NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR

DEPARTMENT OF MATHEMATICS

Revised Curriculum and Syllabi for the Degree of 2 Yr. M. Sc. in MATHEMATICS

(To be effective from the batches admitted in the Academic Session 2020-2021 Onwards) Revision Approved in PGAC meeting on 28/08/2020

Date: 28th August, 2020

COURSE CURRICULUM

SEMESTER-I

Sub. Code	Subject	L	Т	Р	Credit
MA1101	Complex Analysis 3 1		0	4	
MA1102	Probability & Stochastic Processes	3	1	0	4
MA1103	Ordinary and Partial Differential Equations	3	1	0	4
MA1104	Linear Algebra	3	1	0	4
MA1105	Real Analysis	3	1	0	4
MA1151	Programming Languages Lab	0 0 6 4		4	

TOTAL CREDIT - 24

SEMESTER-II

Sub. Code	Subject		Т	Р	Credit
MA2101	Integral Transforms and Integral Equations		1	0	4
MA2102	Functional Analysis	ysis 3		0	4
MA2103	Modern Algebra	3	1	0	4
MA2104	General Mechanics and Variational Calculus		1	0	3+2
MA2105	Numerical Analysis		1	0	4
MA2151	Numerical Analysis Lab		0	3	2
		Ŧ			າງ

TOTAL CREDIT - 23

SEMESTER-III

Sub. Code	Subject	L	Т	Р	Credit
MA3101	Operations Research		1	0	4
MA3102	Graph Theory	2	1	0	3
MA3103	Fluid Dynamics	3	1	0	4
	Elective-I	3	1	0	4
	Elective-II	3	1	0	4
MA3151	Project and Seminar-I	0	0	3	3

TOTAL CREDIT - 22

SEMESTER-IV

Sub. Code	Subject	L	Т	Р	Credit
MA4101	Topology		1	0	4
MA4102	Generalized Functions and Wavelets		1	0	3
	Elective-III	3	1	0	4
	Elective-IV	3	1	0	4
MA4151	Project and Seminar-II	0	0	8	4
MA4153	Grand Viva		0	2	2

TOTAL CREDIT - 21

TOTAL COURSE CREDIT - 90

SI. No.	Subject Code	Subject Name
1	MA9111	Geophysics
2	MA9112	Nonlinear Waves
3	MA9113	Mathematical Modeling
4	MA9114	Advanced Complex Analysis
5	MA9115	Advanced Modern Algebra
6	MA9116	Automata and Algorithms
7	MA9117	Differential Geometry
8	MA9118	Optimization Techniques
9	MA9119	Fuzzy Mathematics
10	MA9120	Nonlinear Analysis
11	MA9121	Advanced Operations Research
12	MA9122	Algebraic Coding Theory
13	MA9123	Dynamical Systems and Chaos Theory
14	MA9124	Computational Fluid Dynamics
15	MA9125	Soft Computing
16	MA9126	Cryptography
17	MA9127	Decision Theory
18	MA9128	Measure Theory
20	MA9129	Multivariate Statistical Analysis
21	MA9130	Commutative Algebra

List of Electives

SUMMARY OF COURSES

Sub Discipline: DEPARTMENTAL CORE

SUBJECT CODE	SUBJECT	L-T-P	CREDIT	DEVELOPER(S)
MA1101	COMPLEX ANALYSIS	3-1-0	4	Dr. M. F. Ali
MA1102	PROBABILITY & STOCHASTIC	3-1-0	4	Dr S. Maitra &
	PROCESSES			Prof. S. Sarkar
				(Mondal)
MA1103	ORDINARY AND PARTIAL	3-1-0	4	Dr. P. Pal & Dr P. P.
	DIFFERENTIAL EQUATIONS			Gopmandal
MA1104	LINEAR ALGEBRA	3-1-0	4	Dr P. Pal
MA1105	REAL ANALYSIS	3-1-0	4	Dr L. K. Dey
MA2101	INTEGRAL TRANSFORMS AND			Dr. A. Pal & Dr P. P.
	INTEGRAL EQUATIONS			Gopmandal
MA2102	FUNCTIONAL ANALYSIS	3-1-0	4	Dr L. K. Dey
MA2103	MODERN ALGEBRA	3-1-0	4	Dr. S. Bagchi
MA2104	GENERAL MECHANICS AND	4-1-0	3+2	Dr. S. Maitra & Dr P.
	VARIATIONAL CALCULUS			P. Gopmandal
MA2105	NUMERICAL ANALYSIS	3-1-0	4	Prof. S. Sarkar
				(Mondal) & Dr. A. Pal
MA3101	OPERATIONS RESEARCH	3-1-0	4	Dr S. Kar
MA3102	GRAPH THEORY	2-1-0	3	Dr A. Pal
MA3103	FLUID DYNAMICS	3-1-0	4	Dr. P. Pal & Dr P. P.
				Gopmandal
MA4101	TOPOLOGY	3-1-0	4	Dr L. K. Dey & Dr F.
				Ali
MA4102	GENERALIZED FUNCTIONS AND WAVELETS	3-0-0	3	Dr. S. Maitra

Sub Discipline: DEPARTMENTAL ELECTIVES

SUBJECT	SUBJECT	L-T-P	CREDIT	DEVELOPER
CODE				
MA 9111	GEOPHYSICS	3-1-0	4	Prof. S. Sarkar
				(Mondal)
MA9112	NONLINEAR WAVES	3-1-0	4	Dr. S. Maitra
MA9113	MATHEMATICAL MODELING	3-1-0	4	Dr. S. Maitra
MA9114	ADVANCED COMPLEX ANALYSIS	3-1-0	4	Dr. M. F. Ali
MA9115	ADVANCED MODERN ALGEBRA	3-1-0	4	Dr L. K. Dey
MA9116	AUTOMATA AND ALGORITHMS	3-1-0	4	Prof. S. Kar & Dr. G.
				Panigrahi
MA9117	DIFFERENTIAL GEOMETRY	3-1-0	4	Dr L. K. Dey
MA9118	OPTIMIZATION TECHNIQUES	3-1-0	4	Prof. S. Sarkar
				(Mondal)
MA9119	FUZZY MATHEMATICS			Prof. S. Kar
MA9120	NONLINEAR ANALYSIS	3-1-0	4	Dr L. K. Dey
MA9121	ADVANCED OPERATIONS	3-1-0	4	Prof. S. Kar
	RESEARCH			
MA9122	ALGEBRAIC CODING THEORY	3-1-0	4	Dr S. Bagchi
MA9123	DYNAMICAL SYSTEMS AND CHAOS	3-1-0	4	Dr. P. Pal
	THEORY			
MA9124	COMPUTATIONAL FLUID DYNAMICS	2-0-2	4	Dr. P. P. Gopmandal
MA9125	SOFT COMPUTING	3-1-0	4	Dr. S. Kar
MA9126	CRYPTOLOGY	3-1-0	4	Dr. S Bagchi
MA9127	DECISION THEORY	3-1-0	4	Dr. G. Panigrahi
MA9128	ADVANCED STATISTICAL ANALYSIS	3-1-0	4	Prof. S. Kar
MA9129	MEASURE THEORY	3-1-0	4	Dr L. K. Dey
MA9130	MULTIVARIATE STATISTICAL	3-1-0	4	Prof. S. Kar
	ANALYSIS			
MA9131	COMMUTATIVE ALGEBRA	3-1-0	4	Dr S. Bagchi

Sub Discipline: LABORATORY & SESSIONAL COURSES

MA1151	PROGRAMMING LANGUAGES LAB	0-0-6	4
MA2151	NUMERICAL ANALYSIS LAB	0-0-3	2

Sub Discipline: PROJECT, SEMINAR etc.

MA3151	PROJECT and SEMINAR - I	0-0-6	3
MA4151	PROJECT and Seminar-II	0-0-8	4
MA4153	GRAND VIVA	0-0-2	2

SYLLABUS

SEMESTER-I

		Department o					-
Course	Title of	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit
Code	the	Electives (PEL)	Lecture	Tutorial	Practica	Total	
	course		(L)	(T)	I	Hours	
					(P)		
MA1101	Complex	PCR	3	1	0	4	4
	Analysis						
Prerequisi	te	Basic concepts of Real Ana	lysis.				
Course Ou	utcomes	Upon successful completior	n of this cou	irse stude	nts will be a	able to:	
 CO1: understand when and where a given function is analy able to find it series development; CO2: understand basic properties of complex integration ar the skill of contour integration to evaluate complicated real i via residue calculus; CO3: describe conformal mappings between various plane and its application. 					nd acquire integrals		
		and its application.		ingo both		us piarie	regions
						us piane	No. of
		and its application. Course Conte	nt				No. of
		and its application.	nt				0
complex fu Differentia	unctions, linea bility, Analyti	and its application. Course Conte	r, stereogra	aphic proj	ection, ele	ementary	No. of lectures
complex fu Differentia series, rad Curves, c	unctions, linea bility, Analyti lius of conver	and its application. Course Contection plex plane, limits, continuity ar fractional transformations. c function, Cauchy-Riemann gence, differentiation of power integrals, Cauchy's Theorem	r, stereogra	aphic proj , harmoni	ection, ele c functions	mentary s, power	No. of lectures
complex fu Differentia series, rad Curves, c formula, M Cauchy's modulus p	unctions, linea bility, Analyti lius of conver omplex line lorera's theor inequality ar rinciple, Sch	and its application. Course Contections plex plane, limits, continuity ar fractional transformations. c function, Cauchy-Riemann gence, differentiation of powe integrals, Cauchy's Theorem em. nd its applications, Liouville's warz lemma.	r, stereogra equations r series. m, winding s theorem,	aphic proj , harmoni , number, identity t	ection, ele c functions Cauchy's heorem, m	ementary s, power integral	No. of lectures 10
complex fu Differentia series, rad Curves, c formula, M Cauchy's modulus p Taylor's T	unctions, linea bility, Analyti lius of conver omplex line lorera's theor inequality ar rinciple, Schy heorem, Lau	and its application. Course Conternations plex plane, limits, continuity ar fractional transformations. c function, Cauchy-Riemann gence, differentiation of power integrals, Cauchy's Theorem em. nd its applications, Liouville's	r, stereogra equations r series. m, winding s theorem, classificatio	aphic proj , harmoni , number, identity t	ection, ele c functions Cauchy's heorem, m gularities, (ementary s, power integral	No. of lectures 10 10 10
complex fu Differentia series, rad Curves, c formula, N Cauchy's modulus p Taylor's T Weierstras	unctions, linea bility, Analyti lius of conver omplex line lorera's theor inequality ar rinciple, Schu heorem, Lau ss theorem, C	and its application. Course Contections of the plane, limits, continuity ar fractional transformations. In function, Cauchy-Riemann gence, differentiation of power integrals, Cauchy's Theorem em. Ind its applications, Liouville's warz lemma. Urent's series, singularities,	r, stereogra equations r series. m, winding s theorem, classificatio valuation of	aphic proj , harmoni , number, identity t on of sing real integ	ection, ele c functions Cauchy's heorem, m gularities, C rals.	ementary s, power integral naximum Casorati-	No. of lectures 10 10 10 10 10

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Complex Variables with Applications	S. Ponnusamy and H. Silverman	Birkhauser, Boston	2006
2	Complex Analysis	T. W. Gamelin	Springer	2001
3	Complex Variables and Applications	J. W. Brown and R. V. Churchill	McGraw Hill	2008

SI. No.	Name of the Book	Authors	Publisher	Year
1	Complex Analysis	L. V. Ahlfors	McGraw-Hill	1979
2	Functions of one Complex Variable	J. B. Conway	Springer-Verlag	1978
3	Theory of functions of a complex variable (Vol- I & II)	A. I. Murkushevich	Prentice-Hall Inc.	1965

		Departmen	t of Mathe	matics			
Course	Title of the	Program Core (PCR) /	Total Num	nber of cor	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total hours	
			(L)	(T)	(P)	per week	
MA1102	Probability	PCR	3	1	0	04	04
	&						
	Stochastic						
	Processes						
Prerequisi	te	Knowledge of probabilit					
Course Ou	utcomes	Upon successful comple	etion of this	course st	udents will	be able to:	
		CO2: apply the knowled CO3: know basics of sto CO4: identify the applica processes.	ochastic pro	ocesses		-	isson
		Course Co	ntent				No. of
							lectures
Probabilit	y:						3
		f (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1				definitione	
Historical	development c	f the subject and basic co	oncepts, imp	portant teri	minologies,	demnitions.	
	-				_		12
Random	variables, dis	tribution and density fu	inctions, di	iscrete pr	obability d	stributions-	12
Random binomial a	variables, dis ind multinomia		inctions, di	iscrete protection.	obability d Geometric	stributions- distribution,	12
Random binomial a hypergeor	variables, dis and multinomia netric distribut	tribution and density fu al distribution, negative b	inctions, di inomial dis continuous	iscrete protection.	obability d Geometric y distributic	istributions- distribution, n – normal	12
Random binomial a hypergeor distributior	variables, dis ind multinomia netric distribut n, Beta & gan	tribution and density fu al distribution, negative b ion, Poisson distribution,	inctions, di inomial dis continuous ntial distrib	iscrete pro tribution. (probabilit ution, chi-	obability d Geometric y distributic	istributions- distribution, n – normal	12
Random binomial a hypergeon distribution distribution Mathematio	variables, dis and multinomia netric distribut n, Beta & gan n, joint and ma cal Expectation	tribution and density fur al distribution, negative b ion, Poisson distribution, nma distribution, expone arginal distribution, condit	inctions, di inomial dis continuous ntial distrib ional distrib le, variance	iscrete pro tribution. (probabilit ution, chi- pution.	obability d Geometric y distributic squared a	istributions- distribution, on – normal and Weibull	12
Random binomial a hypergeon distribution distribution Mathematio	variables, dis and multinomia netric distribut n, Beta & gan n, joint and ma cal Expectation	tribution and density fu al distribution, negative b ion, Poisson distribution, nma distribution, expone arginal distribution, condit	inctions, di inomial dis continuous ntial distrib ional distrib le, variance	iscrete pro tribution. (probabilit ution, chi- pution.	obability d Geometric y distributic squared a	istributions- distribution, on – normal and Weibull	
Random binomial a hypergeor distributior distributior Mathematic variances o	variables, dis and multinomia netric distribut n, Beta & gan n, joint and ma cal Expectation of linear combi	tribution and density fu al distribution, negative b ion, Poisson distribution, nma distribution, expone arginal distribution, condit n: Mean of random variab nations of random variab	inctions, di inomial dis continuous ntial distrib ional distrib le, variance es.	iscrete protection. (probabilit ution, chi- pution. and covar	obability d Geometric y distributic squared a riance, mea	istributions- distribution, on – normal and Weibull ns and	
Random binomial a hypergeor distributior distributior Mathemation variances of Distribution variables,	variables, dis and multinomia netric distribut n, Beta & gan n, joint and ma cal Expectation of linear combi n of sum of in- convergence	tribution and density fur al distribution, negative b ion, Poisson distribution, nma distribution, expone arginal distribution, condit n: Mean of random variab nations of random variab	inctions, di inomial dis continuous ntial distrib ional distrib le, variance es.	iscrete protection. (probabilit ution, chi- pution. and covar	obability d Geometric y distributic squared a riance, mea	istributions- distribution, on – normal and Weibull ns and	5

