DEPARTMENT OF MECHANICAL ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR -713209 Course on MASTER OF TECHNOLOGY

Specialization: FLUID MECHANICS AND HEAT TRANSFER

FULL TIME

Sl. No.	Subject Code	Name of the Subject		Т	Р	СР			
Seme	Semester I								
1.	ME 1011	Viscous Fluid Flow	3	1	0	4			
2.	ME 1012	Compressible Flow	3	1	0	4			
3.	ME 1013	Mathematical Methods in Engineering	3	1	0	4			
4.	ME 90**	Elective-I	3	1	0	4			
5.	ME 90**	Elective-II	3	1	0	4			
6.	ME 1061	Fluid Mechanics Laboratory -I	0	0	4	2			
7.	ME 1062	Numerical Simulation Laboratory	0	0	4	2			
			T	'otal C	redit	24			
Seme	ester II								
1.	ME 2011	Convective Heat and Mass Transfer	3	1	0	4			
2.	ME 2012	Computational Fluid Flow and Heat Transfer	3	1	0	4			
3.	ME 2013	Conduction and Radiation	3	1	0	4			
4.	ME 90**	Elective-III	3	1	0	4			
5.	ME 90**	Elective-IV	3	1	0	4			
6.	ME 2061	CFD Laboratory	0	0	4	2			
7.	ME 2062	Seminar –I (Non Project)	0	0	2	1			
8.	ME 2063	Project-I	0	0	2	1			
			Т	'otal C	redit	24			
Seme	ester III								
1.	ME 3061	Project-II				11			
2.	ME 3062	Project Seminar-I				2			
Total Credit						13			
Seme	ester IV								
1.	ME 4061	Project-III				11			
2.	ME 4062	Project Seminar-II and Viva-Voce				3			
Total Credit						14			
	TOTAL CREDIT POINT : 75								

	LIST OF ELECTIVE SUBJECTS					
Sl. No	Subject Code	Name of the Subject				
1	ME 9041	Experimental Methods in Thermal Science				
2	<mark>ME 9042</mark>	Numerical Methods and Computer Programming				
3	ME 9043	Dynamical Systems				
4	<mark>ME 9044</mark>	Hydro-Informatics Engineering				
5	ME 9045	Fluid Power Systems and Control				
6	<mark>ME 9046</mark>	Computer Aided Design of Thermal Systems				
7	<mark>ME 9047</mark>	Renewable Energy				
8	<mark>ME 9048</mark>	Micro and Nanoscale Heat Transfer				
9	<mark>ME 9049</mark>	Gas Turbines and Jet Propulsion				
10	ME 9050	Microfluidics				
11	<mark>ME 9051</mark>	River Hydraulics & Engineering				
12	ME 9052	High Performance Computins				
13	<mark>ME 9053</mark>	Alternative Fuels & Systems				
14	<mark>ME 9054</mark>	Advanced Computational Fluid Dynamics				
15	<mark>ME 9055</mark>	Finite Element Methods for Fluid Dynamics				
16	<mark>ME 9056</mark>	Perturbation Methods in Fluid Mechanics				
17	ME 9057	Advanced Theory of Turbomachinery				
18	<mark>ME 9058</mark>	Turbulence and Turbulent Flows				
19	<mark>ME 9059</mark>	Conjugate Heat Transfer				
20	<mark>ME 9060</mark>	Theory of Combustion				
21	<mark>ME 9061</mark>	Fluid-Structure Interaction				
22	<mark>ME 9062</mark>	Optimization Methods in Engineering				
23	ME 9063	Lubrication Engineering				

Department of Mechanical Engineering							
Course	Title of the course	Program Core	Total Nu	mber of co	ntact hours	5	Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
ME 1011	Viscous Fluid Flow	PCR	3	1	0	4	4
Pre-requisi	ites	Course Assessme assessment (EA))		s (Continuo	ous (CT) an	d end	
Fluid Med	hanics.	CT+EA					
	ing Mathematics	-					
Course Outcomes	CO1: To understand CO2: To apply the la CO3: To learn conce	CO1: To understand boundary layer concept, creeping flow and hydrodynamic lubrication CO2: To apply the laws of fluid motion CO3: To learn concept of potential flow, hydrodynamic stability CO4: Analysis of turbulence and turbulent flow.					cation
Topics Covered	approaches of des	ition of fluids, con cribing fluid motion ervation laws for con	ns, Reynol	ds transpor			10
	viscosity, postulate tensor (Stokesian	Kinematics of fluid motion, relative motion of fluid particles, Newton's law of viscosity, postulates of Stokes, relation between stress tensor to the rate of strain tensor (Stokesian fluid), Navier Stokes equation for constant-viscosity incompressible fluid, exact solution of Navier Stokes equation for several special					
							12

	Stokes first and second problem, Hydrodynamic theory of lubrication, thin film equation, slider bearing, Potential flow: basic flows, superposed flows, 2D steady inviscid constant density irrotational flow past a wedge High Reynolds number flow past a semi-infinite plate, and concept of boundary layer, Prandtl's boundary layer equation, approximate (von Karman momentum integral method) and exact solutions (Blasius solution) of the boundary layer equation for flat plate, boundary layer with pressure gradient,: Falkner-Skan flow past a wedge Introduction to turbulence, Reynolds decomposition, Reynolds-averaged Navier Stokes equation, concept of turbulent stresses, Prandlt's mixing length hypothesis, near wall velocity profile: law of the wall and velocity defect law, concept of	12 10
Text	eddy viscosity, turbulent intensity, and turbulent kinetic energy. Text Books:	
Books, and/or reference material	 Title: Viscous Fluid Flow Author: White F.W. Title: Boundary Layer Theory Author: Schlichting S. Title: Viscous Flow Author: Sherman F. 	
materia	Reference Books:1. Title: Advanced Engineering Fluid Mechanics, Author: Muralidhar K.M., Bisv2. Title: An Introduction to Fluid Dynamics, Author: Batchelor, G.K.3. J. Title: Incompressible Flow: Panton, R. L.	vas G.

