophase model for n	on-ionic an	d ionic mi	celles. Rela	tionship	between				
	thermody	namic properties for r	nicellizatior	n with CMO	2.	,	3 lec				
	Estimatio	n of fraction of counte	r ion, aggreg	gation num	ber and solva	ation for 1	nicelles.				
	Concept of	of reverse micelle and	erse micelle and microemulsion. Packing factor.								
	Ion transp	ort across membrane	Donnan ef	fect.			2 lec				
	Electrical	double layer, Zeta p	otential, St	ability of a	colloids, Ele	ectrokinet	1c effect				
	(electroos	mosis and electropho	resis)				3 lec				

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)	
	Derivation of Butler-volmer equation, Study of the kinetics of different equation	electrode
	reactions (including elucidation of reaction mechanism). Numerical proble	ms.
		4 lec
	Different forms of corrosion: properties and remedial methods.	4 lec
	Tafel relation and mixed potential theory, Concept of exchange and limiting	g current
	density.	3 lec
	Potentiodynamic polarization and electrochemical impedance spect	roscopic
	methods to determine rate of corrosion.	4 lec
	Corrosion control: Cathodic (impressed current method and metallic coat	ing) and
	anodic control methods. Numerical problems.	4 lec
	Application of corrosion inhibitors including green inhibitors	2 lec
	High temperature corrosion	3 lec
Text Books,	1. Modern Electrochemistry 2A - Fundamentals of Electrodics by Boo	kris and
and/or	Reddy	
reference	2. Corrosion Engineering by M G Fontana	
material	3. Corrosion Engineering by B N Popov	
	4. Surfactant science and Technology (3rd ed.) by D. Myers.	
	5. Principles of colloid and surface chemistry (3rd ed) by P C Hiemer	nz and R
	Rajgopalan	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	2	1	3	3	3	3	1
CO2	3	3	3	2	2	2	1	3	3	3	3	1
CO3	3	3	3	2	2	2	1	3	3	3	3	1
CO4	3	3	3	2	2	2	1	3	3	3	3	2
CO5	3	3	3	2	2	2	1	3	3	3	3	2

2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)												
Course	Ti	tle of the course	Program Core	Total Nu	mber of co	ntact hours		Credit				
Code			(PCR) /	Lecture	Tutorial	Practical	Total					
			Electives	(L)	(T)	(P)	Hours					
			(PEL)									
CY9121	Ad	vanced Green	PEL	3	1	0	4.0	4				
	che	emistry and										
	An	alytical										
	Ch	emistry										
Pre-requis	sites		Course Assessm	ent method	ds (Continu	ous (CT) an	d end ass	essment				
			(EA))									
NIL			CT+EA									
Course		• CO1: Stude	ents will be given	an introdu	ction to gre	en chemistr	y and lea	rn about				
Outcome		its basic co	its basic concepts.									
(The		• CO2: Stude	ents will learn the	applicatior	n of green c	hemistry						
students v	will	• CO3: Demo	onstrate the design	n for safer,	energy effi	cient techno	ology and	process				
master	the	optimizatio	n for cleaner indu	strial proce	esses.							
following)	• CO4: Und	• CO4: Understand the fundamentals of pollution prevention technique with									
		respect to h	spect to health significance.									
		• CO5: Fund	lamental Understanding of monitoring and analysis of air and water									
Topics		Introduction to	to Green Chemistry: 15 Lecture									
Covered		Definition and	strategic of gree	n chemistr	y. Why G	reen Chemi	stry? Pre	vention,				
		Atom Economy	y, Less Hazardous	Chemical	Syntheses,	Designing	Safer Ch	emicals,				
		Safer Solvents	and Auxiliaries,	Design for	Energy Ef	ficiency, U	se of Rer	newable,				
		Feedstocks, R	educe Derivatives	s, Catalysi	s, Design	for Degrad	lation, R	eal-time				
		analysis for l	Pollution Prevent	tion, Inher	rently Safe	er Chemist	ry for A	Accident				
		Prevention, Laboratory pollution prevention.										
		Application of G	Green Chemistry:	:			10 Lec	ture				
		Applications an	duction of	new ch	emicals,							
		materials, and	en technolo	gies; Alt	ernative							
		synthetic routes	synthetic routes, new separation processes, new methods for delivery or pr									
		application (Al	ternative solvents	s, Energy	vs. mater	ial activity)). Import	ance of				
		pollution and w	astefulness in mod	dern cultur	es by reflec	ting on the	green che	emistry.				

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)
	Principle of Analysis for Air and Water samples: 10 Lecture
	Objectives of chemical analysis of air and water. Analysis of water: colour, turbidity,
	total solid, conductivity, acidity, alkalinity, hardness, chloride, sulfate, fluoride,
	phosphates, and different forms of nitrogen. Heavy metal analysis with respect to
	health significance. Measurement of DO, BOD and COD. Pesticides as water
	pollutants analysis.
	Monitoring and analysis of air: Monitoring technique through high volume sampler,
	SPM and RPM sampler. Measurement and analysis of SPM, RPM, SOX and NOX.
	Air and water pollution laws and standards.
Text Books,	1. Green Chemistry, An Introductory Text By Mike Lancaster, RSC
and/or	publications.
reference	2. Handbook on Green Analytical Chemistry By Miguel de la Guardia, Salvador
material	Garrigues, Wiley.
	3. Innovations in Green Chemistry and Green Engineering By Paul T. Anastas, Julie
	Beth Zimmerman, Springer publications.
	4. Alternative Solvents for Green Chemistry By Francesca M Kerton, Ray Marriott,
	RSC publications.
	5. Environmental Chemistry with Green Chemistry By Asim Kumar Das, Books
	and Allied (P) Ltd.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	1	3	3	3	2	3
CO2	3	2	3	2	3	2	1	3	3	3	3	3
CO3	3	2	2	2	3	2	1	3	3	3	2	3
CO4	3	3	3	2	2	3	1	3	3	3	3	3
CO5	3	3	3	2	2	3	1	3	3	3	3	3