Stochastic Processes: Description & Specification of Stochastic Process, Stationary	4
Processes, Martingales.	
Markov Chains: Definitions, Chapman-Kolmogorov Equations & classification of states,	6
Applications of Markov chains, Time reversible Markov chains.	
Poisson Process: Poisson Process, Inter-arrival & waiting time distributions, Non-homogeneous Poisson Process, Conditional Poisson process.	4
Continuous time Markov chains: Continuous time Markov chains, Birth &Death Processes,	4
Kolmogorov differential equations, Randomization.	
Random walks: random walks in one and two dimensions and the properties	4
Markov Processes with continuous state space: Brownian motion, wiener process,	6
differential equations for a wiener process, Kolmogorov equations	
Total	56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Probability and Statistics for Engineers and Scientists	Walpole, Myers, Myers, and Ye	Pearson	2012
2	Introduction to probability	C. Grinstead and J. Snell	American Mathematical Society	1997
3	Probability and stochastic processes	Roy D Yates and David J. Goodman	John Wiley and Sons	1998

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Stochastic processes	J. Medhi	New Age International	2008
			Publishers	
2	Introduction to	Mendenhall, Beaver, and	Cengage Learning	2012
	probability and statistics	Beaver		

	Department of Mathematics							
Course	Title of the	Program Core (PCR) /	rogram Core (PCR) / Total Number of contact hours Credit					
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total		
			(L)	(T)	(P)	Hours		
MA1103	Ordinary and Partial Differential Equations	PCR	3	1	0	4	4	
Prerequis	ite	Void						
Course O	utcomes	Upon successful completion CO1: fundamentals of initia				able to un	derstand:	

CO2: properties of Bessel functions and Legendre polynomials and th applications	neir
CO3: basic existence and uniqueness theorems initial and boundary	problems
CO4: techniques to solve the problems and applications of Ordina	ry
Differential Equations and Partial Differential Equations	
Course Content	No. of
	lectures
Ordinary Differential Equations (ODE)	
Review of solution methods for first order as well as second order equations: Existence	14
and Uniqueness of solution, Initial Value Problems, Existence and Uniqueness theorem,	
Lipschitz condition. Series solution around ordinary point and a regular singular point, Bessel	
functions and Legendre polynomials.	
Higher Order Linear Equations and linear Systems: Fundamental solutions, Wronskian,	2
variation of constants, matrix exponential solution, and behavior of solutions.	
Boundary Value Problems for Second Order Equations: Green's function, Sturm Liuville	12
problems, Perturbation theory for two-dimensional linear system.	
Partial Differential Equations (PDE)	
Review of First order PDE: Linear, semi-linear, quasi-linear and non-linear equations,	5
Cauchy Problems for First Order Hyperbolic Equations: Lagrange method, Charpit method,	
Method of characteristics, Monge cone	
Second order PDE: Classification, Characteristics, and Canonical forms of equations in two	3
independent variables, Well-posed problems	
Laplace equation: Mean value property, weak and strong maximum principle, Green's	6
function, Poisson's formula, Dirichlet's principle, existence of solution using Perron's method (without proof)	
Wave equation: D'Alembert solution, spherical means. Initial-boundary value problems on	6
bounded domains, and well-posedness. Uniqueness via Energy method, method of spherical	
means and Duhamel's principle	
Heat equation: Initial value problem, fundamental solution, weak and strong maximum principle and uniqueness results	5
Separation of variables method: for Wave, Lapalce, Heat equations	3
Total Number of Lectures	56

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Differential Equations	Shepley L. Ross	Wiley	1984
2	Differential Equations with Applications and Historical Notes	George Simmons	CRC Press	2017
3	Partial Differential Equations, Graduate Studies in Mathematics	L. C. Evans	AMS	1998
4	Elements of Partial Differential Equations	I. N. Sneddon	Dover Publications	2006

SI. No.			Authors		Publisher			Year	
1		near Ordir ential Equ	-	D. W. Jordan, and P. Smith		Oxford University Press			1999
2		l different		F. John	S	Springer			1982
3	Partial	l different ions: An	ial	W. Strauss	\ \	Wiley			2008
	milouu			Department of	of Mather	matics			
Cour		itle of	Drogram	m Core (PCR) /	-	umber of cor	atact hours		Credit
Code	e th	he course	-	es (PEL)	Lecture (L)		Practical (P)	Total Hours	Credit
MA1		inear Algebra	PCR		3	1	0	4	4
Prere	equisite		Elemen	itary ideas of algebrai	c structur	res.			
Cour	rse Outc	comes	Upon s	uccessful completion	of this co	ourse studen	ts will be al	ole to uno	derstand:
			CO2: va CO3: ba	asic properties of line arious normal forms c asic properties of inne indamentals of bilinea	of linear op er product	perators and			
			CO2: va CO3: ba	arious normal forms c	f linear op er product ar forms	perators and			No. of lectures
	-		CO2: va CO3: ba CO4: fu	arious normal forms of asic properties of inne indamentals of bilinea Course Conte rector spaces over fie	f linear op er product ar forms ent elds, subs	perators and t spaces and spaces, bas	d its applica	ations	No. of lectures 4
Syste Line trans	ems of li ar trans	linear equ sformatio	CO2: va CO3: ba CO4: fu view of v uations, r ons: Def	arious normal forms of asic properties of inne indamentals of bilinea Course Cont	f linear op er product ar forms ent elds, subs aussian e f linear tra	perators and t spaces and spaces, bas elimination m ransformatio	d its applicates and dimethod.	nension. a linear	lectures
Syste Line trans funct Line	ems of li ar trans sformatic tional, ar ar Oper	linear equ sformatio on, matri nd dual s rators: B	CO2: va CO3: ba CO4: fu view of v iations, r ons: Def ix repres paces. rief revie	arious normal forms of asic properties of inner indamentals of bilinea Course Cont rector spaces over fire natrices, rank, and G finition, the algebra of sentations, change of ew, Eigenvalues and e	f linear op er product ar forms ent elds, subs aussian e f linear tra of a basis	perators and t spaces and spaces, bas elimination m ransformatio is, rank-null tors, charact	es and din nethod. n, Rank of ity theoren eristic poly	nension. a linear n, linear	lectures 4
Syste Line trans funct Line minir Cano Form	ems of li ar trans sformatic tional, ar ar Oper mal poly onical F ns, Direc	linear equ sformation on, matri nd dual s rators: B /nomials, Forms: S ct-sum Do	CO2: va CO3: ba CO4: fu view of v iations, r ons: Def ix repres paces. rief revie Invarian Similarity ecompos	arious normal forms of asic properties of inner indamentals of bilinea Course Cont rector spaces over fir natrices, rank, and Ga finition, the algebra of sentations, change of	of linear op er product ar forms ent elds, subs aussian e f linear tra of a basis of a basis eigenvecto yley-Ham ations, Tr Sums, an	perators and t spaces and spaces, bas elimination m ransformatio is, rank-null tors, charact hilton Theore riangular Fo nd The Prim	d its applicates and dimethod. n, Rank of ity theorem eristic polymon. m. mrms and Imerity Decom	nension. a linear n, linear nomials, Diagonal	lectures 4 6 6 6
Syste Line trans funct Line minir Cano Form Theo	ems of li ar trans sformatic tional, ar ar Oper mal poly onical F ons, Direc orem. Jo	linear equ sformatic on, matri nd dual s rators: B /nomials, Forms: \$ ct-sum De ordan Blo	CO2: va CO3: ba CO4: fu view of v lations, r ons: Def ix repres paces. rief revie Invarian Similarity ecompos cks and	arious normal forms of asic properties of inner indamentals of bilinea Course Cont rector spaces over fire natrices, rank, and G finition, the algebra of sentations, change of w, Eigenvalues and of t Subspaces, and Car of linear transform sition, Invariant Direct	of linear op er product ar forms ent elds, subs aussian e f linear tra of a basis eigenvector yley-Ham ations, Tr Sums, an ational Ca	perators and t spaces and spaces, bas elimination m ransformatio is, rank-null tors, charact hilton Theore riangular Fo nd The Prim anonical For	d its applicates and dim nethod. n, Rank of ity theoren eristic polyn m. orms and I nary Decom m.	nension. a linear n, linear nomials, Diagonal	lectures 4 6 6 6
Syste Line funct Line minir Cano Form Theo Introd	ems of li ar trans sformatic tional, ar ar Oper mal polye onical F ns, Direc orem. Jo duction t r Produ	linear equ sformatic on, matri nd dual s rators: B /nomials, Forms: S ct-sum De ordan Bloo to the M/ uct Space	CO2: va CO3: ba CO4: fu view of va iations, r ons: Def ix represe paces. rief revie Invarian Similarity ecompose cks and va ATLAB se ces: Inn	arious normal forms of asic properties of inne- indamentals of bilinea Course Cont rector spaces over file natrices, rank, and Ga inition, the algebra of sentations, change of ew, Eigenvalues and e t Subspaces, and Ca of linear transforma sition, Invariant Direct Jordan Forms, and R	of linear op er product ar forms ent elds, subs aussian e f linear tra of a basis of a basis of a basis eigenvecto yley-Ham ations, Tr Sums, an ational Ca ear algeb	perators and t spaces and spaces, bas elimination m ransformatio is, rank-null tors, charact hilton Theore riangular Fo nd The Prim anonical For ora problems	d its applicates and dim nethod. n, Rank of ity theoren eristic polynom. m. mary Decom m. (Systems	nension. a linear n, linear nomials, Diagonal nposition of ODE)	lectures 4 6 6 12
Syste Line trans funct Line minir Cano Form Theo Intro- Adjoi Oper	ems of li ar trans sformatic tional, ar ar Oper mal poly onical F ns, Direc orem. Jo duction t r Produ ints, Uni rators of	linear equ sformatic on, matri nd dual s rators: B /nomials, Forms: \$ ct-sum Do ct-sum Do to the M/ uct Spac itary Ope	CO2: va CO3: ba CO4: fu view of v vations, r ons: Def ix repres paces. rief revie Invarian Similarity ecompos cks and ATLAB s ces: Inn rators, N • Produce	arious normal forms of asic properties of inner indamentals of bilinea Course Cont rector spaces over fire natrices, rank, and Gr inition, the algebra of sentations, change of ew, Eigenvalues and ex t Subspaces, and Car of linear transforms sition, Invariant Direct Jordan Forms, and R oftware for solving lin er products, Inner p lormal Operators. ct Spaces: Introduct	of linear op er product ar forms ent elds, subs aussian e f linear tra- of a basis eigenvector yley-Ham ations, Tr Sums, an ational Ca ear algeb product s	perators and t spaces and spaces, bas elimination m ransformatio is, rank-null tors, charact hilton Theore riangular For anonical For ora problems spaces, line	d its applicates and dimethod. n, Rank of ity theorem eristic polymetric m. orms and Internet for the formation orms and Internet for the formation (Systems for the formation of the formation o	nension. a linear n, linear nomials, Diagonal nposition of ODE) nals and	lectures 4 6 6 12 7
Syste Line trans funct Line minir Cano Form Theo Introd Introd Adjoi Oper Posit	ems of li ar trans sformatic tional, ar ar Oper mal poly onical F ns, Direc orem. Jo duction t r Produ ints, Uni rators of tive Form near form	linear equ sformatic on, matri nd dual s rators: B /nomials, Forms: S ct-sum De ordan Bloo to the M/ uct Spac itary Ope on Inner ms, Spec	CO2: va CO3: ba CO4: fu view of v ations, r ons: Def ix repres paces. rief revie Invarian Similarity ecompos cks and a ATLAB s ces: Inn rators, N Produe tral Theo	arious normal forms of asic properties of inner indamentals of bilinea Course Cont rector spaces over fire natrices, rank, and Gr inition, the algebra of sentations, change of ew, Eigenvalues and ex t Subspaces, and Car of linear transforms sition, Invariant Direct Jordan Forms, and R oftware for solving lin er products, Inner p lormal Operators. ct Spaces: Introduct	Inear op or product ar forms ent elds, subs aussian e f linear tra- of a basis eigenvector yley-Ham ations, Tr Sums, ar ational Ca ear algeb product s	perators and t spaces and spaces, bas elimination m ransformatio is, rank-null tors, charact nilton Theore riangular For nd The Prim anonical For ora problems spaces, line ms on Inne	d its applicates and dimethod. n, Rank of ity theorem eristic polymon m. orms and I hary Decomm. (Systems) ar function r Product	nension. a linear n, linear nomials, Diagonal position of ODE) nals and Spaces,	lectures 4 6 6 12 7 6

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Linear Algebra	K. Hoffman and R. Kunze	Prentice Hall of India	2004
2	Linear Algebra	S. H. Fridberg, A. J. Insel	Pearson India	2015
		and L.E. Spence		
3	Linear Algebra and its	G. Strang	Thomson Learning Asia Pvt	2003
	Applications		Ltd	

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Finite Dimensional	P. Halmos	Springer-Verlag	1987
	Vector Spaces			
2	Advanced Linear	S. Roman	Springer	2005
	Algebra			

Department of Mathematics								
Course	Title of	Program Core (PCR) /	Total	Number o	of contact he	ours	Credit	
Code	the	Electives (PEL)	Lecture	Total				
	course		(L)	(T)	(P)	Hours		
MA1105	Real	PCR	3	1	0	4	4	
	Analysis							
Prerequisi	ite	Elementary ideas of real value	d functions	of single	variables.			
Course O	utcomes	Upon successful completion of	this course	e students	will be able	e to:		
		CO2: master basic concepts for measurable functions, the Leb CO3: understand and apply for functions, including the different CO4: understand and apply into and solve problems in mathem	esgue integ the notions nce betwee egration the	gral and Less of conve on point wiseory in one	ebesgue sp ergence inv se and unife or several	aces volving se orm conve	quences of ergence to formulate	f
Course C	ontent						No. of	f
							lectures	
-		rems: Point wise and Uniform	-				10	
convergence and continuity, Uniform convergence and integration, Uniform convergence and								
differentiation, Approximation of a continuous function by Polynomials: Weierstrass theorem.								
		led Variation: Definitions, bas					4	
		variation, continuity, differentiat	•	emann int	egrality of f	unctions		
of bounde	a variation,	total variation, Jordan's theorer	n.					

