NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR

DEPARTMENT OF MATHEMATICS

Revised Curriculum and Syllabi for the Degree of 2 Yr. M. Sc. in MATHEMATICS

(To be effective from the batches admitted in the Academic Session 2020-2021 Onwards) Revision Approved in PGAC meeting on 28/08/2020

Date: 28th August, 2020

COURSE CURRICULUM

SEMESTER-I

Sub. Code	Subject	L	Т	Р	Credit
MA1101	Complex Analysis	3	1	0	4
MA1102	Probability & Stochastic Processes	3	1	0	4
MA1103	Ordinary and Partial Differential Equations	3	1	0	4
MA1104	Linear Algebra	3	1	0	4
MA1105	Real Analysis	3	1	0	4
MA1151	Programming Languages Lab	0	0	6	4

TOTAL CREDIT - 24

SEMESTER-II

Sub. Code	Subject	L	Т	Р	Credit
MA2101	Integral Transforms and Integral Equations	3	1	0	4
MA2102	Functional Analysis	3	1	0	4
MA2103	Modern Algebra	3	1	0	4
MA2104	General Mechanics and Variational Calculus	4	1	0	3+2
MA2105	Numerical Analysis		1	0	4
MA2151	Numerical Analysis Lab	0	0	3	2
			OT AL		~~

TOTAL CREDIT - 23

SEMESTER-III

Sub. Code	Subject	L	Т	Р	Credit
MA3101	Operations Research	3	1	0	4
MA3102	Graph Theory	2	1	0	3
MA3103	Fluid Dynamics	3	1	0	4
	Elective-I	3	1	0	4
	Elective-II	3	1	0	4
MA3151	Project and Seminar-I	0	0	3	3

TOTAL CREDIT - 22

SEMESTER-IV

		•	Г	Credit
Тороlоду	3	1	0	4
Generalized Functions and Wavelets	2	1	0	3
Elective-III	3	1	0	4
Elective-IV	3	1	0	4
Project and Seminar-II	0	0	8	4
Grand Viva	0	0	2	2
	Generalized Functions and Wavelets Elective-III Elective-IV Project and Seminar-II Grand Viva	I opology 3 Generalized Functions and Wavelets 2 Elective-III 3 Elective-IV 3 Project and Seminar-II 0 Grand Viva 0	I opology31Generalized Functions and Wavelets21Elective-III31Elective-IV31Project and Seminar-II00Grand Viva00	I opology310Generalized Functions and Wavelets210Elective-III310Elective-IV310Project and Seminar-II008Grand Viva002

TOTAL CREDIT - 21

TOTAL COURSE CREDIT - 90

SI. No.	Subject Code	Subject Name		
1	MA9111	Geophysics		
2	MA9112	Nonlinear Waves		
3	MA9113	Mathematical Modeling		
4	MA9114	Advanced Complex Analysis		
5	MA9115	Advanced Modern Algebra		
6	MA9116	Automata and Algorithms		
7	MA9117	Differential Geometry		
8	MA9118	Optimization Techniques		
9	MA9119	Fuzzy Mathematics		
10	MA9120	Nonlinear Analysis		
11	MA9121	Advanced Operations Research		
12	MA9122	Algebraic Coding Theory		
13	MA9123	Dynamical Systems and Chaos Theory		
14	MA9124	Computational Fluid Dynamics		
15	MA9125	Soft Computing		
16	MA9126	Cryptography		
17	MA9127	Decision Theory		
18	MA9128	Measure Theory		
20	MA9129	Multivariate Statistical Analysis		
21	MA9130	Commutative Algebra		

List of Electives

SUMMARY OF COURSES

Sub Discipline: DEPARTMENTAL CORE

SUBJECT	SUBJECT	L-T-P	CREDIT	DEVELOPER(S)
CODE				
MA1101	COMPLEX ANALYSIS	3-1-0	4	Dr. M. F. Ali
MA1102	PROBABILITY & STOCHASTIC	3-1-0	4	Dr S. Maitra &
	PROCESSES			Prof. S. Sarkar
				(Mondal)
MA1103	ORDINARY AND PARTIAL	3-1-0	4	Dr. P. Pal & Dr P. P.
	DIFFERENTIAL EQUATIONS			Gopmandal
MA1104	LINEAR ALGEBRA	3-1-0	4	Dr P. Pal
MA1105	REAL ANALYSIS	3-1-0	4	Dr L. K. Dey
MA2101	INTEGRAL TRANSFORMS AND			Dr. A. Pal & Dr P. P.
	INTEGRAL EQUATIONS			Gopmandal
MA2102	FUNCTIONAL ANALYSIS	3-1-0	4	Dr L. K. Dey
MA2103	MODERN ALGEBRA	3-1-0	4	Dr. S. Bagchi
MA2104	GENERAL MECHANICS AND	4-1-0	3+2	Dr. S. Maitra & Dr P.
	VARIATIONAL CALCULUS			P. Gopmandal
MA2105	NUMERICAL ANALYSIS	3-1-0	4	Prof. S. Sarkar
				(Mondal) & Dr. A. Pal
MA3101	OPERATIONS RESEARCH	3-1-0	4	Dr S. Kar
MA3102	GRAPH THEORY	2-1-0	3	Dr A. Pal
MA3103	FLUID DYNAMICS	3-1-0	4	Dr. P. Pal & Dr P. P.
				Gopmandal
MA4101	TOPOLOGY	3-1-0	4	Dr L. K. Dey & Dr F.
				Ali
MA4102	GENERALIZED FUNCTIONS AND	3-0-0	3	Dr. S. Maitra
	WAVELETS			

Sub Discipline: DEPARTMENTAL ELECTIVES

SUBJECT	T SUBJECT		CREDIT	DEVELOPER
CODE				
MA 9111	GEOPHYSICS	3-1-0	4	Prof. S. Sarkar
				(Mondal)
MA9112	NONLINEAR WAVES	3-1-0	4	Dr. S. Maitra
MA9113	MATHEMATICAL MODELING	3-1-0	4	Dr. S. Maitra
MA9114	ADVANCED COMPLEX ANALYSIS	3-1-0	4	Dr. M. F. Ali
MA9115	ADVANCED MODERN ALGEBRA	3-1-0	4	Dr L. K. Dey
MA9116	AUTOMATA AND ALGORITHMS	3-1-0	4	Prof. S. Kar & Dr. G.
				Panigrahi
MA9117	DIFFERENTIAL GEOMETRY	3-1-0	4	Dr L. K. Dey
MA9118	OPTIMIZATION TECHNIQUES	3-1-0	4	Prof. S. Sarkar
				(Mondal)
MA9119	FUZZY MATHEMATICS			Prof. S. Kar
MA9120	NONLINEAR ANALYSIS	3-1-0	4	Dr L. K. Dey
MA9121	ADVANCED OPERATIONS	3-1-0	4	Prof. S. Kar
	RESEARCH			
MA9122	ALGEBRAIC CODING THEORY	3-1-0	4	Dr S. Bagchi
MA9123	DYNAMICAL SYSTEMS AND CHAOS	3-1-0	4	Dr. P. Pal
	THEORY			
MA9124	COMPUTATIONAL FLUID DYNAMICS	2-0-2	4	Dr. P. P. Gopmandal
MA9125	SOFT COMPUTING	3-1-0	4	Dr. S. Kar
MA9126	CRYPTOLOGY	3-1-0	4	Dr. S Bagchi
MA9127	DECISION THEORY	3-1-0	4	Dr. G. Panigrahi
MA9128	ADVANCED STATISTICAL ANALYSIS	3-1-0	4	Prof. S. Kar
MA9129	MEASURE THEORY	3-1-0	4	Dr L. K. Dey
MA9130	MULTIVARIATE STATISTICAL	3-1-0	4	Prof. S. Kar
	ANALYSIS			
MA9131	COMMUTATIVE ALGEBRA	3-1-0	4	Dr S. Bagchi

Sub Discipline: LABORATORY & SESSIONAL COURSES

MA1151	PROGRAMMING LANGUAGES LAB	0-0-6	4
MA2151	NUMERICAL ANALYSIS LAB	0-0-3	2

Sub Discipline: PROJECT, SEMINAR etc.

MA3151	PROJECT and SEMINAR - I	0-0-6	3
MA4151	PROJECT and Seminar-II	0-0-8	4
MA4153	GRAND VIVA	0-0-2	2

SYLLABUS

SEMESTER-I

	•		Department o	f Mathema	tics				
Course	Title o	of	Program Core (PCR) /	Total Num	nber of co	ntact h	ours		Credit
Code	the		Electives (PEL)	Lecture	Tutorial	Pract	ica	Total	
	course	e		(L)	(T)	1		Hours	
						(P))		
MA1101	Comp	lex	PCR	3	1	0		4	4
	Analys	sis							
Prerequisite Basic concepts of Real Analysis.									
Course Ou	tcomes		Upon successful completion	n of this cou	irse stude	nts will	be a	ble to:	
			 CO1: understand whe 	en and who	ere a give	en fund	ction	is analy	tic and be
			able to find it series d	evelopme	nt;			_	
			CO2: understand bas	ic properti	es of con	nplex i	nteg	ration ar	nd acquire
			the skill of contour inte	egration to	evaluate	e comp	olicat	ted real i	ntegrals
			via residue calculus;	mal mana	inao hotu		oriou	ia plana	ragiona
			 COS. describe conion and its application 	па парр	ings betw		anou	is plane	regions
Course Content					No. of				
					lectures				
Topology	of the	comp	lex plane, limits, continuity	, stereogra	aphic proj	ection,	ele	mentary	10
complex fu	nctions,	, linea	r fractional transformations.	-				Ĩ	
Differentiat	oility, A	nalytio	c function, Cauchy-Riemann	equations	, harmon	c func	tions	, power	10
series, radi	us of co	onverg	gence, differentiation of powe	r series.					
Curves, co	mplex	line	integrals, Cauchy's Theorei	m, winding	number,	Cauc	hy's	integral	10
formula, M	orera's t	theore	em.					Ū	
Cauchy's i	nequali	ty an	d its applications, Liouville's	s theorem,	identity t	heorer	n, m	aximum	10
modulus principle, Schwarz lemma.									
Taylor's Theorem, Laurent's series, singularities, classification of singularities, Casorati-					10				
Weierstrass theorem, Cauchy's Residue theorem, Evaluation of real integrals.									
Argument principle, Rouche's theorem, open mapping theorem, conformal mappings.					6				
Total Number of Lectures					56				

Text Books:

SI.	Name of the Book	e of the Book Authors		Year
No.				
1	Complex Variables with	S. Ponnusamy and H. Silverman	Birkhauser, Boston	2006
	Applications			
2	Complex Analysis	T. W. Gamelin	Springer	2001
3	Complex Variables and	J. W. Brown and R. V. Churchill	McGraw Hill	2008
	Applications			

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Complex Analysis	L. V. Ahlfors	McGraw-Hill	1979
2	Functions of one Complex	J. B. Conway	Springer-Verlag	1978
	Variable			
3	Theory of functions of a	A. I. Murkushevich	Prentice-Hall Inc.	1965
	complex variable (Vol- I & II)			

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total Num	nber of cor	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total hours	
			(L)	(T)	(P)	per week	
MA1102	Probability	PCR	3	1	0	04	04
	&						
	Stochastic						
	Processes						
Prerequisit	e	Knowledge of probabilit	y at 10+2 le	evel			
Course Ou	tcomes	Upon successful comple	etion of this	course st	udents will	be able to:	
		CO1: understand the co	oncept and	identify the	e field of ap	plication of pr	obability.
		CO2: apply the knowled	lge of proba	ability in re	al life probl	em solving	
		CO3: know basics of sto	ochastic pro	ocesses			_
		CO4: identify the applic	ations of Ma	arkov proc	esses, rand	dom walks, Po	oisson
processes.							
Course Content							No. of
							lectures
Probability	/:	<i></i>					3
Historical d	evelopment c	of the subject and basic co	oncepts, imp	portant ter	minologies,	definitions.	
Random v	ariables dis	tribution and density fu	inctions di	iscrete pr	obability d	istributions-	12
binomial a	nd multinomia	al distribution negative b	nomial dis	tribution	Geometric	distribution	12
hypergeom	etric distribut	ion. Poisson distribution.	continuous	probabilit	v distributio	on – normal	
distribution	. Beta & gan	nma distribution, expone	ntial distrib	ution, chi-	squared a	and Weibull	
distribution	, ioint and ma	arginal distribution, condit	ional distrib	ution.			
alothoation	, joint and m	arginar alotino atori, ooriat		ation			
Mathematic	al Expectation	n: Mean of random variab	le, variance	and cova	riance, mea	ins and	5
variances of linear combinations of random variables							-
Distribution of sum of independent random variables, convergence of a sequence of random							8
variables	convergence i	in distribution convergen	ce in nroha	hility conv	/ergence in	L^p law of	Ũ
large numb	ers Tchebyc	hev inequality		Sinty, con		2, 1400	

Stochastic Processes: Description & Specification of Stochastic Process, Stationary	4			
Processes, Martingales.				
Markov Chains: Definitions, Chapman-Kolmogorov Equations & classification of states,	6			
Applications of Markov chains, Time reversible Markov chains.				
Poisson Process: Poisson Process, Inter-arrival & waiting time distributions, Non-	4			
homogeneous Poisson Process, Conditional Poisson process.				
Continuous time Markov chains: Continuous time Markov chains, Birth & Death Processes,				
Kolmogorov differential equations, Randomization.				
Random walks: random walks in one and two dimensions and the properties	4			
Markov Processes with continuous state space: Brownian motion, wiener process,	6			
differential equations for a wiener process, Kolmogorov equations				
Total	56			

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Probability and Statistics for Engineers and Scientists	Walpole, Myers, Myers, and Ye	Pearson	2012
2	Introduction to probability	C. Grinstead and J. Snell	American Mathematical Society	1997
3	Probability and stochastic processes	Roy D Yates and David J. Goodman	John Wiley and Sons	1998

SI.	Name of the Book	Name of the Book Authors		Year
No.				
1	Stochastic processes	J. Medhi	New Age International	2008
			Publishers	
2	Introduction to	Mendenhall, Beaver, and	Cengage Learning	2012
	probability and	Beaver		
	statistics			

	Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit	
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total		
			(L)	(T)	(P)	Hours		
MA1103	Ordinary	PCR	3	1	0	4	4	
	and Partial							
	Differential							
	Equations							
Prerequis	ite	Void						
Course Outcomes		Upon successful completion of this course students will be able to understand:						
		CO1: fundamentals of initial and boundary value problems						