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)										
Course	Title of the course	Program	Total Nu	mber of co	ntact hours		Credit				
Code		Core (PCR)/	Lecture	Tutorial	Practical	Total					
		Electives	(L)	(T)	(P)	Hours					
		(PEL)									
CY9122	Synthetic	PEL	3	1	0	4	4				
	Methodology for										
	Metal Complexes										
	and Coordination										
	Aggregates										
Pre-requis	sites	Course Assess	sment meth	ods (Contin	nuous (CT) a	and end as	sessment				
		(EA))									
CY2102		CT+EA									
Course	CO1: Under	stand the import	tance of tra	insition met	tal complexe	es					
Outcome	• CO2: Basic	CO2: Basic knowledge of different types of ligands and their applications									
(The stude	ents • CO3: Prima	ry Concept of de	esigning an	d synthesis	of a ligand						
will ma	• CO4: Learn	about the different	ent aspects	of suprame	olecular che	mistry					
the	• CO5: Clear	idea about the sy	ynthesis of	diversified	macrocycle	es					
following) • CO6: Funda	mentals of thern	nodynamic	effects upo	on changing	the cavity	v size of a				
	macrocycle	nacrocycle									
Topics	Introduction, In	troduction, Importance of ligand design and their applications in 6 Lec									
Covered	metal-complex	formation									
	Nitrogen Based	l Ligand: N ₂ as	Ligand, I	Reactivity	of Bound I	N ₂ , 5	Lec				
	Macrocyclic A	mines, Polyimin	es, Porphy	yrin, Polyp	yrazolylbor	ate					
	Ligand, Hydrox	xylamido Ligan	d, Schiff	Base Ligar	nd, Azide a	nd					
	Other Anionic I	Ligand									
	Phosphorus Bas	ed Ligands: Pho	sphine as I	Ligand, Mo	nophosphin	es, 4]	Lec				
	Diphosphines,	PolydentatePh	nosphines,	Phospha	te Ligan	ds,					
	Heterocyclic P	hosphorus Ligands, Dialkyl- and Diarylphosphido									
	Ligands										
	Oxygen Based	l Ligand: Dioxygen, Sueroxo and Peroxo Ligand, 5 Lec									
	Alkoxides and	l Aryloxides, Ketone and Ester, Crown Ethers, β -									
	Ketoenolato an	d Related Liga	unds, Carb	amates, O	xo Anions	as					
	Ligands										

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)
	Sulphur Based Ligand: Thiolates, Disulphides, Thioethers, Sulphur 3 Lec
	Oxide, Dithiocarbamates, 1,2-Dithiolenes
	Metal-Organic Frameworks 2 Lec
	Supramolecular Chemistry:
	Introduction, Host-Guest Chemistry, SelfAssembly, Supramolecular 2 Lec
	Building Blocks and Spacer, Driving Forces for the Formation of
	Supramolecular Structure
	Spatial Relationships between Host and Guest, Classification Of 2 Lec
	Host-Guest Compounds, General Introduction To Podand,
	Coronand, Spherand, Coronand-Podand Hybrid, Cryptands
	The Chelate And Macrocyclic Effect On Host-Guest Binding, 3 Lec
	Synthesis of Crown Ethers, The Template Effect, Synthesis of
	Cryptands, Recent Developments in the Synthesis of Cryptands,
	Synthesis of Aza Crown Ethers and Related Compounds
	Chiral Crown Ethers, Proton Ionisable Crown Ethers, Diester Crown 2 Lec
	Ethers, Synthesis of Lariat Ethers
	Synthesis of Calix[n] Arenes, Chiral Calix[n] Arenes, Introduction 3 Lec
	of Functional Groups in Calix[n] Arenes, Reactions at Upper Rim of
	Calixarene
	Selectivity of Cation Complexation, Cation Binding by Crown 4 Lec
	Ethers, Cation Binding by Lariat Ethers, Cation Binding by
	Cryptands, Thermodynamic Effect of Binding
Text Books,	1. An Introduction to Supramolecular Chemistry by Asim K Das and Mahua Das.
and/or	2. Analytical Chemistry of Macrocyclic and Supramolecular Compounds by S.
reference	M. Khopkar.
material	3. Advanced Inorganic Chemistry by F. A. Cotton, G. Wilkinson, C. A. Murillo
	and M. Bochmann.
	4. Synergy in Supramolecular Chemistry edited by Tatsuya Nabeshima.
	5. Concepts and Models of inorganic chemistry by B. E. Douglas, D. H.
	McDaniel and J. J. Alexander.

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1		3	3	2		1
CO2	3	3	3	3	1		1	3	3	1	1	1
CO3	3	3	3	3	2	2		3	3	2		1
CO4	3		3	2	2	2	1	3	1	1	1	1
CO5	3	3	3	3	2	2	1	3	3	2	1	1
CO6	3		3	2	2	1	1	3	2	1		1

Course	Ti	tle of the course	Program Core	Total Nu	mber of co	ntact hours		Credit		
Code			(PCR) /	Lecture	Tutorial	Practical	Total			
			Electives	(L)	(T)	(P)	Hours			
			(PEL)							
CY9123	Sn	nall Molecule	PEL	3	1	0	4	4		
	Ac	ctivation and								
	Nı	uclear								
	Cł	hemistry								
Pre-requis	sites		Course Assessm	ent method	ls (Continu	ous (CT) an	d end ass	essment		
	(EA))									
CY1102, 2	2014	1	CT+EA							
Course		Course out	come accounts of							
Outcome		• CO1: Dive	rsified biological r	oles of Nit	ric Oxide (l	NO) and the	NO dono	or drugs.		
(The		• CO2: Ene	mark-Feltham {N	MNO} ⁿ no	otation of	metal nitr	osyls ar	nd their		
students v	vill	spectroscop	pic and structur	ral proper	rties to	elucidate s	tructure-	function		
master	the	relationship).							
following)	• CO3: Activ	e site structure and	d role of de	nitrifying b	acteria resp	onsible fo	or nitrite		
		(NO2 ⁻), nit	ric oxide (NO) an	d nitrous o	oxide (N ₂ C) reduction	to N ₂ su	staining		
		global N ₂ cycle.								
		• CO4: Details of structure function of Metalloenzymes responsible for								
		fixation, re	verse process of d	enitrificatio	on.					
		• CO5: Basics of nuclear chemistry, the nuclear spin (I), quadrupole momer								
		and elliptic	ity of the nuclides	and nume	rical proble	ems.				