Riemann Integral: Riemann integral and its properties, characterization of Riemann integrable functions. Riemann-Lebesgue Lemma, Drawbacks of Riemann Integral,	12
Lebesgue's recipe, Riemann-Stieltjes integral.	
Lebesgue Measure: Ring and σ -ring generated by a class of sets, Monotone class of sets,	14
Monotone class generated by a ring, Borel Sets. Outer Measure and Measurable Sets,	
construction of a nonmeasurable set, Lebesgue measure on \mathbb{R}^n , Measure space, Measurable	
Functions	
Lebesgue Integral: Integrating Bounded Measurable Functions, Criteria for Integrability and Properties of the Lebesgue Integral, Integral of Nonnegative Simple Measurable Functions, Properties of Nonnegative Simple Measurable Functions, Monotone Convergence Theorem and Fatou's Lemma. Properties of Integrable Functions and Dominated Convergence Theorem, Integration on Product Spaces, Fubini's Theorems, Lebesgue integral as limits, Comparison of Lebesgue and Riemann Integrals.	16
Total Number of Lectures	56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Real Mathematical Analysis	Charles Chapman Pugh	UTM, Springer International Publishing	2015
2	Real Analysis	N.L. Carothers	Cambridge University Press	2018

SI. No.	Nan	ne of the Bo	ok	Authors		Publisher		Year		
1		ciples of lysis	Real	Aliprantis C. Burkinshaw O.	D.,		3rd Edition, Harcourt Asia Pte Ltd.			1998
2	of inte	I Analysis-T Measure gration	and			World Scientific			2014	
Depa	artme	ent of Mathe	matic	S						
Cour		Title of the course		Program Core (PCR) Electives (PEL)	Total N	Num	ber of co	ntact hours		Credit
oouc			,		Lectur (L)	е	Tutorial (T)	Practical (P)	Total Hours	
MA1 ⁻	MA1151 Programm Languages Lab		9	CR	0		0	6	6	4
Prere	equisi	te	F	undamental ideas abo	out comp	oute	r and pro	gramming		
Cour	se Oi	utcomes	ι	Ipon successful comp	letion of	this	course s	tudents will	be able	to:
CO1: Un			O1: Understand basic	1: Understand basics of programming and program development lifecycle;						
CO2: Understan				O2: Understand the c	he control flow of execution and various program structures;					
	CO3: Able			CO3: Able to write proc	grams or	n da	ta storage	e managem	nent usin	g c and c++.
Cour	rse C	ontent								No. of

	Lab classes
Basic concepts of operating systems like MS DOS, MS WINDOW, UNIX, Algorithm & flow chart drawing.	10
Handling the C character set, identifiers and keywords, data type & sizes, variable names, declaration, statements.	8
Use of Operators & Expressions in programming: Arithmetic operators, relational and logical operators, type, conversion, increment and decrement operators, bit wise operators, assignment operators and expressions, precedence and order of evaluation. Input and Output: Standard input and output, formatted output printf, formatted input scanf.	10
Implementations of Flow of Control in C and C++: Statement and blocks, if - else, switch, loops - while, for do while, break and continue, go to and labels.	10
Implementations of Program Structures: Basic of functions, function types, functions returning values, functions not returning values, auto, external, static and register variables, scope rules, recursion, function prototypes, C preprocessor, command line arguments.	12
Implementations of the concepts of arrays and pointers: One dimensional arrays, pointers and functions, multidimensional arrays.	10
Writing programs on Structures, Union and Files: Basic of structures, structures and functions, arrays of structures, bit fields, formatted and unformatted files.	10
Implementations of basic Data Structures like Arrays, Stacks Queues, Searching & Sorting Algorithms using C and C++.	6
Implementations of the concepts of trees using C and C++: Traversals in a tree, Binary Search tree, B + tree, B tree.	8
Total Number of Lab Classes	84

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Computer Programming in C,	V. Rajaraman	Prentice Hall of India	1994
2	Data Structures	Seymour Lipschutz	McGraw-Hill	1986

SI. No.	Name of the Book	Authors	Publisher	Year
1	Basic Computation and Principles of Computer Programming	E. Balagurusamy	TMH.	2010

SEMESTER-II

		Department o					
Course	Title of the	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA2101	Integral Transforms and Integral Equations	PCR	3	1	0	4	4
Prerequis							I
Course Outcomes Upon successful completion of this course students will be able to: CO1: understand various types of Integral Transformations and Integ Equations and related application in applied mathematics and theorem physics CO2: learn different methods to solve Integral Equations CO3: solve various physical problems by integral transforms and inte equation methods CO4: Learn to apply various transformation to solve ODE and PDE					tical		
		Course Conte					No. of
							lectures
		Integral T	ransforms				
Theorem, Transform Transform	Different form n, Fourier Sine n and its invers	ourier Transforms: Fourier ns of Fourier Integrals, Fou and Cosine transforms and the sion formula, Properties of Foules, Perseval's Relations. Ap	urier Trans neir inverse ourier Trans	form and Transform sform, Fou	Inverse of ns, Complex urier Transf	Fourier x Fourier	12
Laplace Laplace T technique Laplace T	Transforms: I ransform, Lapl is for finding La	Definition of Laplace Transf ace Transform of Derivatives place Transform, Inverse of artial Fraction method for fir	orm, Existe , Laplace T Laplace Tra	ence Theo ransform ansform, P	orem, Prop of Integrals roperties of	, Special f Inverse	12
Henkel T	ransform: Pro	perties of Henkel Transform,	Evaluation	of Henke	Transform	۱.	4
Mellin Tra	ansform: Prop	erties of Mellin Transform, E	valuation of	f Mellin Tr	ansform.		4
some star	ndard functions	on of Z- transform, Properties , Theorems on Z – transforn nd different methods for find	n, Differenti ing Inverse	ation, Con	volution Th		4
			Equations				
Volterra i	ntegral equation	ntegral equations, Formation ons, Fredholm integral equ egral equation	-				4
value problems to an integral equation Various types of kernels: Symmetric kernel, Separable kernel, Iterated kernel, resolvent kernel, Solution of Volterra integral equation using: Resolvent kernel, Successive approximation, Neumann series method. Cauchy kernel, Abel Equation							4

Fredholm integral equations, Fredholm equations of the second kind, the method of Fredholm determinants, iterated kernels, integral equations with degenerate kernels, eigen values and eigen functions of a Fredholm alternative, construction of Green s function for BVP, singular integral equations.	12
Total Number of Lectures	56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Linear Integral Equations, Theory and Technique	R. P. Kanwal	Academic Press	1971
2	Linear Integral Equations	S.G. Mikhlin	Routledge	1961
3	The Uses of Integral Transforms	I.N. Sneddon	McGraw-Hill.	1972

SI. No.	Name of the Book	Authors	Publisher	Year
1	Linear Integral Equations	W. V. Lovitte	Dover Publications	2005
2	Integral Transforms for Engineers	Andrews, Shivamoggi	PHI	2003
3	Integral Transforms	C. J. Tranter	Methuen & Co	1962

	Department of Mathematics								
Course	Title of	Program Core (PCR) /	Total Nur	nber of coi	ntact hours		Credit		
Code	the	Electives (PEL)	Lecture	Tutorial	Practical	Total			
	course		(L)	(T)	(P)	Hours			
MA2102	Functional Analysis	PCR	3	1	0	4	4		
Prerequis	ite	Real Analysis and elementar	y metric sp	aces					
Course O	utcomes	Upon successful completion CO1: understand the fundam spaces and also learn the im CO2: understand and apply to CO3: understand the fundam power.	nental prope portant pro the four fun	erties of m perties of damental	etric space operators theorems o	s and nor f function	al analysis		

Course Content	No. of
	lectures
Metric space: Definitions and examples; spaces like l^p , l^{∞} , $C[a, b]$. Continuity and equivalent	10
metrics, compactness, Cauchy sequences, completeness and completion of metric space,	
Baire Category Theorem and its application.	
Banach Spaces and Fundamental Theorems: Normed Linear Spaces, Banach Spaces,	20
Equivalent Norms, Finite dimensional normed linear spaces, Riesz Lemma, Banach's Fixed	
Point Theorem and its applications.	
Bounded Linear Transformations, Normed linear spaces of bounded linear transformations,	
Uniform Boundedness Theorem, Open Mapping Theorem, Closed Graph Theorem, Linear	
Functionals, Hahn-Banach Theorem, Dual Space, and Reflexivity of Banach Spaces.	
Hilbert Spaces: Real Inner Product Spaces and its Complexification, Cauchy-Schwarz	16
Inequality, Parallelogram law, Pythagorean Theorem, Hilbert Spaces, Orthonormal Sets, Complete Orthonormal Sets, Structure of Hilbert Spaces, Orthogonal Complement and	
Projection Theorem.	
Operators: Riesz Representation Theorem, Adjoint of an Operator on a Hilbert Space,	10
Reflexivity of Hilbert Spaces, Self-adjoint Operators, Positive Operators, Projection Operators.	
Spectral Theory-Point Spectrum, Invertible Operator, Resolvent and Spectrum.	
Total Number of Lectures	56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Introductory Functional Analysis with Applications	Kreyszig, E.	John Wiley and Sons, New York	1889
2	Foundations of Functional Analysis	Ponnusamy, S.	Narosa Publishing House	2017

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	A Course in Functional	Conway, J. B.	Springer Verlag, New York,	1990
	Analysis,			
2	First Course in	Goffman, C. and Pedrick,	Prentice Hall of India, New	1987
	Functional Analysis	G.	Delhi,	

	Department of Mathematics						
Course	Title of	Program Core (PCR) /	Total Number of contact hours Credit				
Code	the	Electives (PEL)	Lecture	Tutorial	Practical	Total	
	course		(L)	(T)	(P)	Hours	
MA2103	Modern Algebra	PCR	3	1	0	4	4
Prerequis	Prerequisite Elementary ideas of algebraic struct						
Course O	Course Outcomes Upon successful completion of			e students	will be able	e to:	

CO1: Explain the fundamental concepts of modern algebra such as group rings and their role in modern mathematics and applied contexts; CO2: Demonstrate accurate and efficient use of modern algebraic technic CO3: Demonstrate capacity for mathematical reasoning through analyzing and explaining concepts from modern algebra; CO4: Apply problem-solving using modern algebraic techniques applied to situations in engineering, physics and other mathematical contexts.				
Course Content	No. of lectures			
Preliminary concept: Sets and Equivalence relations and partitions, Division algorithm for	8			
integers, primes, unique factorizations, Chinese Remainder Theorem, Euler ф-function.				
Groups: Cyclic groups, Permutation groups, Isomorphism of groups, Cosets and Lagrange's				
Theorem, Normal subgroups, Quotient groups, Group Homomorphisms, Cayley's Theorem,				
Group Action, Cauchy's Theorem, Sylow Theorems and their applications.				
Rings: Ideals and Homomorphism. Prime and Maximal Ideals, Quotient Field of an Integral	12			

Rings: ideals and Homomorphism, Prime and Maximal ideals, Quotient Field of an integral	12
Domain, Polynomial and Power Series Rings.	
Divisibility Theory: Euclidean Domain, Principal Ideal Domain, Unique Factorization Domain.	10
Fields: Field extensions, Algebraic extensions, Finite Fields.	10
Total Number of Lectures	56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Abstract Algebra Theory and Applications	Thomas W. Judson	Orthogonal Publishing	2019
2	Contemporary Abstract Algebra	G. A. Gallian	Narosa Publishers	2013

SI. No.	Name of the Book	Authors	Publisher	Year
1	Algebra	T. W. Hungerford	Springer	2009
2	Abstract Algebra	D. S. Dummit and R. M. Foote	John Wiley & Sons, Inc.	1999
3	Fundamentals of Abstract Algebra	D. S. Malik, J. N. Mordeson and M. K. Sen	McGraw-Hill	1997

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total Nun	nber of cor	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA2104	General Mechanics and Variational Calculus	PCR	4	1	0	5	5
Prerequis	Prerequisite			•			•

Course Outcomes Upon successful completion of this course students will be able to uno	derstand:
CO1: Inertial and non inertial reference frames; Parameters defining of mechanical systems and their degrees of freedom;	
CO2: the fundamental concept of Lagrangian and Hamiltonian conce	pt to study
the motion of rigid body, dynamics of system of particles; CO3: the basics of Quantum and Continuum mechanics;	
CO4: the theory of optimizing a functional & apply the formula that	ł
determines stationary paths of a functional to deduce the differential e	
for stationary paths in various cases.	qualitie
Course Content	No. of
	lectures
General Mechanics	
Moving coordinates systems, Gallilean transformation, inertial and noninertial frames of	12
reference. Constrained motions in Cartesian coordinates, Principle of virtual work,	
D'Alembert's principle. Degrees of freedom, generalized coordinates. Lagrange's formulation	
in generalized coordinates, generalized forces, cyclic coordinates, Lagrange's formulation in	
generalized coordinates, generalized forces, cyclic coordinates	
Canonically conjugate coordinates and momenta, Legendre transformation, Hamiltonian.	8
Principle of least action, Hamilton's principle, Hamilton's equations of motion, Two body central	
force problem, Symmetry properties and conservation laws, Noether's theorem .	10
Canonical Transformation, Generating function, Poisson bracket, Identities on Poisson brackets, Hamilton-Jacobi theory, Solution of the Hamilton –Jacobi equation .	10
Planck's law, Photo electric effect, Bohr's theory, Compton effect, de Broglie waves; Wave-particle dualism, Uncertainity Principle, Path integrals, Fundamental laws and	9
foundation of quantum mechanics. Schrodinger equation.	
The Continuum hypothesis, Analysis of strain and stress; Concepts of body forces/surface	5
forces, Stress- strain relations	
Variational Calculus	
Variation and its Properties: Euler's equation, Brachistochrone problem, shortest distance between two points, Curves of minimum arc of surface of revolution.	4
Geodesics: Geodesics in spherical polar and cylindrical coordinates, Functional dependent on	10
higher order derivatives, Variational problems involving several unknown functions, Functional	
involving several independent variables-Ostrogradsky equation, Optimization under	
constraints and Lagrange multipliers.	4
Isoperimetric Problems: Isoperimetric problems involving constraints as functional Variational problems with moving boundaries, Transversality conditions.	4
Lagrange's Equations: Lagrange's equations for dynamical systems, Hamilton's principle,	10
Sturm-Lioville's problem and variational methods, Raleigh's principle, Direct methods of Ritz	
and Kantorovich methods, Applications.	
Total Number of Lectures	70