	D	epartment of Mecha	anical Engi	neering				
Course	Title of the	Program Core	Total Nu	mber of co	ntact hours		Credit	
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
ME 1012	Compressible Flow	PCR	3	1	0	4	4	
Pre-requisit	es	Course Assessme (EA))	nt methods	s (Continuc	ous (CT) and	end asse	ssment	
Fluid Mech	anics,	CT+EA						
Engineerin	g Thermodynamics							
Course	CO1: To lear	n compressible flow	s with const	ant entropy	only, with fr	riction onl	y and	
Outcomes	with h	eat transfer only.						
		n Normal shock, obl						
		ation of laws of Norr		oblique Sho	ck and Prand	tl-Meyer l	Flow.	
	CO4: To des	gn supersonic aerofoils.						
m :	1.D. 1	· D ·	•	· • •	.1 37	1 1	1.0	
Topics		amics: Basic gover					16	
Covered		t normal shock an				ow and		
		low. Solution of problems using gas table. notion: wave propagation – simple and finite waves, 2-D waves, 24						
							24	
	and governi	ng equations. Mov	ing Norma	l shocks a	and oblique	shocks:		
	Normal velo	city superposition	for moving	g Normal s	shock and ta	angential		
	velocity supe	erposition for obliqu	e shock, ob	olique shocl	k analysis fo	r perfect		
	gas, oblique	shock table and c	harts. Pran	dtl-Meyer f	flow: Isentro	pic turn		
	(either aroun	either around expansion or compression corner) from infinitesimal shocks,						
		es, Prandtl-Meyer	•					
		nded and underexpanded nozzles, boundary conditions for flow						
	•	l pressure, shock d		•				
	supersonic w	-		rensonie u				
	*	of Fanno flow, Rayleigh flow, and a normal shock						
L	Correlation	of raino now,	Rayleigh	now, and	i a norma	SHOCK		

	Linearized flow: subsonic flow–Goethert's and Prandtl-Glauert rules, 16 hodograph methods, supersonic thin airfoils, supersonic 2-D airfoils, application of oblique shock and Prandtl-Meyer to calculate Lift and Drag on supersonic aerofoils.
Text Books, and/or reference	Text Books:1. Fundamentals of gas dynamics -R.D. Zucker & Oscar Biblarz.
material	Reference Books:1. The Dynamics and Thermodynamics of Compressible Fluid Flow- A. H. Shapiro.

Department of Mechanical Engineering							
Course	Title of the course	Program Core	Total Nur	nber of con	tact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
ME 1013	Mathematical Methods in Engineering	PCR	3	1	0	4	4
Pre-requis		Course Assessme (EA))	ent method	s (Continuc	ous (CT) and	end asse	ssment
Engineer	ing Mathematics	CT+EA					
Course Outcomes	CO2: To apply n	an idea about advar nathematical method nalytical and numeric	ls in solving	physical pr	oblems	ng proble	ms
Topics	Vector and T	ensor					10
Covered	Linear Algeb	Dra					10
	Integral trans	oform					8
		ferential Equation					8
		rential Equation					8
		nerical Techniques					12
Text Books	,						
and/or		gineering Mathemati					
reference		gineering Mathemati		Ų		~	
material	3. Mathematical	Methods for Physics	s and Engino	eering; A Co	omprehensiv	e Guide-K	. Riley
	1. Mathematical	Reference Books: 1. Mathematical Methods for Physicists: A Comprehensive Guide: G. Arfken 2. Advanced Engineering Mathematics – K. A. Stroud					

Department of Mechanical Engineering							
Course	Title of the course	Program Core Total Number of contact hours				Credit	
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
ME 1061	Fluid Mechanics	PCR	0	0	4	4	1
	Lab	FUN	U	U	4	4	4
Pre-requis	sites						
Viscous Fl	uid Flow, Convective	CT+EA					
Heat and Mass Transfer,							
Conductio	n and Radiation						

Course Outcomes	 CO1: To learn the fundamentals of experimental techniques CO2: To perform experimental validation of theory in Fluid Mechanics and Heat transfer CO3: To learn the design and analysis of experiments
Topics Covered	 To measure the wall static pressure and pressure distribution at different sections of a straight duct for incompressible flow of air. (4) To measure the wall static pressure and pressure distribution at different sections of a curved duct for incompressible flow of air. (4) To measure the wall static pressure and pressure distribution at different sections of a straight diffuser for incompressible flow of air. (4) To determine the thermal conductivity of brass using linear and radial conduction apparatus. (4) To determination of convective heat transfer coefficient and actual mass flow rate of air for forced flow of air through unknown specimen under variable condition.(4) To determine the effectiveness of Parallel and Counter Flow Heat Exchanger.(4) To determine the value of Stefan Boltzmann Constant for radiation heat transfer. (4) To determination of convective heat transfer coefficient of a vertical tube due to natural convection and compare the same with theoretical value. (4)
Text Books, and/or reference material	Text Books: 1. Springer Handbook of Experimental Fluid Mechanics—Tropea and Yarin 2. Instrumentation, Measurements, and Experiments in FluidsRathakrishnan 3. Thermal and Flow MeasurementsTW. Lee Reference Books: 1. Experimental Methods for EngineersHolman