CO2: properties of Bessel functions and Legendre polynomials and their					
applications					
CO3: basic existence and uniqueness theorems initial and boundary	problems				
CO4: techniques to solve the problems and applications of Ordina	ry				
Differential Equations and Partial Differential Equations					
Course Content	No. of				
	lectures				
Ordinary Differential Equations (ODE)					
Review of solution methods for first order as well as second order equations: Existence	14				
and Uniqueness of solution, Initial Value Problems, Existence and Uniqueness theorem,					
Lipschitz condition. Series solution around ordinary point and a regular singular point, Bessel					
functions and Legendre polynomials.					
Higher Order Linear Equations and linear Systems: Fundamental solutions, Wronskian,	2				
variation of constants, matrix exponential solution, and behavior of solutions.					
Boundary Value Problems for Second Order Equations: Green's function, Sturm Liuville	12				
problems, Perturbation theory for two-dimensional linear system.					
Partial Differential Equations (PDE)					
Review of First order PDE: Linear, semi-linear, quasi-linear and non-linear equations,	5				
Cauchy Problems for First Order Hyperbolic Equations: Lagrange method, Charpit method, Method of characteristics. Monge cone					
Second order BDE: Classification, Characteristics, and Canonical forms of equations in two	2				
independent variables, Well-posed problems	5				
Laplace equation: Mean value property, weak and strong maximum principle, Green's	6				
function, Poisson's formula, Dirichlet's principle, existence of solution using Perron's method					
(without proof)					
Wave equation: D'Alembert solution, spherical means. Initial-boundary value problems on	6				
bounded domains, and well-posedness. Uniqueness via Energy method, method of spherical					
means and Duhamel's principle					
Heat equation: Initial value problem, fundamental solution, weak and strong maximum	5				
principle and uniqueness results					
Separation of variables method: for Wave, Lapalce, Heat equations	3				
Total Number of Lectures	56				

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Differential Equations	Shepley L. Ross	Wiley	1984
2	Differential Equations with Applications and Historical Notes	George Simmons	CRC Press	2017
3	Partial Differential Equations, Graduate Studies in Mathematics	L. C. Evans	AMS	1998
4	Elements of Partial Differential Equations	I. N. Sneddon	Dover Publications	2006

SI.	SI. Name of the Book			Authors F		Publisher		Year		
NO.	Non			D W/ Jordon and D						1000
		inear Ordi	nary	D. W. Jordan, and P.			Oxford University Press			1999
2	Part		tial	Flohn		Sn	ringer			1982
2	equi	ations		1.00111		Op	inger			1302
3	Part	ial different	tial	W. Strauss		W	ilev			2008
-	equ	ations: An								
	intro	duction								
	1			Department of	of Math	ema	atics			
Cour	se	Title of	Program	m Core (PCR) /	Total	Num	nber of co	ntact hours		Credit
Code	e	the	Elective	es (PEL)	Lectur	e	Tutorial	Practical	Total	
		course			(L)	-	(T)	(P)	Hours	
					· · · ·		、 /	~ /		
MA1	104	Linear	PCR		3		1	0	4	4
		Algebra								
Prere	equisi	te	Elemer	ntary ideas of algebrai	c struct	ures	S.			
Cour	se Oi	utcomes	Upon s	uccessful completion	of this of	cour	se studen	ts will be al	ole to un	derstand:
			CO1: b	asic properties of line	ar trans	storn	nations		4 ¹	
				arious normal forms of	of linear	ope	erators and	a its applica	tions	
			CO3. 0	indamentals of hilines	ar forms	101 S	paces and	a its applica		
			004.10			,				
				Course Cont	ent					No. of
										lectures
Vect	or Sp	baces: Rev	view of v	vector spaces over fie	elds, su	ibsp	aces, bas	es and din	nension.	4
Syste	ems c	of linear equ	uations, r	matrices, rank, and G	aussian	elir	mination m	nethod.		
Line	ar tra	Insformati	ons: Det	finition, the algebra o	f linear	trar	nsformatio	n, Rank of	a linear	6
trans	forma	ation, matr	ix repres	sentations, change o	of a ba	isis,	rank-null	ity theoren	n, linear	
funct	ional,	and dual s	spaces.							
Line	ar Op	erators: B	srief revie	ew, Eigenvalues and e	eigenve	ctor	s, charact	eristic poly	nomials,	6
minir	nal po	olynomials,	Invarian	t Subspaces, and Ca	yley-Ha	milt	on Theore	em.		10
Cano		root our D	Similarity	or linear transformation	ations,	na	Ingular FC	orny Decorr	Jiagonai	12
Theorem Jordan Blocks and Jordan Forms, and Pational Canonical Form										
Introduction to the MATLAB software for solving linear algebra problems (Systems of ODE)						7				
Inner Breduct Spaces: Inner preducts Inner preduct spaces linear functionals and					6					
Adjoints Unitary Operators Normal Operators						0				
Operators on Inner Product Spaces: Introduction Forms on Inner Product Spaces						9				
Positive Forms, Spectral Theory										
Bilinear forms: Symmetric and skew-symmetric bilinear forms. Groups Preserving Bilinear						6				
Form	าร			-			·	0		
				Total Number of L	.ecture	s				56

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Linear Algebra	K. Hoffman and R. Kunze	Prentice Hall of India	2004
2	Linear Algebra	S. H. Fridberg, A. J. Insel and L.E. Spence	Pearson India	2015
3	Linear Algebra and its Applications	G. Strang	Thomson Learning Asia Pvt Ltd	2003

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Finite Dimensional	P. Halmos	Springer-Verlag	1987
	Vector Spaces			
2	Advanced Linear	S. Roman	Springer	2005
	Algebra			

Department of Mathematics								
Course	Title of	Program Core (PCR) /	Total	Number o	of contact he	ours	Cree	dit
Code	the	Electives (PEL)	Lecture	Tutorial	Practical	Total		
	course		(L)	(T)	(P)	Hours		
MA1105	Real	PCR	3	1	0	4	4	
	Analysis							
Prerequis	ite	Elementary ideas of real value	d functions	of single	variables.			
Course O	utcomes	Upon successful completion of	f this course	e students	will be able	e to:		
		CO2: master basic concepts from measure theory, including sets of measure zero, measurable functions, the Lebesgue integral and Lebesgue spaces CO3: understand and apply the notions of convergence involving sequences of functions, including the difference between point wise and uniform convergence CO4: understand and apply integration theory in one or several variables to formulate and solve problems in mathematics and technology.						ero, s of ulate
Course C	ontent						No.	of
_				5			lectur	es
Converge	ence Theo	rems: Point wise and Uniform	convergen	ice, Dini's	Theorem,	Uniform	10)
convergence and continuity, Uniform convergence and integration, Uniform convergence and								
differentiation, Approximation of a continuous function by Polynomials: Weierstrass theorem.								
Function	Functions of Bounded Variation: Definitions, basic properties and geometrical meaning of							
TUNCTIONS	of Dounded	variation, continuity, differentiat	bility and Ri	emann int	egraiity of f	unctions		
or bounde	of bounded variation, total variation, Jordan's theorem.							

Riemann Integral: Riemann integral and its properties, characterization of Riemann	12				
integrable functions. Riemann-Lebesgue Lemma, Drawbacks of Riemann Integral,					
Lebesgue's recipe, Riemann-Stieltjes integral.					
Lebesgue Measure: Ring and σ -ring generated by a class of sets, Monotone class of sets,	14				
Monotone class generated by a ring, Borel Sets. Outer Measure and Measurable Sets,					
construction of a nonmeasurable set, Lebesgue measure on \mathbb{R}^n , Measure space, Measurable					
Functions					
Lebesgue Integral: Integrating Bounded Measurable Functions, Criteria for Integrability and	16				
Properties of the Lebesgue Integral, Integral of Nonnegative Simple Measurable Functions,					
Properties of Nonnegative Simple Measurable Functions, Monotone Convergence Theorem					
and Fatou's Lemma. Properties of Integrable Functions and Dominated Convergence					
Theorem, Integration on Product Spaces, Fubini's Theorems, Lebesgue integral as limits,					
Comparison of Lebesgue and Riemann Integrals.					
Total Number of Lectures	56				

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Real Mathematical	Charles Chapman Pugh	UTM, Springer International	2015
	Analysis		Publishing	
2	Real Analysis	N.L. Carothers	Cambridge University Press	2018

SI.	Nar	ne of the Bo	ok	Authors Publish		Publisher			Year
No.									
1	Prin	ciples of	Real	Aliprantis C.	D.,	3rd Edition, Harcourt Asia Pte		sia Pte	1998
	Ana	lysis		Burkinshaw O.	Ltd.				
2	Rea	al Analysis-T	neory	J Yeh		World Scie	ntific		2014
	of	Measure	and						
	inte	gration							
Depa	artme	ent of Mather	natics	;					
Cour	50	Title of the	Pr	ogram Core (PCR)	Total N	lumber of co	ontact hours		Credit
Code	90 90	course	/ F	Electives (PEL)	rotarr				orean
			. –		Lecture	e Tutorial	Practical	Total	
					(1)	(T)	(P)	Hours	
						(1)	(1)		
MA1	151	Programmir	g PC	CR	0	0	6	6	4
		Languages							
		Lab							
Prere	quisi	ite	Fu	Indamental ideas abo	but comp	outer and pro	ogramming		
Cour	se O	utcomes	Up	oon successful compl	letion of	this course :	students will	be able	to:
СС			O1: Understand basics of programming and program development lifecycle;						
CO2			O2: Understand the control flow of execution and various program structures;						
CO3: At			D3: Able to write prog	grams or	n data storaç	je manager	nent usin	g c and c++.	
Cour	'se C	ontent	I						No. of
1									

	Lab classes
Basic concepts of operating systems like MS DOS, MS WINDOW, UNIX, Algorithm & flow chart drawing.	10
Handling the C character set, identifiers and keywords, data type & sizes, variable names, declaration, statements.	8
Use of Operators & Expressions in programming: Arithmetic operators, relational and logical operators, type, conversion, increment and decrement operators, bit wise operators, assignment operators and expressions, precedence and order of evaluation. Input and Output: Standard input and output, formatted output printf, formatted input scanf.	10
Implementations of Flow of Control in C and C++: Statement and blocks, if - else, switch, loops - while, for do while, break and continue, go to and labels.	10
Implementations of Program Structures: Basic of functions, function types, functions returning values, functions not returning values, auto, external, static and register variables, scope rules, recursion, function prototypes, C preprocessor, command line arguments.	12
Implementations of the concepts of arrays and pointers: One dimensional arrays, pointers and functions, multidimensional arrays.	10
Writing programs on Structures, Union and Files: Basic of structures, structures and functions, arrays of structures, bit fields, formatted and unformatted files.	10
Implementations of basic Data Structures like Arrays, Stacks Queues, Searching & Sorting Algorithms using C and C++.	6
Implementations of the concepts of trees using C and C++: Traversals in a tree, Binary Search tree, B + tree, B tree.	8
Total Number of Lab Classes	84

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Computer Programming in C,	V. Rajaraman	Prentice Hall of India	1994
2	Data Structures	Seymour Lipschutz	McGraw-Hill	1986

SI. No.	Name of the Book	Authors	Publisher	Year
1	Basic Computation and Principles of Computer Programming	E. Balagurusamy	TMH.	2010

SEMESTER-II

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA2101	Integral	PCR	3	1	0	4	4
	Transforms						
	and						
	Integral						
	Equations						
Prerequis	ite						
Course O	utcomes	Upon successful completio	n of this cou	urse stude	nts will be	able to:	
CO1: understand various types of Integral Transformations and Integra						ral	
Equations and related application in applied mathematics and theoretic					tical		
		physics					
		CO2: learn different metho	ds to solve	Integral E	quations		
		CO3: solve various physica	al problems	by integra	I transform	s and inte	gral
		equation methods					
CO4: Learn to apply various transformation to solve ODE and PDE							No. of
Course Content							NO. Of
lectures						lectures	
Equition In	tograls and E			propontat	ion Fourior	Intogral	10
Theorem	Different for	ouner mansforms. Founer	rior Transf	form and	Inverse of	Fourier	12
Transform		and Cosine transforms and th		Transform	inverse ur	r Ourier	
Transform	and its invers	sion formula. Properties of F	ourier Trans	sform Foi	irier Transf	orms for	
functions	of many variab	oles. Perseval's Relations. Ar	oplication to	ODE & P	DE.	01113 101	
Laplace	Transforms:	Definition of Laplace Transf	orm, Existe	ence Theo	orem, Prop	erties of	12
Laplace T	ransform, Lapl	ace Transform of Derivatives	, Laplace T	ransform	of Integrals	, Special	
technique	s for finding La	place Transform, Inverse of	Laplace Tra	ansform, P	roperties of	f Inverse	
Laplace T	ransforms, Pa	artial Fraction method for fin	iding the In	verse of l	Laplace Tra	ansform,	
Applicatio	n to ODE.						
Henkel T	ransform: Pro	perties of Henkel Transform,	Evaluation	of Henke	Transform		4
Mellin Tra	ansform: Prop	erties of Mellin Transform, E	valuation of	f Mellin Tra	ansform.		4
Z – Trans	form: Definitio	on of Z- transform, Properties	of Z – Tra	nsform, Z	- Transforn	n of	4
some star	dard functions	s, Theorems on $Z - transform$	n, Differenti	ation, Con	volution Th	eorem,	
Inverse Z – Transform and different methods for finding Inverse Z – transforms.							
Integral Equations							
Introduction to Linear integral equations. Formation of Integral equations and classification						4	
Volterra integral equations, Fredholm integral equations, conversion of initial and boundary							
value prot	plems to an int	egral equation				-	
Various ty	pes of kernel	ls: Symmetric kernel, Sepa	rable kerne	el, Iterate	d kernel, r	esolvent	4
kernel,	Solution of	Volterra integral equatio	n using: R	esolvent	kernel, Su	ccessive	
approximation, Neumann series method. Cauchy kernel, Abel Equation							

Fredholm integral equations, Fredholm equations of the second kind, the method of Fredholm	12	
determinants, iterated kernels, integral equations with degenerate kernels, eigen values and		
eigen functions of a Fredholm alternative, construction of Green s function for BVP, singular		
integral equations.		
Total Number of Lectures	56	

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Linear Integral Equations, Theory and Technique	R. P. Kanwal	Academic Press	1971
2	Linear Integral Equations	S.G. Mikhlin	Routledge	1961
3	The Uses of Integral Transforms	I.N. Sneddon	McGraw-Hill.	1972

SI. No.	Name of the Book	Authors	Publisher	Year
1	Linear Integral Equations	W. V. Lovitte	Dover Publications	2005
2	Integral Transforms for Engineers	Andrews, Shivamoggi	PHI	2003
3	Integral Transforms	C. J. Tranter	Methuen & Co	1962

	Department of Mathematics							
Course	Title of	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit	
Code	the	Electives (PEL)	Lecture	Tutorial	Practical	Total		
	course		(L)	(T)	(P)	Hours		
MA2102	Functional	PCR	3	1	0	4	4	
	Analysis							
Prerequis	ite	Real Analysis and elementary metric spaces						
Course O	utcomes	Upon successful completion of this course students will be able to:						
		CO1: understand the fundamental properties of metric spaces and normed linear						
		spaces and also learn the important properties of operators						
		CO2: understand and apply the four fundamental theorems of functional analysis						
		CO3: understand the fundamentals of spectral theory, and appreciate some of its						
		power.						