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Classical Mechanics	H. Goldstein,	Narosa Publication	1998
2	Differential equations and the calculus of variations	L. Elsgolts,	MIR Publication, Moscow	1977
3	Introduction to Quantum Mechanics	David Griffiths	Pearson	2015

SI. No.	Name of the Book	Authors	Publisher	Year
1	Mechanics	L. Landau, E. Lifshitz	Pergamon Press	1969
2	Calculus of Variations with applications	A. S. Gupta	Prentice-Hall of India Pvt. Ltd.	2004
3	Quantum Mechanics	F. Schwable	Springer	2007

		Departmen	t of Math	ematics			
Course	Title of	Program Core (PCR) /	Total Nur	nber of co	ntact hours		Credit
Code	the	Electives (PEL)	Lecture	Tutorial	Practical	Total	
	course		(L)	(T)	(P)	Hours	
MA2105	Numerical Analysis	PCR	3	1	0	4	4
Prerequis	ite	Elementary ideas of functions	s, differenti	ation and i	ntegration		
Course O	utcomes	Upon successful completion					
	CO1: Understand various interpolation formula and applications CO2: Understand and apply linear polynomial geometric curve fitting CO3: Solve system linear and non- linear equations, Eigen value proble PDE					ems, ODE,	
		Course Conte	nt				No. of lectures
Finite Di	fference: S	we have a second s	relations				4
Interpola	Finite Difference: Symbolic operators and their relations.Interpolation: Central difference formulae of Gauss, Stirling formula, Bessel formula, Cubic spline interpolation.					6	
Approximation of function: Curve fitting by least square method (linear, polynomial, geometric, etc.), Chebyshev polynomial and Minimax property, Use of orthogonal polynomials,Gram-Schmidt orthogonalisation method, Economization of power series.					6		
Numerical integration: Newton-Cotes formulae-open type, Newton-Cotes formulae- closed type, Romberg integration, Gaussian quadrature: Gauss-Legendre and Gauss-Chebyshev quadratures, Comparison of Newton-Cotes and Gaussian quadratures.					8		

Solution of non-linear equations: Root of a polynomial by Birge-Vieta method, Graeffe's root squaring method, System of non-linear equations: fixed point method and Newton-Raphson methods, Convergence and rate of convergence.	6
Solution of a system of linear equations: Matrix inverse by partial and complete pivoting, LU decomposition method, Solution of tri-diagonal system of equations, Ill-conditioned linear systems, Relaxation method.	6
Eigenvalue problem: Power method to find largest eigenvalue of eigenvector, Jacobi's method to find eigenvalues and eigenvectors of a symmetric matrix.	6
Solution of ordinary differential equation: Runge-Kutta method (second and fourth order methods), Runge-Kutta method to solve a system of equations, Runge-Kutta method to solve second order IVP, Single step and multi-step methods, Predictor-corrector method: Milne's method, Adam-Moulton method, Solution of second order boundary value problem by finite difference method, Stability analysis, Finite element method to solve BVP.	8
Partial differential equation: Finite difference scheme, Parabolic equation: Crank-Nicolson method, Elliptic and hyperbolic equations: iteration method.	6

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Numerical	Jsames B. Scarbarough	Oxford University Press	1930
	Mathematical Analysis			
2	Introductory Methods	S.S. Sastry	Prentice Hall of India	2005
	of Numerical Analysis			

SI. No.	Name of the Book	Authors	Publisher	Year
1	Numerical Methods for Ordinary Differential Equations	David F. F. Griffiths, Desmond J. Higham	Springer	2010
2	Numerical Methods for Scientists and Engineers	R. W. Hamming	Dover Publications	1987

Course Code	Title of the course	Program Core (PCR) / Electives (PEL)	Total Number of contact hours				Credit
Code	000130		Lecture	Tutorial	Practical	Total Hours	
			(L)	(T)	(P)	Tiours	
MA2151	Numerical Analysis Lab.	PCR	0	0	3	3	2
Prerequisite Ideas about C and C++		Programm	ning and nu	merical me	thods		

Course Outcomes	Upon successful completion of this course students will be able	to:		
	CO1: Understand basics of C and C++ programming;			
	CO2: Able to prepare the flow charts for different numerical met	hods;		
	CO3: Able to write programs on different numerical methods us	ng C		
	and C++.			
Course Content		No. of		
		Lab classes		
Solution of system of lin	9			
elimination, L-U decom	position methods, Jacobi's method, Gauss-			
Seidel iterative method				
Solution of Algebraic ar	nd Transcendental equations by Iteration	6		
method, Newton Raphs	on Method, Graeffe's root squaring method.			
Determination of Eigen	value, Eigen vectors by Power method.	4		
•	s forward and backward interpolation, Lagrange's interpolation, polation, cubic spline interpolation.	9		
Numerical integration b Gaussian quadratures.	y Trapezoidal rule, Simpson's 1/3 rd rule, Romberg's integration,	6		
Solution of ODE by Ru	nge-kutta method and Milne's Predictor- corrector	4		
method.				
Solution of PDE by finit	e difference method.	4		
Total Number of Lab	Classes	42		

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Computer Programming in C,	V. Rajaraman	Prentice Hall of India	1994

2	Numerical Recipes in C++, The art of scientific computing	William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery.	Cambridge University Press	2002 (2 nd edition)
---	---	---	----------------------------	-----------------------------------

Reference Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Basic Computation and Principles of Computer Programming	E. Balagurusamy	Tata McGraw-Hill	2010

SEMESTER-III

		Department of	f Mathema	tics			
Course	Title of the	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA	Operations	PCR	3	1	0	4	4
3101	Research						
Prerequis	site	Elementary ideas of linear	algebra, Pr	obability a	nd numeric	al method	ls
Course C	Outcomes	Upon successful completio	n of this co	urse stude	ents will be	able to:	
 CO1: Extension of linear programming algorithms, different types progratechniques for linear programming problems. CO2: The concept of deterministic inventory problems and apply the known to solve real-life problems. CO3: The theory of Game and Bimatrix game and solution methodologic CO4: The basics of network analysis, model developments and 				knowledge logies.			
		methodologies.	nt				No. of
			iii.				lectures
	n of Linear P y Analysis.	rogramming: Revised Simp	olex, Bound	led Variat	bles, Dual 3	Simplex,	12
-	• •	Branch and bound algorithining problems, Knap-sack pro		•	•		06
	-	i ng: Chance constrained pro	0 0	•			06
-	-	g: Bellman's principle of o or various optimization proble	• •	nd recurs	ive relation	nship of	06
		y Management: Concept of i la, EOQ with quantity discour				iple	06

Constraints, Inventory with deterministic non-constant demand rate, Concept of Lead time, safety stock and service level.	
Game Theory: Maxmin and Minmax principle, two –person Zero-sum games with saddle point. Game problems without saddle point, Pure strategy, Solution of a 2 × 2 game problem without saddle point, Graphical method of solution for n ×2 and 2 ×n game problem, Reduction rule of a game problem(Dominance rule), Algebraic method of solution of game problem without saddle point, Reduction of a game problem to linear programming problem.	10
Bimatrix games: LCP formulation, Lemke's salgorithm for solving bimatrix. Network Analysis: Introduction to network analysis, Shortest path problem, Construction of	10
minimal spanning tree, Flows in networks, Maximal flow problems.	
Definition of a project, Job and events, Construction of arrow diagrams, Determination of critical paths and calculation of floats. Resource allocation and least cost planning, Use of network flows for least cost planning. Uncertain duration and PERT, PERT COST system. Crashing, Updating (PERT and CPM).	

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Operations Research- Theory and applications	J.K. Sharma	Macmillan	2006
2	Operations Research- Principals and practice	Ravindran, Philips, Solbery	John Wiley & Sons	2013
3	Game Theory an Introduction	E.N.Barron	John Wiley & Sons	2010

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Introduction to	F.S. Hiller & G.J.	Gc Graw Hill	2000
	Operations Research	Leiberman		
2	Introduction to Linear	D. G. Luenberger	Addison Wesley	1973
	and Nonlinear			
	Programming			

	Department of Mathematics							
Course	Title of	Program Core (PCR) /	Total Nun	Total Number of contact hours				
Code	the	Electives (PEL)	Lecture	Tutorial	Practical	Total		
	course		(L)	(T)	(P)	Hours		
MA3102	Graph	PCR	3	0	0	3	3	
	Theory							
Prerequis	Prerequisite NIL							

Course Outcomes	Upon successful completion of this course students will be able to:				
	CO1: understand various kind of Graphs and its properties				
CO2: learn the properties of trees, planar Graphs and non planar graphs					
	CO3: understand application of Graphs in various fields				
	Course Content	No. of			
		lectures			
of graphs, Graph iso	f graph, Basic terminology, Directed graphs and weighted graphs, Types omorphism, Sum and product of graphs, Components, Connected and , Euler path, Euler circuit and Euler theorem, Hamiltonian path and circuit.	4			
	operties of trees, Distance, radius, diameter and centre of graphs and nary tree traversal, Application.	6			
	efinition, Planar and non-planar graphs, Kuratowaski's two graphs, hs, Geometric and combinatorial duals, Applications of planar graphs.	6			
	tices: Definition of cut-set and cut-vertices, Rank and nullity, Fundamental Intal cut-sets, Connectivity and separability, Cut-edge and bridge,Network ations.	8			
	ching: Definition, Chromatic number and Chromatic polynomial, Bipartite irtitioning, Matching and its application, Covering, Five-colour and Four- plications.	6			
Graph Algorithms: Matrix representation of graphs, Shortest path algorithms: Dijkstra and Floyd's algorithms, Spanning tree and minimum spanning tree, Prim's and Kruskal's algorithms to find spanning tree, Binary tree traversal, DFS and BFS of a graph.					
Intersection graphs: Interval graph, Circular-arc graphs, Permutation graphs, Trapezoid graphs, Chordal graphs, Applications.					
Applications of gra Biological Sciences.	phs: in Computer Science, Operations Research, Chemistry, Planning,	2			

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Introduction to Graph Theory	B. West Douglas	Prentice Hall of India	2001
2	Graph Theory With Applications to Engineering & Computer Science	Narsingh Deo	Prentice Hall of India	1979
3	A Text Book of Graph Theory	R. Balakrishnn, K. Ranganathan	University Text	2000

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Model Graph Theory	Bela Bollobas	Springer	1998
2	Algorithmic Graph	M.C. Golumbic	Elsevier	1980
	Theory & Par fact			
	Graphs Advanced			
	Linear Algebra			

		Department of	of Mathema	tics			
Course	Title of the	Program Core (PCR) /	Total Nun	nber of coi	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA3103	Fluid	PCR	3	1	0	4	4
	Dynamics						
Prerequis	ite	MA 2104: Ordinary and Pa	rtial Differer	ntial Equat	ions		
Course O	utcomes	Upon successful completic	n of this cou	urse stude	nts will be a	able to:	
	CO1: understand the properties of fluids and the applications of fluid r					mechanics	
		CO1: derive basic governir	g equations	s of both ir	viscid and	viscous fl	uid flows
		CO2: analyze simple fluid f	lows like flo	w past rigi	d cylinder,	sphere, C	Couette
		flow, Poiseuille Flow etc.					
		CO3: understand basics of	dimensiona	al Analysis	and bound	lary layer	theory.
Course Content					No. of		
							lectures
		ergence and curl. Elementary					6
Kinematics of Fluids in Motion: Continuum Hypothesis, Lagrangian and Eularian description;						scription;	14
Velocity of fluid, Streamlines, path lines, streak lines, Steady and unsteady flows, Velocity							
Velocity of		-	•		•	•	
Velocity of potential,	Vorticity vecto	or, Equation of continuity, Eq	uations of m	notion of a	fluid, Press	sure at a	
Velocity of potential, point in flu	Vorticity vecto	-	uations of m	notion of a	fluid, Press	sure at a	
Velocity of potential, point in flue equation.	Vorticity vecto uid at rest, Pres	or, Equation of continuity, Eq ssure at a point in a moving fl	uations of m uid, Euler's e	otion of a equation o	fluid, Press f motion, Be	sure at a ernoulli's	
Velocity of potential, point in flue equation.	Vorticity vecto uid at rest, Pres	or, Equation of continuity, Eq ssure at a point in a moving fl urce, Sink, Doublets, Rectilin	uations of m uid, Euler's e ear vortices.	notion of a equation o	fluid, Press f motion, Be variable me	sure at a ernoulli's ethod for	12
Velocity of potential, point in flue equation. Singularit two-dimentioned by the second secon	Vorticity vecto id at rest, Pre- ies of flow, So nsional proble	or, Equation of continuity, Eq ssure at a point in a moving fl urce, Sink, Doublets, Rectilin ems, Complex potentials fo	uations of m uid, Euler's e ear vortices. r various s	notion of a equation o . Complex singularitie	fluid, Press f motion, Be variable me s, Circle t	sure at a ernoulli's ethod for	
Velocity of potential, point in flue equation. Singularit two-diment Blasius th	Vorticity vecto uid at rest, Pre- ies of flow, So nsional proble eorem, Theor	or, Equation of continuity, Eq ssure at a point in a moving fl urce, Sink, Doublets, Rectilin ems, Complex potentials fo y of images and its application	uations of m uid, Euler's o ear vortices. r various s ns to variou	notion of a equation o . Complex singularitie us singular	fluid, Press f motion, Be variable me s, Circle t ities.	sure at a ernoulli's ethod for heorem,	12
Velocity of potential, point in flu equation. Singularit two-dimen Blasius the Three dimen	Vorticity vecto aid at rest, Pre- ies of flow, So nsional proble eorem, Theor nensional flow,	or, Equation of continuity, Eq ssure at a point in a moving fl urce, Sink, Doublets, Rectilin ems, Complex potentials for y of images and its application Irrotational motion, Weiss's t	uations of m uid, Euler's of ear vortices. r various s ns to variou heorem and	notion of a equation o . Complex singularitie is singular l its applica	fluid, Press f motion, Be variable me s, Circle t ities. tions. Visco	sure at a ernoulli's ethod for heorem, ous flow,	
Velocity of potential, point in flu equation. Singularit two-dimen Blasius th Three dim Vorticity of	Vorticity vector and at rest, Pres ies of flow, So nsional proble eorem, Theor nensional flow, dynamics, Vor	or, Equation of continuity, Eq ssure at a point in a moving fl urce, Sink, Doublets, Rectilin ems, Complex potentials for y of images and its application Irrotational motion, Weiss's t tricity equation, Stress and	uations of m uid, Euler's of ear vortices. r various s ns to variou heorem and strain analy	otion of a equation o . Complex singularitie is singular its applica vsis, Navie	fluid, Press f motion, Be variable me s, Circle t ities. ttions. Visce er-Stokes e	sure at a ernoulli's ethod for heorem, ous flow,	12
Velocity of potential, point in flu equation. Singularit two-dimen Blasius th Three dim Vorticity of Some sol	Vorticity vector and at rest, Present ies of flow, Som nsional proble eorem, Theor nensional flow, dynamics, Vol utions of Navio	or, Equation of continuity, Eq ssure at a point in a moving fl urce, Sink, Doublets, Rectilin ems, Complex potentials for y of images and its application Irrotational motion, Weiss's t ticity equation, Stress and er-Stokes equations (Couette	uations of m uid, Euler's of ear vortices. r various s ns to variou heorem and strain analy e flow, Poise	otion of a equation o . Complex singularitie is singular its applica vsis, Navie euille Flow)	fluid, Press f motion, Be variable me s, Circle t ities. ttions. Visce er-Stokes e	sure at a ernoulli's ethod for heorem, ous flow,	12
Velocity of potential, point in flu equation. Singularit two-dimen Blasius th Three dim Vorticity of Some sol	Vorticity vector and at rest, Present ies of flow, Som nsional proble eorem, Theor nensional flow, dynamics, Vol utions of Navio	or, Equation of continuity, Eq ssure at a point in a moving fl urce, Sink, Doublets, Rectilin ems, Complex potentials for y of images and its application Irrotational motion, Weiss's t tricity equation, Stress and	uations of m uid, Euler's of ear vortices. r various s ns to variou heorem and strain analy flow, Poise layer Equat	otion of a equation o . Complex singularitie is singular its applica vsis, Navie euille Flow)	fluid, Press f motion, Be variable me s, Circle t ities. ttions. Visce er-Stokes e	sure at a ernoulli's ethod for heorem, ous flow,	12