	Dep	artment of Mech	nanical En	gineering			
Course	Title of the	Program Core	Total Nu	mber of con	tact hours		Credit
Code	course	(PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	
ME1062	Numerical Simulation Lab	PEL		0	4	4	3
Pre-requisit	tes	Course Assessme (EA))	ent methods	s (Continuou	ıs (CT) and	end asse	ssment
ME9011/M	E1013	CT+EA					
Course Outcomes	CO2: Students CO3: Student	 CO1: Students will get idea of different programming languages CO2: Students will learn to develop algorithm for different problems CO3: Students will learn to write computer program to solve different engineering problems using various numerical methods 					fferent
Topics Covered							

	Solution of ordinary differential equations and solution of partial differential
	equations
	Eigen value problems, Boundary value, Initial value problems
	Problems as assigned by the respective teachers
Text Books,	Text Books:
and/or	1. Mat Lab Programming for Engineers By S. J. Chapman
reference	2. Getting started with Mat lab By Rudra Pratap
material	3. Computer Programming in Fortran 90 and 95 by Rajaraman
	Reference Books:
	1. Numerical Methods By B. S. Grewal
	2. Numerical Recipes in Fortran By W. H. Press, S. A. Teukolsky, W. T. Vetterling and
	B. P. Flannery

	De	epartment of Mecha	anical Engi	neering			
Course	Title of the course	Program Core	Total Nu	mber of con	tact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
ME 2011	Convective Heat						
	and Mass	PEL	4	0	0	4	4
	Transfer						
Pre-requisit	tes	Course Assessmen (EA))	nt methods ((Continuous	s (CT) and en	nd assessm	lent
•	g Thermodynamics, Iass Transfer	CT+EA					
Outcomes	Course Outcomes CO1: To understand the basic concepts and principles of Heat and Mass Transfer CO2: To apply the laws of heat and mass transfer CO3: To learn about forced and natural convection heat transfer. CO4: Analyse the physics of turbulent models.						
Topics Covered	derivations in dif	ions: Continuity, Mo ferent coordinate sys					6
	 momentum and energy. Laminar External flow and heat transfer: (a) Similarity solutions for flat plate (Blasius solution), flows with pressure gradient (Falkner-Skan and Eckert solutions), and flow with transpiration, (b) Integral method solutions for flow over an isothermal flat plate, flat plate with constant heat flux and with varying surface temperature (Duhamel's method), flows with pressure gradient (von Karman-Pohlhausen method). Laminar internal flow and heat transfer: (a) Exact solutions to N-S equations for flow through channels and circular pipe, Fully developed forced convection in pipes with different wall boundary conditions, Forced convection in the thermal entrance region of ducts and channels (Graetz solution), heat transfer in the combined entrance region, (b) Integral method for internal flows with different wall boundary conditions. 				14		
					10		
	Natural Convection heat transfer: Governing equations for natural convection, Boussinesq approximation, Dimensional Analysis, Similarity solutions for Laminar flow past a vertical plate with constant wall temperature and heat flux conditions, Integral method for natural convection flow past vertical plate, effects of inclination, Natural convection in enclosures, mixed convection heat transfer past vertical plate and in enclosures. Physical characteristics and dynamics of						14

	natural convection, Grashoff's number, modified momentum equation for natural convection boundary layer, natural convection around inclined and horizontal flat plate as well as inside enclosure Condensation and Boiling: physical characteristics and different modes of condensation, Nusselt's analysis for film wise condensation over a vertical flat plate, rate of condensation, average heat transfer coefficient and Nusselt number calculations, condensation around vertical and horizontal tube and array of tubes, Different modes of Boiling and Nukiyama's pool boiling curve, film boiling, forced convection boiling in tube4
Text Books, and/or reference material	Text Books: 1. Convection Heat Transfer – A. Bejan 2. Title: Convective Heat Transfer Author: S. Kakac and Y. Yener 3. Convective Heat Transfer L.C. Burmeister 4. Principles of Convective Heat Transfer – M. Kaviany
	 Reference Books: 1. Convective Heat and Mass Transfer – Kays and Crawford 2. Convective Heat and Mass Transfer – S. M. Ghiaasiaan 3. Heat Convection – L. M. Jiji 4. Title: Fundamentals of Heat and Mass Transfer, Author: F.P. Incropera and D. Dewitt 5. Title: Boundary Layer Theory, Author: H. Schlichting and K. Gersten

	De	epartment of Mecha	anical Engi	neering				
Course	Title of the course	Program Core	Total Nur	nber of cor	ntact hours	-	Credit	
Code		(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
ME 2012	Computational Fluid Flow & Heat Transfer	PCR	3	1	0	4	4	
Pre-requis	sites	Course Assessme	nt method	s (Continuo	ous (CT) and	end asse	ssment	
		(EA))						
Fluid Me		CT+EA						
Heat and	Mass Transfer							
Course		luce the physical and	l computati	onal aspects	s of the gover	rning equa	tions of	
Outcomes		t processes	41.00					
		luce the stability of o						
		different discretizati				•		
	CO4: applicati	on of numerical tech	iniques in so	olving engir	neering trans	port proce	sses	
Topics	Module I: In	troduction to comp	utational f	uid dynam	ics and prine	ciples of	10	
Covered	conservation:	continuity equation	n, Navier-S	tokes equat	tion, energy	equation		
	and general	structure of conser	vation equ	ations, clas	ssification o	f partial		
		luations and physica						
		Approximate sol					10	
		principles, variat						
	. .	approach, fundamentals of discretization: finite difference, finite volume and						
		methods, grid gener		.				
		Boundary conditi					22	
		e problems, importa						
	dependent di	ffusion type proble	ems and s	tability and	alysis : con	sistency,		