Course Content	No. of
	lectures
Metric space: Definitions and examples; spaces like l^p , l^{∞} , $C[a, b]$. Continuity and equivalent	10
metrics, compactness, Cauchy sequences, completeness and completion of metric space,	
Baire Category Theorem and its application.	
Banach Spaces and Fundamental Theorems: Normed Linear Spaces, Banach Spaces,	20
Equivalent Norms, Finite dimensional normed linear spaces, Riesz Lemma, Banach's Fixed	
Point Theorem and its applications.	
Bounded Linear Transformations, Normed linear spaces of bounded linear transformations,	
Uniform Boundedness Theorem, Open Mapping Theorem, Closed Graph Theorem, Linear	
Functionals, Hahn-Banach Theorem, Dual Space, and Reflexivity of Banach Spaces.	
Hilbert Spaces: Real Inner Product Spaces and its Complexification, Cauchy-Schwarz	16
Inequality, Parallelogram law, Pythagorean Theorem, Hilbert Spaces, Orthonormal Sets,	
Complete Orthonormal Sets, Structure of Hilbert Spaces, Orthogonal Complement and	
Projection Theorem.	
Operators: Riesz Representation Theorem, Adjoint of an Operator on a Hilbert Space,	10
Reflexivity of Hilbert Spaces, Self-adjoint Operators, Positive Operators, Projection Operators.	
Spectral Theory-Point Spectrum, Invertible Operator, Resolvent and Spectrum.	
Total Number of Lectures	56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Introductory Functional Analysis with Applications	Kreyszig, E.	John Wiley and Sons, New York	1889
2	Foundations of Functional Analysis	Ponnusamy, S.	Narosa Publishing House	2017

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	A Course in Functional	Conway, J. B.	Springer Verlag, New York,	1990
	Analysis,			
2	First Course in	Goffman, C. and Pedrick,	Prentice Hall of India, New	1987
	Functional Analysis	G.	Delhi,	

Department of Mathematics							
Course	Title of	Program Core (PCR) /	Total Nun	nber of cor	ntact hours		Credit
Code	the	Electives (PEL)	Lecture	Tutorial	Practical	Total	
	course		(L)	(T)	(P)	Hours	
MA2103	Modern	PCR	3	1	0	4	4
	Algebra						
Prerequis	Prerequisite Elementary ideas of algebraic structures.						
Course Outcomes Upon successful completion of this course students will be able to:							

	CO1: Explain the fundamental concepts of modern algebra such as grou rings and their role in modern mathematics and applied contexts; CO2: Demonstrate accurate and efficient use of modern algebraic techni CO3: Demonstrate capacity for mathematical reasoning through analyzir and explaining concepts from modern algebra; CO4: Apply problem-solving using modern algebraic techniques applied situations in engineering, physics and other mathematical contexts.	ps and iques; ıg, proving to various		
Course Content		No. of lectures		
Preliminary concept	: Sets and Equivalence relations and partitions, Division algorithm for	8		
integers, primes, uniqu	ue factorizations, Chinese Remainder Theorem, Euler φ-function.			
Groups: Cyclic groups, Permutation groups, Isomorphism of groups, Cosets and Lagrange's				
Theorem, Normal subgroups, Quotient groups, Group Homomorphisms, Cayley's Theorem,				
Group Action, Cauchy's Theorem, Sylow Theorems and their applications.				
Rings: Ideals and Homomorphism. Prime and Maximal Ideals. Quotient Field of an Integral				

rings. Ideals and homomorphism, Finne and Maximal Ideals, Quotient Field of an integral	12
Domain, Polynomial and Power Series Rings.	
Divisibility Theory: Euclidean Domain, Principal Ideal Domain, Unique Factorization Domain.	10
Fields: Field extensions, Algebraic extensions, Finite Fields.	10
Total Number of Lectures	56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Abstract Algebra Theory and Applications	Thomas W. Judson	Orthogonal Publishing	2019
2	Contemporary Abstract Algebra	G. A. Gallian	Narosa Publishers	2013

SI. No.	Name of the Book	Authors	Publisher	Year
1	Algebra	T. W. Hungerford	Springer	2009
2	Abstract Algebra	D. S. Dummit and R. M. Foote	John Wiley & Sons, Inc.	1999
3	Fundamentals of Abstract Algebra	D. S. Malik, J. N. Mordeson and M. K. Sen	McGraw-Hill	1997

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total Nun	nber of cor	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA2104	General	PCR	4	1	0	5	5
	Mechanics						
	and						
	Variational						
	Calculus						
Prerequisi	ite						

Course Outcomes Upon successful completion of this course students will be able to understand:				
	CO1: Inertial and non inertial reference frames: Parameters defining	the motion		
of mechanical systems and their degrees of freedom;				
	CO2: the fundemental economic of Learning and Hemiltonian economic	nt to study		
the motion of rigid body, dynamics of system of particles:				
the motion of rigid body, dynamics of system of particles;				
	CO3: the basics of Quantum and Continuum mechanics;			
	CO4: the theory of optimizing a functional & apply the formula that	t		
	determines stationary paths of a functional to deduce the differential e	equations		
	for stationally paties in various cases.	No. of		
	Course content	lectures		
	General Mechanics			
Moving coordinates sys	stems, Gallilean transformation, inertial and noninertial frames of	12		
reference. Constrained	motions in Cartesian coordinates, Principle of virtual work,			
D'Alembert's principle.	Degrees of freedom, generalized coordinates. Lagrange's formulation			
in generalized coordinat	tes, generalized forces, cyclic coordinates, Lagrange's formulation in			
generalized coordinates	, generalized forces, cyclic coordinates			
Canonically conjugate coordinates and momenta, Legendre transformation, Hamiltonian.				
Principle of least action. Hamilton's principle. Hamilton's equations of motion. Two body central				
force problem. Symmetry properties and conservation laws. Noether's theorem				
Canonical Transformation Generating function Poisson bracket Identities on Poisson				
brackets, Hamilton-Jaco	bi theory, Solution of the Hamilton –Jacobi equation	10		
Planck's law, Photo el	ectric effect, Bohr's theory, Compton effect, de Broglie waves;	9		
Wave-particle dualism	n, Uncertainity Principle, Path integrals, Fundamental laws and			
foundation of quantum	n mechanics. Schrodinger equation.			
The Continuum hypothe	esis, Analysis of strain and stress; Concepts of body forces/surface	5		
forces, Stress- strain rela	ations			
	Variational Calculus			
Variation and its Prope	rties: Euler's equation, Brachistochrone problem, shortest distance	4		
between two points, Cur	ves of minimum arc of surface of revolution.			
Geodesics: Geodesics in	n spherical polar and cylindrical coordinates, Functional dependent on	10		
higher order derivatives,	Variational problems involving several unknown functions, Functional			
involving several inde	ependent variables-Ostrogradsky equation, Optimization under			
constraints and Lagrang	e multipliers.			
Isoperimetric Problems:	Isoperimetric problems involving constraints as functional Variational	4		
problems with moving be	oundaries, Transversality conditions.			
		4.5		
Lagrange's Equations:	Lagrange's equations for dynamical systems, Hamilton's principle,	10		
Sturm-Lioville's problem	and variational methods, Raleigh's principle, Direct methods of Ritz			
and Kantorovich method	Is, Applications.			
	Total Number of Lectures	70		

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Classical Mechanics	H. Goldstein,	Narosa Publication	1998
2	Differential equations and the calculus of variations	L. Elsgolts,	MIR Publication, Moscow	1977
3	Introduction to Quantum Mechanics	David Griffiths	Pearson	2015

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Mechanics	L. Landau, E. Lifshitz	Pergamon Press	1969
2	Calculus of Variations	A. S. Gupta	Prentice-Hall of India Pvt.	2004
	with applications		Ltd.	
3	Quantum Mechanics	F. Schwable	Springer	2007

Department of Mathematics							
Course	Title of	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit
Code	the	Electives (PEL)	Lecture	Tutorial	Practical	Total	
	course		(L)	(T)	(P)	Hours	
1440405	Nhumaniaal	DOD		4		4	4
MA2105	Analysis	PCK	3	1	0	4	4
Prerequis	ite	Elementary ideas of functions	s, differentia	ation and i	ntegration		
Course O	utcomes	Upon successful completion	of this cour	se student	s will be at	ole to:	
CO1: Understand various interpolation formula and applications CO2: Understand and apply linear polynomial geometric curve fitting CO3: Solve system linear and non- linear equations, Eigen value problems, PDE					ems, ODE,		
		Course Conte	nt				No. of
Finite Di	fference: S	wmbolic operators and their	relations.				4
Interpola	ation: Centr	al difference formulae of Ga	uss, Stirlir	ng formul	a, Bessel f	ormula,	6
Cubic sp	line interpol	ation.		-			
Approxi	mation of f	unction: Curve fitting by lea	st square	method (linear, poly	nomial,	6
geometri	c, etc.), Ch	ebyshev polynomial and M	1inimax pi	roperty, L	Jse of ort	hogonal	
polynomials,Gram-Schmidt orthogonalisation method, Economization of power							
Numeric closed t Gauss-C quadratu	a l integrati ype, Romb hebyshev res.	on: Newton-Cotes formulae berg integration, Gaussian quadratures, Comparison	e-open typ quadratu of New	e, Newto ire: Gau ton-Cotes	n-Cotes fo ss-Legenc s and G	rmulae- lre and aussian	8

Solution of non-linear equations: Root of a polynomial by Birge-Vieta method,	6
Graeffe's root squaring method, System of non-linear equations: fixed point method	
and Newton-Raphson methods, Convergence and rate of convergence.	
Solution of a system of linear equations: Matrix inverse by partial and complete	6
pivoting, LU decomposition method, Solution of tri-diagonal system of equations, Ill-	
conditioned linear systems, Relaxation method.	
Eigenvalue problem: Power method to find largest eigenvalue of eigenvector,	6
Jacobi's method to find eigenvalues and eigenvectors of a symmetric matrix.	
Solution of ordinary differential equation: Runge-Kutta method (second and fourth	8
order methods), Runge-Kutta method to solve a system of equations, Runge-Kutta	
method to solve second order IVP, Single step and multi-step methods, Predictor-	
corrector method: Milne's method, Adam-Moulton method, Solution of second order	
boundary value problem by finite difference method, Stability analysis, Finite element	
method to solve BVP.	
Partial differential equation: Finite difference scheme, Parabolic equation: Crank-	6
Nicolson method, Elliptic and hyperbolic equations: iteration method.	

Text Books:

SI.	Name of the Book	Book Authors Publisher		Year
No.				
1	Numerical	Jsames B. Scarbarough	Oxford University Press	1930
	Mathematical Analysis			
2	Introductory Methods	S.S. Sastry	Prentice Hall of India	2005
	of Numerical Analysis			

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Numerical Methods for	David F. F. Griffiths,	Springer	2010
	Ordinary Differential	Desmond J. Higham		
	Equations			
2	Numerical Methods for	R. W. Hamming	Dover Publications	1987
	Scientists and			
	Engineers			

Course Code	Title of the	Program Core (PCR) / Electives (PEL)	Total Number of contact hours				Credit
	000136		Lecture	Tutorial	Practical	Total Hours	
			(L)	(T)	(P)		
MA2151	Numerical Analysis Lab.	PCR	0	0	3	3	2
Prerequisite		Ideas about C and C++ Programming and numerical methods					

Course Outcomes	Course Outcomes Upon successful completion of this course students will be able to:				
CO1: Understand basics of C and C++ programming;					
	CO2: Able to prepare the flow charts for different numerical methods;				
	CO3: Able to write programs on different numerical methods using	C			
	and C++.				
Course Content		No. of			
		Lab classes			
Solution of system of linea	ar equations by Matrix inversion, Gauss	9			
elimination, L-U decompo	sition methods, Jacobi's method, Gauss-				
Seidel iterative method.					
Solution of Algebraic and Transcendental equations by Iteration					
method, Newton Raphson Method, Graeffe's root squaring method.					
Determination of Eigen value, Eigen vectors by Power method.					
Interpolation: - Newton's f Central difference interpol	orward and backward interpolation, Lagrange's interpolation, lation, cubic spline interpolation.	9			
Numerical integration by Trapezoidal rule, Simpson's 1/3 rd rule, Romberg's integration, Gaussian quadratures.					
Solution of ODE by Runge	e-kutta method and Milne's Predictor- corrector	4			
method.					
Solution of PDE by finite of	difference method.	4			
Total Number of Lab Classes					

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Computer Programming in C,	V. Rajaraman	Prentice Hall of India	1994

2	Numerical Recipes in C++, The art of scientific computing	William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery.	Cambridge University Press	2002 (2 nd edition)

Reference Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Basic Computation and Principles of Computer Programming	E. Balagurusamy	Tata McGraw-Hill	2010

SEMESTER-III

	Department of Mathematics						
Course	Title of the	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA	Operations	PCR	3	1	0	4	4
3101	Research						
Prerequis	ite	Elementary ideas of linear a	algebra, Pro	obability a	nd numeric	al method	ls
Course O	utcomes	Upon successful completion CO1: Extension of linear pr	n of this course	urse stude g algorithn	nts will be ans, differen	able to: t types pr	ogramming
CO2: The concept of deterministic inventory problems and apply the k				knowledge			
CO3: The theory of Game and Bimatrix game and solution methodolog CO4: The basics of network analysis, model developments and				ogies. nd solution			
		methodologies.	m 4				No of
		Course Conte	nt				lectures
Extensio	n of Linear P	rogramming: Revised Simp	lex, Bound	led Variat	les, Dual S	Simplex,	12
Sensitivity	/ Analysis.					•	
Integer F	Programming:	Branch and bound algorithm	m, Cutting	plane me	thods for p	ure and	06
mixed Inte	eger programm	ing problems, Knap-sack pro	blem, trave	elling sales	sman proble	em.	
Stochast	ic Programmi	ng: Chance constrained pro	ogramming	technique	e, Stochast	ic linear	06
programming, Stochastic non-linear programming, Two stage programming technique.							
Dynamic Programming: Bellman's principle of optimality and recursive relationship of dynamic programming for various optimization problems.					06		
Determin	istic Inventory	y Management: Concept of i	nventory a	nd various	inventory		06
paramete	rs, EOQ formul	la, EOQ with quantity discour	nt, Multi-iter	m Inventor	y and Multi	ple	

Constraints, Inventory with deterministic non-constant demand rate, Concept of Lead time, safety stock and service level.	
Game Theory: Maxmin and Minmax principle, two –person Zero-sum games with saddle point. Game problems without saddle point, Pure strategy, Solution of a 2 × 2 game problem without saddle point, Graphical method of solution for n ×2 and 2 ×n game problem, Reduction rule of a game problem(Dominance rule), Algebraic method of solution of game problem without saddle point, Reduction of a game problem to linear programming problem.	10
Bimatrix games: LCP formulation, Lemke's salgorithm for solving bimatrix.	
Network Analysis: Introduction to network analysis, Shortest path problem, Construction of minimal spanning tree, Flows in networks, Maximal flow problems. Definition of a project, Job and events, Construction of arrow diagrams, Determination of critical	10
paths and calculation of floats. Resource allocation and least cost planning, Use of network flows for least cost planning. Uncertain duration and PERT, PERT COST system. Crashing, Updating (PERT and CPM).	