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	A Text Book of Fluid	F. Chorlton	Von Nostrand Reinhold/CBS	1985
	Dynamics			
2	Fluid Mechanics	P. K. Kundu, I. M.	Academic Press	2011
		Kohen, and D. R.		
		Dowling		

SI. No.	Name of the Book	Authors	Publisher	Year
1	An Introduction to Fluid Dynamics	G. K. Batchelor	Cambridge University Press	1993
2	Fluid Mechanics	L. D. Landau, and E. M. Lifshitz	Pergamon Press	1987
3	Fluid Mechanics, 5th ed	F. M. White	McGraw-Hill	2003

4	Theoretical	L.M. Milne Thomson	McMillan & Co Itd.	1962
	Hydrodynamics, 4th ed.			

SEMESTER-IV

		Department o	f Mathema	tics			
Course	Title of the course	Program Core	Total Nun	nber of co	ntact hours		Credit
Code		(PCR) / Electives	Lecture	Tutorial	Practical	Total	
		(PEL)	(L)	(T)	(P)	Hours	
MA4101	Topology	PCR	3	1	0	4	4
Prerequisit	ie	Basic concepts of F	l Real Analys	is.			
 Course Outcomes Upon successful completion of this course students will be able CO1: know about the several type of topological space example subspace topology, product topology and able construct continuous functions on these topological sp CO2: know the definition and basic properties of connects spaces, path connected spaces, compact spaces, and compact spaces; CO3: characterize several types of topological spaces separation axioms, Bair category theorem and other important results; CO4: Apply theoretical concepts in topology to underst real world applications. 				aces, for able to spaces. nnected ind locally es using r			
		Course Conte	ent				No. of lectures
	ation, Countable and I ets, Maximum Princip				om of Choi	ce, Well-	5
• •	al spaces, Basis and S space Topology, Limi	•	•••		•	ology on	11
	Continuous Functions, Open maps, Closed maps and Homeomorphisms, Product and Box					12	
Topology, Metric Topology, Quotient Topology.							
Connected Point Con	Connected and Path Connected Spaces, Connected Sets in Real Line, Components, Local Connectedness, Compact Spaces, Compact Sets in Real Line, Heine-Borel Theorem, Limit Point Compactness, Sequential Compactness, Compactness in Metric Spaces, Local Compactness, One Point Compactification, Tychonoff Theorem.					14	

Countability Axioms, The Separation Axioms, Lindelöf spaces, Regular spaces, Normal spaces, Urysohn Lemma, Tietze Extension Theorem, Equicontinuity, Ascoli-Arzela Theorem, Baire Category Theorem. Applications: space filling curve, nowhere differentiable continuous	14
function.	
Total Number of Lectures	56

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Topology	J. R. Munkres	Prentice Hall of India Pvt.	2000
			Ltd.	
2	Topology	J. Dugundgi	Allyn and Bacon	1966
3	Introduction to Topology and	G.F. Simmons	McGraw-Hill	1963
	Modern Analysis			

SI. No.	Name of the Book	Name of the Book Authors Publisher		Year
1	Introduction to General Topology	K D. Joshi	New Age International	1983
2	General Topology	J. L. Kelley	Van Nostrand Reinhold Co.,	1995
			New York	

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total Nur	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA4102	Generalized	PCR	3	0	0	3	3
	Functions						
	and						
	Wavelets						
Prerequisit	e						•
Course Ou	tcomes	Upon successful comple	tion of this	course stu	udents will b	be able to	:
		CO1: understand basic	properties of	of generaliz	zed functio	ns;	
		CO2: know wavelets and	d its uses;				
		CO3: use them in physic	al problem	S.			
		Course Conte	nt				No. of
							lectures
Differential	equations with	n non-differentiable solut	ions, Wea	ık formula	ation of dif	fferential	4
equation. V	equation. Weak solution						
Test functi	Test functions, distributions, delta function and its uses, delta sequence, Heaviside function					6	
and its use	S						

derivative of a generalized function, Laplace transform of distribution, distribution solution of	6
ordinary and partial differential equations	
Basics of Fourier transform, Gibb's phenomenon, windowed Fourier transform	4
Wavelet, scaling functions, Haar wavelets	3
Multiresolution analysis, properties of scaling functions, decomposition and reconstruction	6
algorithm,	
filters and diagrams, Daubechies wavelets and its construction	4
Applications of wavelet analysis, numerical solution of a partial differential equation using	6
wavelets	
Wavelet transform and its properties	3
Total Number of Lectures	42

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	An Introduction to Fourier analysis and generalized functions	M.J. Lighthill	Cambridge University Press	1958
2	Wavelet transform and their applications	L. Debnath and F. Shah	Birkhauser	2015
3	A first course in wavelet with Fourier analysis	A. Boggess and F.J. Narcowich	Cambridge University Press	2009

Reference Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Generalized functions	D.S. Jones	Cambridge University Press	1982
2	Wavelet Transform	R.S. Pathak	Atlantis Press/World Scientific.	2009

List of Electives

		Department of	Mathema	tics			
Course	Title of the	Program Core (PCR) /	Program Core (PCR) / Total number of contact hours per week Cre			Credit	
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA 9111	Geophysics	PEL	3	1	0		04
Prerequisite	Prerequisite Analysis of stress and st law		ain, Conce	pt of body	force / surf	ace force,	Hooke's
Course Ou	Course Outcomes Upon successful complet		ion of this c	course stu	dents will be	e able to:	
		CO1: understand the corr	nposition &	rheology of	of interior of	f the earth;	

CO2: become more familiar with geophysical techniques and to de better understanding of fundamental principles;	velop a
CO3: develop mathematical models of different earthquake faults.	
Course Content	No. of lectures
Theory of Elastic Waves: Infinitesimal strain, stress-strain relation, stress equation of motion, Body waves and surface waves - P & S waves, Rayleigh waves, Stonely waves, Love waves and their characteristics.	14
Ray Theory: Reflection and refraction of seismic waves, travel time analysis.	10
Geophysical Prospecting: Internal constitution of the earth, reflection shooting and refraction shooting.	10
Seismic ground motion: Continental drift and theory of plate tectonics, microseism, tsunami, foreshock, and aftershock.	4
Models of Linear Viscoelasticity: Maxwell model, SLS model, Burger model, their constitutive equations, Correspondence principle.	8
Basics of Earthquake Faults: Mathematical models of earthquake faults in Maxwell half- space.	10
Total Lectures	56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Fundamentals of Geophysics	William Lowrie	Cambridge University Press	2007
2	Quantitative Seismology (2 nd edition)	Keiiti Aki and Paul G. Richards	University Science Books	2009
3	Earthquake and Volcano Deformation	Paul Segall	Princeton University Press	2010

SI. No.	Name of the Book	Authors	Publisher	Year
1	An Introduction to the theory of Seismology	K. E. Bullen, Bruce A. Bolt	Cambridge University Press	1987
2	Classical and Computational Solid Mechanics	Fung and Tong	World Scientific	

Course		Department o	or wathema	tics			
	Title of	Program Core (PCR) /	Total Num	nber of co	ntact hours		Credit
Code	the	Electives (PEL)	Lecture	Tutorial	Practical	Total	
	course		(L)	(T)	(P)	Hours	
MA9112	Nonlinear Waves	PEL	3	1	0	4	4
Prerequis	site			1		1	
Course C	outcomes	Upon successful completion	of this cours	se student	s will be ab	le to:	
		CO1: to be acquainted with the plasmas; CO2: to know linear and none CO3: be familiar with kinetic to	inear theory	y (in partic		-	
		Course Conte	ent				No. of lectures
Theory of	of nonlinear	waves: Linear waves, Dispers	ive and nor	ndispersive	e waves, gr	oup and	4
phase ve	locity, disper	sion relation, Fourrier transfor	m method				
shalloww	ater waves,	deep water waves, K-dv equation	on and its so	olutions, So	chrodinger	equation	8
and its so	olutions						
and its so		ties, conservation laws, Lax p		bility and	detecting r	nethods,	14
and its so soliton ar	nd its proper	ties, conservation laws, Lax p cklund transformation, Symme	air, Integra	•	-	nethods,	
and its so soliton ar Painleve	nd its proper analysis, Bac tive method		air, Integra tries, invers	e scatterin	g method		
and its so soliton ar Painleve Perturba space me	nd its proper analysis, Bao tive method ethods.	cklund transformation, Symme	air, Integra tries, invers bation; met	e scatterin hod of mu	g method Itiple scales	s, Phase	14
and its so soliton ar Painleve Perturba space me applicati	nd its proper analysis, Bac tive method ethods. ons to plasr	cklund transformation, Symme s: Regular and singular pertur	air, Integra tries, invers bation; met a, quasineu	e scatterin hod of mu utrality, De	g method Itiple scales bye length,	s, Phase	14
and its so soliton ar Painleve Perturba space me applicati of charge plasma,	nd its proper analysis, Bac tive method ethods. ons to plasr ed particles,	cklund transformation, Symme s: Regular and singular pertur na dynamics: Basics of plasm effect of magnetic field, elect	air, Integra tries, invers bation; met a, quasineu	e scatterin hod of mu utrality, De	g method Itiple scales bye length,	s, Phase	14
and its so soliton ar Painleve Perturba space me applicati of charge plasma, Fluid dyn	nd its proper analysis, Bac tive method ethods. ons to plasm ed particles, amic theory of	cklund transformation, Symme s: Regular and singular pertur na dynamics: Basics of plasm effect of magnetic field, elect of plasma, instability of waves	air, Integra tries, invers bation; met a, quasineu rostatic and	e scatterin hod of mu utrality, De l electrom	g method Itiple scales bye length, agnetic wa	s, Phase mobility ves in a	14
and its so soliton ar Painleve Perturba space me applicati of charge plasma, Fluid dyn Kinetic th	nd its proper analysis, Bar tive method ethods. ons to plasm ed particles, amic theory of neory of plas	cklund transformation, Symme s: Regular and singular pertur na dynamics: Basics of plasm effect of magnetic field, elect	air, Integra tries, invers bation; met a, quasineu rostatic and	e scatterin hod of mu utrality, De l electrom	g method Itiple scales bye length, agnetic wa	s, Phase mobility ves in a	14 12 8

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Nonlinear waves, solitons and chaos	E. Infeld and G. Rowlands	Cambridge University Press	1992
2	Introduction to Plasma Physics	F. F. Chen	Plenum Press	1974

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Elements of soliton	G L Lamb	John Wiley&Sons	1980
	theory			

Γ	2	Astrophysical plasmas	V.Krishnan	Kluwer Academic Publishers	1999
		and fluids			

		Department of	f Mathema	tics			
Course	Title of the	Program Core	Total Nur	nber of co	ntact hours		Credit
Code	course	(PCR) / Electives	Lecture	Tutorial	Practical	Total	
		(PEL)	(L)	(T)	(P)	Hours	
MA 9113	Mathematical	PEL	3	1	0	04	04
IVIA 9113	Modeling		5		0	04	04
Prerequisit	te	Knowledge of differen	ntial and int	egral calco	ulus, probal	bility	
Course Ou	itcomes	Upon successful com	pletion of t	his course	students w	vill be able	e to:
		CO1: understand and CO2: understand to a CO3:to provide them	analyze the	models us	sing mather	matical te	chniques;
		Course Conte	nt				No. of
							lecture
		deling: Elementary ma					10
•	U 1	f mathematical modeling	; System a	pproach; fo	ormulation,	analysis	
		s, Dimensional analysis	(1.1	
	-	bugh ordinary different decay models (Logistic	-		-	id decay	4
Mathemat	ical Modeling thro	ough system of ordina	ry differen	tial equati	ions of firs	t order:	10
Prey-Preda	ator models, linear	stability, Mathematical r	nodeling of	epidemics	S.		
Mathemat anslysis	ical Modeling usi	ng delay differential eq	uations: D	elay mod	els, linear	stability	5
	-	hrough Difference e	•			eling in	9
		ough partial differentia				th-death	10
immigratio with no rer	•	ss, linear stability, PDE	model for a	a stochasti	c epidemic	process	
		ough stochastic Differ	ential Four	ations: Br	ownian mo	tion and	8
its propert	ies, Ito formula, I	to integrals and its pr	•				0
	ch integrals. Iber of Lectures						56
i otar Null							50

