NATIONAL INSTITUTE OF TECHNOLOGY, DURGAPUR -713209 DEPARTMENT OF MECHANICAL ENGINEERING

Course on MASTER OF TECHNOLOGY

Specialization: THERMAL ENGINEERING

FULL TIME

Sl.	Subject	Name of the Subject	L	Т	Р	СР
No.	Code					
Seme	ester I					
1.	ME 1021	Advanced Thermodynamics	3	1	0	4
2.	ME 1022	Advanced Heat Transfer	3	1	0	4
3.	ME 1023	Advanced Fluid Mechanics	3	1	0	4
4.	****	Elective-I	3	1	0	4
5.	****	Elective-II	3	1	0	4
6.	ME 1071	Thermal Engineering Laboratory-I	0	0	4	2
7.	ME 1072	Computational Laboratory	0	0	4	2
	<u>.</u>		Г	otal C	redit	24
Seme	ester II					
1.	ME 2021	Advanced Energy Conversion	3	1	0	4
2.	ME 2022	Advanced I.C. Engine	3	1	0	4
3.	ME 2023	Analytical Methods in Heat Transfer and	3	1	0	4
		Fluid Flow				
4.	****	Elective-III	3	1	0	4
5.	****	Elective-IV	3	1	0	4
6.	ME 2071	Thermal Engineering Laboratory-II	0	0	4	2
7.	ME 2072	Seminar –I (Non Project)	0	0	2	1
8.	ME 2073	Project-I	0	0	2	1
	ļ		Г	otal C	redit	24
Seme	ester III				I	
1.	ME 3071	Project-II				11
2.	ME 3072	Project Seminar-I				2
	1		Г	otal C	redit	13
Seme	ester IV					
1.	ME 4071	Project-III				11
2.	ME 4072	Project Seminar-II and Viva-Voce				3
	1		T	otal C	redit	14
		TOTAL CREDIT POINT : 75				

PART-TIME

SI.	Subject	Name of the Subject	L	Т	Р	СР
No.	Code		_	_		01
Seme	ester I	1				
1.	ME 1021	Advanced Thermodynamics	3	1	0	4
2.	ME 1022	Advanced Heat Transfer	3	1	0	4
3.	ME 1023	Advanced Fluid Mechanics	3	1	0	4
4.	ME 1071	Thermal Engineering Laboratory-I	0	0	4	2
			Т	otal C	credit	14
Seme	ester II					
1.	ME 2021	Advanced Energy Conversion	3	1	0	4
2.	ME 2022	Advanced I.C. Engine	3	1	0	4
3.	ME 2023	Analytical Methods in Heat Transfer and	3	1	0	4
		Fluid Flow				
4.	ME 2071	Thermal Engineering Laboratory-II	0	0	4	2
Total Credit						14
Seme	ester III					
1.	****	Elective-I	3	1	0	4
2.	****	Elective-II	3	1	0	4
3.	ME 1072	Computational Laboratory	0	0	4	2
	1		T	otal C	redit	10
Seme	ester IV					
1.	****	Elective-III	3	1	0	4
2.	****	Elective-IV	3	1	0	4
3.	ME 2072	Seminar –I (Non Project)	0	0	2	1
4.	ME 2073	Project-I	0	0	2	1
			T	otal C	credit	10
Seme	ester V					
1.	ME 3071	Project-II				11
2.	ME 3072	Project Seminar-I				2
	1		T	otal C	redit	13
Seme	ester VI					
1.	ME 4071	Project-III				11
2.	ME 4072	Project Seminar-II and Viva-Voce				3
	I	1	T	otal C	redit	14
		TOTAL CREDIT POINT : 75				

		LIST OF ELECTIVE SUBJECTS
SI. No.	Subject Code	Name of the Subject
1.	ME 9071	Combustion Engineering
2.	ME 9072	Solar Thermal Systems
3.	ME 9073	Design of Thermal Systems
4.	ME 9074	Advanced Refrigeration and air-conditioning
5.	ME 9075	Gas Dynamics
6.	ME 9076	Turbo-machineries
7.	ME 9077	Measurement of Thermal Systems
8.	ME 9078	Design with Constructional Theory
9.	ME 9079	Engineering Optimization
10.	ME 9080	Renewable Energy Sources
11.	ME 9081	Steam and Gas Turbines
12.	ME 9082	Environmental Pollution Control
13.	ME 9083	Fuels, Combustion, and Emission Control
14.	ME 9084	Analysis of Thermal Power Cycles
15.	ME 9085	Heat Transfer Equipment Design
16.	ME 9086	Computational Methods in Thermal Engineering
17.	ME 9087	Power Plant Engineering
		ved departmental electives to be offered in the proposed
M. Tec	h course on "Ther	mal Engineering"
	ME 9011	Applied Computational Methods
	ME 9014	Operation Research
	ME 9018	Finite Element Methods
	ME 9020	Knowledge Based Systems
	ME 9025	Modeling and Simulation of Mechanical Systems

SYLLABUS

Course	Title of the course	artment of Mechanical Program Core	Total N	Credit					
Code		(PCR)/Electives	Lecture		Practical		Great		
Jul		(PEL)	(L)	(T)	(P)	Hours			
ME 1021	Advanced	PCR	3	1	0	4	4		
Pre-requisi	Thermodynamics	Course Assessme	nt motho	de (Continu		 nd ond			
Ple-lequisi	les	assessment (EA)		us (Continu	ious (C1) a	na ena			
NA		CT+EA)						
Course									
Outcomes		be able to unders	tand the	history, c	oncepts, f	ormulati	ons an		
		Thermodynamics.							
		be able to analyze and	solve var	ious practio	al problem	is on app	lication		
	of Thermodyna								
		e able to apply variou	s solution	techniques	for solving	g new ap	plied		
	and theoretical	problems.							
Topics	1 Einst Law, of Th	armodynamics					5		
Covered	1. First Law of Th						5		
Covered	1.1 First law for clo 1.2 First law for op	5							
		entation of the first l	2147						
	1.3.1 Poincaré's sc								
		1.3.2 Carathéodory's scheme 1.3.3 Keenan and Shapiro's second scheme							
		1.3.4 Applications to vapor cycle							
		2. Second Law of Thermodynamics							
		2.1 Second law for closed systems							
	2.2 Second law for	open systems							
	2.3 Local thermody	namic equilibrium i	nodel						
	2.4 Entropy maxim	um and energy mini	mum pri	nciples					
	2.5 Carathéodory's								
	2.5 A Heat Transfe	r man's two axioms							
	2.6 Regenerative power generation in steam power plants								
	3. Entropy Generation								
	3.1 Lost available work								
	-	3.2 Nonflow processes							
	3.3 Steady flow processes								
		3.4 Mechanisms of entropy generation							
	3.4.1 Heat transfer across a finite temperature difference								
	3.4.3 Mixing	3.4.2 Flow with friction							
	3.5 Entropy genera	tion minimization							
	3.5.1 The method								
	3.5.2 Entropy gene	ration number							
	100	ration in steam base	d power s	generation	systems				
	4. Exergy Analysis		r		50		7		
	4.1 Nonflow system						/		
	4.2 Flow systems								
	4.3 Generalized ex	ergy analysis							
		s of steam based po	wer gene	ration syst	ems				
	5. Irreversible Thermodynamics								
	5.1 Conjugate fluxes and forces								
		-							

	5.3 Reciprocity relations	
	6. Thermodynamic Relations	7
	6.1 The fundamental relation	
	6.1.1 Energy representation	
	6.1.2 Entropy representation	
	6.2 Legendre transform	
	6.3 Relation between thermodynamic properties	
	6.3.1 Maxwell's relations	
	6.3.2 Bridgman's table	
	6.3.3 Jacobians in thermodynamics	
	7. Stability of Thermodynamic Systems	5
	7.1 Stability conditions for thermodynamic potentials	
	7.2 Qualitative effect of fluctuations	
	7.3 Le Chatelier-Braun principle	
Text Books,	Text Books:	
and/or reference	1. Fundamentals of Engineering Thermodynamics by <u>Moran</u> , <u>Shapiro</u> , <u>I</u>	<u>Boettner</u> ,
material	 <u>Bailey</u>, Wiley 2. Thermodynamics An Engineering Approach by Cengel and Boles, McGraw Hi 	:11
Indendi	3. 3. Advanced Engineering Thermodynamics by Bejan, Wiley	111
	Reference Books:	
	1. Engineering Thermodynamics by P.K. Nag, McGraw Hill	
	2. Fundamentals of Thermodynamics by Sonntag, Borgnakke, Van Wylen, Wiley	