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Operations Research- Theory and applications	J.K. Sharma	Macmillan	2006
2	Operations Research- Principals and practice	Ravindran, Philips, Solbery	John Wiley & Sons	2013
3	Game Theory an Introduction	E.N.Barron	John Wiley & Sons	2010

SI.	Name of the Book	Authors	Publisher	Year
NO.				
1	Introduction to	F.S. Hiller & G.J.	Gc Graw Hill	2000
	Operations Research	Leiberman		
2	Introduction to Linear	D. G. Luenberger	Addison Wesley	1973
	and Nonlinear			
	Programming			

Department of Mathematics							
Course	Title of	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit
Code	the	Electives (PEL)	Lecture	Tutorial	Practical	Total	
	course		(L)	(T)	(P)	Hours	
MA3102	Graph Theory	PCR	3	0	0	3	3
Prerequisite NIL		NIL					

Course Outcomes	Upon successful completion of this course students will be able to:			
	CO1: understand various kind of Graphs and its properties			
	CO2: learn the properties of trees, planar Graphs and non planar graphs			
CO3: understand application of Graphs in various fields				
Course Content				
Graphe: Definition of	f graph. Basic terminology. Directed graphs and weighted graphs. Types	1		
of graphs, Graph iso disconnected graphs	pmorphism, Sum and product of graphs, Components, Connected and , Euler path, Euler circuit and Euler theorem, Hamiltonian path and circuit.	4		
Trees: Definition, Properties of trees, Distance, radius, diameter and centre of graphs and trees, Binary tree, Binary tree traversal, Application.				
Planar graphs: Definition, Planar and non-planar graphs, Kuratowaski's two graphs, Homeomorphic graphs, Geometric and combinatorial duals, Applications of planar graphs.				
Cut-set and cut-vertices: Definition of cut-set and cut-vertices, Rank and nullity, Fundamental circuits and fundamental cut-sets, Connectivity and separability, Cut-edge and bridge,Network flow problem, Applications.				
Colouring and Mate graph, Chromatic pa colour theorems, App	ching: Definition, Chromatic number and Chromatic polynomial, Bipartite rtitioning, Matching and its application, Covering, Five-colour and Four- plications.	6		
Graph Algorithms: Matrix representation of graphs, Shortest path algorithms: Dijkstra and Floyd's algorithms, Spanning tree and minimum spanning tree, Prim's and Kruskal's algorithms to find spanning tree. Binary tree traversal, DFS and BFS of a graph.				
Intersection graphs: Interval graph, Circular-arc graphs, Permutation graphs, Trapezoid graphs, Chordal graphs, Applications.				
Applications of gra Biological Sciences.	phs: in Computer Science, Operations Research, Chemistry, Planning,	2		

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Introduction to Graph Theory	B. West Douglas	Prentice Hall of India	2001
2	Graph Theory With Applications to Engineering & Computer Science	Narsingh Deo	Prentice Hall of India	1979
3	A Text Book of Graph Theory	R. Balakrishnn, K. Ranganathan	University Text	2000

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Model Graph Theory	Bela Bollobas	Springer	1998
2	Algorithmic Graph	M.C. Golumbic	Elsevier	1980
	Theory & Par fact			
	Graphs Advanced			
	Linear Algebra			

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total Num	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA3103	Fluid	PCR	3	1	0	4	4
	Dynamics						
Prerequisite MA 2104: Ordinary and Partial Differential Equations							
Course Outcomes Upon successful completion of this course students will be able to:							
CO1: understand the properties of fluids and the applications of fluid m					mechanics		
		CO1: derive basic governing	g equations	s of both ir	viscid and	viscous fl	uid flows
		CO2: analyze simple fluid fl	ows like flo	w past rigi	d cylinder,	sphere, C	ouette
		flow, Poiseuille Flow etc.					
		CO3: understand basics of	dimensiona	al Analysis	and bound	lary layer	theory.
Course Content					No. of		
					lectures		
Review of	gradient, dive	rgence and curl. Elementary	idea of ten	sors.			6
Kinematic	s of Fluids in I	Motion: Continuum Hypothes	is, Lagrang	jian and E	ularian des	scription;	14
Velocity c	of fluid, Stream	nlines, path lines, streak line	s, Steady	and unste	ady flows,	Velocity	
potential,	Vorticity vecto	r, Equation of continuity, Equ	ations of m	otion of a	fluid, Press	sure at a	
point in flu	iid at rest, Pres	ssure at a point in a moving flu	id, Euler's e	equation o	f motion, Be	ernoulli's	
equation.							
Singulariti	es of flow, Sou	Irce, Sink, Doublets, Rectiline	ar vortices.	Complex	variable me	ethod for	12
two-dimer	nsional proble	ms, Complex potentials for	various s	singularitie	s, Circle t	heorem,	
Blasius theorem, Theory of images and its applications to various singularities.							
Three dimensional flow, Irrotational motion, Weiss's theorem and its applications. Viscous flow,						16	
Vorticity dynamics, Vorticity equation, Stress and strain analysis, Navier-Stokes equation,							
Some solutions of Navier-Stokes equations (Couette flow, Poiseuille Flow).							
Dimensio	nal Analysis, R	eynolds number, Boundary la	ayer Equati	ons.			8
		Total Number of Le	ectures				56

Text Books:

SI.	Name of the Book	Authors Publisher		Year
No.				
1	A Text Book of Fluid	F. Chorlton	Von Nostrand Reinhold/CBS	1985
	Dynamics			
2	Fluid Mechanics	P. K. Kundu, I. M.	Academic Press	2011
		Kohen, and D. R.		
		Dowling		

SI.	I. Name of the Book Authors		Publisher	Year
No.				
1	An Introduction to Fluid	G. K. Batchelor	Cambridge University Press	1993
	Dynamics			
2	Fluid Mechanics	L. D. Landau, and E.	Pergamon Press	1987
		M. Lifshitz		
3	Fluid Mechanics, 5th ed	F. M. White	McGraw-Hill	2003

4	Theoretical	L.M. Milne Thomson	McMillan & Co Itd.	1962
	Hydrodynamics, 4th ed.			

SEMESTER-IV

Department of Mathematics							
Course	Title of the course	Program Core	Total Nun	nber of co	ntact hours		Credit
Code		(PCR) / Electives	Lecture	Tutorial	Practical	Total	
		(PEL)	(L)	(T)	(P)	Hours	
NA 4404	Territor						4
MA4101	I opology	PCR	3	1	0	4	4
Prerequisit	е	Basic concepts of F	Real Analys	sis.			
Course Outcomes Up		 CO1: know about the several type of topological spaces, for example subspace topology, product topology and able to construct continuous functions on these topological spaces. CO2: know the definition and basic properties of connected spaces, path connected spaces, compact spaces, and locally compact spaces; CO3: characterize several types of topological spaces using separation axioms, Bair category theorem and other important results; CO4: Apply theoretical concepts in topology to understand real world applications. 					ole to: aces, for able to spaces. andected and locally es using r
		Course Conte	ent				No. of lectures
Order Rela Ordered Se	tion, Countable and lets, Maximum Princip	Uncountable Sets, Ca le, Zorn's Lemma, O	ardinal Nun rdinal Num	nbers, Axi bers.	om of Choi	ce, Well-	5
Topologica X × Y, Sub	Topological spaces, Basis and Subbasis for a topology, Order Topology, Product topology on X × Y, Subspace Topology, Limit Points, Closed Sets, Closure and Interior of a set.11					11	
Continuous Functions, Open maps, Closed maps and Homeomorphisms, Product and Box						12	
Topology, Metric Topology, Quotient Topology.							
Connected and Path Connected Spaces, Connected Sets in Real Line, Components, Local						14	
Connectedness, Compact Spaces, Compact Sets in Real Line, Heine-Borel Theorem, Limit							
Compactne	ess One Point Comp	actification Tychono	ff Theorem	s in ivier	ine spaces	s, Local	
Compacine	compactness, one Point Compactification, Tychonon Theorem.						

Countability Axioms, The Separation Axioms, Lindelöf spaces, Regular spaces, Normal	14
spaces, Urysohn Lemma, Tietze Extension Theorem, Equicontinuity, Ascoli-Arzela Theorem,	
Baire Category Theorem. Applications: space filling curve, nowhere differentiable continuous	
function.	
Total Number of Lectures	56

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Topology	J. R. Munkres	Prentice Hall of India Pvt.	2000
			Ltd.	
2	Topology	J. Dugundgi	Allyn and Bacon	1966
3	Introduction to Topology and	G.F. Simmons	McGraw-Hill	1963
	Modern Analysis			

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Introduction to General Topology	K D. Joshi	New Age International	1983
2	General Topology	J. L. Kelley	Van Nostrand Reinhold Co.,	1995
			New York	

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total Nur	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA4102	Generalized	PCR	3	0	0	3	3
	Functions						
	and						
	Wavelets						
Prerequisit	e						•
Course Outcomes Upon successful completion of this co			course stu	udents will I	be able to	:	
		CO1: understand basic	and basic properties of generalized functions;				
		CO2: know wavelets and	d its uses;				
		CO3: use them in physic	al problem	s.			
		Course Conte	nt				No. of
							lectures
Differential	equations with	n non-differentiable solut	ions, Wea	k formula	ation of dif	fferential	4
equation. Weak solution							
Test functions, distributions, delta function and its uses, delta sequence, Heaviside function					6		
and its use	S						

derivative of a generalized function, Laplace transform of distribution, distribution solution of	6
ordinary and partial differential equations	
Basics of Fourier transform, Gibb's phenomenon, windowed Fourier transform	4
Wavelet, scaling functions, Haar wavelets	3
Multiresolution analysis, properties of scaling functions, decomposition and reconstruction	6
algorithm,	
filters and diagrams, Daubechies wavelets and its construction	4
Applications of wavelet analysis, numerical solution of a partial differential equation using	6
wavelets	
Wavelet transform and its properties	3
Total Number of Lectures	42

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year	
1	An Introduction to Fourier analysis and generalized functions	M.J. Lighthill	Cambridge University Press	1958	
2	Wavelet transform and their applications	L. Debnath and F. Shah	Birkhauser	2015	
3	A first course in wavelet with Fourier analysis	A. Boggess and F.J. Narcowich	Cambridge University Press	2009	

Reference Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Generalized functions	D.S. Jones	Cambridge University Press	1982
2	Wavelet Transform	R.S. Pathak	Atlantis Press/World Scientific.	2009

List of Electives

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total num	Total number of contact hours per week Credit			
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA 9111	Geophysics	PEL	3	1	0		04
Prerequisite Analysis of stress and str law		ain, Conce	pt of body	force / surf	ace force,	Hooke's	
Course Outcomes Upon successful completion of this course students			dents will b	e able to:			
CO1: understand the composition & rheology of interior of the earth;							

CO2: become more familiar with geophysical techniques and to develop better understanding of fundamental principles;			
Course Content	No. of		
	lectures		
Theory of Elastic Waves: Infinitesimal strain, stress-strain relation, stress equation of motion, Body waves and surface waves - P & S waves, Rayleigh waves, Stonely waves, Love waves and their characteristics.	14		
Ray Theory: Reflection and refraction of seismic waves, travel time analysis.	10		
Geophysical Prospecting: Internal constitution of the earth, reflection shooting and refraction shooting.	10		
Seismic ground motion: Continental drift and theory of plate tectonics, microseism, tsunami, foreshock, and aftershock.			
Models of Linear Viscoelasticity: Maxwell model, SLS model, Burger model, their constitutive equations, Correspondence principle.			
Basics of Earthquake Faults: Mathematical models of earthquake faults in Maxwell half-space.	10		
Total Lectures	56		

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Fundamentals of	William Lowrie	Cambridge University Press	2007
	Geophysics			
2	Quantitative	Keiiti Aki and Paul G.	University Science Books	2009
	Seismology (2 nd	Richards		
	edition)			
3	Earthquake and	Paul Segall	Princeton University Press	2010
	Volcano Deformation			

SI. No.	Name of the Book	Authors	Publisher	Year
1	An Introduction to the theory of Seismology	K. E. Bullen, Bruce A. Bolt	Cambridge University Press	1987
2	Classical and Computational Solid Mechanics	Fung and Tong	World Scientific	