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Mathematical Biology	J.D. Murray	Springer	2008

2	Stochastic differential	B. K. Oksendal		2014
	equations, An		Springer	
	introduction with			
	applications			

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Mathematical methods	J.D. Logan and W.R.	Wiley.	2009
	in biology	Wolesensky		
2	Elements of	Mark Kot	Cambridge University Press	2012
	Mathematical Ecology			

		Department o	f Mathema	tics			
Course	Title of the course	Program Core	Total Nun	nber of co	ntact hours		Credit
Code		(PCR) / Electives	Lecture	Tutorial	Practical	Total	
		(PEL)	(L)	(T)	(P)	Hours	
MA9114	Advanced	PEL	3	1	0	4	4
	Complex Analysis						
Prerequisit	Prerequisite Basic concepts of Complex Analysis						
Course Ou	tcomes	 CO1: constru- use it to solve CO2: constru- onto a polygo 	completion of this course students will be ab ruct analytic function from a harmonic fur live the Dirichlet problem in a region; ruct analytic function from the upper half gon; about some special functions and its var s.				nction and plane
	Functions, Mean Valı Inequality, Harnack's		n Integral F	ormula, S	chwarz's T	heorem,	12
Normal fan of unit disk	nily, equicontinuity, Mo	ontel's theorem, Rier	nann Mapp	ing Theore	em, Automo	orphisms	12
Infinite Pro	ducts, Necessary co	ndition for converge	ence of a p	roduct, W	/eierstrass'	Product	12
Theorem, g	Theorem, gamma function, Mittag-Leffler Theorem.						
Analytic Co	Analytic Continuation, Monodromy Theorem, Gamma and Zeta functions – a brief introduction					10	
Schwarz re	eflection principle, Sch	warz-Christoffel tran	sformation	, Julia sets	S		10

Total Number of Lectures	56	

Text Books:

SI.	Name of the Book Authors Publisher		Year	
No.				
1	Complex Variables	S. Ponnusamy and H.	Birkhauser, Boston	2006
	with Applications	Silverman		
2	Complex Analysis	T. W. Gamelin	Springer	2001
3	Complex Variables	J. W. Brown and R. V.	McGraw Hill	2008
	and Applications	Churchill		

Reference Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Complex Analysis	L. V. Ahlfors	McGraw-Hill	1979
2	Functions of one	ctions of one J. B. Conway Springer-Verlag		1978
	Complex Variable			

		Department o	f Mathema	tics			
Course	Title of the	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9115	Advanced Modern Algebra	PEL	3	1	0	4	4
	Prerequisite Elementary ideas of algebraic structures and basic modern algebra.						
Course O	Course Outcomes Upon successful completion of this course students will be able to: CO1: Explain the fundamental concepts of advanced modern algebra such groups and rings and their role in modern mathematics and applied contex CO2: Demonstrate accurate and efficient use of advanced modern algebra techniques CO3: Apply problem-solving using advanced modern algebraic techniques applii to various situations in other mathematical contexts.					ed contexts n algebraic	
Course C	ontent		mainomai				No. of
							lectures
		Groups, Normal and Subnorm Groups, Jordan-Hölder Theore		•		Solvable	12
	ian Rings, Se	f an Integral Domain, Polynor emisimple, Orders in simple					14
Operation modules,	Modules: Modules and module homomorphisms, Submodules and quotient modules, 14 Operations on submodules, Direct sums and Direct product, Finitely generated modules, Free modules, Exact sequences, Tensor product of modules and its properties. The functors Hom and tensor product.						
Field Ex construction of autom	Field Extensions : Normal Extension, Separable Extension, Impossibility of some 16 constructions by straightedge and compass. Finite Fields and their properties, Galois Group of automorphisms and Galois Theory, Solution of polynomial equations by radicals, Insolvability of the general equation of degree 5(or more) by radicals.					16	
	Tot	al Number of Lectures	, ,				56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1.	Abstract Algebra Theory and Applications	Thomas W. Judson	Orthogonal Publishing	2019
2	Abstract Algebra	P. A. Grillet	Springer	2006
3	Topics in Abstract Algebra	I. N. Herstein	Wiley Eastern Limited	1975

SI. No.	Name of the Book	Authors	Publisher	Year
1	Algebra	T. W. Hungerford	Springer	2009
2	Fundamentals of Abstract Algebra;	D. S. Malik, J. N. Mordeson and M. K. Sen	McGraw-Hill	1997
3	Abstract Algebra	D. S. Dummit and R. M. Foote	John Wiley & Sons, Inc.	1999

		Department of	f Mathema	tics			
Course	Title of the	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9116	Automata	PEL	3	1	0	0	4
	and						
	Algorithms						
Prerequis	ite	Elementary ideas about auto	mata and b	basic of alg	gorithm.		
Course O	utcomes	Upon successful completion					
		CO1: Understand basics of a		nd closure	properties	of langua	ges;
		CO2: Understand different ad	•				
		CO3: Understand basics algo	orithms and	l design te	chniques a	nd time c	omplexity
		analysis.					
Course Content						No. of	
							lectures
		s of Proof, Basic Concepts of I	0 0			sification	5
		t, Strings, Languages, Finite R	•				
	· · ·	Deterministic Finite State Au	-				6
	-	xpressions, Regular Gramm	-	•	-		
	Le Closure F	Properties of Regular Langua	ge: Closur	e under E	soolean op	erations,	
reversal,							
0							
	•	Regular Language: Closure		oolean op	perations,	reversal,	5
homomorphism, inverse homomorphism, etc. Pumping lemma.							
Context Free Grammars (CFG): Pumping Lemma of Context Free Language (CFLs),					4		
Closure properties of CFL: closure under union, concatenation, Kleene closure, substitution,						5	
	homomorphism, reversal, intersection with regular set, Normal Forms, Derivation trees and						
ambiguity							

Pushdown Automata: Pushdown Automaton, Equivalence between acceptance by Final State,	8
Equivalence of Context Free Grammar and Pushdown Automaton.	
Turing Machine ™: Turing Machine as an Acceptor and as a Computing device, Techniques	5
for Turing Machine construction, Equivalence between Turing Machine and Type 0 Language,	
The Halting problem.	
Context-sensitive languages, Recursive and Recursive Enumerable sets, Chomsky Hierarchy.	5
Algorithms: Analysis of Algorithms: Analysis of Algorithms, Asymptotic notations-big ohm,	5
omega and theta. Average case analysis of simple programs like finding of a maximum of n	
elements. Recursion and its systematic removal.	
Design of Algorithms: (Divide and Conquer, Greedy method, Dynamic programming, Back	4
tracking, Branch and Bound). Lower bound theory, Non-deterministic algorithm-Non-	
deterministic programming constructs. Simple non-deterministic programs. NP – hard and NP	
- complete problems.	
Different types of Algorithms: Quicksort – Non – recursive implementation with minimal stack	4
storage. Sorting and Searching Algorithms, Interpolation and Binary Search	
Total Number of Lectures	56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Introduction to Automata Theory, Languages and Computation	Hopcroft, Ullman	Pearson Education.	2007
2	Theory of Computer Science: Automata, Languages and Computation	K.L.P. Mishra and N. Chandrasekaran	PHI Learning Private Limited, Delhi India	2006

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	An Introduction to	Peter Linz	Narosa Publishing house	2016
	Formal Language and			
	Automata			
2	Elements of the	Papadimitrou, C. and	Narosa Publishing house	2015
	Theory of	Lewis		
	Computation			

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total Number of contact hours			Credit	
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9117	Differential	PEL	3	1	0	4	4
	Geometry						
Prerequisite		Topology, Basic Geometry					•

CO2: identify and solve problems that require the use of vector calculus differential geometry CO3: know the notion of Serret-Frenet frame for space curves and the involu- and evolutes of space curves with the help of examples	
CO3: know the notion of Serret-Frenet frame for space curves and the and evolutes of space curves with the help of examples.	ne involutes
Course Content	No. of lectures

Vector Fields: Height of the level set, level curves, Integral curve, smooth vector field, The
tangent Space: tangent to the level set, gradient, Surfaces: Hyperplane, Lagrange multiplier,
Vector Fields on Surfaces, maximal integral curve, orientation and its consistency, Osculating
plane, Serret Frenet formula, Singular points and their classification Gauss, The Gauss map
spherical image, one-sheeted hyperboloid.18

Geodesics: Maximal geodesic, great circle, Parallel Transport, covariant derivative and acceleration, Fermi derivative, The Weingarten Map: shape operator, geodesic flow.

Curvature of plane curves: Center of curvature, radius of curvature, Isometries, Intrinsic	12
differentiation, Gauss-Kronecker curvature, translation, rotation, Fundamental theorem on	
curves.	
Riemannian metrics : Hyperbolic metric, Stereographic projection, Poincare metric, affine and Riemannian connection and covariance derivation, Applications of differential geometry in engineering and sciences.	14
Total no of Lectures	56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Elementary Topics in Differential Geometry	J. A. Thorpe	Springer, India	1979
2	Elementary Differential Geometry	B. O'Neill	Academic Press, New York	1966

SI.	Name of the Book	Authors	Publisher	Year		
No.						
1	Differential Geometry	M. DoCarmo	Prentice Hall of India, New	1976		
	of Curves and		Delhi			
	Surfaces					
2	Elementary	A.N. Pressley	Springer, New Delhi	2010		
	Differential Geometry					
Department of Mathematics						
	Total Number of contact hours Credit					

Course	Title of the	Program Core (PCR) /	Lecture	Tutorial	Practical	Total	
Code	course	Electives (PEL)	(L)	(T)	(P)	Hours	
			(-/	(1)	(*)		
MA 9118	Optimization	PEL	3	1	0	4	4
	Techniques						
Prerequisi	te	Elementary ideas of line	ar algebra,	Probability	y and multiv	ariate sta	atistics,
		numerical methods					
Course Ou	utcomes	Upon successful comple	tion of this	course stu	idents will b	be able to	:
CO1: The concept of non-linear programming, different types of				f non-linear			
programming techniques and solution methodologies;							
		CO2: The concept of g		-		knowledg	ge to solve
		real-life problems with m					
		CO3: The theory of stoc	hastic linea	r and non-	linear prog	ramming	and chance
constrained methods;							
		CO4: The methods of ge	eometric pr	ogrammin	g to solve o	different c	ptimization
		problem;		-	-		
		problem; CO5: The basics of direc		-	-		
		problem; CO5: The basics of direc programming.	t and indire	-	-		constrained
		problem; CO5: The basics of direc	t and indire	-	-		constrained
		problem; CO5: The basics of direct programming. Course Conte	et and indire	ect search	methods to	solve und	No. of lectures
		problem; CO5: The basics of direct programming. Course Conte g: Lagrangian function, N	ent LPP with e	ect search	methods to	solve und	constrained
inequality	constraint,	problem; CO5: The basics of direct programming. Course Conto g: Lagrangian function, N Kuhn-Tucker conditions	ent LPP with e	ect search	methods to	solve und	No. of lectures
inequality Programm	constraint, ing, Separable	problem; CO5: The basics of direct programming. Course Conte g: Lagrangian function, N Kuhn-Tucker conditions Programming.	ent ent LPP with e , Quadra	quality con	methods to	solve und PP with Convex	No. of lectures
inequality Programm Goal Prog	constraint, ing, Separable ramming: Ger	problem; CO5: The basics of direct programming. Course Conto g: Lagrangian function, N Kuhn-Tucker conditions Programming. neral goal programming mo	ent LPP with e , Quadra	quality con tic progr	methods to nstraint, NL amming, gle goal, Mo	PP with Convex	No. of lectures
inequality Programm Goal Prog multiple go	constraint, ing, Separable gramming: Ger pals-equally rar	problem; CO5: The basics of direct programming. Course Conte g: Lagrangian function, N Kuhn-Tucker conditions Programming. neral goal programming me nked, Model with multiple	t and indire ent LPP with e , Quadra odels, Mode goals-prior	quality con tic progr	methods to nstraint, NL amming, gle goal, Mo	PP with Convex	No. of lectures
inequality Programm Goal Prog multiple go of goal pro	constraint, ing, Separable ramming: Ger pals-equally rar ogramming, Sin	problem; CO5: The basics of direct programming. Course Conte g: Lagrangian function, N Kuhn-Tucker conditions Programming. neral goal programming me hked, Model with multiple plex method in goal program	ent LPP with e , Quadra odels, Mode goals-prior amming.	quality con tic progr el with sino ity ranked	methods to nstraint, NL amming, gle goal, Mo , Graphical	PP with Convex odel with method	No. of lectures 16
inequality Programm Goal Prog multiple go of goal pro Stochasti	constraint, ing, Separable gramming: Ger pals-equally rar ogramming, Sin c Programmin	problem; CO5: The basics of direct programming. Course Conto g: Lagrangian function, N Kuhn-Tucker conditions Programming. Deral goal programming monked, Model with multiple polex method in goal progr g: Chance constrained progr	ent LPP with e , Quadra odels, Mode goals-prior amming. ogramming	ect search quality con tic progr el with sing ity ranked g techniqu	methods to nstraint, NL amming, gle goal, Mo , Graphical e, Stochast	PP with Convex odel with method	No. of lectures
inequality Programm Goal Prog multiple go of goal pro Stochasti programm	constraint, ing, Separable ramming: Ger bals-equally rar ogramming, Sin c Programmin ing, Stochastic	problem; CO5: The basics of direct programming. Course Contro g: Lagrangian function, N Kuhn-Tucker conditions Programming. neral goal programming me hked, Model with multiple nplex method in goal program ig: Chance constrained pr non-linear programming,	ent LPP with e , Quadra odels, Mode goals-prior amming. ogramming	ect search quality con tic progr el with sing ity ranked g techniqu programm	methods to nstraint, NL amming, gle goal, Mc , Graphical e, Stochast ing techniq	PP with Convex odel with method ic linear ue.	No. of lectures 16 10 08
inequality Programm Goal Prog multiple go of goal pro Stochasti programm Geometric	constraint, ing, Separable ramming: Ger bals-equally rar ogramming, Sim c Programmin ing, Stochastic c Programmin	problem; CO5: The basics of direct programming. Course Conte g: Lagrangian function, N Kuhn-Tucker conditions Programming. Deral goal programming me hked, Model with multiple plex method in goal program ig: Chance constrained pro non-linear programming, g: Posynomial, Unconstrained	t and indire ent LPP with e , Quadra odels, Mode goals-prior amming. ogramming Two stage ained GPF	ect search quality con tic progr el with sing ity ranked g techniqu programm o using di	methods to nstraint, NL amming, gle goal, Mc , Graphical e, Stochast ing techniq fferential C	PP with Convex odel with method ic linear ue.	No. of lectures 16
inequality Programm Goal Prog multiple go of goal pro Stochasti programm Geometric	constraint, ing, Separable ramming: Ger bals-equally rar ogramming, Sim c Programmin ing, Stochastic c Programmin	problem; CO5: The basics of direct programming. Course Contro g: Lagrangian function, N Kuhn-Tucker conditions Programming. neral goal programming me hked, Model with multiple nplex method in goal program ig: Chance constrained pr non-linear programming,	t and indire ent LPP with e , Quadra odels, Mode goals-prior amming. ogramming Two stage ained GPF	ect search quality con tic progr el with sing ity ranked g techniqu programm o using di	methods to nstraint, NL amming, gle goal, Mc , Graphical e, Stochast ing techniq fferential C	PP with Convex odel with method ic linear ue.	No. of lectures 16 10 08
inequality Programm Goal Prog multiple go of goal pro Stochasti programm Geometrie Unconstra	constraint, ing, Separable gramming: Ger bals-equally rar bgramming, Sin c Programmin ing, Stochastic c Programmin ined GPP using	problem; CO5: The basics of direct programming. Course Conte g: Lagrangian function, N Kuhn-Tucker conditions Programming. Deral goal programming me hked, Model with multiple plex method in goal program ig: Chance constrained pro non-linear programming, g: Posynomial, Unconstrained	ent LPP with e , Quadra odels, Mode goals-prior amming. ogramming Two stage ained GPF nequality, C	ect search quality con tic progr el with sing ity ranked g techniqu programm P using di Constraine	methods to nstraint, NL amming, gle goal, Mc , Graphical e, Stochast ing techniq fferential C d GPP.	PP with Convex odel with method ic linear ue. calculus,	No. of lectures 16 10 08