	Departi	ment of Mechanical	Engineer	ing				
Course	Title of the course	Program Core	Total N	umber of c	ontact hours	5	Credit	
Code		(PCR)/Electives	Lecture	Tutorial	Practical	Total		
		(PEL)	(L)	(T)	(P)	Hours		
ME 1022	Advanced Heat	PCR	3	1	0	4	4	
	Transfer							
Pre-requisit	tes	Course Assessme		ds (Continu	ous (CT) ar	nd end		
		assessment (EA))					
NA		CT+EA						
Course	CO1: Students will b	he able to unders	tand the	history c	oncents fo	ormulati	ons and	
Outcomes	applications of He		tunia the	motory, c	oncepto, re	, interaction	und und	
	CO2: Students will be a		solvo var	ious practic	al problems		lications	
	of Heat Transfer.	ible to analyze and	SOLVE Val	ious practic	ai problema	s on app	incations	
	and theoretical pr	e able to apply various solution techniques for solving new applied						
Topics	1. Heat Conduction Fu						4	
Covered	1.1 Coordinate systems						•	
	1.2 Nondimensional and		ction equ	ation				
	1.3 Heat conduction equ							
	1.4 Lumped and partial							
		1.5 Orthogonal functions, boundary value problems, Sturm-Liouville problem,						
		and Fourier series						
	2. Separation of Var						4	
	2.1 Separation of vari							
	2.2 Separation of vari				n			
	-	2.3 Separation of variables in spherical coordinate system						
	3. Approximate Ana	lytic Methods					4	
	<u> </u>	3.1 Integral method						
	3.2 Approximate anal	3.2 Approximate analytic method of residuals						

	3.3 Galerkin method	
	3.4 Partial integration	
	4. Heat Convection Fundamentals	7
	4.1 Conservation equations	
	4.2 Rules of scale analysis	
	4.3 Heatlines for visualizing convection	
	5. Principle of Similarity to Heat Transfer	7
	5.1 Derivation of dimensionless parameter from the differential equations	1
	5.2 Application of Pi-theorem to establish self-similarity and reduce partial	
	differential equation to ordinary ones	
	5.3 Dimensional analysis	
	6. Boundary Layer Theory	8
	6.1 Fundamental problem in convective heat transfer	
	6.2 Similarity solutions	
	6.3 Other wall heating conditions	
	7. Heat Radiation Fundamentals	10
	7.1 Thermodynamic properties of thermal radiation	10
	7.2 Ideal conversion of blackbody radiation	
	7.3 Applications to solar energy harvesting	
Text Books,	Text Books:	
and/or	1. Fundamental of Heat and Mass Transfer by Incropera and Dewitt, Wiley	
reference	2. Heat Transfer by Bejan, Wiley	
material	Reference Books:	
	1. Heat Conduction by Kakac and Yener, CRC Press	
	2. Heat Convection by Kakac and Yener, CRC Press	
	3. Thermal Radiation Heat Transfer by Howell, Siegel, and Mengüç, CRC Press	

	i i i i i i i i i i i i i i i i i i i	Pepartment of Mecha	-				a 1		
Course	Title of the	0					Credit		
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total			
		Electives (PEL)	(L)		(P)	Hours			
ME 1023	Advanced Fluid	PCR	3	1	0	4	4		
	Mechanics								
Pre-requisit	es	Course Assessmer	nt methods ((Continuous ((CT) and en	d assessm	nent		
		(EA))							
NA		CT+EA							
Course	CO1: To introduc	e fundamental conce	ept of fluid	and its proper	rties: conce	pt of conti	inuum		
Outcomes		CO1: To introduce fundamental concept of fluid and its properties: concept of continuum CO2: To introduce type of analysis of fluid motion							
		CO3 To learn fundamental equations of fluid flow							
		CO4: To learn analytical solutions of some steady and unsteady incompressible flows							
		drodynamic stability		,					
		ncept of creeping flo		odvnamic lul	orication.				
		undary layer concep							
		ncept of potential flo							
		CO9: To learn fundamental concept of turbulence and turbulent flow.							
Topics		definition of fluids				different	8		
Covered		f describing fluid m					0		
		conservation laws f							
		f fluid motion, relat			cles. Newto	on's law	10		
		postulates of Stokes,					10		
		(Stokesian fluid), Na							
		le fluid, exact solut		•		5			
-	incompressio	ie maid, chael bolu		ier blones e	quality 101	several			

	 special cases. Introduction to hydrodynamic stability, linear stability of plane Poiseuille flow, Orr-Sommerfeld equation, unsteady exact solution of Navier Stokes equation: Stokes first and second problem, Hydrodynamic theory of lubrication, thin film equation, slider bearing, Potential flow: basic flows, superposed flows, 2D steady inviscid constant density irrotational flow past a wedge High Reynolds number flow past a semi-infinite plate, and concept of boundary layer, Prandtl's boundary layer equation, approximate (von Karman momentum integral method) and exact solutions (Blasius solution) of the boundary layer equation for flat plate, boundary layer with pressure gradient,: Falkner-Skan flow past a wedge Introduction to turbulence, Reynolds decomposition, Reynolds-averaged Navier Stokes equation, concept of turbulent stresses, Prandtl's mixing length 	10 8 8
	hypothesis, near wall velocity profile: law of the wall and velocity defect law, concept of eddy viscosity, turbulent intensity, turbulent kinetic energy	
Text Books,	Text Books:	
and/or	1. Viscous Fluid Flow Author: White F.W., McGraw Hill	
reference	2. Boundary Layer Theory Author: Schlichting H, Springer	
material	3. Viscous Flow Author: Sherman F., McGraw Hill	
	Reference Books:	
	1. Advanced Engineering Fluid Mechanics, Author: Muralidhar K.M., Biswas G., 1	Narosa
	2. An Introduction to Fluid Dynamics, Author: Batchelor, G.K., Cambridge3. Incompressible Flow: Panton, R. L., Wiley	

	I	Department of Mecha	nical Engin	leering				
Course	Title of the course	Program Core						
Code		(PCR) /	Lecture	Tutorial (T)	Practical	Total		
		Electives (PEL)	(L)		(P)	Hours		
ME 2021	Advanced Energy	PCR	3	1	0	4	4	
	Conversion							
Pre-requisi	tes	Course Assessmen	t methods (Continuous (CT) and en	d assessm	ient	
		(EA))						
NA		CT+EA						
Course OutcomesCO1: Students will be able to understand the history, concepts, formul applications of various Power Generation Systems.CO2: Students will be able to analyze and solve various practical problems on a of Power generation systems.CO3: Students will be able to apply various solution techniques for solving new and theoretical problems.				ns on app	lications			
Topics Covered		resources, Energy S	cenario in I	ndia, Introdu	ction to Dif	ferent	3	
Covered	Advanced Coal	Energy Conversion systems Advanced Coal Technologies (ACT), Pulverized fired and Fluidized bed combustion Technologies						
		ed energy conversion	n Technolog	ties			6	
	Advanced Powe	Advanced Power Generation Cycles: Supercritical power Plant, Cogeneration, combined cycle, Integrated Gasification Combined Cycle (IGCC)						
		conversion Technol			/		2	
	00	Conversion: Fuel Cell	0	łydroDynami	c (MHD) s	ystem	8	
		Generation Technolo	0	5			6	
		Different CO ₂ capture Technologies						
Text Book	s, Text Books:							
and/or	1.Principles of	Energy Conversion	by A.W. Cu	lp, Tata McG	raw Hill			

reference	2. Energy Conversion edited by D. Goswami, F. Kreith, CRC Press
material	Reference Books:
	1. Fluidized Bed Technology: Principles and Applications by J.R. Howard, CRC Press
	2. PEM Fuel Cells: Theory and Practice by FranoBarbir, Academic Press