Department of Mathematics							
Course	Title of	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit
Code	the	Electives (PEL)	Lecture	Tutorial	Practical	Total	
	course		(L)	(T)	(P)	Hours	
MA9112	Nonlinear	PEL	3	1	0	4	4
	Waves						
Prerequis	ite						
Course O	utcomes	Upon successful completion of	of this cours	se student	s will be ab	le to:	
					_		
CO1: to be acquainted with the partial differential equations occurring in					n fluids and		
		plasmas;		<i></i>		、 . <i>.</i> .	
		CO2: to know linear and non	inear theory	y (in partic	ular, solitor	i) related	to waves;
CO3: be familiar with kinetic theory of plasma.							
Course Content					No of		
Course content					lectures		
Theory o	f nonlinear	waves: Linear waves, Dispers	ive and nor	ndispersive	e waves, gr	oup and	4
phase vel	ocity, disper	sion relation, Fourrier transform	m method	-	-	-	
shallow w	ater waves,	deep water waves, K-dv equation	on and its so	olutions, So	chrodinger	equation	8
and its so	lutions						
soliton an	d its proper	ties conservation laws I ax n	air Integra	hility and	detecting n	nethods	14
Painleve a	analysis Ba	cklund transformation Symmet	ries invers	e scatterin	a method	nethous,	14
Perturbat	tive method	s: Regular and singular pertur	bation: met	hod of mu	Itiple scales	s. Phase	12
space me	thods.					,	.=
'							
application	ons to plasr	na dynamics: Basics of plasm	a, quasineu	utrality, De	bye length,	mobility	8
of charged particles, effect of magnetic field, electrostatic and electromagnetic waves in a							
plasma,							
Fluid dynamic theory of plasma, instability of waves						4	
Kinetic th	eory of plas	mas, Particle distribution funct	ion, Boltzm	ann-Vlaso	ov equation	, Vlasov	8
Maxwell e	equations, La	andau damping					
Total Nur	nber of Lec	tures					56

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Nonlinear waves, solitons and chaos	E. Infeld and G. Rowlands	Cambridge University Press	1992
2	Introduction to Plasma Physics	F. F. Chen	Plenum Press	1974

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Elements of soliton	G L Lamb	John Wiley&Sons	1980
	theory			

2	Astrophysical plasmas	V Krishnan	Kluwer Academic Publishers	1999
	and fluids			1000

Department of Mathematics							
Course	Title of the	Program Core	Total Nur	nber of co	ntact hours		Credit
Code	course	(PCR) / Electives	Lecture	Tutorial	Practical	Total	
		(PEL)	(L)	(T)	(P)	Hours	
MA 9113	Mathematical	PEL	3	1	0	04	04
	Modeling						
Prerequisit	Prerequisite Knowledge of differential and integral calculus, probability						
Course Ou	tcomes	Upon successful com	pletion of t	his course	students w	vill be able	e to:
	CO1: understand and apply the rules to build mathematical mode					dels;	
CO2: understand to analyze the models using mathematical tech					chniques;		
CO3:to provide them with basic applications stochastic analysis.					S.		
Course Content					No. of		
						lectures	
Basics of Mathematical Modeling: Elementary mathematical models; Role of Mathematics					10		
in problem	solving; Concept of	mathematical modeling	; System a	oproach; fo	ormulation,	analysis	
of models;	Sensitivity analysis	, Dimensional analysis					
Mathemati	cal Modeling thro	ugh ordinary different	ial equation	ons: Linea	r growth an	d decay	4
model, Nor	linear growth and o	decay models (Logistic	law of popu	lation gro	wth).		
Mathemati	cal Modeling thro	ugh system of ordinar	v differen	tial equati	ons of firs	t order:	10
Prev-Preda	tor models linear	stability Mathematical n	nodeling of				10
Mathemati	cal Modeling usin	a delay differential ea	uations: D	elav mod	,. als linear (stahility	5
anslysis	car modeling usin	g delay differential eq		ciay mou	cis, inical s	stability	5
ansiysis							
Mathemati	cal Modeling th	rough Difference e	quations:	Mathema	tical mod	elina in	9
population	dynamics and gene	etics Mathematical mod	deling in pro	bability th	eorv	oning in	0
Mathemati	cal Modeling thro	ugh partial differentia	l equation	s [.] PDF m	odel for hir	th-death	10
immigration	-emigration proces	s linear stability PDF	model for a	a stochasti	c enidemic	nrocess	10
with no rem	noval				e opidomio	F100000	
Mathemati	Mathematical modeling through stochastic Differential Equations: Brownian motion and						8
its properti	es Ito formula It	o integrals and its pro	operties C	omparisor	between	Ito and	
Stratonovic	h integrals.		-poinco, O	emparioor			
Total Num	ber of Lectures						56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Mathematical Biology	J.D. Murray	Springer	2008

2	Stochastic differential	B. K. Oksendal		2014
	equations, An		Springer	
	introduction with			
	applications			

SI.	Name of the Book	Authors	Publisher	Year
1	Mathematical methods	J.D. Logan and W.R.	Wilev.	2009
	in biology	Wolesensky		
2	Elements of	Mark Kot	Cambridge University Press	2012
	Mathematical Ecology			

Department of Mathematics							
Course	Title of the course	Program Core	Total Nun	nber of cor	ntact hours		Credit
Code		(PCR) / Electives	Lecture	Tutorial	Practical	Total	
		(PEL)	(L)	(T)	(P)	Hours	
MA9114	Advanced	PEL	3	1	0	4	4
	Complex Analysis						
Prerequisit	e	Basic concepts of C	Complex Ar	nalysis			
Course Ou	tcomes	Upon successful co	ompletion o	f this cours	se students	will be at	ole to:
		 CO1: construct analytic function from a harmonic function and use it to solve the Dirichlet problem in a region; CO2: construct analytic function from the upper half plane onto a polygon; CO3: know about some special functions and its various applications. 					nction and plane rious
		Course Conte	ent				No. of
Harmonic	Functions Mean Val	a Property Poissor	Integral E	ormula S	chwarz's T	heorem	12
Harnack's	Inequality, Harnack's	Principle.	r integrar i	ormula, o		neorem,	12
Normal fam of unit disk	nily, equicontinuity, M	ontel's theorem, Rien	nann Mapp	ing Theore	em, Automo	orphisms	12
Infinite Pro	ducts, Necessary co	ndition for converge	ence of a p	oroduct, W	eierstrass'	Product	12
Theorem, gamma function, Mittag-Leffler Theorem.							
Analytic Continuation, Monodromy Theorem, Gamma and Zeta functions – a brief introduction					10		
Schwarz re	eflection principle, Sch	warz-Christoffel tran	sformation	, Julia sets	6.		10

Total Number of Lectures	56

Text Books:

SI.	Name of the Book	Authors Publisher		Year
No.				
1	Complex Variables	S. Ponnusamy and H.	Birkhauser, Boston	2006
	with Applications	Silverman		
2	Complex Analysis	T. W. Gamelin	Springer	2001
3	Complex Variables	J. W. Brown and R. V.	McGraw Hill	2008
	and Applications	Churchill		

Reference Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Complex Analysis	L. V. Ahlfors	McGraw-Hill	1979
2	Functions of one	J. B. Conway	Springer-Verlag	1978
	Complex Variable			

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total Nun	nber of coi	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9115	Advanced	PEL	3	1	0	4	4
	Modern						
Proroquio	Algebia	Elementary ideas of algebra	io etructuro	c and baci	a madara a	laobra	<u> </u>
Course	uteomoo	Lippon autococoful completion	of this sou	s anu basi		ligebia.	
Course Outcomes Opon successful completion of this course students will be able to:							
CO1. Explain the fundamental concepts of advanced modern algebra					ora such as		
groups and rings and their role in modern mathematics and applied				ed contexts			
		CO2: Demonstrate accurat	e and effic	cient use	of advance	ed moder	n algebraic
techniques					-		
CO3: Apply problem-solving using advanced modern algebraic techniqu					ues applied		
to various situations in other mathematical contexts.					1		
Course Content					No. of		
				<u> </u>			lectures
Group: F	inite Simple (Groups, Normal and Subnorm	ial Series, (on Series, S	Solvable	12
Groups an	nd Nilpotent C	Froups, Jordan-Holder Theore	m and its a	pplication	S. Dinan Na		4.4
and Artin		omisimple. Orders in simple	Artinion ri	nge Lilbe	s Kings. No	boorom	14
Cohen's T	Theorem	emisimple, Orders in simple		ngs, mine	11 Dasis I	neorem,	
Modules:	Modules a	nd module homomorphisms	Submod	lles and	auotient r	nodules	14
Operation	s on submod	ules. Direct sums and Direct p	roduct. Fini	itelv gener	ated modul	es. Free	
modules,	Exact sequer	nces, Tensor product of modu	les and its	properties	. The funct	ors Hom	
and tenso	and tensor product.						
Field Ex	tensions: N	Normal Extension, Separab	le Extens	ion, Impo	ossibility o	f some	16
constructions by straightedge and compass. Finite Fields and their properties, Galois Group							
of automorphisms and Galois Theory, Solution of polynomial equations by radicals,							
Insolvabili	ty of the gene	eral equation of degree 5(or m	ore) by rad	icals.			
	Tot	al Number of Lectures					56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1.	Abstract Algebra Theory and Applications	Thomas W. Judson	Orthogonal Publishing	2019
2	Abstract Algebra	P. A. Grillet	Springer	2006
3	Topics in Abstract Algebra	I. N. Herstein	Wiley Eastern Limited	1975

SI. No.	Name of the Book	Authors	Publisher	Year
1	Algebra	T. W. Hungerford	Springer	2009
2	Fundamentals of Abstract Algebra;	D. S. Malik, J. N. Mordeson and M. K. Sen	McGraw-Hill	1997
3	Abstract Algebra	D. S. Dummit and R. M. Foote	John Wiley & Sons, Inc.	1999

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9116	Automata	PEL	3	1	0	0	4
	and						
	Algorithms						
Prerequis	ite	Elementary ideas about auto	mata and b	basic of alg	gorithm.		
Course O	utcomes	Upon successful completion	of this cour	se studen	ts will be al	ole to:	
		CO1: Understand basics of a	iutomata ar	nd closure	properties	of langua	ges;
		CO2: Understand different ac	cceptors;				
CO3: Understand basics algorithms and design techniques and time co					omplexity		
analysis.							
Course Content					No. of		
							lectures
Fundame	ntals: Method	Is of Proof, Basic Concepts of I	Languages	, Definitior	ns and class	sification	5
of Gramm	ers, Alphabe	t, Strings, Languages, Finite R	epresentat	ion of Lan	guages.		
Finite Aut	omata (FA):	Deterministic Finite State Au	utomata, N	lon-determ	ninistic Fini	te State	6
Automata	, Regular E	xpressions, Regular Gramm	ar, Ambigu	uity of R	egular Lar	iguages,	
Pumping	Le Closure I	Properties of Regular Langua	ge: Closur	e under E	Boolean op	erations,	
reversal,							
Closure I	Properties of	Regular Language: Closure	e under B	oolean op	perations,	reversal,	5
homomorphism, inverse homomorphism, etc. Pumping lemma.							
Context Free Grammars (CFG): Pumping Lemma of Context Free Language (CFLs),						4	
Closure properties of CFL: closure under union, concatenation, Kleene closure, substitution,						stitution,	5
homomor	phism, revers	sal, intersection with regular s	et, Normal	Forms, D	erivation tr	ees and	
ambiguity							

Pushdown Automata: Pushdown Automaton, Equivalence between acceptance by Final State,	8
Equivalence of Context Free Grammar and Pushdown Automaton.	
Turing Machine ™: Turing Machine as an Acceptor and as a Computing device, Techniques	5
for Turing Machine construction, Equivalence between Turing Machine and Type 0 Language,	
The Halting problem.	
Context-sensitive languages, Recursive and Recursive Enumerable sets, Chomsky Hierarchy.	5
Algorithms: Analysis of Algorithms: Analysis of Algorithms, Asymptotic notations-big ohm,	5
omega and theta. Average case analysis of simple programs like finding of a maximum of n	
elements. Recursion and its systematic removal.	
Design of Algorithms: (Divide and Conquer, Greedy method, Dynamic programming, Back	4
tracking, Branch and Bound). Lower bound theory, Non-deterministic algorithm-Non-	
deterministic programming constructs. Simple non-deterministic programs. NP - hard and NP	
 – complete problems. 	
Different types of Algorithms: Quicksort – Non – recursive implementation with minimal stack	4
storage. Sorting and Searching Algorithms, Interpolation and Binary Search	
Total Number of Lectures	56

Text Books:

SI. No	Name of the Book	Authors	Publisher	Year
1	Introduction to Automata Theory, Languages and Computation	Hopcroft, Ullman	Pearson Education.	2007
2	Theory of Computer Science: Automata, Languages and Computation	K.L.P. Mishra and N. Chandrasekaran	PHI Learning Private Limited, Delhi India	2006

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	An Introduction to	Peter Linz	Narosa Publishing house	2016
	Formal Language and			
	Automata			
2	Elements of the	Papadimitrou, C. and	Narosa Publishing house	2015
	Theory of	Lewis		
	Computation			

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	gram Core (PCR) / Total Number of contact hours C				
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9117	Differential	PEL	3	1	0	4	4
	Geometry						
Prerequisite		Topology, Basic Geometry					

	CO3: know the notion of Serret-Frenet frame for space curves and the and evolutes of space curves with the help of examples.	ne involutes No. of
	minimal surfaces CO2: identify and solve problems that require the use of vector ca differential geometry	alculus and
	CO1: develop arguments in the geometric description of curves and order to establish basic properties of geodesics, parallel transpor	surfaces in t, evolutes,
Course Outcomes	Upon successful completion of this course students will be able to:	

Vector Fields: Height of the level set, level curves, Integral curve, smooth vector field, The
tangent Space: tangent to the level set, gradient, Surfaces: Hyperplane, Lagrange multiplier,
Vector Fields on Surfaces, maximal integral curve, orientation and its consistency, Osculating
plane, Serret Frenet formula, Singular points and their classification Gauss, The Gauss map
spherical image, one-sheeted hyperboloid.18

Geodesics: Maximal geodesic, great circle, Parallel Transport, covariant derivative and acceleration, Fermi derivative, The Weingarten Map: shape operator, geodesic flow.