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)
	• CO6: The concepts and working principle of three spectroscopy such as Nuclear
	Magnetic Resonance (NMR), Electron Paramagnetic Resonance (EPR) and
	Mössbauer spectroscopy (specifically the last two) those are related to nuclear
	spin and the s-electron density of the nuclides.
Topics	Importance of NO as ligand and its diverse roles in biology, NO Synthase enzyme
Covered	and NO donors including metal nitrosyls, MO diagram of NO, Bonding nature of
	NO, Enemark-Feltham {MNO} ⁿ notation, Spectroscopic and structural properties of
	various {MNO} ⁿ species, NO detection methods, Electrophilic and nucleophilic
	reactivity on metal activated NO moiety 8 Lec
	Nitrite and Nitrous Oxide Reductase, their active site structures and catalytic activity
	and impact on Atmospheric Nitrogen Cycle 8 Lec
	The N ₂ fixation, Biological N ₂ reduction using FeMo cofactor and Models, Chatt
	Cycle, Electrocatalytic reduction using low-valent tungsten (W), Mo(III) mediated
	N_2 reduction system, cleavage of N_2 , Mo- N_2 complexes, N_2 Redcution Mechanisms,
	Nitrogenase-related transformations8 Lec
	Concept of Quarks; Size, shape, stability and classification of nuclides, Nuclear
	potential diagram, Packing fraction, Mass defect, Binding energy and related
	numerical problems, Quantum numbers of nucleon and magnetic properties,
	Nordheim's rules, Nuclear magnetic resonance (NMR) and its application to medical
	diagnosis such as MRI, Electric quadrupole moment of the nuclides and concept of
	electric multipoles; Nuclear spin (I), quadrupole moment (Q) and Ellipticity of the
	nucleus and numerical problems 5 Lec
	Nuclear resonance or recoilless absorption and Mössbauer Spectroscopy; Recoiling
	Frequency shift, Frequency broadening and Doppler effect, Characteristics of
	Mössbauer nuclides and related Decay scheme, Quadrupole splitting, Isomer shift
	and its application to assign the spin states. 3 Lec
	Nuclear shell model, magic number and periodicity of nuclear properties, liquid drop
	model. 1 Lec
	Detection and measurement of radioactivity, Preparation of radio-isotopes, Cow and
	milk systems, Applications of radio-isotopes as tracers such as for chemical
	investigation, physico-chemical applications, age determination, medical
	applications, agricultural and industrial applications etc. 3 Lec

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)
Text Books,	1. Nitric Oxide Research (Eds. M. Feelish, J.S. Stamler) Wiley, Chichester,
and/or	1996.
reference	2. Activation of Small Molecules, William B. Tolman, Wiley.
material	3. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life,
	Wolfgang Kaim and Brigitte Schwederski, Wiley
	4. Essentials of Nuclear Chemistry, H. J. Arnikar, New Age International
	Publishers, 2009
	5. Nuclear Physics, Irving Kaplan, Narosa Publishing House, 2002
	6. Modern Nuclear Chemistry, W. D. Loveland, D. J. Morrisey, Glenn T.
	Seaborg, Wiley.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	3	3	3	3	2	1	1
CO2	3	2	3	2	2	2	3	3	3	2	1	1
CO3	3	2	3	2	2	2	1	3	2	2	1	1
CO4	3	3	3	2	2	3	1	3	2	3	1	1
CO5	3	3	3	2	2	3	1	3	2	3	1	1
CO6	3	3	3	3	2	3	1	3	2	2	1	1

Course	Title of the course	Program Core	Total Nu		Credit		
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives	(L)	(T)	(P)	Hours	
		(PEL)					
CY9124	Group theory,	PEL	3	1	0	4	4
	applied						
	electrochemistry						
	and X-ray						
	structure						
	analysis						

Pre-requisites	Course Assessment methods (Continuous (CT) and end assessment									
	(EA))									
CY1104, 210	I CT+EA									
Course	• CO1: matrix representation of operator, formation of character tables of different									
Outcome	point group and its application in analyzing vibration and electronic									
(The	spectroscopy of complex molecules.									
students will	• CO2: Use of character table, symmetry and projection operator to learn									
master the	hybridization and formation of SALC and LCAO which enable to understand									
following)	bonding in molecules.									
	• CO3: foundation in different electrochemical methods like cyclic voltammetry,									
	coulommetry and associated techniques to analysis inorganic complexes and									
	evaluating kinetic processes occurring at the electrodes-solution interface.									
	CO4: knowledge of unit cell, symmetry and space group of different crystal.									
	• CO5: idea of reciprocal lattice and its importance in structure elucidation of									
	inorganic complexes using X-ray diffraction technique.									
	• CO6: understanding of the working principle of various electrochemical									
	instruments as well as X-ray diffractometer.									
Topics	Group theory: representation of groups, techniques and relationships for chemical									
Covered	applications, symmetry and chemical bonding, equation of wave functions,									
	vibrational spectroscopy, transition metal complexes 12 lec									
	Electrochemistry: fundamental of electrode reaction, basic equipment for									
	electrochemical measurements, voltammetric techniques, coulometric techniques,									
	electrochemical behaviour of transition metal complexes, metal complexes									
	containing redox active ligands 13 lec									
	X-ray structure determination: Diffraction of X-rays, Lattices, Plane and indices,									
	X-ray diffraction. The reciprocal lattice, Brag's law in reciprocal lattice, crystal									
	symmetry and space group, data collection, Intensity of data collection, theory of									
	structure factors, and Fourier syntheses. 13 lec									
Text Books,	1. Electrochemical Methods: Fundamentals and Applications By Bard and Faulkner									
and/or	2. Chemical applications of Group theory by F. A. Cotton									
reference	3. Molecular theory and group theory by R. L. Carter									
material	4. Inorganic Electrochemistry: Theory, practice and application By P Zanello (RSC)									
	5. X-ray Crystallography By William Clegg (Oxford)									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	2	2	3	2	2	1	1
CO2	3	3	3	2	2	2	3	3	2	1	1	1
CO3	3	3	3	3	2	3	1	3	3	2	1	1
CO4	3	3	3	3	1	3	3	3	2	1	1	1
CO5	3	3	3	3	1	3	3	3	2	1	1	1
CO6	3	3	3	3	2	3	3	3	2	1	1	1

Course	Title of the course	Program Core	Total Nu		Credit						
Code		(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives	(L)	(T)	(P)	Hours					
		(PEL)									
CY9131	Application of	PEL	3	1	0	4	4				
	some important										
	reactions in										
	synthetic organic										
	chemistry										
Pre-requis	sites	Course Assessm	ent method	ds (Continu	ous (CT) an	d end ass	essment				
		(EA))	(EA))								
CY1103		CT+EA									
Course	• CO1: U	nderstanding the	mechanisti	c details o	f hydrobora	tion reac	tions of				
Outcome	carbon-o	carbon double an	d triple bo	onds and th	heir applica	tion tow	ards the				
(The	formatio	on of C-C, C-N an	d C-haloge	n bonds							
students v	vill • CO2: U	nderstanding the	dissolving	metal red	uction meth	od of be	enzenoid				
master	the systems	using Birch reduc	ction condi	tion and the	eir application	on in son	ne of the				
following) natural j	product syntheses									
	• CO3: U	• CO3: Understanding the method of Carbon-carbon double bond formation									
	via Wi	via Wittig reaction, its modifications and the factors affecting the									
	stereoch	emistry of the rea	ctions								