		Department of Mecha						
Course	Title of the	Program Core	Total Nu	mber of conta			Credit	
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total		
		Electives (PEL)	(L)		(P)	Hours		
ME 2022	Advanced I.C. Engine	PCR	3	1	0	4	4	
Pre-requisit	es	Course Assessmen	nt methods ((Continuous ((CT) and en	d assessm	nent	
		(EA))						
NA		CT+EA						
Course	CO1 Mec	hanism of interna	al combus	stion engin	les			
Outcomes	CO2 Knov	wledge of IC engi	ine fuel	U				
	CO3 Pollu	ition from interna	al combu	stion engir	nes			
		hanism of gas tui						
	CO5 Outl	ines of alternativ	es of alternative fuels					
Topics		ic Analysis of I.C.					13	
Covered		operating parameters on cycle efficiency. Modified fuel-air cycle considering						
		heat losses and valve timing. Engine dynamics and torque analysis. Use of						
		hart. Thermodynami						
		C.I. Engines. Limits of Supercharging. Methods of Supercharging and						
	1 0	Superchargers.						
		mbustion in S.I. en					14	
		netric efficiency, me						
		ory of carburetion.						
		Engines. Cooling of engine and governing of engine. Ignition system:						
		conventional and electronic. Variable compression ratio engine. Theoretical analysis, methods of obtaining						
							15	
	-	variable compression ratio, Wankel rotary combustion engine, Stratified charged engine, Methods of charge stratification, Dual fuel and Multi-fuel						
			·					
	9	engines, Biofuels, Variable Valve timing engines, Exhaust emissions, its measurement and control. Fault diagnosis of S.I. Engines.						
Text Books			0	<u> </u>			·	
and/or		ls of I.C. Engine by (Ganeshan, T	Tata McGraw	Hill			
reference		s /RK Rajput/Laxmi l						
material	Reference Boo							
	1. Internal C	Combustion Engines a	nd Air Poll	ution, Edwar	d F. Obert;			
	2. Fundame	ntals of I.C. Engines	by H.B. Hey	wood, McGi	raw Hill			

Department of Mechanical Engineering								
Course	Title of the	Program Core	Total Nu	mber of conta	ct hours		Credit	
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total		
		Electives (PEL)	(L)		(P)	Hours		
ME 2023	Analytical	PCR	3	1	0	4	4	
	Methods in Heat							
	Transfer and							
	Fluid Flow							
Pre-requisite	S	Course Assessmer	Course Assessment methods (Continuous (CT) and end assessment					
			(EA))					
NA	NA							

Course Outcomes	 CO1: Students will be able to understand the history, concepts, formulations and applications of Thermodynamics, Heat Transfer, and Fluid Mechanics. CO2: Students will be able to analyze and solve various practical problems on applications of Thermodynamics, Heat Transfer, and Fluid Mechanics. CO3: Students will be able to apply various analytical and semi-analytical solution techniques to practical and theoretical problems in order to compare them with the results of CFD and experimentation. 					
Topics	Variational formulation	4				
Covered	Fermat's principle	3				
	Entropy generation minimization principle	3				
	Constructal law	3				
	Equipartition principle	4				
	Method of intersecting asymptotes	3				
	Fluid flow systems	4				
	Conductive heat transport system	4				
	Conjugate heat transport system	4				
	Thermoelectric devices	4				
	Finite-time heat engines	4				
Text Books,	Text Books:	1				
and/or	1. B. Weigand, Analytical Methods for Heat Transfer and Fluid Flow	Problems,				
reference	Springer, New York.					
material	2. A. K. Pramanick, The Nature of Motive Force, Springer, New York.					
	Reference Books:					
	1. M. N. Ozisik, M. D. Mikhailov, Unified Analysis and Solution of Heat a	ind Mass				
	Diffusion, Dover, New York.					
	2. J. Fourier, Analytical Theory of Heat, Dover, New York.					

ELECTIVES

Department of Mechanical Engineering							
Course	Title of the	Program Core	rogram Core Total Number of contact hours				
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total	
		Electives (PEL)	(L)		(P)	Hours	
ME 9011	Applied	PEL	3	1	0	4	4
	Computational Methods						
Pre-requisite	S	Course Assessmen (EA))	nt methods ((Continuous ((CT) and en	d assessm	ient
NA							
Course	CO1						
Outcomes	CO2						
	CO3						
Topics	Solution of linea	ar simultaneous equa	tions, matri	x Inversion			6
Covered	Solution of non-	-linear equation of or	ne variable a	and solution o	of system of	f	6
	non-linear simu	ltaneous equation					
	Interpolation an	d curve fitting					4
	Numerical diffe	rentiation and integra	ation				4
		nary differential equa	ations and s	olution of pai	rtial		5
	differential equa						_
	Discrete and Fast Fourier transformation						5
	Analysis of Eigen value problems Application to different types of Boundary value, Initial value and Eigen						4
	value problems	ufferent types of Bou	indary value	e, Initial value	e and Eigen	l	4

	Brief discussion on software for numerical solution 2
Text Books,	Text Books:
and/or	1. Advanced Engineering Mathematics, E. Kreyszig
reference	2. Numerical Methods for Scientist and Engineers, R. W. Hamming
material	Reference Books:
	1. Introduction to Numerical Analysis, F. B. Hildebrand
	2. Fundamentals of Engineering Numerical analysis, P. Moin

		Department of Mecha						
Course	Title of the	Program Core	Total Nu	mber of conta			Credit	
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total		
		Electives (PEL)	(L)		(P)	Hours		
ME 9014	Operation	PEL	3	1	0	4	4	
	Research							
Pre-requisite	S	Course Assessmen (EA))	nt methods ((Continuous ((CT) and en	d assessm	ient	
NA		CT+EA						
Course	CO1: Stud	ents will be able t	o discuss	the history,	concepts,	formulati	ons and	
Outcomes		cations of operations						
		ents will be able to a					nstrained	
		r optimization probler						
		ents will be able to		ger, dynamio	programn	ning metl	nods for	
		ng relevant problems.		1	D			
Topics Covered		, definition, methodol					2 7	
Covered	Linear Programming, Mathematical Modeling, Graphical Method of Solution, Sensitivity Analysis							
		Simplex Method, Big M and 2-Phase Methods, Duality in LP						
	-	Transportation problem						
		Assignment Problem						
		Sequencing problem						
		Queuing model and Simulation						
		Competitive Decision Making, Game Theory						
		and Sensitivity Anal	0				4 3	
	5	Integer Programming, Binary Integer Programming						
	0 0	Dynamic Programming						
	LP- Softwares							
Text Books,	Text Books:						-	
and/or		uction to Operations F	Research, Fr	edrick S. Hill	lier and Ger	ald J.		
reference		man, 7 th Edition, TMI						
material	2. Indust	rial Engineering and M	Managemen	t O.P.Khani	na			
	3. Operat	3. Operation Research for Engineers S. K.Basu, D. K.Pal, H.Bagchi						
	4. Operat	4. Operation Research: an Introduction D.S.Hira, P.K.Gupta						
	Reference Boo	ks:						
	1. Introdu	action to Operation Re	esearch C.	M.Churchma	n, R.L.Aek	aff, E.L.A	rnoff	
	2. Operat	ion Research in Produ	uction and I	nventory Cor	trol F.Ha	nssmann		

	Department of Mechanical Engineering								
Course	Title of the	Program	Total N	umber of o	contact h	ours	Credi		
Code	course	Core (PCR) /	Lecture	Tutorial	Practic	Total	t		
		Electives	(L)	(T)	al (P)	Hour			
		(PEL)				S			
ME 9016	Mechatronic	PEL	3	1	0	4	4		
	S								
Pre-requisites Course Assess		ment met	hods (Con	tinuous (CT) and	l end			

ME1001	assessment (EA)) CT+EA
Course Outcomes	 CO1: Students will be able to identify the importance of amalgamation between the electronics and electro-mechanical systems. CO2: Students will be able to formulate and evaluate behavior of linear time continuous control systems. CO3: Students will be able to formulate the procedure for converting analog signals to digital form and vice-versa. CO4: Students will be able to describe signals and its processing by modern electronic methods. CO5: Students will be able to identify and critically evaluate current developments and emerging trends within the field of mechatronic systems.
Topics Covered	MechatronicSystems:Introduction,ApplicationofMechatronics.2Sensors and Transducers - Brief review,Simple electronic elements &OperationalAmplifiers.4Actuators:Pneumatic,Hydraulic,Electrical &Mechanical actuationsystem,Micro-actuators.6Modelling and Simulation of Physical System:System models,Dynamicresponsesofthesystem,Systemsystem6Digital logic:Numbersystems,Booleanalgebra,Logicgates -Applicationgate,Designoflogicofdigitallogicgates.6Microprocessorsand Micro-Controllers:Introduction,Microprocessor6Microprocessors and Micro-Controllers:Introduction,MicroprocessorArchitecture,Instructioncodes,Generalrequirementsforimplementationissues,Examples.6ProgrammableLogicControllers:Basicstructure,I/Oprocessing,Programming,Timer,InterrelaysandCounters.8Signalconditioning & Digitalcommunicationsystem:Basics of signalconditioning,Filtering,DataacquisitionandDigitalsignalprocessing,DigitalcommunicationandCommunicationinterface.8MechatronicSy
Text Books, and/or reference material	 Text Books: Alciatore, D. G. and Histand, M. B., Introduction to Mechatronics and Measurement Systems, McGraw Hill Publications, 4th Edition, 2012. Bolton, W., Mechatronics, Pearson Education India, 2008. Gaonkar, R.S., Microprocessor Architecture, Programming and Applications with 8085, Penram Publishers India, 6th Edition, 2013. Reference Books: Malvino, A. P., and Bates, D. J., Electronic Principles, TMH Publishing Company Ltd., New Delhi, 8th Edition, 2016. Nise, N. N., Control Systems Engineering, 6th Edition, John Wiley & Sons, Inc., USA, 2011.