Curvature of plane curves: Center of curvature, radius of curvature, Isometries, Intrinsic	12			
differentiation, Gauss-Kronecker curvature, translation, rotation, Fundamental theorem on				
curves.				
Riemannian metrics : Hyperbolic metric, Stereographic projection, Poincare metric, affine and Riemannian connection and covariance derivation, Applications of differential geometry in engineering and sciences.				
Total no of Lectures	56			

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
INO.				
1	Elementary Topics in Differential Geometry	J. A. Thorpe	Springer, India	1979
2	Elementary Differential Geometry	B. O'Neill	Academic Press, New York	1966

SI.	Name of the Book	Authors	Publisher	Year			
No.							
1	Differential Geometry	M. DoCarmo	Prentice Hall of India, New	1976			
	of Curves and		Delhi				
	Surfaces						
2	Elementary	A.N. Pressley	Springer, New Delhi	2010			
	Differential Geometry						
Department of Mathematics							
	Total Number of contact hours Credit						

Course	Title of the	Program Core (PCR) /	Lecture	Tutorial	Practical	Total	
Code	course	Electives (PEL)	(L)	(T)	(P)	Hours	
			~ /		~ /		
MA 9118	Optimization	PEL	3	1	0	4	4
	Techniques						
Prerequisit	e	Elementary ideas of line	ar algebra,	Probability	y and multiv	variate sta	itistics,
		numerical methods					
Course Ou	tcomes	Upon successful comple	tion of this	course stu	udents will b	be able to:	
		CO1: The concept of no	on-linear p	rogrammir	ng, differen	t types of	non-linear
		programming techniques	s and soluti	on methoo	dologies;		
		CO2: The concept of go	oal program	nming and	apply the	knowled	ge to solve
		real-life problems with m	ore than or	ne objectiv	e;		
		CO3: The theory of stoc	hastic linea	r and non-	linear prog	ramming a	and chance
		constrained methods;					
		CO4: The methods of ge	eometric pr	ogrammin	g to solve	different o	ptimization
		problem;					
		CO5: The basics of direc	t and indire	ect search	methods to	solve und	constrained
		programming.	4				No. of
		Course Conto	ent				NO. Of
Non lines		au Lograngian function N	I DD with a		actraint NI		lectures
in a quality	programming	g: Lagrangian function, N		quality col			16
Programm	ing, Separable	Programming.	, Quadra	tic progr	amming,	Convex	
Goal Prog	ramming: Ger	neral goal programming mo	odels, Mod	el with sing	gle goal, Mo	odel with	10
multiple go	als-equally rar	ked, Model with multiple	goals-prior	ity ranked	, Graphical	method	
of goal pro	gramming, Sim	plex method in goal progr	amming.				
Stochastic Programming: Chance constrained programming technique, Stochastic linear						08	
programmi	programming, Stochastic non-linear programming, Two stage programming technique.						
Geometric Programming: Posynomial, Unconstrained GPP using differential Calculus,						10	
Unconstrai	Unconstrained GPP using Arithmetic – Geometric Inequality, Constrained GPP.						
Unconstra	Unconstrained Optimization Techniques: Rate of convergence, Direct search method, 12						
Indirect se	Indirect search method.						

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Engineering Optimization- Methods and Applications	A. Ravindran, K. M. Ragsdell and G. V. Reklaitis	Wiley-India Edition	2006
2	Engineering Optimization - Theory and Practice	Singiresu S. Rao	New Age International (P) Limited.	2013

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Practical Methods of	R. Fletcher	2ed. Academic Press	2000
	Optimization			
2	Introduction to Linear	D. G. Luenberger	Addison Wesley	1973
	and Nonlinear			
	Programming			
3	Mathematical	Z.S. Kambo	East West Press	1997
	Programming			
	Techniques			

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA	Fuzzy	PCR	3	1	0	4	4
9119	Mathematics						
Prerequisite Elementary ideas of basic probability theory							
Course Outcomes Upon successful completion of this course students will be able to:							
		CO1: the theory of Fuzzy s	set, set the	oretic ope	rations on t	fuzzy set	and way to
		represent imprecise data th	nrough fuzz	y set.			
		CO2: the concept of fuzzy	numbers ar	nd arithme	tic operatio	ns on fuz	zy number.
		CO3: the concept of linguis	tic variable	, fuzzy rela	ation, fuzzy	reasonin	g and fuzzy
		rule base.					
		CO4: the theory of fuzzy log	gic, possibil	ity and neo	cessity mea	sures and	d probability
of fuzzy events.							
CO5: the techniques of decision making in fuzzy environment.							
Course Content						No. of	
							lectures
Basic con	cepts of fuzzy s	sets and fuzzy logic, Motivation	on, Fuzzy s	ets and th	eir represe	ntations,	14
Members	hip functions a	nd their designing, Operation	ons on fuz	zy sets, (Convex fuz	zy sets,	
Alpha-lev	el cuts, Geome	tric interpretation of fuzzy se	ts.				
Fuzzy ext	ension principle	e and its application.					02
Fuzzy nur	mbers, Fuzzy ni	umbers in the set of integers,	Arithmetic	operations	s on fuzzy n	umbers.	08
Linguistic	variables, Ling	uistic modifiers, Fuzzy rules,	Fuzzy relat	ions, Basio	c properties	of fuzzy	06
relations, Composition of fuzzy relations, Fuzzy reasoning.							
Fuzzy mapping rules and fuzzy implication rules, Fuzzy rule-based models for function						08	
approximation, Types of fuzzy rule-based models (the Mamdani, TSK, and standard additive							
models), Fuzzy implications and approximate reasoning.							
Fuzzy logic, Truth, Propositions of fuzzy logic, Fuzzy logic and probability theory, Possibility							06
and Nece	ssity, Possibilit	y versus probability, Probabi	lity of a fuz	zy event,	Baye's the	orem for	
fuzzy eve	fuzzy events, Probabilistic interpretation of fuzzy sets.						

Decision making in Fuzzy environment, Fuzzy Multi criteria analysis, Multistage decision	12
making, Decision making using Fuzzy ranking methods, Fuzzy Linear programming, Fuzzy	
goal programming, Fuzzy Multi-objective decision making.	

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Fuzzy Set Theory and	H. J. Zimmermann	Second Edition, Kluwer	1991
	its Applications		Academic Publishers	
2	First Course on Fuzzy	K. H. Lee	Springer	2005
	Theory and			
	Applications			

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Fuzzy sets	W, Pedrycz	CRC Press	1995
	Engineering			
2	Fuzzy sets,	G. J. Klir and T. A. Folger	Prentice Hall, Englewood	1988
	Uncertainty and		Cliffs	
	Information			
3	Fuzzy Set Theory:	G. J. Klir, U. S. Clair and	Prentice Hall	1997
	Foundation and	B. Yuan		
	Application			
4	Fuzzy Sets, Fuzzy	G. Bojadzieve and M.	World Scientific	1995
	Logic Applications	Bojadzieve		

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total Nur	Total Number of contact hours			Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9120	Nonlinear	PEL	3	1	0	4	4
	Analysis						
Prerequis	ite	Topology and Functional An	alysis				•
Course O	utcomes	Upon successful completion of this course students will be able to:					
		CO1: understand how to use the Banach Fixed Point theorem to nonlinear differential equations, nonlinear integral equations, real and complex implicit functions theorems and system of nonlinear equations.					
		CO2: understand the classical theorems of fixed point theory and their applicability in different fields including the differential and integral equations					
		CO3: understand how to determine uniqueness of solutions to dynamical systems					
and matrix equations.							
Course Content					No. of		
							lectures

Fixed Point Theorems with Applications: Properties of linear and nonlinear operators,	16			
Banach contraction mapping theorem, Picard's theorem, and applications of contraction				
principle.				
Topological Methods: Brouwer fixed point theorem, Contractible sets, Schauder fixed point				
theorem; fixed point theorem for non-compact operators; classical solution to PDEs, functional				
setting; classical solution, applications of fixed-point theorems.				
Degree theory and condensing operators with applications.				
Approximation of fixed points: convergence of successive iterates, Mann iteration, modified	10			
Mann iteration, Ishikawa iteration process, convergence of such iteration process,				
nonexpansive and quasi-nonexpansive mappings.				
Total Number of Lectures				
Text Books:				

Name of the Book Publisher Year SI. Authors No. Functional Analysis: R.E. Edwards **Dover Publications** 1995 1 Theory and applications **Topological Methods** 2 E. Tarafdar, Mohammad World Scientific 2008 for Set-Valued S R Chowdhu Nonlinear Analysis

SI. No.	Name of the Book	Authors	Publisher	Year
1	Topological degree	Yeol Je Cho, Yu-Qing	Chapman and Hall/CRC	2006
	Theory and	Chen		
	Applications			
2	Iterative	V. Berinde	Springer	2007
	Approximation of			
	Fixed Points			

		Department of	f Mathema	tics			
Course	Title of the	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA	Advanced	PCR	3	1	0	4	4
9121	Operations Research						
Prerequis	site	Fundamental concepts of optimization techniques					
Course O	outcomes	Upon successful completion of this course students will be able to:					
		CO1: The concepts of different queuing models and probabilistic Inventory					
		management models.					
		CO2: The concept of replacement models in different scenario and reliability					
models of maintained and non-maintained system.			m.		-		
		CO3: The concept of sequencing and scheduling problem.					

CO4: different simulation techniques to solve problems like rando			
generation.			
Course Content	No. of lectures		
Queuing Theory: Introduction of Basic Concepts in Stochastic Processes. Markov Chain and	12		
Markov Processes. Introduction to waiting line models steady state behaviour of M/M/1 and			
M/M/C queueing systems, Erlangian Queueing Systems: M/E _k /1 and E _k /M/1. Bulk Queueing			
Systems. Basic idea of priority systems. Imbedded Markov chain models: M/G/I, G/M/I, M/D/C.			
Probabilistic Inventory Management: Single period inventory models, newspaper boy	08		
problems with or without salvage value, Periodic and Continuous review models, Inventory			
management of items with deterioration, Inventory management of items with inflation.			
Replacement, Reliability & Maintenance: Replacement of items that deteriorate,	16		
Equipments that suddenly fail, chain of improving equipment's, assuming (1)same life for each			
member in the chain and (2)increasing life, equal to that of deterioration only at infinity.			
Replacement of items that fail stochastically-individual and common preventive replacements,			
Renewal theory.			
Basics of reliability. Classes of life distributions based on notions of ageing, Reliability models			
of non-maintained & maintained systems, Availability theory and it's modelling for various			
configurations.			
Sequencing Analysis: Two machine and n jobs (no passing) problem and three machine and	06		
n jobs (no passing) problems: different routing, 2 jobs and m machines, n jobs and m machines,			
branch and bound algorithms.			
Simulation: Implementation of simulation modeling, Design of simulation models.	14		
Generation of random deviates, the uniform distribution and its importance to simulation, Generation of random numbers (Properties of uniformly distributed numbers, Mid-square technique, Mid-product, technique, Fibonacci method).			
Concreting uniform rendem variates via a congruential method (Nived method, Nultiplicative			
method Quadratic congruential method) testing a random number generator			
(Frequency test, Gap test, Runs test, Poker test).			
Inverse transform method, (Exponential distribution, Weibull distribution, Geometric distribution), Rejection Techniques (Beta distribution, Gamma distribution), Composition method (Poisson distribution, Erlang distribution, Binomial distribution), Approximation techniques, Special probability distributions (Chi-square distribution, Student's T-distribution, F-distribution).			
Total No of Lectures	56		

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Operations Research	Prem Kumar Gupta & D.	7 th ed., S Chand publication	2014
		S. Hira		
2	Quantitative	N.D. Vohra	5 th ed., Mc Graw Hill	2017
	techniques in			
	management			

Reference Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Operations Research – Principles & Practice	Ravindran, Phillips and Solberg	John Wiley & Sons	2007
2	Introduction to Operations Research	F. S. Hiller & G. J. Leiberman	McGraw Hill	1990

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total Num	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9122	Algebraic	PEL	3	1	0	4	4
	Coding						
<u> </u>	Theory						
Prerequisite Ideas of basic linear algebra and abstract algebra.							
Course Outcomes Upon successful completion of this course students will be able to:			ble to:				
		CO1: State and prove funde	ممائل منعم			wo otino or	
CO1: State and prove fundamental theorems about error-correcting co				baes			
		standard matrix and polynor	eis of giver	n coues an		coues us	sing
		CO3: Compare the error-de	tecting/corr	ecting fac	ilities of aiv	en codes	for a given
		binary symmetric channel	icoung/con	coung rac			ior a given
		CO4: Design simple linear o	r cvclic cod	es with re	auired prop	erties.	
Course Content					No. of		
					lectures		
Source Coding: Introduction to Information Theory, Uncertainty and Information, Average				6			
Mutual Information and Entropy, Information Measures, Information Rate.							
Introduct	ion to Codin	g Theory: Basic Assumptions	, Correcting	g and Dete	ecting Error	Pattern,	8
the Effect	s of Error Cor	rection and Detection, Maximu	im Likelihoo	od Decodir	ng (MLD), R	eliability	
of MLD, E	rror-Detecting	g Codes, Error-Correcting Co	des.				
Finite Fi	elds: Finite	Fields: the basic theory, Fie	eld Extensi	on: a brie	et idea, Irr	educible	8
Polynomia	al and how to	o find irreducible polynomial,		er of irred	ucible poly	nomiais,	
Vector Sp	ace over finite	e field, Minimal Polynomial, pr	imitive elen	nents, Bas	es of GF(p	m) over	
GF(p).	des: Block (odes Lipear Codes Weight	and Distanc	o of a Lind	ar Codo B	ases for	0
	- <s> and (</s>	L Generating Matrices and	l Parity-Ch	eck Matri	ces Encoc	ling and	0
Decoding	Fauivalent C	odes				ing and	
Bounds on Codes: Sphere-covering bound Hamming bound Singleton bound				4			
Some Good Codes: Hamming Codes, Golay Codes, BCH Codes, Reed–Solomon codes				6			
Preparata Codes, Kerdock codes.				_			
Cyclic Codes: Generator Polynomials, Generator and Parity-check matrices, Polynomial					8		
Encoding and Decoding.							
Codes ov	/er Z_4: Qua	ternary Codes, Binary Codes	Derived fro	m Quater	nary Codes	s, Galois	8
Codes ov	er Z_4, Cyclic	Codes over Z_4.					
Total No	of Lectures						56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Introduction to Coding Theory	J. H. van Lint	Springer	1999

2	Introduction to the theory of error- correcting codes	Vera Pless	A Wiley-Interscience Publication	1998
3	Coding Theory	S. Ling and C. Xing	Cambridge	2004

SI. No	Name of the Book	Authors	Publisher	Year
1	Coding Theory and Cryptography	D. R. Hankerson, D. G. Hoffmann, D. A. Leonard, C. C. Lindner, K. T. Phelps, C. A. Rodger and J. R. Wall	CRC	2006
2	Coding and Information Theory	S. Roman	New York, Springer- Verlag	1992
3	The Theory of Error Correcting Code	F. J. Macwilliams and N. J. A. Sloane	North-Holland	1977