	stability and convergence, lax equivalence theorem, grid independent and
	time independent study, stability analysis of parabolic equations (1-D
	unsteady state diffusion problems): FTCS (forward time central space)
	scheme, stability analysis of parabolic equations (1-D unsteady state diffusion
	problems): CTCS scheme (leap frog scheme), Dufort-Frankel scheme,
	stability analysis of hyperbolic equations: FTCS, FTFS, FTBS and CTCS schemes, finite difference discretization of 2-D unsteady state diffusion type
	problems, solution techniques for systems of linear algebraic equations,
	discretization of convection-diffusion equations, discretization of Navier-
	Stokes equations: stream function vorticity approach and primitive variable
	approach: fractional-step method (projection method), simplified MAC
	(SMAC) method
	Module IV: Introduction to finite volume method (FVM) of discretization: 14
	Conservative differential form and integral form governing equations of
	fluid flow, finite volume method for 2-D unsteady state diffusion problems,
	finite volume method for convection-diffusion problems, solution algorithm
	for pressure-velocity coupling in steady flows: SIMPLE, SIMPLER and
	PISO algorithms
Text Books,	Text Books:
and/or	1. Computational Fluid Mechanics and Heat Transfer – Anderson, Tannehill, and Pletcher
reference	2. Computational Methods for Fluid Dynamics – Ferziger and Peric
material	3. Computational Techniques For Fluid Dynamics – Fletcher
	4. Fundamentals of Computational Fluid Dynamics – Roache
	5. Computational Fluid Dynamics and Heat Transfer – Ghoshdastidar
	Reference Books:
	1. An Introduction to Computational Fluid Dynamics: The Finite Volume Method –
	Versteeg and Malalasekera
	2. 2. Numerical Heat transfer and Fluid flow – Patankar

Department of Mechanical Engineering									
Course	Tit	tle of the course	Program Core	Total Number of contact hours				Credit	
Code			(PCR) /	Lecture	Tutorial	Practical	Total		
			Electives (PEL)	(L)	(T)	(P)	Hours		
ME 2013		nduction and diation	PCR	3	1	0	4	4	
Pre-requis	sites		Course Assessme (EA))	ent method	s (Continuo	ous (CT) and	l end asse	essment	
Fluid Mech	ianic	S,	CT+EA						
Engineerin	ıg Th	ermodynamics							
Heat and M	lass								
Course		-	idea about conducti	-	t mechanisi	m			
Outcomes			and the physics of ra						
			n of laws of radiation						
			gas radiation proble						
Topics			eady and unsteady pr		l their solut	ions in Cartes	sian,	6	
Covered		•	spherical coordinate						
			al steady state situa		-				
			tion. Differential eq					10	
		•	Unsteady state heat conduction. Separation of variables. Duhamel's theorem.						
		Laplace transforms. Problems involving change of phase. Inverse heat							
		· · · · ·	cro scale heat transfe				-		
		Fins problems,	pin fin, temperature	distribution	n of pin fin.	The effectiv	veness of	4	

	 pin fin. Numerical solution of conduction problems: Basic ideas of finite difference method – forward, backward and central differences – Discretization for the unsteady heat equation –simple problems. Basis ideas of the finite volume method – application to Laplace and Poisson equations. Properties of Surfaces: Introduction, Black Body Radiation, Radiative properties of real surfaces. Radiation Exchange between surfaces: Introduction, Shape factor, Evaluation of shape factors, Radiation exchange between Gray surfaces enclosure Gas Radiation: Introduction, Beer's law, Emissivity and Absorptivity of gases and gas mixtures, Radiation and climate. 	8 10 12 6
Text Books, and/or reference material	Text Books: 1. Title: Conduction and Radiation Author: K. Muralidhar, 2. Title: Heat Conduction Author: Sadik Kakac and Yaman Yener 3. Thermal Radiation Heat Transfer - Sigel R and Howell J 4. Radiative Heat Transfer - Michael F Modest Reference Books:	
	1. Heat Conduction Author: Hahn, D. W. and Ozisik M. N.	

	Γ	Department of Mecha					
Course	Title of the course	Program Core	Total Nu	mber of cor	ntact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
ME 2061	CFD Laboratory	PCR	0	0	4	4	4
Pre-requise	ites				1		
Basic know	wledge in fluid	CT+EA					
	heat transfer and						
numerical							
Course	_	mputer programmin	g in finite d	ifference m	ethod (FDM)) using hig	gh level
Outcomes	language						
		use commercially		CFD softwa	are to solve	some bas	sic fluid
	dynamics	and heat transfer pro	oblems				
·				1.04	•. •		
Topics Covered		development in f	inite diffe	erence/ fin	ite volume	method	s using
Covered		s interface (20)		11 ()			
		eady heat cond		oblem (c	letermine	the tem	perature
		tion along the axis		11 ()		.1	
		eady heat cond	-	oblem (c	letermine	the tem	perature
		tion on a rectangul	,	1.1	(1,	.1 .	• •
) unsteady heat		-			
		ture distribution al)
	■ Lid-driv	ven cavity flow usi	ng stream-	runction vo	orticity tech	nique	
	Part II: Deve	eloping Solution	of CFD	problems	using AN	SYS-FL	UENT/
	COMSOL Sof			-	-		
	 Axisym 	metric flow throug	h a circula	r pipe und	er isotherma	al condition	on
		metric flow throug					
		flow over a flat pla					
	 Flow pa 	st a solid, circular	cylinder (F	Re: 30-70)			

	 Natural convection along a vertical flat plate
Text Books,	Text Books:
and/or	1. Numerical heat transfer and fluid flow. CRC press. By Patankar, S.
reference	2. Computational fluid dynamics: the finite volume method. Harlow, England:
material	Longman Scientific & Technical. By Versteeg, H. K., and W. Malalasekera.
	3. ANSYS fluent theory guide 15.0.
	Reference Books
	1. Computational fluid dynamics. New York: McGraw-Hill. By Anderson, J. D.
	2. Computational methods for fluid dynamics. Springer Science & Business Media.
	By Ferziger, J. H. and Peric, M.