Department of Mechanical Engineering						
Course	Title of the	Program Core	Total Number of contact hours	Credit		

Code	course	(PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours		
ME 9018	Finite Element Methods	PEL	3	1	0	4	4	
Pre-requisite	2S	Course Assessmer (EA))	nt methods ((Continuous (CT) and en	id assessm	ent	
NA		CT+EA						
Course Outcomes	CO1 CO2 CO3							
Topics Covered	Eigenvalue sol calculus of varia	f mathematical con ution, Numerical ation and Rayleigh-R	Integration, titz method.	Weighted	residual r	nethods,	5	
	system. Potenti approach and G	finite element meth al Energy approach alerkin's weighted re	n and virtu esidual appr	al work app oach for cont	oroach, Va inuum.	riational	6	
	Pascal triangle,	Interpolation polynomial – Lagrangian and Hermite. Natural Co-ordinates, Pascal triangle, concept of continuity, convergence criteria.						
	rectangular ele	Common elements: Bar elements, beam elements, triangular Elements, rectangular elements etc. Lagrangian Elements and Serendipity Elements. Concept of isoparametric elements.						
	Concept of time	Concept of time-independent field problem and time independent field problem involving differential equations. Different types of Boundary conditions.						
	Application of f	Concept of mass matrix. Vibration problem and dynamic response problem. Application of finite element to structural problem: Plain stress / Plane strain						
	of plates, three-	problems, axisymmetric problems, plasticity and non-linear problems, Bending of plates, three- dimensional stress analysis problems, etc.						
	element analysis	Introduction to geometric non-linearity and material non-linearity in finite element analysis.						
		dure for finite eleme	nt analysis.				3	
Text Books, and/or reference material	1. An Introduct	ion to the Finite Eler Finite Element analy			у			
-		lement Method in Er lement Method its B). C. zienki	ewich, R. 1	L.	

	Department of Mechanical Engineering								
Course	Title of the	Program	Total Number of contact hours Cr						
Code	course	Core (PCR) /	/ Lectu Tutori Practic Tota it						
		Electives	re (L)	al (T)	al (P)	1			
		(PEL)				Hou			
						rs			
ME9019	Robotics	PEL	3	1	0	4	4		
Pre-requis	ites	Course Assessment methods (Continuous (CT) and end							
		assessment (EA))							
Knowledge of	on Mechanisms	CT+EA							
Course CO1: Students will be able to discuss the history, concepts and technologies.				nd key comp	oonents of	robotics			
	CO2: Students v	CO2: Students will be able to analyse and solve problems spatial transformation, forward							
	and inverse	and inverse kinematics, dynamics of robot manipulators, jacobian and singularities,							

	joint trajectory for motion planning.
	CO3: Students will be able to describe and compare various robot grippers, sensors, actuators and controllers and their perception.
Topics Covered	Introduction to Robotics: Definition, Anatomy, Coordinate Systems, Work Envelopes, Basic structure, classification, applications of robots.4Robot Arm Kinematics: Frame transformation, Denavit-Hartenberg convention, Forward and Inverse kinematics of serial manipulator.12Linear and Angular Velocity of Links and Statics of Serial manipulator: Jacobians, Singularities.8Introduction to Dynamics of Serial Manipulators: Lagrange-Euler formulation.8Trajectory Planning of Manipulator: Joint space scheme, Cartesian space scheme.6Robot Sensors: Contact type, non-contact type, internal sensor, External sensor, Range
Text Books, and/or reference material	 Text Books: 1. Fu, K., Gonzalez, R. and Lee, C. S. G., Robotics: Control, Sensing, Vision and Intelligence, McGraw- Hill, 1987. 2. Craig, J. J., Introduction to Robotics: Mechanics and Control, 2nd Edition, Addison- Wesley, 1989. 3. Saha, S. K., Introduction to Robotics, TMH Publishing Company Ltd., New Delhi, 2008. 4. Pratihar, D. K., Fundamentals of Robotics, Narosa Publishing House, India, 2017. Reference Books: 1. Ghosal, A., Robotics: Fundamental Concepts and Analysis, Oxford University Press, 2nd reprint, 2008. 2. Spong, M. W., Hutchison, S., and Vidyasagar, M., Robot Modeling and Control, Wiley India, New Delhi, 2006.

Department of Mechanical Engineering							
Course	Title of the	Program Core	Total Number of contact hours				
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total	
		Electives (PEL)	(L)		(P)	Hours	
ME 9020	Knowledge	PEL	3	1	0	4	4
	Based Systems						
Pre-requisite	S	Course Assessmer	nt methods ((Continuous (CT) and en	d assessm	nent
		(EA))					
NA		CT+EA					
Course	CO1: Student	s will be able to	understa	nd need of	soft com	puting	
Outcomes	techniques						
		s will be able to					
	-	ig methods for s	0	0 0.	L .		
		s will be able to	apply cor	mbined sof	t-comput	ing	
	techn	liques					
Topics	Introduction to	expert systems – I	Definition,	Need for exp	pert systen	15,	6
Covered	Methods of dev	eloping expert sys	tem – offli	ne training/l	earning A	ND on-	
	line training/lea	arning Tools for de	veloping e	xpert system	ns – Hard		
	Computing vs.	Soft Computing.					10
		eory, Fuzzy Logi					10
	Neural Netw	ork (NN) Contro	ollers – ba	ick propaga	ation net	work,	10
	SOM, radial l	pasis function ne	etworks, i	recurrent r	neural ne	tworks	

		16					
	Learning/optimisation tools - traditional (direct search and						
	gradient based) and non-traditional (genetic algorithms (GAs),	10					
		10					
	Combined techniques of soft computing – GA-FLC, GA-NN, NN-	4					
		4					
	MatLab toolbox on GA, FLC and NN.						
Text Books,	Text Books:						
and/or	1. S.S. Rao, Engineering Optimization, Theory and Practics, 3 rd Enlarged Edition,						
reference	New Age International Publishers, New Delhi, 2010.						
material	2. David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine						
	Learning, Addison-Wesley, Reading, Mass, 1989.						
	3. Simon Haykin, Neural Network and Learning Machines, 3 rd Edition, Person						
	Education, India						
	4. D. K. Pratihar, Soft Computing, Narosa Publishers, 2011						
	5. Timothy J. Ross, Fuzzy Logic with Engineering Applications, 3 rd Edition, Wiley	v,					
	2011.	, -					
	Reference Books:						
	1. Soft Computing and Its Applications, Vol. 1 & 2, Kumar S. Ray, Apple Academic Pres	SS					

	I	Department of Mecha	nical Engin	neering				
Course	Title of the	0					Credit	
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total		
		Electives (PEL)	(L)		(P)	Hours		
ME 9025	Modeling and Simulation of Mechanical Systems	PEL	3	1	0	4	4	
Pre-requisites		Course Assessmer (EA))	nt methods ((Continuous ((CT) and en	d assessm	nent	
NA		CT+EA						
Course Outcomes	CO1 CO2 CO3							
Topics Covered		analytical mechanics; classification of constrains, Principles of Lagrange's first equation. Lagrange's second equation. quations.						
		Nonholonomic mechanical system dynamics, Routh and Gibb's equation, Kane dynamics with application to multi body systems.						
		ystems involving co lium. Elements of th					8	
	multi-bond grap	pics in bond graph i hs, Thermo-mechani of typical interest.	ical bond gr	aphs and con	tinuous sys	tems and	11	
	Basic elasticity theory. Strain Measurement Methods: Various types of strain gauges, Electrical Resistance strain gauges, semiconductor strain gauges, strain gauge circuits, transducer applications, recording instruments for static and dynamic applications.							
Text Books,	Text Books:							
and/or		ynamics of Mechani	5					
reference material	2. Bondgraph i Samanta Ray	n Modeling, Simulat ^y	ion& Fault	Identificatior	n, Mukherje	e, Karmal	kar,	
	Reference Book	xs:						