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total Num	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9123	Dynamical	PEL	3	1	0	4	4
	Systems						
	and Chaos						
	Theory						
Prerequis	ite	Basics of ordinary differentiation	al equation	S			
Course O	utcomes	Upon successful completior	n of this cou	urse stude	nts will be a	able to un	derstand:
		CO1: fundamentals of conti	nuous and	discrete d	ynamical sy	ystems	
		CO2: basics of bifurcation the	heory and i	ts applicat	ions		
		CO3: basics of chaos theory	у				
Course Content					No. of		
							lectures
Introduct	ion: Continuo	us dynamical systems and dis	screte dyna	mical syst	tems.		2
One dime	ensional syste	ems: Existence and uniquene	ess, Bifurca	tions and	Flow on the	e circle.	8
Two dim	ensional sys	stems: Linearization and s	tability, Lia	apunov fu	inctions. N	Ionlinear	14
Oscillation	ns: Limit cycle	s in two dimensions, Poincar	é-Bendixsc	on theorem	n, Linear st	ability of	
limit cycle	e, Floquet theo	ory, Poincaré sections, circle	-maps and	l mode-loo	cking, Rela	xation &	
Coupled c	oscillators, Per	turbation methods.					
Introduct	ion to Chao	s: Lorenz equations, Liapu	unov expo	nents, Sti	range and	chaotic	12
attractors, fractal boundaries, Logistic map.							
Bifurcations: Saddle-node, transcritical, pitchfork, Hopf, homoclinic and heteroclinic					12		
connections. Bifurcation analysis using MATCONT/XPPAUT softwares							
Routes to	chaos: Peric	d doubling, quasiperiodic and	d intermitte	ncy			8
Total Number of Lectures							56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Nonlinear Dynamics and Chaos	S. H. Strogatz	Westview Press	2000
2	Chaos: An Introduction	K. T. Alligood, T. D.	Springer	1996
	to Dynamical Systems	Sauer, and J. A. Yorke		

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Nonlinear Ordinary	D. W. Jordan, and P.	Oxford University Press	1999
	Differential Equations	Smith		
2	Stability, instability and	P. Glendinning	Cambridge University Press	1994
	chaos			
3	Chaos in Dynamical	E. Ott	Cambridge University Press	2002
	Systems			

	Department of Mathematics						
Course	Title of the	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9124	Computational	PEL	3	1	0	4	4
	Fluid						
	Dynamics						
Prerequis	ite	MA 2105: Numerical Ana	lysis, MA 3	103: Fluid	Dynamics		
Course O	utcomes	Upon successful complet	ion of this c	course stu	dents will b	e able to:	
		CO1: understand basic p	properties o	f computa	tional meth	ods –acc	uracy,
		stability, consistency				. ,	
		CO2: learn the basic com	putational	methods	for solving	linear/ no	on-linear
		differential equations	utotionally (au ationa	المتعالية
		flow problems in simple/		solve the g	joverning e	quations	for fluid
		CO3: acquire basic proc	ramming a	onethes	e ekille to co	and uct the	flow field
		colculations and data and	liveie	nu grapini			
			119313				
		Course Conte	nt				No. of
							lectures
Brief intro	duction to Compu	utational Fluid Dynamics (C	FD) with po	ossible ap	olications ir	real life	4
problems,	Review of vario	us conservation principles	General c	lescription	of conserv	ation of	
mass, mo	mentum and ene	rgy.					
Overview	of various types	of partial differential equation	ons (PDE),	Brief disc	ussion on t	he Initial	4
Value Pro	Value Problems (IVP) and Boundary Value Problems (BVP), Overview of basic numerical tools.						
Introduction to grid generation: various grid generation techniques, Finite difference (FDM) and					12		
Finite volume (FVM) methods for typical elliptic, parabolic and hyperbolic equations, Navier-							
Stokes (N	Stokes (N-S) and energy equations, explicit and implicit methods, convergence and stability						
Solutions	of simultaneous	equations: iterative and c	lirect meth	ods, Gau	ss-Seidel i	teration,	4
CGS, BI	CGSTAB and	GIVIRES (m) matrix sol	vers				

Governing equations for fluid dynamics in complex geometries: Transformation of	4
governing equation in ξ - η -plane, basic facts about transformation, grid transformation on	
complex geometries. N-S equations in transformed plane, matrices and Jacobians.	
Incompressible Flow: Upwind scheme, Exponential scheme, Hybrid scheme, Power law	22
scheme; Higher order upwind schemes: second order convective schemes, QUICK.	
Solution of N-S equations using explicit methods: MAC and SMAC (staggered and	
collocated grids), semi-implicit methods: SIMPLE and SIMPLER	
Compressible flow: Various schemes for solution of Euler equation (Lax-Wendroff,	
MacCormark, Beam and Warming schemes) & Solution of N-S equations (MacCormack,	
Jameson algorithm in finite volume formulation and transformed coordinate system).	
Implementation of a CFD code- The basic structure of a CFD code: Pre-processor, Solver and	6
Post-processor, User-defined-subroutines, Solution to some basic problems in heat transfer	
and fluid flow	
Total Number of Lectures	56

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Computational Fluid	J.D. Anderson, Jr	McGraw Hill, Inc.,	1995
	Dynamics: The Basic			
	with Applications			
2	Computational Fluid	J. C. Tannehil, D. A.	Taylor & Francis	1997
	Mechanics and Heat	Anderson, and R. H.		
	Transfer	Pletcher		

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Numerical Heat	S. V. Patankar	Hemisphere Series on	1980
	Transfer and Fluid		Computational Methods in	
	Flow		Mechanics and Thermal Science	
2	Computational Fluid	Chung T. J.	Cambridge University Press	2003
	Dynamics			

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total Nur	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA 9125	Soft	PEL	3	1	0	4	4
	Computing						
Prerequisit	Э	(i) Rudimentary concepts o	i) Rudimentary concepts of statistics and probability				
		(ii) Proficiency with algorithms.					
		(ii) Programming skills in C, C++, or Java, MATLAB, etc.					
		(iii) Critical thinking and pro	blem solvir	ng skills.			

Course Outcomes	Course Outcomes Upon successful completion of this course students will be able to:				
CO1: the architecture and learning paradigms of artificial neural network. CO2: different learning algorithms to train different ANN. CO3: different metaheuristic algorithms like, GA, ACO, PSO, etc. CO4: the concepts needed to manipulate imprecise data using fuzzy set, fuzzy logic and rough set theory. CO5: the concepts of different hybrid approaches to solve engineering optimization problems.					
Course Content					
		lectures			
Introduction of Soft Computing, Concepts and applications.					
Biological and artificial n	euron, Neural networks, Adaline, Perceptron, Madaline and BP (Back	16			
Propagation) neural netw	vorks, Adaptive feedforward multilayer networks, RBF and RCE neural				
networks, Topologic orga	anized neural networks, competitive learning, Kohonen maps, Solving				
optimization problems us	optimization problems using neural networks, Stochastic neural networks, Boltzmann machine.				
Fuzzy sets, fuzzy arithmetic, fuzzy logic and fuzzy inference, fuzzy decision-making.					
Ant colony optimization and Particle swarm optimization.					
Hybrid approaches (neural networks, fuzzy logic, genetic algorithms and rough sets),					
Engineering optimization problem solving using genetic algorithm, Neural network approaches,					
Engineering optimization	problem solving using genetic algorithm, Neural network approaches,	10			

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Soft Computing	D. K. Pratihar	Narosa	2008
2	Genetic Algorithms in	D. E. Goldberg	Pearson Education, Inc.	1989
	Search, Optimization			
	and Machine learning			

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Principles of Soft	S.N. Sivanandam and S.	Wiley	2012
	Computing	N. Deepa		
2	Ant Colony	M. Dorigo and T. Stutzle	Prentice Hall India Pvt. Ltd.	2005
	Optimization			
3	Swarm Intelligence:	E. Bonabeau, M. Dorigo	Oxford University Press, New	1999
	From Natural to	and G. Theraulaz	York	
	Artificial Systems			

Department of Mathematics							
Course	Course Title of the Program Core (PCR) / Total Number of contact hours (Credit		
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9126	Cryptography	PEL	3	1	0	4	4

Prerequisite	Elementary ideas of linear algebra	and moderr	algebra.		
Course Outcomes	Upon successful completion of this	course stud	lents will be	able to:	
	CO1: Classify the symmetric encryp	tion techni	ques		
	CO2: Illustrate various Public key c	yptographi	c technique	S	
	CO3: Evaluate the authentication a	nd hash alg	orithms		
	CO4: Discuss authentication applic	ations			
Course Content					No. of
					lectures
Secure communications, shift ciphers, affine ciphers, vigenere cipher, symmetric key, public				16	
key, block ciphers	(DES, AES), Shannon's Notion of perfect s	ecrecy, one	e time pads	, secure	
random bit general	or, linear feedback shift register sequences	, stream cip	ohers (LFSF	R based,	
RC4), Block cipher	modes of operations.				
Differential cryptan	alysis, Linear cryptanalysis.				10
Prime number gen	eration, RSA, attack on RSA, Diffie-Hellman	key exchar	ige, El Gam	al public	12
key cryptosystem,	cryptographic hash function, RSA signature	, El Gamal	signatures,	hashing	
and signing, digital signature algorithm.					
Elliptic Curves, Basic facts. Elliptic curve cryptasystems.					10
One-way functions, PRG, PRP.					8
Total Numbers of	Lectures				56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Introduction to Cryptography	Johnnes A Buchmann	Springer	2001
2	Cryptography: Theory and Practice	D R Stinson	CRC Press	2006

SI. No.	Name of the Book	Authors	Publisher	Year
1	Introduction to Cryptography with coding Theory	W. Trappe and L. C. Washington	Prentice-Hall	2006
2	Classical and Contemporary Cryptology	Richard J. Spillman	Prentice-Hall	2005

Departme	nt of Mathen	natics					
Course	Title of	Program Core (PCR) /	Total Number of contact hours				Credit
Oouc			Lecture	Tutorial	Practical	Total	
	course		(L)	(T)	(P)	Hours	
MA 9127	Decision Theory	PEL	3	1	0	0	4
Prerequisite		Elementary ideas of optimization techniques and decision theory					
Course Outcomes Upon suc CO1: Un		Upon successful completion CO1: Understand basics of	on successful completion of this course students will be able to: 1: Understand basics of decision analysis and multi objective optimization;				mization;

CO2: Understand basics of multi criteria decision making;				
	CO3: Understand data envelopment analysis			
	COS. Onderstand data envelopment analysis.			
Course Content		No. of lectures		
Randomization, Optimal sufficiency, Complete cl	lity, Bayes rules, Minimax rules, Admissiable rules, Invariance and ass and essential complete class of rules	5		
Decision analysis under analysis with sampling.	Risk-Probability: Decision analysis without sampling, Decision	5		
Decision Analysis under Risk Utility: St. Petersburg Paradox. Construction of Utility Functions, Risk Attitudes				
Decision Analysis under Functions, Risk Attitude	r Risk Utility: St. Petersburg Paradox. Construction of Utility s.	6		
Decision Trees and Seq	uential Decision Making	4		
Multi-criteria decision m	ethods	8		
Multi-objective optimizat properly efficient solutio	tion: Lexicographic optimality, Interactive procedures, efficient and ns.	8		
Data Envelopment Anal and Cooper (BCC) mod	ysis: Chames, Cooper and Rhodes (CCR) model. Banker, Charnes el.	8		
Analytic Hierarchy Proce (EVM) and Approximation	ess: Ranking and weighting information using Eigen Vector Method on Methods.	7		
Total Number of Lectu	res	56		

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	An Introduction to Decision Theory, Cambridge University Press	Martin Peterson Itzhak Gilboa	Cambridge University Press	2008

SI. No.	Name of the Book	Authors	Publisher	Year
1	Decision Theory: Principles and Approaches	Giovanni Parmigiani, Lurdes Inoue	Wiley	2009

Department of Mathematics

Course	Title of the	Program Core (PCR) /	Core (PCR) / Total Number of contact hours				
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9128	Measure	PEL	3	1	0	4	4
	Theory						
Prerequis	Prerequisite Real Analysis						
Course O	utcomes	Upon successful completion	of this cour	se studen	ts will be al	ole to:	
	CO1: understand the basics concepts about measure and integration th CO2: use abstract methods to solve approximation problems in diffe especially in Lebesgue integral theory CO3: understand the main connections between the notions of me				heory erent fields easure and		
probability.						No. of	
		Course Conte					lectures
	- Moasuro ar	d Measurable Functions: R	ecanitulatio	ns of Lehe		sure and	18
measurable functions, the structure of measurable sets, construction of non-measurable sets, approximation of measurable functions.							
Lebesgu	e Integral: Re	ecapitulations of definitions an	d different	properties	. Approxima	ations of	26
integrable	functions, co	nvergence in measure.					
L^p spaces and L^{∞} space, approximation of L^p functions, convergence and completeness.							
Lebesgue's differentiation theorem, Lebesgue fundamental theorem of calculus, and					12		
Lebesgue's last theorem.							
		Total no of Lect	ures				56

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Real Mathematical	Charles Chapman Pugh	UTM, Springer International	2015
	Analysis		Publishing	
2	Real Analysis	N.L. Carothers	Cambridge University Press	2018

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Real Analysis-Theory	J Yeh	World Scientific	2014
	of Measure and			
	integration			
2	Principles of Real	Aliprantis C. D.,	Harcourt Asia Pte Ltd.	1998
	Analysis	Burkinshaw O.		