Topics	Hydroboration reaction of alkenes, mechanism and hydrolysis process, 12 Lec
Covered	Regioselectivity, stereoselectivity and Enantioselective hydroboration
	reaction, Uses of 9-BBN (in Suzuki Cross coupling reaction and others)
	and Monoisocamphenylborane (IpcBH2), isomerisation of alkenes via
	hydroboration reactions, Carbon-Nitrogen, Carbon-halogen bond
	formation, synthesis of cyclopropyl, cyclobutyl derivatives and bicyclo
	compounds
	Birch Reduction: Mechanism, dependent factors, Application of birch
	reduction in aminolysis, hydrogenolysis, Wilds & Nelsen modification for
	pure products in Birch reduction, Regio-selectivity of Birch reduction.
	Hine postulates; Reduction of substitute benzenoid systems with EWG and 12 Lec
	EDG; biphenyl systems, regio-selective reduction of naphthalene and
	substituted naphthalene; Stereo selective of Birch reduction in
	naphthalene. Reduction of Anthracene and Phenanthrene systems; single
	electron transfer system (SET), application in natural product synthesis
	with special emphasis on Gibberalic acid.
	Wittig reactions or chemistry of Ylide: synthesis of phosphoylide; Stereo-
	chemical outcome of wittig reactions and their dependent factors. Stereo- 12 Lec
	selectivity in case of stabilised and non stabilizedylides. Scholar
	modifications. Effect of ligands in phosphorous ylide. Advantages of
	Wittig-Horner reaction over Wittig reaction; Difference in reactivity of
	phosphorous and sulphur ylide; Regio selective and stereoselective
	reaction with stabilized and non-stabalizes sulphur ylides
Text Books,	1. Advanced Organic Chemistry : F.A. Carey & R.J. Sundberg.
and/or	2. Classics in Total Synthesis: Targets, strategies and Methods: K.C. Nicolaou
reference	& E.J. Sorensen
material	3. Modern Methods in Organic Synthesis : W. Carruthers
	4. Organic Synthesis: Michael B. Smith

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	2	2	3	3	2	3	3
CO2	3	3	3	3	3	2	2	3	3	2	3	3
CO3	3	3	3	3	3	2	3	3	3	3	3	3

Course	Title of the course	Program	Tota	Credit								
Code		Core (PCR)/	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P)	Hours						
		(PEL)										
CY9132	Natural Products	PEL	3	1	0	4	4					
	and Drug Design											
Pre-requis	sites	Course Assess	sment meth	ods (Contin	nuous (CT) a	and end as	sessment					
		(EA))										
NIL		CT+EA										
Course	• CO1: Und	CO1: Understanding the importance of natural products										
Outcome	• CO2: Lear	• CO2: Learning of the structure, synthesis and uses of different Terpenes										
(The stude	ents • CO3: Kno	• CO3: Know the chemistry of Steroids in hormones										
will ma	ster • CO4: Deve	elop knowledge or	n the chemi	cal structur	e, synthesis	of differe	nt natural					
the	pigments											
following	• CO5: Con	cept generation or	n rational d	rug design	and drug cla	ssificatio	n					
	CO6: Intro	duction to drug m	nanufacturi	ng done in	pharmaceut	ical indus	tries					
	• CO7: Fund	lamental use of co	omputer in	drug desigr	n and discov	very						
Topics	Terpenes: St	ructural studies	on ses	quiterpenes	, diterpen	es, 9	Lec					
Covered	triterpenes an	d carotenoids; ch	nemistry of	f carryoph	yllene, abie	tic						
	acid, beta-amy	rin, alpha and bet	a-caroteno	ids								
	Steroids and Pr	Steroids and Prostanoids: Reaction and synthesis of steroids, 9 Lec										
	sources of stero synthesis of pro	sources of steroid hormones; diosgenin, hecogenin, etc., structure and synthesis of prostanoids										
	Natural Pign	ents: General	methods	of isolati	on, structu	ire 9	Lec					
	elucidation a	nd synthesis of	anthocyan	ins, flavoi	nes, flavon	es,						

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)											
	isoflavones, aurone, chalcone, xanthone and their chemical											
	interconversions											
	Drug Design:											
	Drug definition, Concepts of LD50 and ED50, introduction to 9 Lec											
	rational approach to drug design, physical and chemical factors											
	associated with biological activities, structure-activity relationship,											
	and mechanism of drug action.											
	Classification of drugs: Based on structure or pharmacological basis											
	with examples. Antineoplastic agents, cardiovascular drugs, local											
	anti-infective drugs, psychoactive drugs, antibiotics (including											
	vancomycin).											
	Industrial synthesis of important drugs.											
	Modelling: Molecular modeling, conformational analysis,											
	qualitative and quantitative structure-activity relationship.											
Text Books,	7. Medicinal Chemistry: An introduction By Gareth Thomas (Wiley)											
and/or	8. Asymmetric Synthesis of Natural products By Ari M P Koskinen (Wiley)											
reference	9. Chemistry of Natural products By S B Bhat, B A Nagasampagi, M											
material	Sivakumar (Narosa)											
	10. An Introduction to Medicinal Chemistry by G L Patrick (Oxford)'											
	11. Bioinformatics and Computational Biology in Drug Discovery and											
	Development by William T. Loging (Cambridge)											

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	1	1	2	1	2	3	3	1	1
CO2	3	1	1	1	1	2	1	3	2	2	2	1
CO3	3	2	1	1	1	3	1	3	3	3	1	1
CO4	3	1	1	1	1	2	1	2	2	3	1	1
CO5	3	3	3	3	3	3	1	3	3	1	3	1
CO6	3	3	3	3	3	3	1	3	3	1	3	1
CO7	3	3	3	3	3	3	3	3	3	1	3	1