	De	epartment of Mecha	nical Engir	neering			
Course	Title of the	Program Core	ore Total Number of contact hours				Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
ME 2062	Seminar –I	PCR PCR	3	1	0	4	4
	(Non Project)						
Pre-requisit	es	Course Assessme (EA))	nt methods	s (Continuou	is (CT) and	end asse	ssment
NA		CT+EA					
Course	CO1: To be able	to conduct review	of literatur	e to arrive a	t selected a	dvances	topic
Outcomes	for semin	lar.					
	CO2: To be able	e to summaries the o	concept of t	the chosen to	opic system	natically a	after
		able study of the co				-	
		e to write and prese	nt a techni	cal report wi	th suitable	conclusi	on as
	-	national standards					
	CO4: To be able	e to discuss and dep	end the ou	tcome of the	report in a	i seminar	
Topics	Seminar –I (No	n Project): Topics d	ecided by o	consultation	with the su	pervisor	1
Covered		, , ,	, j				
Text Books,	Text Books:						
and/or							
reference	Reference Boo	ks:					
material							

	Department of Mechanical Engineering								
Course	Title of the	Program Core	Total Nu	mber of cont	tact hours		Credit		
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
ME 2063	Project –I	PCR PCR	3	1	0	4	4		
Pre-requisit	es	Course Assessment methods (Continuous (CT) and end assessment							
		(EA))	(EA))						
NA		CT+EA							
Course	CO1: Ability to	interpret ideas and	thoughts in	nto practice	in a project				
Outcomes	-	analyze the gap bet		-	- /				
		CO3: Ability to compose technical presentation in the conferences and Journals.							
		1				,			

Topics	Project as decided based on literature survey with consultation with the
Covered	supervisor
Text Books, and/or	Text Books:
reference material	Reference Books:

Department of Mechanical Engineering							
Course	Title of the	Program Core	Program Core Total Number of contact hours (
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
ME 3061	Project –II	PCR	3	1	0	4	4
Pre-requisit	es	Course Assessme	ent methods	s (Continuou	ıs (CT) and	end asse	ssment
		(EA))					
NA		CT+EA					
Course	CO1: Ability to	interpret ideas and	thoughts ir	nto practice	in a project		
Outcomes	-	analyze the gap bet	-	-			
	CO3: Ability to	compose technical	presentatio	n in the con	ferences ar	id Journa	ls.
		-	-				
Topics	Project as dec	cided based on lite	erature sur	vey with c	onsultatior	n with th	ne
Covered	supervisor						
Text Books,	Text Books:						
and/or							
reference	Reference Boo	Reference Books:					
material							

Department of Mechanical Engineering							
Course	Title of the	Program Core	Program Core Total Number of contact hours				
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
ME 3062	Project Seminar -I	PCR	3	1	0	4	4
Pre-requisit	es	Course Assessme (EA))	nt methods	s (Continuou	s (CT) and	end asse	ssment
NA		CT+EA					
Course Outcomes	for semin CO2: To be able considera CO3: To be able per interr	 CO1: To be able to conduct review of literature to arrive at selected advances topic for seminar. CO2: To be able to summaries the concept of the chosen topic systematically after considerable study of the content from primary as well as secondary sources CO3: To be able to write and present a technical report with suitable conclusion as per international standards CO4: To be able to discuss and depend the outcome of the report in a seminar 					
Topics Covered	Project seminar	: Progress of the pr	roject				
Text Books, and/or	Text Books:						
reference material	Reference Boo	ks:					

	D	epartment of Mecha	nical Engir	neering			
Course	Title of the	Program Core	Total Nu	mber of cont	tact hours		Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
ME 4061	Project -III	PCR	3	1	0	4	4
Pre-requisit	re-requisites Course Assessment methods (Continuous (CT) and end asse				ssment		
(EA))							
NA CT+EA							
Course Outcomes	CO2: Ability to	interpret ideas and analyze the gap bet compose technical	ween theor	etical and p	ractical kno	wledge.	ls.
Topics Covered	Project as dec supervisor	cided based on lite	erature sur	vey with c	onsultation	with th	ie
Text Books, and/or	Text Books:						
reference material	Reference Boo	oks:					

	De	partment of Mecha	anical Engir	neering			
Course	Title of the	Program Core	Total Nu	mber of cont	tact hours		Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
ME 4062	Project seminar II	PCR	3	1	0	4	4
	and Viva-voce						
Pre-requisit	Pre-requisites Course Assessment methods (Continuous (CT) and end asse (EA))			ssment			
NA	NA CT+EA						
Course	CO1: Ability to i	ntegrate technical	question th	rough all th	e years of s	tudy.	
Outcomes	CO2: Ability to	express and comm	unicate.				
	CO3: Ability to	evaluate technical	confidence.				
	CO4: Ability to	validate the knowl	edge gained	l through ye	ars of stud	у.	
Topics	Project seminar	II and Viva-voce					
Covered							
Text Books,	Text Books:						
and/or							
reference	Reference Bool	KS:					
material							