Department of Mathematics				
		Total Number of contact hours	Credit	

Course	Title of the	Program Core (PCR) /	Lecture	Tutorial	Practical	Total		
Code	course	Electives (PEL)	(L)	(T)	(P)	Hours		
				()	()			
MA 9129	Multivariate	PEL	3	1	0	4	4	
	Statistical		_		-			
	Analysis							
Prerequis	Prerequisite (i) Rudimentary concepts of Linear Algebra Calculus of Several V				/ariables, a			
		course in probability, a course in statistics						
	 (ii) Familiar with at least one of the following three software packages, R and SPSS. 					s, MATLAB,		
Course O	utcomes	After completing the course	e the studer	nt should b	e able to:			
		Compute the cha	racteristic	functions	of some	vell-knov	vn	
		distributions and	use multiv	ariate cha	aracteristic	c function	ns to	
		investigate prope	rties of va	rious dist	ributions.			
		Derive various m	ultivariate	sampling	distributio	ons and u	ise	
		exterior forms wh	ere appro	priate to r	nake the r	necessar	y changes	
		of variables.						
		Understand how	to use var	ious multi	variate sta	atistical n	nethods	
		(for example: tes	t for signifi	cant diffe	rences be	tween po	pulations,	
use principal component analysis and factor analysis,								
discriminant analysis and cluster analysis)								
		Implement these	methods u	using an a	appropriat	e statistio	cal	
		software package	e and draw	appropri	ate conclu	isions.		
Course Content						NO. Of		
						lectures		
Multivari	ate Analysis:	Basic concepts, Measure	ment scale	es, Measu	irement ei	ror and	04	
Multivaria	ite Measureme	nt, Classification of Multiva	riate Techr	niques, Tv	pes of Mu	ltivariate		
Techniqu	Techniques, Structured Approach to Multivariate Model building.							
Examining Data for Multivariate Analysis: Bivariate Profiling, Multivariate Profiles, Missing					04			
Data, Ou	tliers, Detectin	g and Handling Outliers, T	esting the	assumpti	ons of Mu	ltivariate		
Analysis.	Analysis.							
Multivari	ate Normal Dis	stribution: Multivariate Norm	al Density &	k its proper	ties, Samp	ling from	06	
a multiva	riate Normal Di	stribution and maximum Like	elihood est	imation, s	ampling dis	tribution		
of mean & standard deviation, Detecting outliers, Transformation to near Normality.								
Principal Component Analysis: Population Principal Components, Principal components for 10								
covariance matrices with special structures, Sample Variation by Principal Components, Large								
sample inferences, monitoring quality with Principal components.								
Factor a	Factor analysis:What is Factor analysis, Objectives of Factor analysis, designing a Factor08						08	
analysis, Assumptions in Factor analysis, Deriving factors and assessing overall fit, 3 process								
tactor interpretations, Validation of Factor Analysis.								
Multiple Discriminant Analysis and Logistic Regression: What are Discriminant Analysis 12								
and Logis	and Logistic Regression, Objectives of Discriminant Analysis, assumptions of Discriminant							
Analysis,	Analysis, estimation of the Discriminant Model and assessing overall fit, Logistic Regression:							
Regressio	on with a binary	dependent variable						
Cluster /	Analysis: Wha	t is cluster analysis, Objecti	ves of clus	ter analys	is, Assum	otions of	12	
cluster a	cluster analysis, deriving clusters and assessing overall fit, Interpretation of the clusters,							
hierarchic	hierarchical & non-hierarchical clustering techniques.							

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Multivariate Data	J.F.Hair, W.C.Black,	Pearson Education, Inc.	2014
	Analysis	B.J.Babin, R.E.Anderson,		
		R.L.Tatham		
2	Applied Multivariate	R. A. Johnson, D. W.	Pearson Education, Inc.	2012
	Statistical Analysis	Wichern		

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Applied Multivariate Statistical Analysis	W.K. Härdle, L. Simar	Springer	2012
2	An introduction to multivariate statistical analysis	T.W. Anderson	Wiley	2003

Course CodeTitle of the courseProgram Core (PCR) / Electives (PEL)Total Number of contact hoursCreditMA9130Commutative algebraPELI(L)(T)(P)HoursMA9130Commutative algebraPEL31044PrerequisiteModern algebra and advanced modern algebra.Upon successful completion of this course students will be able to:CO1: Know constructions like tensor product and localization, and the basic theory for this CO2: Know basic theory for noetherian rings and Hilbert basis theorem CO3: Know basic theory of or support and associated prime ideals of modules, and know primary decomposition of ideals in noetherian rings CO4: Know the theory of Gröbner bases and Buchbergers algorithm.No. of lecturesRings and Ideals: Rings and ring homomorphisms, Nilradical and Jacobson radical.44Algebras: Algebras over commutative rings, Examples. Polynomial algebras and its universal property. Unique Factorization domains (UFDs).44Spectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime6					
CodecourseElectives (PEL)Lecture (L)Tutorial (T)Practical (P)Total HoursMA9130Commutative algebraPEL31044PrerequisiteModern algebra and advanced modern algebra.Upon successful completion of this course students will be able to:Course OutcomesUpon successful completion of this course students will be able to:CO1: Know constructions like tensor product and localization, and the basic theory for this CO2: Know basic theory for noetherian rings and Hilbert basis theorem CO3: Know basic theory for support and associated prime ideals of modules, and know primary decomposition of ideals in noetherian rings CO4: Know the theory of Gröbner bases and Buchbergers algorithm.Kings and Ideals: Rings and ring homomorphisms, Nilradical and Jacobson radical.Algebras: Algebras over commutative rings, Examples. Polynomial algebras and its universal property. Unique Factorization domains (UFDs).Mo. of an algebra over a field K, Prime6					
MA9130Commutative algebraPEL31044PrerequisiteModern algebra and advanced modern algebra.Course OutcomesUpon successful completion of this course students will be able to:CO1: Know constructions like tensor product and localization, and the basic theory for this CO2: Know basic theory for noetherian rings and Hilbert basis theorem CO3: Know basic theory for support and associated prime ideals of modules, and know primary decomposition of ideals in noetherian rings CO4: Know the theory of Gröbner bases and Buchbergers algorithm.Course ContentNo. of lecturesRings and Ideals: Rings and ring homomorphisms, Nilradical and Jacobson radical.Algebras: Algebras over commutative rings, Examples. Polynomial algebras and its universal property. Unique Factorization domains (UFDs).Mo. of an algebra over a field K, PrimeSpectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime6					
MA9130 Commutative algebra PEL 3 1 0 4 4 Prerequisite Modern algebra and advanced modern algebra. Image: Course of the course of the course students will be able to: Image: Course of the course of the course of the course students will be able to: Course Outcomes Upon successful completion of this course students will be able to: Image: Course of the course of the course students will be able to: CO1: Know constructions like tensor product and localization, and the basic theory for this CO2: CO2: CO2: Know basic theory for noetherian rings and Hilbert basis theorem CO3: Know basic theory for support and associated prime ideals of modules, and know primary decomposition of ideals in noetherian rings CO4: Know the theory of Gröbner bases and Buchbergers algorithm. No. of lectures Rings and Ideals: Rings and ring homomorphisms, Nilradical and Jacobson radical. 4 Algebras: Algebras over commutative rings, Examples. Polynomial algebras and its universal 4 property. Unique Factorization domains (UFDs). Spectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime 6					
algebra Modern algebra and advanced modern algebra. Course Outcomes Upon successful completion of this course students will be able to: CO1: Know constructions like tensor product and localization, and the basic theory for this CO2: Know basic theory for noetherian rings and Hilbert basis theorem CO3: Know basic theory for support and associated prime ideals of modules, and know primary decomposition of ideals in noetherian rings Modern algebra CO4: Know the theory of Gröbner bases and Buchbergers algorithm. No. of lectures Rings and Ideals: Rings and ring homomorphisms, Nilradical and Jacobson radical. 4 Algebras: Algebras over commutative rings, Examples. Polynomial algebras and its universal property. Unique Factorization domains (UFDs). 4 Spectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime 6					
Prerequisite Modern algebra and advanced modern algebra. Course Outcomes Upon successful completion of this course students will be able to: CO1: Know constructions like tensor product and localization, and the basic theory for this CO2: Know basic theory for noetherian rings and Hilbert basis theorem CO3: Know basic theory for support and associated prime ideals of modules, and know primary decomposition of ideals in noetherian rings Modern algebra CO4: Know the theory of Gröbner bases and Buchbergers algorithm. No. of lectures Rings and Ideals: Rings and ring homomorphisms, Nilradical and Jacobson radical. 4 Algebras: Algebras over commutative rings, Examples. Polynomial algebras and its universal property. Unique Factorization domains (UFDs). 4 Spectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime 6					
Course Outcomes Upon successful completion of this course students will be able to: CO1: Know constructions like tensor product and localization, and the basic theory for this CO2: Know basic theory for noetherian rings and Hilbert basis theorem CO3: Know basic theory for support and associated prime ideals of modules, and know primary decomposition of ideals in noetherian rings CO4: Know the theory of Gröbner bases and Buchbergers algorithm. Course Content No. of lectures Rings and Ideals: Rings and ring homomorphisms, Nilradical and Jacobson radical. 4 Algebras: Algebras over commutative rings, Examples. Polynomial algebras and its universal property. Unique Factorization domains (UFDs). 4 Spectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime 6					
CO1: Know constructions like tensor product and localization, and the basic theory for this CO2: Know basic theory for noetherian rings and Hilbert basis theorem CO3: Know basic theory for support and associated prime ideals of modules, and know primary decomposition of ideals in noetherian rings CO4: Know the theory of Gröbner bases and Buchbergers algorithm. CO4: Know the theory of Gröbner bases and Buchbergers algorithm. CO4: Know the theory of Gröbner bases and Buchbergers algorithm. Rings and Ideals: Rings and ring homomorphisms, Nilradical and Jacobson radical. 4 Algebras: Algebras over commutative rings, Examples. Polynomial algebras and its universal property. Unique Factorization domains (UFDs). 4 Spectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime 6					
CO1: Know constructions like tensor product and localization, and the basic theory for this CO2: Know basic theory for noetherian rings and Hilbert basis theorem CO3: Know basic theory for support and associated prime ideals of modules, and know primary decomposition of ideals in noetherian rings CO4: Know the theory of Gröbner bases and Buchbergers algorithm. CO4: Know the theory of Gröbner bases and Buchbergers algorithm. Course Content No. of lectures Rings and Ideals: Rings and ring homomorphisms, Nilradical and Jacobson radical. 4 Algebras: Algebras over commutative rings, Examples. Polynomial algebras and its universal property. Unique Factorization domains (UFDs). 4 Spectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime 6					
theory for this CO2: Know basic theory for noetherian rings and Hilbert basis theorem CO3: Know basic theory for support and associated prime ideals of modules, and know primary decomposition of ideals in noetherian rings CO3: Know basic theory of Gröbner bases and Buchbergers algorithm. CO4: Know the theory of Gröbner bases and Buchbergers algorithm. No. of Interview Rings and Ideals: Rings and ring homomorphisms, Nilradical and Jacobson radical. 4 Algebras: Algebras over commutative rings, Examples. Polynomial algebras and its universal property. Unique Factorization domains (UFDs). 4 Spectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime 6					
CO2: Know basic theory for noetherian rings and Hilbert basis theorem CO3: Know basic theory for support and associated prime ideals of modules, and know primary decomposition of ideals in noetherian rings CO4: Know the theory of Gröbner bases and Buchbergers algorithm. Course Content No. of lectures Rings and Ideals: Rings and ring homomorphisms, Nilradical and Jacobson radical. 4 Algebras: Algebras over commutative rings, Examples. Polynomial algebras and its universal property. Unique Factorization domains (UFDs). 4 Spectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime 6					
CO3: Know basic theory for support and associated prime ideals of modules, and know primary decomposition of ideals in noetherian rings CO4: Know the theory of Gröbner bases and Buchbergers algorithm. Course Content No. of lectures Rings and Ideals: Rings and ring homomorphisms, Nilradical and Jacobson radical. 4 Algebras: Algebras over commutative rings, Examples. Polynomial algebras and its universal property. Unique Factorization domains (UFDs). 4 Spectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime 6					
Course Content No. of lectures Rings and Ideals: Rings and ring homomorphisms, Nilradical and Jacobson radical. 4 Algebras: Algebras over commutative rings, Examples. Polynomial algebras and its universal property. Unique Factorization domains (UFDs). 4 Spectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime 6					
Course Content No. of lectures Rings and Ideals: Rings and ring homomorphisms, Nilradical and Jacobson radical. 4 Algebras: Algebras over commutative rings, Examples. Polynomial algebras and its universal property. Unique Factorization domains (UFDs). 4 Spectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime 6					
Rings and Ideals: Rings and ring homomorphisms, Nilradical and Jacobson radical. 4 Algebras: Algebras over commutative rings, Examples. Polynomial algebras and its universal property. Unique Factorization domains (UFDs). 4 Spectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime 6					
Rings and Ideals: Rings and ring homomorphisms, Nilradical and Jacobson radical.4Algebras: Algebras over commutative rings, Examples. Polynomial algebras and its universal property. Unique Factorization domains (UFDs).4Spectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime6					
Algebras: Algebras over commutative rings, Examples. Polynomial algebras and its universal4property. Unique Factorization domains (UFDs).5Spectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime6					
property. Unique Factorization domains (UFDs).Spectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime6					
Spectrum and Zariski Topology: The K-spectrum of an algebra over a field K, Prime 6					
Spectrum and Maximal Spectrum of a commutative ring, Algebraic Sets in Spectrums and their					
properties, Examples. Zariski topology on Spectrums.					
Finite and Finite type algebras: Algebraic and Integral elements over commutative rings.					
Classical Hilbert's Nullstellensatz and its equivalent forms.					
Rings and Modules with Chain Conditions : Ascending and Decending chain conditions on 6					
modules, Noetherian and Artinian Modules, Noetherian and Artinian rings, Hilbert's Basis					
Theorem.					
Rings and Modules of Fractions: Definition and Universal property, Ideal structure in the 8					
Primary Decomposition : Primary decomposition for modules. Uniqueness of isolated primary 6					
components. Associated prime ideals, Support of a module.					

Integral Extensions : Integral dependence, Lying over, Going-up and Going-down theorems. Integrally closed domains, Transcendence degree, Noether's Normalisation Lemma (NNL) and		
its consequences.		
Integrally closed Noetherian rings : Discrete valuation rings and Dedekind domains, Fractionary ideals, Integral extensions of Noetherian domains, Galois groups and prime ideals.	8	

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Introduction to Commutative Algebra	F. M. Atiyah and I. G. Macdonald	Addison-Wesley Publishing Company	1969
2	Basic Commutative Algebra	B. Singh	World Scientific Publications	2011

Reference Books:

SI. No	Name of the Book	Authors	Publisher	Year
1	Introduction to Algebraic Geometry and Commutative Algebra	D. P. Patil and U. Storch	World Scientific Publications	2010
2	Homological Methods in Commutative Algebra	S. Raghavan, B. Singh and R. Sridharan	Oxford University Press	1977
3	Local Algebra (Translated from French)	J. P. Serre	Springer-Verlag	2000
4	Commutative Algebra, Vols. I, II	O. Zariski and P. Samuel	Van Nostrand	1960

XXXXXXXX