1. System Dynamics, D. C. Karnopp, D. L. Margolis, R. C. Rosenberg
2. Modeling and Simulation of Dynamic Systems, R.L.Woods, K.L.Lawrence

		rtment of Mecha					-
Course	Title of the	Program		umber of o			Credi
Code	course	Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practic al (P)	Total Hour s	t
ME9029	Optimizatio n in Engineering	PEL	3	1	0	3	3
	Engineering Design						
Pre-requis		Course Assess assessment (E		thods (Con	itinuous ((CT) and	l end
NIL		CT+EA					
Course Outcomes	 CO1: Students will be able to describe and formulate optimization problems CO2: Students will be able to apply knowledge of different optimi methods for solving engineering problems CO3: Students will be able to differentiate between optimization methods and suggest a suitable technique applicable for a specific sector. 						
Topics Covered	the Optimiza 4 Classical Me Optimization Constraints, 1 One-Dimension 6 Elimination M 4 Interpolation 2 Unconstrained Directions, S Marquardt 6 Constrained Sequential Q Function Met Function Met Non-tradition Simulated a Optimization. Reduction of variables 3 Multi-objectiv 6	lethods: Exhaust Method – Qua d Minimization teepest Descen Method, Minimization uadratic Progra hod, Interior Pe hod. al Optimization nnealing. Parti Tabu search. size of an optimization	Classific Variabl Constraint onditions ation M tive searc adratic an n Method, amming. enalty Fu n Techn icle swa ptimizatic and cion j	eation, for le Optim s with Eq ; Linear of lethod. h, Fibonoo nd Cubic od U ny) Metho Quasi-Ne , Randor Basic App nction Me niques - .rm optim 16 on problems,	rmulation ization; quality a Optimiza Unimoda cci and G Interpola Jnivariate od, Newt wton m Sear proach o ethod, Ex 5 Genetic nization. m. Scali	Multiva Multiva and Ine tion Me al Fu olden M ation M e, Con ton's M ch Me f the H terior H ch Me f the H terior H ant ng of const	edures. ariable quality ethods, nction. lethods, lethod. lethod, lethod, lethods, Penalty Penalty rithms. Colony
Text	4 Text Books:	to optimization '					
Books,		, Engineering	Optimizat	tion, Theo	ory and	Practic	s, 3rd

and/or reference	Enlarged Edition, New Age International Publishers, New Delhi, 2010.					
material	2. Ashok D. Belegundu and Tirupathi R Chandrupatla, Optimization Concepts and Applications in Engineering, Pearson Education 1999, First India Reprint, 2002.					
	Reference Books:					
	1. G. N. Vanderplaats, Numerical Optimization Techniques for					
	Engineering Design with Applications, McGraw-Hill, New York,					
	1984.					
	 R. L. Fox, Optimization Methods for Engineering Design, Addison- Wesley, Reading, Mass, 1971. 					

	Γ	Department of Mecha	anical Engir	eering				
Course	Title of the	Program Core	Total Nu	Credit				
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total		
		Electives (PEL)	(L)		(P)	Hours		
ME 9071	Combustion Engineering	PEL	3	1	0	4	4	
Pre-requisite	5	Course Assessmer (EA))	nt methods	(Continuous ((CT) and er	nd assessm	ient	
NA		CT+EA						
Course	CO1							
Outcomes	CO2							
	CO3							
Topics Covered		YSIS: Gas, steam an cycles, second law a		l power cycle	es, refrigera	tion and	5	
	COMBUSTION combustion me stability, kinetic ignition and ext and CI engines, COMBUSTION coal burning sys	THEORY : Fu chanism, adiabatic cs, combustion aero inction and condens ignition and burning SYSTEMS : Solid stems, cyclone comb ombustion, fundamer	els and t flame temp odynamics, sed phase co grate analys burning eq pustors, emis	perature, flan gaseous det ombustion, co is. uipment's, st ssions, types	ne propaga onations, f ombustion okers, pulv of fluidized	ition, lame in SI rerized l beds,	10 10	
	types, gas turbin DESIGN OF C for boilers, fu combustion chan PROPELLANT	e combustion system OMBUSTION SYS rnaces, gas turbing mber performance. SYSTEMS; Types	ns, combust TEMS; De es and int	ion modellin sign of comb ernal combu	g pustion syst istion eng	tems ines,	10 5	
Text Books, and/or reference	calculations Text Books: 1. Stephen R T McGraw H	Furns, "Introductio	n to Comb	ustion: Con	cepts and A	Applicatio	ons",	
material	2. I G.L. Born 1998.	2. I G.L. Borman and K.N. Ragland, "Combustion Engineering", McGraw Hill,						
	Wiley &	guson and A.T. Ki Sons rbone, "Advanced				0	", John	

Department of Mechanical Engineering								
Course	Title of the course	Program Core	Total Number of contact hours	Credit				
Code		(PCR) /	Lecture Tutorial (T) Practical Total					

			Electives (PEL)	(L)		(P)	Hours			
ME 9072	So	lar Thermal	PEL	3	1	0	4	4		
		stems								
Pre-requisite	es		Course Assessment methods (Continuous (CT) and end assessment							
NT A			(EA))							
NA			CT+EA							
Course		CO1: Identify and	d explain the use of a	ictive, passi	ve solar therr	nal systems	5.			
Outcomes		CO2: Develop a	n understanding tha	t solutions	to energy-re	elated probl	ems are			
			sociological, econo	omic, poli	tical and te	echnologica	l consid	erations,		
			nd development.			1	,			
			t into the issues surr					1 4 - 1		
		and industr	owledgeable about a	pplications	as they apply	to comme	rcial, resid	lential		
Topics Cove	ered		DN – Solar energy op	ntion specia	alty and note	ntial – Sun	– Earth	12		
Topics Cove	licu		n, beam and diffuse					16		
			n horizontal and tilte							
		Capturing solar	radiation – physical	principles o	f collection –	- types – liq	uid flat			
			-construction detail							
			plate collectors with	-		-	rabolic			
			entation and tracking – Performance Analysis.							
			ERATION – solar central receiver system – Heliostats and at transport system – solar distributed receiver system – Power							
			fluids and prime mo				rower			
			NERGY STORAGE				hods of	11		
		sensible heat sto	orage using solids and	d liquids – I	Packed bed st	torage – La	tent heat			
			ng principle – const							
			stills, air heaters, d	lryers, Sola	r Ponds & S	Solar Refrig	geration,			
			ve heating systems.	1.1	· · 1	• 1		-		
			GY CONVERSION: -performance -					5		
			ziencies calculations.		CONSULUCI	on, appin				
			Principles of Econon		s – Discounte	ed cash flow	v – Solar	5		
			cle costs – cost ben							
		analysis of wate	r heating and photo v	oltaic appl	ications.					
Text Books,		Text Books:								
and/or refere	ence	01	: Principles of Thern	nal Collecti	on and Storag	ge/ Sukhatn	ne /TMH/2	2 nd		
material		edition								
			/ H. P. Garg/TMH							
		Reference Book 1. Solar energ	a s: (y thermal processes/	Duffic and	Bockman/Io	hn Wilow 9	Song			
		0	y thermal processes/ of solar engineering/			0		dition		
		∠. Fincipies (n solar engineering/		iveriuer/ i dyl		SCI5/2110 E			

Department of Mechanical Engineering										
Course	Title of the	Program Core	Total Nu	Total Number of contact hours						
Code	course	(PCR) /	Lecture							
		Electives (PEL)	(L)		(P)	Hours				
ME 9073	Design of	PEL	3	1	0	4	4			
	Thermal Systems									
Pre-requisite	S	Course Assessment methods (Continuous (CT) and end assessment								
		(EA))								
NA		CT+EA								
Course	CO1: Latest met	hodologies for the de	esign of the	rmal system						
Outcomes	CO2: Use of eco	nomics, system simu	ulation and	optimization	method for	thermal s	ystem			
	CO3: Will learn exergy analysis and its application for thermal system									
	CO4: Use of the	CO4: Use of thermo-ecological parameters to assess various thermal system								
	CO5: Modelling	of energy system			-					