Electives

Department of Mechanical Engineering							
Course	Title of the course	Program Core	Total Nur	nber of con	ntact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	

ME 9041	Experimental Methods in Thermal Science	PEL	3	1	0	4	4
Pre-requis	ites	Course Assessme (EA))	ent method	s (Continu	ous (CT) and	l end asse	ssment
Nil		CT+EA					
Course Outcomes	 CO1: Acquire an idea about basic concepts of thermal measurements CO2: To learn the basics of data acquisition and data analysis CO3: To learn the measurement techniques for electrical signals, pressure, temperatu flow, velocity etc. CO4: To learn the fundamentals of wind tunnel measurements. 						rature,
Topics Covered	Basic concepts:	Basic concepts: Calibration, Standards, Dynamic Measurement, System response and Fourier Analysis					
	Data analysis: E fitting, Goodnes	error analysis, Uncertainty analysis, Statistical analysis, Curve ϵ so of fit.					
		electrical signals: Wers, Signal Condition				gital	6
		of physical variables: Pressure measurement					6
	Flow measureme						8
	Temperature me						6
	Velocity measur		ntation and	alibration	of wind tunn	ala	6 6
		Wind tunnel: Introduction, instrumentation and calibration of wind tunnels Data acquisition and processing: Signal conditioning, Data transmission, ADC and DAC					
Text Books	s, Text Books :						
and/or	-	l Methods for Engin					
reference		ion, measurements a	nd experim	ents in Flui	ds by E. Ratl	hakrishnar	1
material		ks: experimental fluid m systems—applicatio					

	Department of Mechanical Engineering							
Course	Title of the course	Program Core	Total Nur	nber of cor	itact hours		Credit	
Code		(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
ME 9043	Dynamical System	PEL	3	1	0	4	4	
Pre-requi	isites	Course Assessme (EA))	nent methods (Continuous (CT) and end assessme					
Ni	l	CT+EA						
Course	CO1: To learn s	tability analysis of n	onlinear tra	nsient probl	ems in all fie	elds.		
Outcome	s CO2: To learn	Chaos of nonline	ar transient	problems	using dyna	mical bel	haviours	
	-	ons, FFT, Poincar	e Maps, L	.yapunav e	exponents, F	Ienon ma	aps and	
	Fractals)							
Topics		al Flow: Flows on t						
Covered	-	d exercises; Flows o		•	•		•	
		Bifurcations: Types						
		itchfork, Supercrit		Subcritical	bifurcation		•	
		al life problem and ex					2	
		nal Flows: Linear	•		· ·			
	•	Exercises, Phase plan	· .		•			
	•	ns, Exercises, Limit	•			•	· ·	
	Poincare theory	, FFT of time series	data, Exerc	cises, Bifur	cations of 2-	D system	, Saddle-	

Text Book and/or reference material	:S,	form, Hopf poin Exercises Chaos: Lorenz parameter Space maps, Lyapunov Sets, Dimension Dimensions, Ex examples, Exerce Text Books: 1. Nonlinea Reference Boo 1. Chaos an	ar dynamics and Cl	vsteresis zon ies of Lor mensional M es, Fractals Fractals, tractor, Sin maos by S. nics by R. 9	ne, Poincar renz Equat Maps, Fixed , Countable Box dimen mplest exa <u>H. Strogat</u> C. Hilborn	e map, FFT a ions, Lorenz l points and (e and uncour usion, Point mples, Henc z	and phase map, E Cobwebs, ntable sets wise Co on map,	22 Exploring Logistic s, Cantor prrelation
		D	epartment of Mecha	anical Engi	neering			
Course	Tit	le of the course	Program Core			ntact hours		Credit
Code			(PCR) /	Lecture	Tutorial	Practical	Total	
			Electives (PEL)	(L)	(T)	(P)	Hours	
ME 9045	Syst	id Power tems and atrol	PEL	3	1	0	4	4
Pre-requi	sites		Course Assessme (EA))	nt methods	s (Continuc	ous (CT) and	end asse	ssment
Fluid Me Enginee		ics, Control	CT+EA					
Course Outcomes Topics		areas. CO2: To familia CO3: Design hyd CO4: To analyse	ip concept of hydrau rise with several con draulic power packs hydraulic power system oncept of hydraul	nponents of using sever stem and tro	hydraulic p al compone publeshoot.	oower system ents for engin	and techr eering app	niques.
Covered		their application pneumatic circ conduit, minor l Hydraulic Fluid and equation	on, advantages an uit, fluid flow osses. : density, viscosity, o of state;	d disadvas fundamenta effective bu chemical	ntages; ba als, flow Ilk modulus properties-	sic hydrauli through orifi s; thermal pro contaminatio	ic and ice and operties	3
		Hydraulic Pum	of hydraulic fluid, se p, Motor and Act ps and motor; rot	uator: type	es and con			6
		Control Valves: valves, poppet v	types of valve and valve, flapper no n control valve and	ozzle valve,	functioning	g of pressure	control	10
		valve, valve flow and actuators, l dynamics, actuat	stem and Dynamics w characteristics, flo eakage flow throug tor dynamics, hydrau	w force and th valve and lic accumu	d spool stic nd actuato lator.	tion, friction r ; transmiss	in valve sion line	14
		motor, two stage	c Servo System: ty e flapper nozzle EH elctro-hydraulic ser s.	SV dynami	cs with fee	dback contro		10

·

Text Books,	Text Books:
and/or	1. Hydraulic Control System by Merritt H, John Wilely and Sons Inc.
reference	2. Fundamentals of Fluid Power Control by Watton J. Cambridge University Press.
material	3. Fluid Power Engineering by M G Rabie, McGraw Hill
	Reference Books:
	1. Fluid Power Systems: modeling, simulation and microcomputer control by John
	Watton, Prentice Hall International.
	2. 2. Fluid Power Control by Blackburn, J. F., G. Reethof, and J. L. Shearer, New
	York: Technology Press of M. I. T. and Wiley.