Course	Ti	tle of the course	Program	Tota	Credit							
Code			Core (PCR)/	Lecture	Tutorial	Practical	Total					
			Electives	(L)	(T)	(P)	Hours					
			(PEL)									
CY9133		Bioorganic	PEL	4	0	0	4	4				
		Chemistry										
Pre-requis	sites		Course Assessment methods (Continuous (CT) and end assessment									
			(EA))									
NIL			CT+EA									
Course		• CO1: Gener	ration of conce	ept on the	e interdisci	iplinary int	erface lie	es within				
Outcome		Chemistry a	nd Biology									
(The stud	ents	• CO2: Learn	the Chemistry o	f Nucleic a	acids (DNA	, RNA)						
will ma	ster	• CO3: Develo	op knowledge or	n the enzyr	ne chemist	ry						
the		• CO4: Introdu	uction of enzyme inhibitors and inhibition kinetics									
following)											
Topics		Nucleoside, nue	cleotides and 1	Nucleic ac	ids: Basic	concept a	ind 8	Lec				
Covered		importance; Bio	mportance; Bio-synthesis of purine and pyrimidine nucleotides,									
		synthesis of a	synthesis of adenosine, Guanosine; Nucleotides: synthesis of									
		adenyltlic acid (acid (AMP), Guanylic acid (GMP), uridylic (UMP) acid									
		and cytidilic a	cid; Cell struc	ture, DNA	A structure	e and gene	tic					
		material, replica	ation and transc	ription of	DNA, RN	A and prote	ein					
		synthesis, geneti	ic material and g	genetic cod	e							
		Enzyme Chemis	stry:									
		Enzymes: Chen	nical and biolo	gical cata	lysts. Nom	enclature a	nd 12	Lec				
		classification, co	oncept and ider	ntification	of active s	ites by use	of					
		inhibitors, cataly	ytic power, spec	cificity and	regulation	. Examples	of					
		some typical	enzyme mechanisms for chymotripsin, and									
		carboxypeptidas	use-A.									
		Different types	s of enzyme	catalyzed	reactions	, Co-enzy	me					
		chemistry. En	zyme models:	: Host-gı	uest chen	nistry, chi	ral					

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)
	recognition, molecular asymmetry and prochirality, biomimetic
	chemistry, crown ether, cryptates, cyclodextrins, calixarin 12 Lec
	Bioorganic Chemistry:
	Enzyme kinetics: MichaelisMenten and Lineweaver-Burk plots,
	reversible and irreversible inhibition.
	Mechanism of enzyme action: Typical enzyme mechanism for
	ribonuclease, lysozyme. Chemical models and mimics for enzymes,
	receptors, peptides, carbohydrates and other bioactive molecules,
	catalytic antibodies- Design, synthesis and evaluation of enzyme
	inhibitors.
	Enzyme catalyzed reactions: Carboxylation and decarboxylation.
	Isomerization and rearrangement.
Text Books, and/or reference	 Principles of Biochemistry by Lehninger Biochemistry by Voet & Voet An Introduction to Medicinal Chemistry by G L Patrick (Oxford)
material	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	3	2	2	3	3	1	3	1
CO2	3	3	3	2	3	3	2	3	3	1	2	1
CO3	3	2	2	3	3	3	1	3	3	1	1	1
CO4	3	3	3	3	3	2	2	2	3	2	2	1

Course	Title of the course	Program Total Number of contact hours					
Code		Core (PCR)	Lecture	Tutorial	Practical	Total	
		/ Electives	(L)	(T)	(P)	Hours	
		(PEL)					
CY9134	Advanced	PEL	3	1	0	4	4
	Stereochemistry						

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)											
	and	I Structure-										
	rea	ctivity										
	Co	rrelation										
Pre-requisit	es		Course Ass	essment r	nethods	(Continuous	(CT) a	nd end				
			assessment (l	EA) and Vi	iva-Voce))						
CY1103			CT+EA									
Course		• CO1: Lea	rn about the th	nree dimer	nsional st	ructure of or	ganic mo	lecules,				
Outcome		which gov	ern their reactivity in different reactions.									
(The stud	ents	• CO2: Ad	lvance stereoc	vance stereochemistry helps to synthesise biological active								
will be enric	ched	compound	s with better yield and minimum by-products.									
with		• CO3: In th	e field of drug design & drug delivery, insecticides and pesticide									
stereochemi	istry	new bio-a	ive molecules could be synthesised for better utility in field o									
knowledge)		pharmaceu	itical science, a	griculture a	and mater	ial science.						
		• CO4: It h	elps to underst	and the ba	asic knov	vledge in syn	thesis of	organic				
		molecules	and to obey the	e guide line	es of greei	n chemistry pr	inciple.					
		• CO5: With	n help of know	ledge in ste	ereochem	istry and struc	ctural cor	relation,				
		the hurdle	in stereochemi	cal probler	m in indu	stries in large	scale pro	oduction				
		of polymer	, drug etc could be solved.									
Topics Cove	ered	1. Advanc	ed stereochen	nistry: Co	onfigaratio	onal analysis	: Relati	ve and				
		absolute	e configuration.					2 Lec.				
		2. Determ	ination of relati	ve configu	ration:							
		(i)	Chemical corre	elation not	affecting	the chiral ator	m,					
		(ii)	Chemical corr	elation aff	fecting b	onds to the	chiral ato	om in a				
			'known way'									
		(iii)	Correlation by	asymmetr	ic synthes	sis: Horeaus ru	ule, Prelo	g's rule,				
			Cram's rule (F	elkin modi	ification),	and Sharpless	s rule,					
		(iv) Physical methods: NMR, MS, IR, dipole moment, ORD, CD.										
								8 Lec.				
		3. Optical	rotation and op	tical rotato	ory dispers	sion: Prelimina	ary conce	pt about				
		linearly	polarised light	t (LP), RC	P and LO	CP; circular b	irefringer	ice; and				
		circular	dichroism and	optical rot	tatory dis	persion; Cotto	n effect;	ORD of				
		ketones and Octant rule. 8 Le										

	2 YR.	MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)
	4.	Conformation of acyclic and cyclic system (3-8 membered rings), decalin,
		octalene, and bridged bicyclo systems; stability, reactivity and mechanism,
		Cortin Hammett principle and Winstein-Eliel equation (special emphasis
		on 5 and 6 membered rings with and without heteroatoms like O, S and
		N). 8 Lec.
	5.	Quantitative relationship between structure and reactivity
		(i) Liner free energy relation: Hammett equation; Equilibrium and
		rate in organic reactions;
		(ii) Separation of polar, steric and resonance:
		(iii) Taft equation;
		(iv) Grunwald-Winstein equation.
		(v) Some application of structure-reactivity correlation study. 8 Lec.
Text Books,	1.	Stereochemistry of Carbon Compounds. Ernest L. Eliel. McGraw-Hill
and/or	2.	A Guidebook to Mechanism in Organic Chemistry 6 th Ed, by Peter Sykes
reference	3.	Basic Stereochemistry of Organic Molecules, Oxford University Press:
material	Subra	ta Sen Gupta
	4.	Stereochemistry Of Organic Compound; Principle and Applications by D. Nasipuri:
	5.	Stereochemistry. Conformation and Mechanism. P. S. Kalsi

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	2	2	1	3	2	2	1	2
CO2	3	2	3	2	2	2	2	3	2	2	1	2
CO3	3	2	3	2	2	2	2	3	2	2	1	2
CO4	3	3	3	2	2	3	1	3	2	3	1	2
CO5	3	3	3	2	2	3	2	3	2	3	1	2