Topics 1 Introduction to Thormal System Design	7
Topics <u>1. Introduction to Thermal System Design</u> CoveredIntroduction	7
Life cycle design	
Thermal system design aspects	
Computer aided thermal system design	-
2. Thermodynamics, Modelling, and Design Analysis	7
Basic concepts and definition	
Control volume aspects	
Property relations	
Reacting mixtures and combustion	
Modelling and design of piping systems	
3. Thermodynamic Modelling of Polygeneration System	7
Modelling of Power Generation	
Modelling of Cogeneration	
Modelling of Polygeneration	
<u>4. Exergy Analysis</u>	7
Why exergy and energy analysis	
Balances for mass, energy and entropy	
Physical exergy	
Chemical exergy	
Exergy for systems and flows	
Exergy balance	
Reference environment	
Applications	
5. Applications with Thermodynamics and Heat and Fluid Flow	7
Heat transfer	
Heat exchangers	
Trade-off between thermal and fluid flow irreversibility	
Application to power generation and refrigeration	
<u>6. Economic Analysis</u>	
Estimation of capital investment	
Principles of economic evaluation	
Cost of utility	
Profitability evaluation	
7. Thermoeconomic Analysis and Evaluation	7
Fundamental of thermoeconomics	7
Thermoeconomic variable for component evaluation	
Costing considerations	7
8. Thermoeconomic Optimization	7
Introduction to optimization	
Cost optimal exergetic efficiency	
Optimization of heat exchanger networks	
Enhanced system optimization	
9. Exergy Method: Ecological Applications	7
Cumulative exergy consumption	
Thermo-ecological cost	
Applications	
Text Books, Text Books:	
and/or 1. Bejan A., Tsatsaronis G., Moran M.; Thermal design and optimi	zation. Wiley.
reference (Textbook)	6
material 2. Jaluria Y., Design and optimization of thermal system. CRC Pre	SS
3. Szargut J., Exergy method: Technical and ecological application	
	ablo
4. Dincer I., Rosen MA., Exergy: Energy, environment and sustain	able
4. Dincer I., Rosen MA., Exergy: Energy, environment and sustain development. Elsevier.	dule

	Ι	Department of Mecha	anical Engir	eering					
Course	Title of the	Program Core	Total Nu		Credit				
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total			
		Electives (PEL)	(L)		(P)	Hours			
ME	Advanced	PEL	3	1	0	4	4		
9074	Refrigeration								
	and Air-								
	conditioning								
Pre-requisit	es	Course Assessmer	nt methods	(Continuous ((CT) and en	d assessm	nent		
		(EA))							
NA		CT+EA							
Course	CO1								
Outcomes	CO2								
	CO3								
Topics	-	mpression system –	-	-	mpression a	system	5		
Covered		nent friendly refrigerants – cascade system.							
		geration system – Three fluid absorption system comparison					10		
	-	f absorption with compression system - Analysis of multistage systems							
		nometric calculations		oad calculation	ons Determ	ination	10		
		ort method calculatio					10		
	-	e refrigeration - Joul	-		– liquefactio	on of air	10		
	, i i	lium - Applications o				_	5		
		oution – Friction loss	es in ducts ·	- Duct design	, Air filters	clean	5		
	rooms – Air cur	tain							
Text Books									
and/or		C.P., Refrigeration a	nd Air Conc	litioning, 2nd	ed., Tata M	1cGraw-E	lill,		
reference	2004.	·_ ·_			_		_		
material		, W.P. and Jones, J.V	V., Refriger	ation and Air	Conditioni	ng, 2nd e	d.,		
		cGraw- Hill, 1982.							
	Reference Bool		1		NT 4	. .	1		
		ar Prasad, Refrigerati	on and Air	Conditioning	, New Age	Internatio	nal,		
	1996.		_						
	2. Gosney	2. Gosney, W.B., Principles of Refrigeration, Cambridge Uni. Press, 1982.							

	Department of Mechanical Engineering								
Course	Ti	tle of the course	Program Core	Total Number of contact hours				Credit	
Code			(PCR) /	Lecture	Tutorial (T)	Practical	Total		
			Electives (PEL)	(L)		(P)	Hours		
ME 9076	Ac	lvanced Turbo-	PEL	3	1	0	4	4	
	Μ	achineries							
Pre-requisit	tes		Course Assessmer	nt methods ((Continuous (CT) and en	d assessm	nent	
			(EA))						
NA			CT+EA						
Course		CO1							
Outcomes		CO2							
		CO3							
Topics			assification of turbo						
Covered			inery. Incompressib						
			er and Mach numb						
			rbine equation – co						
			ciencies. ; Radial flo						
		-	elationship – Axial flow pumps and compressors – Degree of reaction						
			ionless parameters – Efficiency and utilization factor in Turbo						
			hermodynamics of						
		and expansion e	efficiencies – Stage	efficiency -	– Infinitesim	al stage and	d finite		

	stage efficiencies. ; Flow of fluids in Turbo machines – flow and pressure distribution over an air foil section – Effect of compressibility cavitation's – Blade terminology- Cascades of blades – fluid deviation –Energy transfer of blades – Degree of reaction and blade spacing – Radial pressure gradient – Free vortex flow – losses in turbo machines; Centrifugal pumps and compressors – Inlet section – Cavitation flow in the impeller channel – flow in the discharge casing pump and compressor characteristic. ; Radial flow turbines –inward flow turbines for compressible fluids – inward flow hydraulic – velocity and flow coefficients gas turbine blading – Kaplan turbine – Pelton wheels.
Text Books,	Text Books:
and/or	1. Lee, 'Theory and Design of Steam and Gas Turbine', McGraw Hill, 1954.
reference	2. Yahya, 'Turbines, Compressions & Fans', Tata McGraw Hill, 1983.
material	Reference Books:

		Department of Mecha	nical Engin	eering					
Course	Title of the	8							
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total			
		Electives (PEL)	(L)		(P)	Hours			
ME 9078	Design with	PEL	3	1	0	4	4		
	Constructal								
	Theory								
Pre-requisite	25	Course Assessmen	nt methods ((Continuous (CT) and en	d assessm	ient		
		(EA))							
NA		CT+EA							
Course	CO1								
Outcomes	CO2								
	CO3								
Topics	5	esign in accordance w	rith construc	tal law			4		
Covered		Distribution of imperfections							
	0 1	Design of simple flow configurations							
	Tree networks	Tree networks for fluid flow							
	Configurations	Configurations for heat conduction							
		Multi-scale configurations							
	5	e configurations					4 4		
	Vascularized n	Vascularized materials							
		for electro-kinetic ma					4 4		
	Mechanical an	Mechanical and flow structures combined							
Text Books,	Text Books:								
and/or		S. Lorente, Design w							
reference material	2. A. Bejan, S	Shape and Structure, f	rom Engine	ering to Natu	re, Cambrid	lge, Caml	oridge.		
	Reference Boo	ks:							
		1. Bejan, J. P. Zane, Design in Nature: How the Constructal Law Governs Evol							
	in Biolo York.	egy, Physics, Technolo	ogy, and So	cial Organiza	tion, Ancho	or Books,	New		
	2. A. Beja	2. A. Bejan, I. Dincer, S. Lorente, A. Miguel, H. Reis, Porous and Complex Flux							
	Structur	es in Modern Techno	logies, Sprii	nger, New Yo	Drk.				

Department of Mechanical Engineering									
Course	Title of the	Program Core	m Core Total Number of contact hours						
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total			
		Electives (PEL)	(L)		(P)	Hours			
ME 9079	Engineering	PEL	3	1	0	4	4		
	Optimization								

Pre-requisites	Course Assessment methods (Continuous (CT) and end assessmet (EA))	ent						
NA	CT+EA							
Course Outcomes	 CO1: Students will be able to describe and formulate optimization problems CO2: Students will be able to apply knowledge of different optimiz methods for solving engineering problems CO3: Students will be able to differentiate between optimization methods and suggest a suitable technique applicable for a speproblem. 	s udents will be able to apply knowledge of different optimization chods for solving engineering problems udents will be able to differentiate between optimization chods and suggest a suitable technique applicable for a specific						
Topics Covered	Introduction: Engineering Application, Statement and Classification of the Optimization Problem, Classification, formulation procedures. Variable Optimization; Multivariable Optimization without any Constraints with Equality and Inequality Constraints, Kuhn- Tucker Conditions; Linear Optimization Methods, One-	4 6						
	Dimensional Minimization Method. Unimodal Function. Elimination Methods: Exhaustive search, Fibonocci and Golden Method.	4 2						
	Interpolation Method - Quadratic and Cubic Interpolation	6						
	Method. Unconstrained Minimization Method Univariate, Conjugate Directions, Steepest Descent (Cauchy) Method, Newton's							
	Method, Marquardt Method, Quasi-Newton Method. Constrained Minimization Method, Random Search Methods, Sequential Quadratic Programming. Basic Approach of the							
	Penalty Function Method, Interior Penalty Function Method, Exterior Penalty Function Method.	3						
	Non-traditional Optimization Techniques - Genetic Algorithms. Simulated annealing. Particle swarm optimization. Ant Colony Optimization. Tabu search.	$6\\4$						
	 Reduction of size of an optimization problem. Scaling of design variables and constraints. Multi-objective optimization problems, DPGA, NSGA Introduction to optimization Toolbox in MATLAB. 							
Text Books, and/or reference material	 Text Books: S.S. Rao, Engineering Optimization, Theory and Practics Enlarged Edition, New Age International Publishers, New 2010. Ashok D. Belegundu and Tirupathi R Chandrupatla, Optimiz Concepts and Applications in Engineering, Pearson Education 1999, First India Reprint, 2002. 	Delhi, ation						
	Reference Books: 1. G. N. Vanderplaats, Numerical Optimization Technique Engineering Design with Applications, McGraw-Hill, New 1984.							
	2. 2. R. L. Fox, Optimization Methods for Engineering Design, Addison- Wesley, Reading, Mass, 1971.							