	De	epartment of Mechan	ical Engine	ering					
Course	Title of the course	Program Core	Total Nur	nber of con	tact hours		Credit		
Code		(PCR) / Electives	Lecture	Tutorial	Practical	Total			
		(PEL)	(L)	(T)	(P)	Hours			
ME 9050	MICROFLUIDICS	PEL	4	0	0	4	4		
Pre-requis	ites	Course Assessmen assessment (EA))	t methods (Continuous	s evaluation	(CE) and	end		
Fluid Mech	anics	CE+EA							
Engineering	g Thermodynamics								
Heat and M	lass Transfer								
Course	CO1: To learn	micro channel flows	with heat t	ransfer.					
Outcomes		Surface Tension Dri			e application	ıs.			
	-	of Electro-hydro-dy	-						
		ion by Molecular Dy							
Topics		Microfluidics: Or	•			nallenges,			
Covered		ties, Physics of min							
		atter, Continuum ass							
		relations Microfluidics- Some Application Examples: Drug delivery, Diagnostics,							
	Bio-sensing.								
		Equations of Conservation, Navier Stokes Equation, Energy Equation, Pressure –							
		: Exact solutions, Couette flow, Poiseuille flow.							
		of Unsteady Flows: Hydraulic resistance and Circuit analysis, different cross-sections, Channels in series and parallel.							
	0						5 4		
		Sphere: Stokes drag	on a spher	re, 11me-de	ependent no	ws, 1wo-	4		
	phase flows. Lubri		og Slip og	r No cline (Gos and liqu	id flows	2		
		Boundary Condition in Fluid Mechanics - Slip or No-slip: Gas and liquid flows, Boundary conditions, Slip theory, Transition to turbulence, Low Re flows,							
		riven Flows: Surfa	ca tansion	and interfe	ocial anarov	Voung	9		
		Surface Tension Driven Flows: Surface tension and interfacial energy, Young-							
		Laplace equation, Contact angle, Capillary length and capillary rise, Interfacial boundary conditions, Marangoni effect, Lab on a CD							
		crofabrication: Mate			icon crystal	logranhy	2		
		kidation, photolithog			•	• • •			
		ing, Bulk and Surfac							
		PMMA/COC/PDMS							
		tions. Electrokinetics			•	•			
		Debye layer, Thin El	•	•					
		essure, Cascade elect							
	fluids.			I	. 1				
		f particles, Electrop							
	dependence on pa	rticle size. Dielectro	ophoresis, l	Induced po	larization ar	nd DEP,	7		

	Point dipole in a dielectric fluid, DEP force on a dielectric sphere, DEP particle trapping, AC DEP force on a dielectric sphere.Electro-capillary effects, Continuous electro-wetting, Direct electro-wetting, Electro-wetting on dielectric Dispersion, Introduction to Nanofluidics, Introduction to Molecular Dynamics Simulations, Bio microfluidics, Nanofluidic Energy Conversion, Thin Film1111Dynamics.
Text Books, and/or reference material	 Suggested Text Books: 1. Microfluidics - Stéphane Colin 2. Micro- and Nanoscale Fluid Mechanics, Transport in Microfluidic Devices- Brian Kirby, Cambridge University Press.
	 Suggested Reference Books: 1. Theoretical Microfluidics- Henrik Bruus , Oxford University Press. 2. Fundamentals and Applications of Microfluidics: Nam- Trung Nguyen and Steven T. Wereley

	D	epartment of Mecha	anical Engi	neering			
Course	Title of the course	Program Core	Total Nur	nber of cor	ntact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
ME 9052	High performance coputing	PEL	3	1	0	4	4
Pre-requis	sites	Course Assessme (EA))	ent method	s (Continuo	ous (CT) and	l end asse	essment
Nil		CT+EA					
Course Outcomes							
Topics		ution: Program, Co				on call	6
Covered	Computer o	dress space, Data rganization: Me instruction process	mory, R	egisters,	n Instructior	n set	6
	Pipelined pro hazards, Impa	ocessors: Pipelini oct on programmin	ing, Strue	ctural, da		control	6
	Virtual memo Paging	ry: Use of memo	ry by pro	grams, Ao	ddress trans	slation,	6
		ry: Organization, ating systems:			ramming, em calls, F		6
	Program profil Protection	ing, File systems:	Disk mana	gement, N	ame manag	ement,	6
	Mutual excl	tecture: Inter-proc usion, Basics of with message pa	of parall	el archi	tecture, F	Parallel	8
	Parallel langu	ages, Iterative so orms. Multigrid me	lution of	sparse lin	ear systems	s. Fast	8
Text Book	s, Text Books :						
and/or reference	Engineer	roduction to High Pers, CRC Press, 2011,	Authors: :	Hager, G a	nd Wellein, C	Э,	_
material		roduction to High Pe , Lulu.com, 2012.	erformance a	Scientific C	computing, A	uthors: Vi	ictor
	Reference Boo	oks:					
	1. Title: P	arallel Programming	in C with N	API and Op	enMP, Autho	or: Quinn	, M. J.,