Course	Title of the course	Program Core	Total Nu	Credit			
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives	(L)	(T)	(P)	Hours	
		(PEL)					

2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)												
CY9151	Adva	nced	PEL									
	Physi	cal	(Practical)	0	0	2	2.0	2				
	Chen	nistry-II		0	0	3	2.0	3				
	Labo	ratory										
Pre-requis	sites		Course Assessment methods (Continuous (CT) and end assessment									
			(EA) and Viva-Voce)									
CY1151,	2151		CT + Viva voce	;								
Course	•	CO1: bas	ic understanding	of vario	ous moder	n electroc	hemical,	surface				
Outcome		characteriz	ation, spectroscop	ic techniqu	ies.							
(The	•	CO2: know	ledge on measuri	ng the rate	of corrosio	n of metals	and its m	itigation				
students v	will	by chemica	l route.									
well-	•	CO3: basic	understanding or	the design	n of solar c	ell, nanoma	terial pre	paration				
acquainte	d	and charact	terization.									
with)	•	• CO4: development of laboratory skill, data handling and interpretation, err										
		analysis.	-	·		-	-					
Topics	1.	Determin	ation of rate of cor	rosion of n	netal using	potentiodyn	amic pola	arization				
Covered		method		·								
	2.	Determin	ation of rate of co	orrosion of	metal using	g electroche	emical im	pedance				
	3.	Evaluatio	n of potential at	zero charg	e on a met	al surface i	n presend	ce of an				
		electrolyt	ic solution.	-			-					
	4.	Determin	ation of corrosio	n inhibitio	on efficien	cy of an c	organic c	orrosion				
	5	Construct	ion of a dve sensi	tized solar	cell							
	6.	Evaluatio	n of excited state	proton trans	sfer process	s in 1-naptho	ol by exci	ted state				
		life time measurement										
	7.	Synthesis	and characterizat	ion of nanc	particles							
	8. Δ1	Molecula ny other pract	r modelling progra	ams v the Instru	ictor							
Reference		1. Instructi	on manual provid	ed by the I	nstructor							
material		2. Selected	l experiments in P	hysical Ch	emistry By	N. G. Muk	herjee					
		3. Advance	ed Physical Chem	istry Exper	iments: By	Gurtu & G	urtu					

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)												
CO1	3	3	3	3		3		3	3			
CO2	3	3	3	3	3	3		3	3	2	2	1
CO3	3	3	3	3	3	3		3	3	2	3	1
CO4				3	3						2	1

Course	Tit	le o	f the course	Program Core	Total Nu	mber of co	ntact hours		Credit			
Code				(PCR) /	Lecture	Tutorial	Practical	Total				
				Electives	(L)	(T)	(P)	Hours				
				(PEL)								
CY9152	En	vir	onmental	PEL	0	0	3	2.0	3			
	Sa	Sample Analysis		(Practical)	0	0	5	2.0	5			
Pre-requis	equisites			Course Assessment methods (Continuous (CT) and end assessment								
				(EA) and Viva-Voce								
CY1152,2	2152			CT and Viva vo	ce							
Course		٠	CO1:. The	course is designed	d to give th	e students	a broad und	lerstandin	g of the			
Outcome			issues relat	ed to the basic co	ncepts and	principles	of analysis	of soil ar	nd water			
(The			quality para	ameters.								
students v	vill	•	CO2: Stud	ents will also acc	umulate ic	lea about ti	he permissi	ble limit,	present			
master	the		concentrati	on etc. of differen	t environm	ental impu	rities.					
following)	•	CO3:. Der	nonstrate an idea	a about th	e soil, wa	ater and wa	astewater	quality			
			standards a	nd its regulations.								
		•	CO4: Stude	ents will also accur	mulate idea about the soil quality status with respect							
			to nutrients	like N, P and K p	present.							
Topics		1.	<i>p</i> H measu	rement of soil;								
Covered		2.	Estimatio	n of organic carbo	on content i	n soil;						
		3.	Chlorine	content in drinking	g water;							
		4.	Estimatio	n of phenol in ind	ustrial was	te-water sa	mple					
		5. N, P and K of soil										
		6.	Cyanide i	n industrial waste	-water sam	ple						
Text Boo	ks,	xs, 1. APHA, A, WEF, (1998). Standard Methods for the Examination of Wate							ater and			
and/or			Wastew	ater. American Pu	Public Health Association, American Water Works							
			Associa	tion,Water Polluti	on Control	Federation	, Washingto	on DC.				

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)									
reference	2. Practical Environmental Analysis. Miroslav Radojevic & Vladimir N.									
material	Bashkin, Publisher: Royal Society of Chemistry; 2nd edition (April 26,									
	2006),ISBN-10: 0854046798, ISBN-13: 978-0854046799									
	3. Practical Manual of wastewater chemistry. Barbara A.									
	Hauser, Publisher: CRC Press, 1 st edition (June 1, 1996). ISBN-									
	10: 1575040123 ISBN-13: 978-1575040127.									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	1	3	3	3	2	3
CO2	3	2	3	2	3	2	1	3	3	3	3	3
CO3	3	2	3	3	3	2	1	3	3	3	3	3
CO4	3	3	3	2	3	2	1	3	3	3	3	3

Course	Titl	e of the course	Program Core	Total Nu	mber of co	ntact hours		Credit			
Code			(PCR) /	Lecture	Tutorial	Practical	Total				
			Electives	(L)	(T)	(P)	Hours				
			(PEL)								
CY9153	Mu	lti Step	PEL	0	0	2	3	2			
	Synthesis and										
	Characterization										
	of	Organic									
Compounds											
Pre-requis	sites		Course Assessment methods (Continuous (CT) and end assessment								
			(EA) and Viva-Voce)								
CY1153, 1	2153		CT and Viva vo	oce							
Course		• CO1: To 1	reach a targeted	product the	rough mult	istep reaction	on proces	ss using			
Outcome		suitable rea	agents and optimu	m reaction	conditions						
(The stude	ents	• CO2: Sep	paration and Puri	fication of	products,	which will	l use as	starting			
will	be	reagents fo	reagents for the next steps.								
enriched											