	Department of Mechanical Engineering								
Course	Title of the	Program Core	Total Nu	mber of conta	ct hours		Credit		
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total			
		Electives (PEL)	(L)		(P)	Hours			
ME 9080	Renewable	PEL	3	1	0	4	4		
	Energy								
	Sources								
Pre-requisite	Pre-requisites Course Assessment methods (Continuous (CT) and end assessmen					ient			

	(EA))
NA	CT+EA
Course Outcomes	 CO1: Identify and explain the use of non-conventional energy systems. CO2: Develop an understanding to energy-related problems involving sociological, economic, political and technological considerations, decisions and development. CO3: Gain insight into the issues surrounding non-conventional energy sources development and use. CO4: Become knowledgeable about applications of non-conventional energy systems as they apply to commercial, residential and industrial markets.
Topics Covered	Energy scenario and renewable energy sources: global and Indian situation.15Potential of non-conventional energy sources, economics. Solar Radiation:15Solar thermal process, heat transfer devices, solar radiation measurement, estimation of average solar radiation. Solar energy storage: stratified storage, well mixed storage, comparison.15Hot water system, practical consideration, solar ponds, Non-convective solar15
	pond, extraction of thermal energy and application of solar ponds. Wind energy: The nature of wind. Wind energy resources and modelling. Geothermal energy: Origin and types of geothermal energy and utilization. OTEC: Ocean temperature differences. OTEC systems. Recent OTEC10developments. Wave energy: Fundamentals. Availability Wave-energy conversion systems. Tidal energy: Fundamentals. Availability Tidal-energy conversion systems. ; Energy from biomass: Photosynthesis; Biomass resource; Utilization of biomass.
Text Books, and/or reference material	Text Books: 1. Solar Energy Principle of Thermal Collection and Storage', S.P.SukhatmeTMG, 2. N.K.Bansal, Renewable Energy Source and Conversion Technology', TMG, 1989.
	 Reference Books: 1. G.L. Johnson, Wind energy systems, Prentice Hall Inc. New Jersey. 2. Non-conventional Energy Sources D. S. Chauhan and S. K. Srivastava

	Department of Mechanical Engineering							
Course	Title of the		Program Core	Total Nu	mber of conta	act hours		Credit
Code	course		(PCR) /	Lecture	Tutorial (T)	Practical	Total	
			Electives (PEL)	(L)		(P)	Hours	
ME 9084	Analysis	of	PEL	3	1	0	4	4
	Thermal Pov	ver						
	Cycles							
Pre-requisite	S		Course Assessmer	nt methods ((Continuous ((CT) and en	id assessm	nent
			(EA))					
NA	NA CT+EA							
Course	CO1							
Outcomes	CO2							
	CO3							
Topics	Steam po	ower p	lant cycle - Rankine	cycle - Rel	neat cycle - F	Regenerativ	e cycle	10
Covered	with one	and m	ore feed heaters - 7	Гуреs of fe	ed heaters -	Open and	closed	
	types - Ste	eam tra	aps types.					
	Cogenera	tion - (Condensing turbines	- Combine	ed heat and p	ower – Cor	nbined	10
	cycles – E	Braytor	o cycle Rankine cycl	e combinati	ons - Binary	vapour cycl	le.	
	Air stand	Air standard cycles - Cycles with variable specific heat - fuel air cycle - 8					8	
		Deviation from actual cycle.						
	Brayton	cycle	- Open cycle gas	turbine -	Closed cyc	le gas turl	bine –	6
		5			U	<u> </u>		

Text Books,	Regeneration, Inter cooling and reheating between stages.6Refrigeration Cycles - Vapour compression cycles - Cascade system Vapour absorption cycles -GAX Cycle.6Text Books:6
and/or	1. Culp, R., Principles of Energy Conversion, McGraw-Hill, 2000.
reference material	2. Nag. P.K., Power Plant Engineering, 2nd Tata McGraw-Hill, 2002
	Reference Books:
	1. Nag. P.K., Engineering Thermodynamics, 3rd ed., Tata McGraw-Hill, 2005.
	2. Arora, C.P., Refrigeration and Air Conditioning, 2nd ed., Tata McGraw-Hill, 2004.

	Ι	Department of Mecha	nical Engir	leering				
Course	Title of the	Program Core	Total Nu	Number of contact hours				
Code	course	(PCR) /	Lecture	Tutorial (T)		Total		
		Electives (PEL)	(L)		(P)	Hours		
ME 9085	Heat Transfer	PEL	3	1	0	4	4	
	Equipment							
	Design							
Pre-requisite	S	Course Assessmer (EA))	nt methods ((Continuous ((CT) and en	d assessm	ient	
NA		CT+EA						
Course	CO1							
Outcomes	CO2							
	CO3							
Topics		Details: Types, Flui					6	
Covered		ll and tube heat exch	0 0	enerators and	recuperator	,		
		ndustrial application			_		_	
		Modes of Heat T					6	
	Thermal resista				istribution	and	0	
		implications, LMTD			D	т	8	
		tion: Effect of Tu				'e Loss,		
	Divergence, Ma	ozzle, Diffusers, Bei anifolds:	ius, Dallies	, Effect of CI	laimei		10	
	0	s, Headers sets and	d Pressure	vessels. Dif	ferential T	hermal	10	
		ermal stresses, She						
	Noise, types of		ur stresses	, include 5	100,000,000	Jiulion,	10	
		s: Heat transfer and	pressure lo	oss flow con	figuration e	effect of		
		of deviations from id						
	gas-gas-liquid l	neat exchangers. Des	ign of cooli	ng towers.				
Text Books,	Text Books:	1477 2 -						
and/or reference		and A.L. London., C	-	-				
material	2. A.P. Frass a	nd M.N.Ozisik, Heat	Exchanger	Design,'Johi	n Wiley & S	Sons Inc,	1965.	
	Reference Book							
	-	rocess Heat Transfer						
	2. E.A.D. Saune 1988.	ders., _Heat Exchang	gers', Longi	nan Scientifi	c and Techi	nical, New	v York,	

	Department of Mechanical Engineering									
Course	Title of the	Program Core	ogram Core Total Number of contact hours Cre							
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total				
		Electives (PEL)	(L)		(P)	Hours				

ME 9086	Computational Methods in Thermal Engineering	PEL	3	1	0	4	4
Pre-requisite	S	Course Assessmen (EA))	nt methods	(Continuous ((CT) and er	nd assessn	nent
NA		CT+EA					
Course Outcomes	CO1 CO2 CO3						
Topics Covered	numerical sche their applicatio	Concepts of con mes. Various finite ns to fundamental p iences. Case studies	difference a artial differ	and finite elemential equation	ment metho ons in engi	ods and neering	10
	Forward, Back Independence Fourth order R Swigert iteratio	ce Method: Classif kward difference, Test. Basic finite c K methods and Pre on with applications olems: Model proble	Uniform a lifference s edictor-corre to flow an	nd non-unif chemes. Bou ector method d heat transfo	form Grids Indary trea s and Nacl er. ; Parabo	s, Grid atments. asheim- olic and	15
	The Lax-Richtm series. Von- Neu estimates. Kelle boundary layers	yer equivalence theo umann stability analy Box and Smith's m ; Convection domin p-winding and High	ysis. Consis iethod with nated proble	tency, conver applications ems: The failu	gence and to thermal	error	15
Text Books, and/or reference material	Text Books: 1. K.Muralidl Transfer, N	dhar and T.Sundararajan, Computational Fluid Flow and Heat Narosa Publishing House, New Delhi, 1995. shdasdidar, Computer Simulation of flow and heat transfer TMH Ltd.,					
	2. D.A. Ande	kar, Numerical heat rson, I.I. Tannehill, ransfer, Hemisphere	and R.H.	Pletcher, Cor	nputational	l Fluid M	echanics

	Department of Mechanical Engineering							
Course	Title of the	Program Core	re Total Number of contact hours				Credit	
Code	course							
		Electives (PEL)	(L)		(P)	Hours		
ME 9087	Power Plant	PEL	3	1	0	4	4	
	Engineering							
Pre-requisite	S	Course Assessmer	nt methods ((Continuous (CT) and en	d assessm	nent	
_		(EA))	(EA))					
NA		CT+EA						
Course	CO1 Study	v of power produ	iction					
Outcomes	CO2 Study	of Hydro-electr	ric power	generation	1			
	CO3 Study	of some power	plant rel	ated equip	ment's			
	CO4 Study	v of Nuclear pow	ver gener	ation				
	CO5 Study	of power plant	economi	CS				
Topics	Introduction: E	Introduction: Energy resources and their availability, types of power plants, 2					2	
Covered	selection of the	plants, review of b	asic thermo	dynamic cycl	es used in	power		
	plants.							