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Engineering Optimization- Methods and Applications	A. Ravindran, K. M. Ragsdell and G. V. Reklaitis	Wiley-India Edition	2006
2	Engineering Optimization - Theory and Practice	Singiresu S. Rao	New Age International (P) Limited.	2013

SI. No.	Name of the Book	Authors	Publisher	Year
1	Practical Methods of Optimization	R. Fletcher	2ed. Academic Press	2000
2	Introduction to Linear and Nonlinear Programming	D. G. Luenberger	Addison Wesley	1973
3	Mathematical Programming Techniques	Z.S. Kambo	East West Press	1997

		Department of	f Mathema	tics			
Course	Title of the	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA	Fuzzy	PCR	3	1	0	4	4
9119	Mathematics						
Prerequis	site	Elementary ideas of basic	probability f	heory			
Course C	Outcomes	Upon successful completio					and way to
		CO1: the theory of Fuzzy s				uzzy sei	and way to
	represent imprecise data through fuzzy set. CO2: the concept of fuzzy numbers and arithmetic operations on fuz					zv numbor	
		CO3: the concept of linguis			•		•
		rule base.		, 10229 106	allon, 1022y	100301111	g and ruzzy
		CO4: the theory of fuzzy log	nic, possibil	ity and neo	cessity mea	sures and	d probability
		of fuzzy events.	, pece				ар: сасали)
		CO5: the techniques of dec	cision makii	ng in fuzzy	/ environme	ent.	
		Course Conte		<u> </u>			No. of
							lectures
Basic cor	ncepts of fuzzy s	sets and fuzzy logic, Motivati	on, Fuzzy s	ets and th	eir represer	ntations,	14
		nd their designing, Operati					
Alpha-lev	el cuts, Geome	tric interpretation of fuzzy se	ts.				
Fuzzy ex	tension principle	e and its application.					02
Fuzzy nu	mbers, Fuzzy ni	umbers in the set of integers,	Arithmetic	operations	s on fuzzy n	umbers.	08
•		uistic modifiers, Fuzzy rules, fuzzy relations, Fuzzy reaso		ions, Basio	c properties	of fuzzy	06
approxim	ation, Types of	nd fuzzy implication rules, fuzzy rule-based models (th ons and approximate reason	e Mamdan				08
and Nece	Fuzzy logic, Truth, Propositions of fuzzy logic, Fuzzy logic and probability theory, Possibility and Necessity, Possibility versus probability, Probability of a fuzzy event, Baye's theorem for uzzy events, Probabilistic interpretation of fuzzy sets.					06	

Decision making in Fuzzy environment, Fuzzy Multi criteria analysis, Multistage decision	12
making, Decision making using Fuzzy ranking methods, Fuzzy Linear programming, Fuzzy	
goal programming, Fuzzy Multi-objective decision making.	

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Fuzzy Set Theory and its Applications	H. J. Zimmermann	Second Edition, Kluwer Academic Publishers	1991
2	First Course on Fuzzy Theory and Applications	K. H. Lee	Springer	2005

SI. No.	Name of the Book	Authors	Publisher	Year
1	Fuzzy sets Engineering	W, Pedrycz	CRC Press	1995
2	Fuzzy sets, Uncertainty and Information	G. J. Klir and T. A. Folger	Prentice Hall, Englewood Cliffs	1988
3	Fuzzy Set Theory: Foundation and Application	G. J. Klir, U. S. Clair and B. Yuan	Prentice Hall	1997
4	Fuzzy Sets, Fuzzy Logic Applications	G. Bojadzieve and M. Bojadzieve	World Scientific	1995

	Department of Mathematics						
Course	Title of the	Program Core (PCR) /	Total Nur	Total Number of contact hours			
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9120	Nonlinear Analysis	PEL	3	1	0	4	4
Prerequis	ite	Topology and Functional An	alysis				
Course O	Prerequisite Topology and Functional Analysis Course Outcomes Upon successful completion of this course students will be able to: CO1: understand how to use the Banach Fixed Point theorem to nonline differential equations, nonlinear integral equations, real and complex impli functions theorems and system of nonlinear equations. CO2: understand the classical theorems of fixed point theory and their applicabil in different fields including the differential and integral equations CO3: understand how to determine uniqueness of solutions to dynamical system and matrix equations.					applicability	
	Course Content					No. of	
							lectures

Total Number of Lectures	56
Approximation of fixed points : convergence of successive iterates, Mann iteration, modified Mann iteration, Ishikawa iteration process, convergence of such iteration process, nonexpansive and quasi-nonexpansive mappings.	10
Degree theory and condensing operators with applications.	10
Topological Methods: Brouwer fixed point theorem, Contractible sets, Schauder fixed point theorem; fixed point theorem for non-compact operators; classical solution to PDEs, functional setting; classical solution, applications of fixed-point theorems.	20
Fixed Point Theorems with Applications: Properties of linear and nonlinear operators, Banach contraction mapping theorem, Picard's theorem, and applications of contraction principle.	16

Name of the Book Publisher Year SI. Authors No. Functional Analysis: R.E. Edwards **Dover Publications** 1995 1 Theory and applications **Topological Methods** 2 E. Tarafdar, Mohammad World Scientific 2008 for Set-Valued S R Chowdhu Nonlinear Analysis

SI. No.	Name of the Book	Authors	Publisher	Year
1	Topological degree Theory and Applications	Yeol Je Cho, Yu-Qing Chen	Chapman and Hall/CRC	2006
2	Iterative Approximation of Fixed Points	V. Berinde	Springer	2007

Department of Mathematics								
Course	Title of the	Program Core (PCR) /	Total Number of contact hours Cree					
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total		
			(L)	(T)	(P)	Hours		
MA	Optimization	PCR	3	1	0	4	4	
9121	Techniques							
Prerequis	site	Fundamental concepts of o	ptimization	technique	S			
Course C	outcomes	Upon successful completion of this course students will be able to:						
		CO1: The concepts of di management models. CO2: The concept of repla models of maintained and r CO3: The concept of seque	acement m	odels in o ined syste	different sc m.			

CO4: different simulation techniques to solve problems like rando generation.	om number
Course Content	No. of lectures
Queuing Theory: Introduction of Basic Concepts in Stochastic Processes. Markov Chain and Markov Processes. Introduction to waiting line models steady state behaviour of M/M/1 and M/M/C queueing systems, Erlangian Queueing Systems: $M/E_k/1$ and $E_k/M/1$. Bulk Queueing Systems. Basic idea of priority systems. Imbedded Markov chain models: M/G/I, G/M/I, M/D/C.	12
Probabilistic Inventory Management: Single period inventory models, newspaper boy problems with or without salvage value, Periodic and Continuous review models, Inventory management of items with deterioration, Inventory management of items with inflation.	08
 Replacement, Reliability & Maintenance: Replacement of items that deteriorate, Equipments that suddenly fail, chain of improving equipment's, assuming (1)same life for each member in the chain and (2)increasing life, equal to that of deterioration only at infinity. Replacement of items that fail stochastically-individual and common preventive replacements, Renewal theory. Basics of reliability. Classes of life distributions based on notions of ageing, Reliability models 	16
of non-maintained & maintained systems, Availability theory and it's modelling for various configurations.	
Sequencing Analysis: Two machine and n jobs (no passing) problem and three machine and n jobs (no passing) problems: different routing, 2 jobs and m machines, n jobs and m machines, branch and bound algorithms.	06
Simulation: Implementation of simulation modeling, Design of simulation models. Generation of random deviates, the uniform distribution and its importance to simulation, Generation of random numbers (Properties of uniformly distributed numbers, Mid-square technique, Mid-product, technique, Fibonacci method).	14
Generating uniform random variates via a congruential method (Mixed method, Multiplicative method, Quadratic congruential method), testing a random number generator (Frequency test, Gap test, Runs test, Poker test).	
Inverse transform method, (Exponential distribution, Weibull distribution, Geometric distribution), Rejection Techniques (Beta distribution, Gamma distribution), Composition method (Poisson distribution, Erlang distribution, Binomial distribution), Approximation techniques, Special probability distributions (Chi-square distribution, Student's T-distribution, F-distribution).	
Total No of Lectures	56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Operations Research	Prem Kumar Gupta & D. S. Hira	7 th ed., S Chand publication	2014
2	Quantitative techniques in management	N.D. Vohra	5 th ed., Mc Graw Hill	2017

Reference Books:

SI.	Name of the Book	Authors	Authors Publisher	
No.				
1	Operations Research – Principles & Practice	Ravindran, Phillips and Solberg	John Wiley & Sons	2007
2	Introduction to Operations Research	F. S. Hiller & G. J. Leiberman	McGraw Hill	1990

		Department o	f Mathema	tics			
Course	Title of the	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9122	Algebraic Coding Theory	PEL	3	1	0	4	4
Prerequis		Ideas of basic linear algebra					
Course O	utcomes	Upon successful completion					
	CO1: State and prove fundamental theorems about error-correcting coor CO2: Calculate the parameters of given codes and their dual codes usin standard matrix and polynomial operations CO3: Compare the error-detecting/correcting facilities of given codes for binary symmetric channel CO4: Design simple linear or cyclic codes with required properties.						sing
Course Content						No. of lectures	
		duction to Information Theory Entropy, Information Measure			formation,	Average	6
the Effect	s of Error Cori	g Theory: Basic Assumptions rection and Detection, Maximu g Codes, Error-Correcting Cod	im Likelihoo				8
Finite Field	elds: Finite al and how to	Fields: the basic theory, Fie o find irreducible polynomial, e field, Minimal Polynomial, pr	eld Extensi The numb	er of irred	ucible poly	nomials,	8
Linear Co code C =		odes, Linear Codes, Weight a ⊐, Generating Matrices and codes.					8
Bounds of	on Codes: Sp	here-covering bound, Hammi	ng bound, S	Singleton I	oound.		4
	od Codes: I Codes, Kerd	Hamming Codes, Golay Code ock codes.	es, BCH C	odes, Ree	ed-Solomo	n codes,	6
	odes: Generation of the second	ator Polynomials, Generator	and Parity	-check m	atrices, Po	lynomial	8
Codes ov	ver Z_4: Quat	ternary Codes, Binary Codes Codes over Z_4.	Derived fro	om Quater	nary Codes	s, Galois	8
	of Lectures	_					56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Introduction to Coding Theory	J. H. van Lint	Springer	1999

2	Introduction to the theory of error- correcting codes	Vera Pless	A Wiley-Interscience Publication	1998
3	Coding Theory	S. Ling and C. Xing	Cambridge	2004

SI. No.	Name of the Book	Authors	Publisher	Year
1	Coding Theory and Cryptography	D. R. Hankerson, D. G. Hoffmann, D. A. Leonard, C. C. Lindner, K. T. Phelps, C. A. Rodger and J. R. Wall	CRC	2006
2	Coding and Information Theory	S. Roman	New York, Springer- Verlag	1992
3	The Theory of Error Correcting Code	F. J. Macwilliams and N. J. A. Sloane	North-Holland	1977

		Department o	f Mathema	tics			
Course	Title of the	Program Core (PCR) /) / Total Number of contact hours				Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9123	Dynamical	PEL	3	1	0	4	4
	Systems						
	and Chaos						
	Theory						
Prerequis	ite	Basics of ordinary differenti	al equation	S			
Course O	utcomes	Upon successful completion	n of this cou	urse stude	nts will be a	able to un	derstand:
	CO1: fundamentals of continuous and discrete dynamical systems CO2: basics of bifurcation theory and its applications CO3: basics of chaos theory						
		Course Conte	ent				No. of
							lectures
		us dynamical systems and di					2
One dime	ensional syste	ems: Existence and uniquene	ess, Bifurca	tions and	Flow on the	e circle.	8
	•	stems: Linearization and s		•			14
		s in two dimensions, Poincar					
		ory, Poincaré sections, circle	e-maps and	l mode-loo	cking, Rela	xation &	
		turbation methods.					
		s: Lorenz equations, Liap	unov expo	nents, St	range and	chaotic	12
attractors, fractal boundaries, Logistic map.							
	Bifurcations: Saddle-node, transcritical, pitchfork, Hopf, homoclinic and heteroclinic						12
	connections. Bifurcation analysis using MATCONT/XPPAUT softwares						
Routes to	o chaos: Perio	d doubling, quasiperiodic and		ncy			8
		Total Number of Lo	ectures				56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Nonlinear Dynamics and Chaos	S. H. Strogatz	Westview Press	2000
2	Chaos: An Introduction	K. T. Alligood, T. D.	Springer	1996
	to Dynamical Systems	Sauer, and J. A. Yorke		