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)									
with	• CO3: Purification techniques, like phase transfer, crystallization, GC-Mass and									
practical	other spectroscopic method will be adopted									
knowledge	• CO4: Understand the basic concept behind separation process for most common									
of these CO)	spectroscopic method like; UV-Vis, FT-IR, NMR, ESI-Mass and GC-Mass.									
	• CO5: To reach a maximum yield with minimum uses of solvent, reagents and									
	energy like; heat and electricity (Green chemistry).									
Topics	1. Oxidation of Benzoin to benzil followed by rearrangement to benzilic acid									
Covered	(i) Discussion, experimental setup, collection of staring reagent and chemicals.									
	1 hr									
	(ii) 1 st step reaction of benzoin to benzil oxydation reaction. 2 hrs									
	(iii) Separation and purification benzil, determination of yield and melting point									
	3 hrs									
	(iv) Second step reaction of Benzil to benzyllic acid rearrangement, yield and									
	M.P. determination. 3 hrs									
	(v) Analysis of Benzil and Benzyllic acid with spectroscopic analysis 3 hrs									
	2. Preparation of benzophenoneoxime followed by rearrangement to									
	benzanilide									
	(i) Discussion, experimental setup, collection of staring reagent and chemicals.									
	1 hr									
	(ii) 1 st step reaction between cyclohexanone and hydroxylamine to									
	benzophenoneoxime 2 hrs									
	(iii) Separation and purification benzophenoneoxime, determination of yield and									
	melting point and next step reaction from benzophenoneoxime to									
	benzinilide. 3 hrs									
	(iv) Analysis of benzophenoneoxime and benzinilide with spectroscopic									
	analysis. 3 hrs									
	3. Preparation of 1,3,5tribromobenzene from 2,4,6- tribromoaniline via									
	diazotization									
	(i) Discussion, experimental setup, collection of staring reagent and									
	chemicals. 1 hr									
	(ii) 1 st step reaction between 2,4,6-tribromoaniline and diazotising reagents									
	to diazonium salt of 2,4,6-bromo benzene. 2 hrs.									

	2 YR. M	ISC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)
	(iii)	Separation and purification benzophenoneoxime, determination of yield
		and melting point and next step reaction to obtain 1,3,5tribromobenzene.
		3 hrs
	(iv)	Analysis of product1,3,5-tribromobenzene with spectroscopic analysis.
		3 hrs
	4. Prepara	ation of Diethyladipate from Cyclohexanol followed by Dickmann
		cyclisation to 2-carboethoxy cyclopentanone.
	(i)	Discussion, experimental setup, collection of staring reagent and
		chemicals. 1 hr
	(ii)	1 st step reaction between Cyclohexanol and oxydising agent Conc.
		HNO ₃ oxidation to Adipic acid followed by esterification to
		Diethyladipate. 2 hrs
	(iii)	Next step Dickmann cyclisation of Diethyladipate to 2-carboethoxy
		cyclopentanone. 1 hr
	(iv)	Separation and purification of Diethyladipate and 2-
		carboethoxycyclopentanone, their yield and boiling point determination
	(v)	Analysis of product1,3,5-tribromobenzene with spectroscopic analysis. 3
		hrs
	5. Prepara	ation of <i>p</i> -nitro aniline from acetanilide
	(i)	Discussion, experimental setup, collection of staring reagent and
		chemicals. 1 hr
	(ii)	1 st step reaction between acetanilide and nitrating agent Conc. H_2SO_4 &
		HNO ₃ oxidation to P-nitroacetanilide 2 hrs
	(iii)	Hydrolysis of P-nitroacetanilide to P-nitroaniline with H_2SO_4 in aqueous
		medium 1 hr
	(iv)	Separation and purification of P-nitroacetanilide & P-nitroaniline, their
		yield and melting point determination 2 hrs
	(v)	Analysis of product1,3,5-tribromobenzene with spectroscopic analysis. 3
		hrs
Text Books,		
and/or	1. V	ogel's Textbook of practical organic chemistry, 5th Edition
reference	2. A	Advanced practical chemistry, 3rd ed.: Subas C. Das
material		

2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)
3. An Advanced Curse in Practical Chemistry, New Central Book Agency; 3rd
ed.: <u>Nad</u> , <u>Mahapatra</u> and <u>Ghoshal</u>

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	3	3	3	1	2	3	2	1	2
CO2	3	3	3	2	2	3	1	3	2	2	1	2
CO3	3	2	3	2	2	2	2	3	2	2	1	1
CO4	3	3	3	2	2	3	3	3	2	3	2	2
CO5	3	3	3	3	2	3	3	3	2	3	1	2

FOURTH SEMESTER:

Course	Title of the course	Program Core	Total Nu	mber of co	ntact hours		Credit	
Code		(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives	(L)	(T)	(P)	Hours		
		(PEL)						
	Chromatographic	PCR	2	0	0	2	2	
	Separation and							
CY4101	Instrumental							
Methods of								
	Analysis							
Pre-requis	sites	Course Assessn	nent methods (Continuous (CT) and end assessment					
		(EA)						
NIL		CT+EA						
Course	• CO1: Get	a comprehensive	knowledge	e about solv	vent extracti	on, ion e	xchange	
Outcome	and differe	nt chromatograph	ic techniqu	ies				
(The stude	(The students • CO2: Application of these techniques in practical and industrial capacity							
will ma	• CO3: Wor	king principles an	d applicati	on of some	instrumenta	al method	S	

2	YR.	MSC	IN	CHEMIS	STRY ((DEPA)	RTMENT	OF C	HEMISTR	Y)

the	
following)	
Topics	Separation techniques:
Covered	Solvent extraction, distribution law, distribution constant, extraction of inorganic
	species, separation of metal ion as chelates, extraction of metal chlorides and
	nitrates, solid phase extraction 03
	Ion exchange, ion exchange resin, ion exchange equilibria, application of ion
	exchange methods, home water softeners 02
	Chromatography: general description of chromatography, classification of
	chromatography, elution of column chromatography, migration rates, distribution
	constants, relation between, volumetric flow rate and linear flow rates, retention
	factor, selectivity factor, rate theory of chromatography, a quantitative description
	of column efficiency, thin layer chromatography (TLC) 03
	Gas chromatography (GC), Instrumentation, Introduction, carrier gas system,
	sample injection system, column configurations and column oven, detection system,
	characteristic of ideal detector, FID, TCD, ECD, mass spectroscopy gas
	chromatography column and stationery phase, capillary, tubular column, packed
	column, liquid stationery phase, applications 03
	High performance liquid chromatography: partition or liquid liquid chromatography,
	adsorption or solid liquid chromatography, ion exchange or ion chromatography,
	size exclusion chromatography, and chiral chromatography 03
	Instrumental method:
	Thermoanalytical Techniques: thermogravimetric analysis (TGA), Introduction,
	principle, instrumentation, Factors affecting TGA, application, differential thermal
	analysis, principle, instrumentation, application 03
	Electroanalytical techniques: electrogravimetry, electrical components, Galvanostat
	and potentiostat, principle, experiments, coulometry, principle, colulometer,
	coulometry cell, constant current coulometry 03
	Polarography: Principal, process of current, polarographic cell, Ilkovic equation,
	half wave potential, experimental set up, application, quantitative and qualitative
	analysis, cyclic voltammetry: principal, cell configuration, instrumentation
	and circuit, application 04
	Atomic absorption spectroscopy: Principle, Instrumentation, application 02