	ТМН, 2003
2.	Title: An Introduction to Parallel Programming, Author: Pacheo, Elsevier, 2011

	De	epartment of Mecha	anical Engi	neering			
Course	Title of the course	Program Core			ntact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
ME 9057	Advanced Theory of Turbomachinery	PEL	3	1	0	4	4
Pre-requ	isites	Course Assessme (EA))	ent method	s (Continue	ous (CT) and	l end asse	essment
Engineer	ing Thermodynamics,						
Heat and	Mass Transfer,						
Fluid Me	chanics						
Course	_	knowledge about ro	•		1 0	01	ower:
Outcome		of axial and radial f				nes	
	-	f details of hydraulic		-	c machine		
Topics		of axial flow and cen Basic Principles:			who mashin	e. The	4
Covered		laws, The equat					4
Govereu		lics, The mom					
	•	tics entropy, The	1				
	•	flow relations for	•	· ·	-		
	Dimensional		nilitude,			nilitude,	
		s Performance			nilarity for	,	4
		Compressible flow			-		
		ercise Problems.	5	, 1	1	1	
	Two Dimens	ional Cascades: In	troduction	, Cascade	geometry,	Velocity	4
	triangles, Me	an velocity and r	nean flow	direction,	Blade inle	et angle,	1
	Blade exit a	ingle, Inlet flo	w angle,	Exit flow	angle, In	cidence,	
		amber angle, De			ncidence, 1	Nominal	
		minal deflection, S	-				
		cascade forces, L	ift and dr	ag forces,	Lift and c	lrag co-	4
	efficient						
		le cascade analysis					2
		Diffuser efficiency			-		2
		nd their relation, st	atic pressu	ire rise, dia	ide load rati	0.	
	Exercise Prob		ation Val	ogity dia	mama of t	a oviol	6
		Turbines: Introdu Turbine stage des		• •			
		r, Stage reaction,	0 1				
	-	gles, Velocity tria	-				
		ermodynamics of t	-		-	01 IX -	
		age turbine, Stag		-		-to-total	
		a turbine stage, To			•		
		tator and rotor. Ex			,p		
		Turbines: Introduc			ines, kinem	atic and	
		nic analysis of					9
	-	nominal design po		-	-	-	
	-	nt, number of blad		•			

	 Axial flow compressors: Introduction, 2-D analysis of compressor stage, kinematic and thermodynamic analysis of compressor stage, stage loss relationship and efficiency, reaction ratio and choice of reaction, stage loading, stage pressure rise, pressure ratio of a multistage unit, stage efficiency, stall and surge phenomena. Centrifugal compressors: Introduction, kinematic and thermodynamic analysis of compressor stage, inlet casing, impeller, diffuser, 	8			
	conservation of enthalpy, optimum efficiency at inlet of pump/ compressor slip factor, compressor performance, choking in compressor stage. Introduction to 3-D flow in axial turbo-machines.	8			
Text Books,	Text Books:	3			
and/or reference	 Title: Fluid Mechanics and Thermodynamics of Turbomachinery, Author: Dixon and Hall 				
material	2. Title: Fluid Mechinery, Author: Wright and Gerhart				
	Reference Books:				
	1. Title: Turbomachinery: Basic Theory and Applications, Author: Earl Lo	0			
	2. Title: Gas Turbine Theory, Author: Saravanamutto, Cohen, and Rogers	. 1.			
	Convection				

	D	epartment of Mecha	anical Engi	neering						
Course	Title of the course	Program Core Total Number of contact hours					Credit			
Code		(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
ME 9063	Lubrication Engineering	PCR	3	1	0	4	4			
Pre-requisites		Course Assessment methods (Continuous (CT) and end assessment (EA))								
Engineerin	ig Mechanics,	CT+EA								
Solid Mech	,									
Fluid Mech	nanics									
Course		he basic knowledge	of surface	topograph	y and contac	ct betwee	n			
Outcomes	0	engineering surfaces.								
		CO2: To learn the basic theory and application of friction and wear for different								
		materials								
		CO3: To learn about lubricants and lubrication for different bearings								
		CO4: Introduced to Bio-tribology of human joints								
		CO5: Introduced to Micro-tribology for MEMS applications Surface topography: Measurement of surface topography; Quantifying 3								
Topics						antifying	3			
Covered	_	surface roughness; The topography of engineering surfaces.								
		Contact between surfaces: Hertzian contact – sphere on sphere contact and								
	5	cylinder on cylinder contact; Contact between rough surfaces.								
	wear; Friction	Friction and Wear of contact surfaces: Laws and Theories of friction and wear; Friction and Wear of different materials; Application to friction								
		materials.								
		Lubricants and lubrication: Viscosity of lubricants; Composition and								
		properties of oils and greases; Reynolds equation; Type of lubrications -								
		Hydrostatic lubrication, Hydrodynamic lubrication; Elastohydrodynamic								
		ndary lubrication, a			-		8			
	Microtribology	: Surface forces a	ind adhesi	on; Atomi	c torce mic	croscopy				

	(AFM); Friction, wear and lubrication on atomic level; Applications to MEMS. Biotribology: Natural human joints; Structure and properties of articular cartilage; Mechanism of synovial lubrication: Mechanism of articular cartilage damage; Artificial joint replacements; Skin Tribology	10				
Text Books,	Text Books:					
and/or	1. Engineering Tribology - Dr. Prasanta Sahoo					
reference	2. Introduction to Tribology of Bearings B.C.Majumder					
material	3. Principles of Tribology J.Halling					
	4. Basic Lubrication Theory - Alastair Cameron					