Hydro Electric Power Plants: Rainfall and run-off measurements and plotting of various curves for estimating stream flow and size of reservoir, power plants design, construction and operation of different components of hydro- electric power plants, site selection, comparison with other types of power plants	4
Steam Power Plants: Flow sheet and working of modern-thermal power plants, super critical pressure steam stations, site selection, coal storage, preparation, coal handling systems, feeding and burning of pulverized fuel, ash handling systems, dust collection-mechanical dust collector and	10
Steam generators and their accessories: High pressure Boilers, Accessories,	4
Condensers: Direct Contact Condenser, Surface Condensers, Effect of various parameters on condenser performance, Design of condensers, Cooling towers	5
Combined Cycles: Constant pressure gas turbine power plants, Arrangements of combined plants (steam& gas turbine power plants), re- powering systems with gas production from coal, using PFBC systems, with organic fluids,	5
Nuclear Power Plants: Principles of nuclear energy, basic nuclear reactions, nuclear reactors PWR, BWR, CANDU, Sodium graphite, fast breeder, homogeneous; gas cooled. Advantages and limitations, nuclear power station,	5
waste disposal. Power Plant Economics: load curve, different terms and definitions, cost of electrical energy, tariffs methods of electrical energy, performance & operating characteristics of power plants- incremental rate theory, input-output curves, efficiency, heat rate, economic load sharing, Problems.	5
Text Books:	
1. Nag. P.K., Power Plant Engineering, 2nd Tata McGraw-Hill, 2011.	
2. Power plant Technology by 'M.M.El-Wakil', McGraw Hill Com., 1985.	
Reference Books:	
1. Black, Veatch, Power Plant Engineering, CBS, 2005.	
2. Power plant engineering by 'Arrora&Domkundwar', DhanpatRai& Sons, Delhi, 2008.	New
_	 of various curves for estimating stream flow and size of reservoir, power plants design, construction and operation of different components of hydro-electric power plants, site selection, comparison with other types of power plants. Steam Power Plants: Flow sheet and working of modern-thermal power plants, super critical pressure steam stations, site selection, coal storage, preparation, coal handling systems, feeding and burning of pulverized fuel, ash handling systems, dust collection-mechanical dust collector and electrostatic precipitator. Steam generators and their accessories: High pressure Boilers, Accessories, Fluidized bed boiler. Condensers: Direct Contact Condenser, Surface Condensers, Effect of various parameters on condenser performance, Design of condensers, Cooling towers and cooling ponds Combined Cycles: Constant pressure gas turbine power plants, Arrangements of combined plants (steam& gas turbine power plants), re- powering systems with gas production from coal, using PFBC systems, with organic fluids, parameters affecting thermodynamic efficiency of combined cycles. Nuclear Power Plants: Principles of nuclear energy, basic nuclear reactions, nuclear reactors PWR, BWR, CANDU, Sodium graphite, fast breeder, homogeneous; gas cooled. Advantages and limitations, nuclear power station, waste disposal. Power Plant Economics: load curve, different terms and definitions, cost of electrical energy, tariffs methods of electrical energy, performance & operating characteristics of power plants- incremental rate theory, input-output curves, efficiency, heat rate, economic load sharing, Problems. Text Books: Nag. P.K., Power Plant Engineering, 2nd Tata McGraw-Hill, 2011. Power plant Technology by 'M.M.El-Wakil', McGraw Hill Com., 1985.

SESSIONAL/LAB

Department of Mechanical Engineering							
Course	Title of the	Program	Total Number of contact hours				Credi
Code	course	Core (PCR) /	Lecture	Tutorial	Practic	Total	t
		Electives	(L)	(T)	al (P)	Hour	
		(PEL)				S	
ME	Dynamics	PEL	0	0	4	4	2
1051	Laboratory						
Pre-requisites Course Assessment methods (Continuous (CT) and					l end		
	assessment (EA))						
ME1001	ME1001 CT+EA						
Course	Course CO1: Acquire basic idea about the rotor balancing						
Outcome	Outcomes CO2: To understand the method of implementation of different control laws						
Topics	Experiment on rotor balancing				12		
Covered						12	

	Experiment on Digital Pendulum System	8
	Experiment on Twin Rotor MIMO System	8
	Problems as assigned by the respective teachers	16
Text	Text Books:	
Books,	1. Theory of Mechanisms and Machines, Ghosh, Mallik	
and/or	2. Modern Control Engineering, Ogata	
reference	Reference Books	
material	1. Theory of Machines and Mechanisms, Shigley, Uicker	
	2. Automatic Control System, Kuo	

	Department of Mechanical Engineering						
Course	Title of the course	Program Core Total Number of contact hours				Credit	
Code		(PCR) /	Lecture	Tutoria	Practical	Total	
		Electives (PEL)	(L)	l (T)	(P)	Hours	
ME 1052	Applied	PCR	0	0	4	4	4
ME 1062	Computational						
ME 1072	Methods Lab						
Pre-requisi							
Basic knov Methods	Basic knowledge in Numerical CT+EA Methods						
Course	CO1: Conce	pt of algorithm to wi	rite differen	t numerical	methods rela	ated to	
Outcomes	engineering	problems.					
		ng Computer program	nming to sc	lve various	engineering	problems	by
	numerical m	ethods.					
Topics		1. Programming using high level language (C/C++/Fortran/MATLAB) (8)					
Covered	2. Computer p	rogramming for se	olving line	ear simulta	ineous equa	tions, no	n-linear
	equations.(8)						
	3. Numerical d	ifferentiation and in	ntegration.	(8)			
	4. Solution of	ordinary different	ial equatio	ns and so	lution of pa	artial dif	ferential
	equations.(8)	U U	1		1		
	5. Eigen value	problems, Boundai	y value, Ir	nitial value	problems.(4	4)	
	U U	blems as assigned by the respective teachers.(4)					
Text Book							
and/or	1. Numer	rical Methods By B.	S. Grewal				
reference	2. Applie	2. Applied Numerical Methods for Digital Computation By M. L. James, G. M.					
material	Smith a	nith and J. C. Wolford					
		3. Numerical Methods for Engineers By S.C. Chapra and R. P. Canale					
	Reference Book						
		ical Methods for Eng					
		ical Recipes By W. I	H. Press, S.	A. Teukols	ky, W. T. Ve	tterling ar	d B. P.
	Flanne	5					
	3. Compu	ter aided Mechanica	l Design an	d Analysis	By V. Ramai	nurti	

Course Code	Title of the course	L-T-P	Credit	Developer
ME 1071	Thermal Engineering Lab-I	0-0-3	2	A.K. Pramanick, A. Layek & S.Karmakar

Experiments Covered

- Axial Heat conduction
- Forced Convection
- Radiation
- Boiler

		1	1			
Course Code	Title of the course	L-T-P	Credit	Developer		
				*		
ME 1072	Computational Laboratory	0-0-3	2	A.K. Mitra & K. Khan		
	F					
Programming using high level language (C/C++/Fortran/MATLAB)						
• Computer programming for solving linear simultaneous equations, non-linear equations.						
Numerical differentiation and integration						

- Solution of ordinary differential equations and solution of partial differential equations
- Eigen value problems, Boundary value, Initial value problems
- Problems as assigned by the respective teachers

Course Code	Title of the course	L-T-P	Credit	Developer
ME 2071	Thermal Engineering Lab-II	0-0-3	2	A.K. Pramanick, A. Layek & S.Karmakar
Experiments Cove • Radial Heat • Diesel Engi • Fluidization • Moorse Tes	conduction ne trial run and Fluidized Bed Heat Transfer			