	2 Y F	R. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)
Text Books,	1.	Fundamentals of analytical chemistry, Skoog, West, Holler and Crouch, 8th
and/or		edition, Thomson
reference	2.	Instrumental methods of analysis, Williard, Merit, Dean, Settle, CBS
material		publishers & distributors
	3.	Inorganic electrochemistry, theory practice and application, Piero Zanzello,
		RS.C

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	3	3	3	3	3	2
CO2	3	3	3	3	3	3	3	3	3	2	1	2
CO3	3	3	3	3	3	3	3	3	3	3	3	2

Course	Title of the course	f the courseProgramCoreTotal Number of contact hours							
Code		(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives	(L)	(T)	(P)	Hours			
		(PEL)							
CY4102	Modern aspects	PCR	2	0	0	2.0	2		
	of environmental								
	chemistry								
Pre-requis	ites	Course Assessment methods (Continuous (CT) and end assessment							
		(EA))							
NIL		CT+EA							
Course	• CO1: The	course is designed	l to give th	e students	a broad und	lerstandin	g of the		
Outcome	issues relat	issues related to the basic concepts of environmental chemistry.							
(The	• CO2: To u	• CO2: To understand the chemistry responsible for environmental degrad							
students v	students will and to formulate its remedy for sustainable development.								
master	• CO3: Stud	• CO3: Students will be given an introduction to green chemistry and learn a							
following) its basic co	its basic concepts for modern techniques using presently.							
Topics	Modern aspect	Modern aspect of environmental chemistry:				16 Lecture			
Covered									

	2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)							
	Chemical aspects of air, water and soil pollution, chemistry of photochemical and							
	sulphurous smog, stratosphere-chemistry and pollution, chemical speciation and							
	organometallic compounds in the environment, priority and water pollutants-their							
	effects, chemical analysis and control. Solid wastes from Industries. Radioactive							
	solid waste disposal. Recovery and recycling. Ecological balance and planning of							
	Industrial complexes. Reactions in living systems. Bioreactors. Biochemical process							
	in industries. Biotechnology as low-energy, ecologically safe alternatives. Green							
	chemistry, some recent environment disasters: Bhopal gas tragedy, Chermobyl,							
	Three mile island etc							
Text Books,	1. Solutions Manual for Environmental Chemistry, Colin Baird and Michael Cann,							
and/or	Publisher: W. H. Freeman; 5 th edition (May 7, 2012),ISBN-10: 1464106460							
reference	ISBN-13: 978-1464106460.							
material	2. Chemistry Fundamentals: An Environmental Perspective. Phyllis Buell and James							
	Girard Publisher: Jones & Bartlett Publishers; 2nd edition (April 2002),ISBN-							
	10: 0763710741,ISBN-13: 978-0763710743.							
	3. Elements of Environmental Chemistry, Ronald A. Hites & Jonathan D. Raff;							
	Publisher: Wiley; 2 nd edition (April 24, 2012),ISBN-10: 1118041550, ISBN-							
	13: 978-1118041550							
	4. L.W. Moore and E. A. Moore, Environmental Chemistry, McGraw Hill							
	Publication, New York, 2002.							
	5. M. Khopkar, Environmental Pollution Analysis, New Age International (P) Ltd.							
	6. C. Baird., Environmental Chemistry, W. H. Freemand and Company, 1995.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	3	1	1	3	3	3	2	3
CO2	3	2	3	3	3	1	1	3	3	3	3	3
CO3	3	2	3	3	3	1	1	3	3	3	3	3

Title of the course	Total Number of contact hours	Credit

2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)										
Course			Program Core	Lecture	Tutorial	Practical	Total			
Code			(PCR) /	(L)	(T)	(P)	Hours			
			Electives							
			(PEL)							
CY4103	Mo	lecular	PCR	1	1	0	2.0	2		
	mo	delling in								
	che	emistry								
Pre-requis	sites		Course Assessment methods (Continuous (CT) and end assessment							
			(EA))							
NIL			CT+EA							
Course		• CO1: App	ly the principles of quantum mechanics to understand molecular							
Outcome		interactions	s, structure and ch	emical bon	iding.					
(The		• CO2: Modelling of large assembly of atoms/molecules using approximate								
students v	will	molecular dynamic simulations and Monte Carlo methods.								
master	the	• CO3: Knowledge on commercially available molecular modelling software								
following)	packages.								
Topics		Brief review of the basic principles of quantum mechanics of atoms and molecules.								
Covered		Concept of quantum mechanical <i>ab initio</i> calculations within Born-Oppenheimer								
		approximation, density functional theory, semi-empirical and Molecular Mechanic						echanics		
		calculations.					3 Lec			
		Potential ener	gy surfaces and	intermole	ecular inte	eractions ar	nd mode	lling of		
		calculated ene	rgy by model po	otentials for	or simple	atoms, ions	s and mo	olecules.		
		Concept of short range and long range interactions. 2 Lec								
		Study of an	assembly of ato	ms or mo	olecules (c	luster and/o	or bulk	phases).		
		Approximation	n of the total poten	tial energy	as the sum	of pair pote	entials.	2 Lec		
		Concept of large number of microstates, averages and basic principles of Monte								
		Carlo and Molecular Dynamics simulations. 3 Lec					3 Lec			
		Flexible models and calculation of force constants. Structural and dielectric								
		properties of a polar medium: Continuum models versus molecular models.								
		Calculation of structure, energy and free energy through simulations using molecular						olecular		
		models.	4 Lec							
2 YR. MSC IN CHEMISTRY (DEPARTMENT OF CHEMISTRY)										
--	--	--	--	--	--	--	--	--	--	--
	Study of self-organized assemblies, bio-molecules like peptides, proteins,									
	membranes and ion channels through simulations. 3 Lec									
	Concept of hydrophobic and hydrophilic interactions. Use of molecular modelling in									
	drug design. 3 Lec									
Text Books,	1. Molecular Modelling: Principles and Applications By A.R. Leach, Longman									
and/or	(1996).									
reference	2. Molecular Modelling and Simulation By T. Schlick, Springer (2006).									
material										

Mapping of CO (Course outcome) and PO (Programme Outcome)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	3	3	3	2	1	2	2
CO2	3	3	3	2	3	3	3	3	2	1	2	2
CO3	3	3	3	3	3	3	3	3	3	3	3	2