SI. No.	Name of the Book	Authors	Publisher	Year
1	Nonlinear Ordinary Differential Equations	D. W. Jordan, and P. Smith	Oxford University Press	1999
2	Stability, instability and chaos	P. Glendinning	Cambridge University Press	1994
3	Chaos in Dynamical Systems	E. Ott	Cambridge University Press	2002

		Department of	f Mathema	tics			
Course	Title of the	Program Core (PCR) /	Total Number of contact hours				Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9124	Computational Fluid	PEL	3	1	0	4	4
	Dynamics						
Prerequis	ite	MA 2105: Numerical Ana Upon successful complet					
CO1: understand basic properties of computational methods –accustability, consistency CO2: learn the basic computational methods for solving linear/ no differential equations CO3: learn how to computationally solve the governing equations f flow problems in simple/ complex geometries CO3: acquire basic programming and graphic skills to conduct the calculations and data analysis				on-linear for fluid			
		Course Conte	nt				No. of
Driefintre	duction to Comm	utational Fluid Dumamica (C			aliaationa in	real life	lectures
problems		utational Fluid Dynamics (C us conservation principles rgy.	<i>,</i> .				4
	••	of partial differential equati 3oundary Value Problems (· · · ·				4
Finite volu	ume (FVM) metho	ion: various grid generation ods for typical elliptic, parab equations, explicit and im	oolic and h	yperbolic	equations,	Navier-	12
	of simultaneous -CGSTAB and	equations: iterative and c GMRES (m) matrix sol		ods, Gau	ss-Seidel i	teration,	4

Governing equations for fluid dynamics in complex geometries: Transformation of	4
governing equation in ξ - η -plane, basic facts about transformation, grid transformation on	
complex geometries. N-S equations in transformed plane, matrices and Jacobians.	
Incompressible Flow: Upwind scheme, Exponential scheme, Hybrid scheme, Power law	22
scheme; Higher order upwind schemes: second order convective schemes, QUICK.	
Solution of N-S equations using explicit methods: MAC and SMAC (staggered and	
collocated grids), semi-implicit methods: SIMPLE and SIMPLER	
Compressible flow: Various schemes for solution of Euler equation (Lax-Wendroff,	
MacCormark, Beam and Warming schemes) & Solution of N-S equations (MacCormack,	
Jameson algorithm in finite volume formulation and transformed coordinate system).	
Implementation of a CFD code- The basic structure of a CFD code: Pre-processor, Solver and	6
Post-processor, User-defined-subroutines, Solution to some basic problems in heat transfer	
and fluid flow	
Total Number of Lectures	56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Computational Fluid Dynamics: The Basic	J.D. Anderson, Jr	McGraw Hill, Inc.,	1995
2	with Applications Computational Fluid Mechanics and Heat Transfer	J. C. Tannehil, D. A. Anderson, and R. H. Pletcher	Taylor & Francis	1997

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Numerical Heat	S. V. Patankar	Hemisphere Series on	1980
	Transfer and Fluid		Computational Methods in	
	Flow		Mechanics and Thermal Science	
2	Computational Fluid	Chung T. J.	Cambridge University Press	2003
	Dynamics			

	Department of Mathematics						
Course	Title of the	Program Core (PCR) /	Total Nur	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA 9125	Soft	PEL	3	1	0	4	4
	Computing						
Prerequisit	е	(i) Rudimentary concepts o	f statistics a	and probal	oility		
		(ii) Proficiency with algorithms.					
		(ii) Programming skills in C, C++, or Java, MATLAB, etc.					
(iii) Critical thinking and problem solving skills.							

Course Outcomes	Upon successful completion of this course students will be able to:			
CO1: the architecture and learning paradigms of artificial neural network. CO2: different learning algorithms to train different ANN. CO3: different metaheuristic algorithms like, GA, ACO, PSO, etc. CO4: the concepts needed to manipulate imprecise data using fuzzy set, fuzz logic and rough set theory. CO5: the concepts of different hybrid approaches to solve engineerin optimization problems.				
	Course Content	No. of		
		lectures		
Introduction of Soft Com	puting, Concepts and applications.	04		
Propagation) neural networks, Topologic org	euron, Neural networks, Adaline, Perceptron, Madaline and BP (Back vorks, Adaptive feedforward multilayer networks, RBF and RCE neural anized neural networks, competitive learning, Kohonen maps, Solving sing neural networks, Stochastic neural networks, Boltzmann machine.	16		
Fuzzy sets, fuzzy arithmetic, fuzzy logic and fuzzy inference, fuzzy decision-making.				
Ant colony optimization and Particle swarm optimization.				
• • • •	eural networks, fuzzy logic, genetic algorithms and rough sets), n problem solving using genetic algorithm, Neural network approaches, ches.	16		

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Soft Computing	D. K. Pratihar	Narosa	2008
2	Genetic Algorithms in Search, Optimization and Machine learning	D. E. Goldberg	Pearson Education, Inc.	1989

SI. No.	Name of the Book	Authors	Publisher	Year
NO.				
1	Principles of Soft	S.N. Sivanandam and S.	Wiley	2012
	Computing	N. Deepa		
2	Ant Colony	M. Dorigo and T. Stutzle	Prentice Hall India Pvt. Ltd.	2005
	Optimization			
3	Swarm Intelligence:	E. Bonabeau, M. Dorigo	Oxford University Press, New	1999
	From Natural to	and G. Theraulaz	York	
	Artificial Systems			

Department of Mathematics							
Course	Title of the	Program Core (PCR) /	Total Nun	nber of cor	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9126	Cryptography	PEL	3	1	0	4	4

Prerequisite	Elementary ideas of linear algebra and modern algebra.			
Course Outcomes	Upon successful completion of this course students will be able to:			
	CO1: Classify the symmetric encryption techniques			
	CO2: Illustrate various Public key cryptographic techniques			
	CO3: Evaluate the authentication and hash algorithms			
	CO4: Discuss authentication applications			
Course Content				
Secure communications, shift ciphers, affine ciphers, vigenere cipher, symmetric key, public				
key, block ciphers (DES	, AES), Shannon's Notion of perfect secrecy, one time pads, secure			
random bit generator, lir	near feedback shift register sequences, stream ciphers (LFSR based,			
RC4), Block cipher mod	es of operations.			
Differential cryptanalysis	s, Linear cryptanalysis.	10		
Prime number generatio	n, RSA, attack on RSA, Diffie-Hellman key exchange, El Gamal public	12		
key cryptosystem, crypto	ographic hash function, RSA signature, El Gamal signatures, hashing			
and signing, digital signa				
Elliptic Curves, Basic facts. Elliptic curve cryptasystems.				
One-way functions, PRG, PRP.				
Total Numbers of Lectures				
Caxt Books:				

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Introduction to Cryptography	Johnnes A Buchmann	Springer	2001
2	Cryptography: Theory and Practice	D R Stinson	CRC Press	2006

SI. No.	Name of the Book	Authors	Publisher	Year
1	Introduction to Cryptography with coding Theory	W. Trappe and L. C. Washington	Prentice-Hall	2006
2	Classical and Contemporary Cryptology	Richard J. Spillman	Prentice-Hall	2005

Departme	Department of Mathematics						
Course Code	Title of the	Program Core (PCR) / Electives (PEL)	Total Nun	nber of co	ntact hours		Credit
Couc	course		Lecture	Tutorial	Practical	Total	
	Course		(L)	(T)	(P)	Hours	
MA 9127	Decision Theory	PEL	3	1	0	0	4
Prerequisit	e	Elementary ideas of optimiz	zation techr	niques and	decision th	neory	
Course Outcomes Upon successful completion							
		CO1: Understand basics of	decision a	nalysis an	d multi obje	ctive opti	mization;

CO2: Understand basics of multi criteria decision making;	
CO3: Understand data envelopment analysis.	
Course Content	No. of lectures
Randomization, Optimality, Bayes rules, Minimax rules, Admissiable rules, Invariance and sufficiency, Complete class and essential complete class of rules	5
Decision analysis under Risk-Probability: Decision analysis without sampling, Decision analysis with sampling.	5
Decision Analysis under Risk Utility: St. Petersburg Paradox. Construction of Utility Functions, Risk Attitudes	5
Decision Analysis under Risk Utility: St. Petersburg Paradox. Construction of Utility Functions, Risk Attitudes.	6
Decision Trees and Sequential Decision Making	4
Multi-criteria decision methods	8
Multi-objective optimization: Lexicographic optimality, Interactive procedures, efficient and properly efficient solutions.	8
Data Envelopment Analysis: Chames, Cooper and Rhodes (CCR) model. Banker, Charnes and Cooper (BCC) model.	8
Analytic Hierarchy Process: Ranking and weighting information using Eigen Vector Method (EVM) and Approximation Methods.	7
Total Number of Lectures	56

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	An Introduction to Decision Theory, Cambridge University Press	Martin Peterson Itzhak Gilboa	Cambridge University Press	2008

SI. No.	Name of the Book	Authors	Publisher	Year
1	Decision Theory: Principles and Approaches	Giovanni Parmigiani, Lurdes Inoue	Wiley	2009

Department of Mathematics

Course	Title of the	Program Core (PCR) /	Total Nun	nber of co	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9128	Measure Theory	PEL	3	1	0	4	4
Prerequis	ite	Real Analysis					
Course Outcomes Upon successful completion of this course students will be able to: CO1: understand the basics concepts about measure and integration the CO2: use abstract methods to solve approximation problems in differences especially in Lebesgue integral theory CO3: understand the main connections between the notions of methods to solve approximation between the notions of methods to solve approximations of methods t						ferent fields	
probability.							
			nt				No of
		Course Conte	nt				No. of lectures
Lebesgu	e Measure ar			ons of Lebe	esque meas	sure and	No. of lectures 18
measurat	le functions,	Course Conte	ecapitulatio		•		lectures
measurat approxima Lebesgue integrable	e functions, station of meas e Integral: Re functions, co	Course Conte nd Measurable Functions: R the structure of measurable se	ecapitulatio ets, construc d different	ction of no	n-measura	ble sets, ations of	lectures
measurat approxima Lebesgue integrable <i>L</i> ^p spaces	ble functions, the functions of meas the Integral: Reprint the functions, contained and L^{∞} space	Course Conte nd Measurable Functions: R the structure of measurable se urable functions. ecapitulations of definitions an onvergence in measure. e, approximation of <i>L^p</i> function ition theorem, Lebesgue fu	ecapitulatio ets, construc d different ns, converg	ction of no properties gence and	n-measura . Approxima completen	ble sets, ations of ess.	lectures 18

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Real Mathematical	Charles Chapman Pugh	UTM, Springer International	2015
	Analysis		Publishing	
2	Real Analysis	N.L. Carothers	Cambridge University Press	2018

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Real Analysis-Theory of Measure and integration	J Yeh	World Scientific	2014
2	Principles of Real Analysis	Aliprantis C. D., Burkinshaw O.	Harcourt Asia Pte Ltd.	1998

Department of	Mathematics	
	Total Number of contact hours	Credit

-	Title of the	Program Core (PCR) /	Lecture	Tutorial	Practical	Total	
Code	course	Electives (PEL)	(L)	(T)	(P)	Hours	
MA 9129	Multivariate Statistical Analysis	PEL	3	1	0	4	4
Prerequis	site	(i) Rudimentary concepts course in probability, a cou			alculus of	Several \	/ariables, a
		(ii) Familiar with at least on R and SPSS.			e software	packages	s, MATLAB,
Course Outcomes After completing the course the student should be able to:							
		 Compute the char distributions and investigate prope Derive various m exterior forms wh of variables. Understand how (for example: test use principal com discriminant anal Implement these software package 	use multiv rties of va ultivariate ere appro to use var t for signifi ponent ar ysis and c methods u e and draw	ariate cha rious disti sampling priate to r ious multi cant diffe nalysis an luster ana using an a	aracteristic ributions. distributic make the r variate sta rences be d factor an alysis) appropriate	c function ons and u necessar atistical r tween po nalysis, e statistio	ns to use ry changes nethods opulations, cal
		Course Conte	nt				No. of
							le et une e
							lectures
Multivaria	ate Measureme	Basic concepts, Measure ent, Classification of Multiva	riate Techr	niques, Ty			04
Multivaria	ate Measureme	-	riate Techr	niques, Ty			
Multivaria Techniqu Examinin Data, Ou	te Measureme es, Structured ng Data for Mu	nt, Classification of Multiva	riate Techr del building. te Profiling,	niques, Ty Multivaria	pes of Mu te Profiles,	ltivariate Missing	
Multivaria Techniqu Examinin Data, Ou Analysis. Multivari a multiva	te Measureme es, Structured ng Data for Mu titliers, Detectin ate Normal Dis riate Normal Dis	nt, Classification of Multiva Approach to Multivariate Moc Iltivariate Analysis: Bivariat	riate Techr del building. te Profiling, festing the al Density & elihood est	Multivaria Multivaria assumptio tits proper imation, sa	pes of Mu te Profiles, ons of Mu ties, Samp ampling dis	Itivariate Missing Itivariate ling from	04
Multivaria Techniqu Data, Ou Analysis. Multivari a multiva of mean a Principal covariance	ate Measureme es, Structured ate Data for Mu ate Normal Dis riate Normal Dis standard devi Component A ce matrices with	nt, Classification of Multiva Approach to Multivariate Moo Iltivariate Analysis: Bivariat g and Handling Outliers, T stribution: Multivariate Norm stribution and maximum Like	riate Techr del building. te Profiling, esting the al Density & elihood est nsformation al Compone /ariation by	Multivaria Autivaria assumption to proper imation, sa to near N ents, Princi Principal (pes of Mu te Profiles, ons of Mu ties, Samp ampling dis lormality. pal compor	Itivariate Missing Itivariate ling from stribution	04
Multivaria Techniqu Data, Ou Analysis. Multivari a multiva of mean a Principal covariance sample ir Factor a analysis,	te Measureme es, Structured ng Data for Mu titliers, Detection ate Normal Dis riate Normal Dis standard devi Component A ce matrices with offerences, moni- nalysis: What Assumptions in	nt, Classification of Multiva Approach to Multivariate Moo Iltivariate Analysis: Bivariat g and Handling Outliers, T stribution: Multivariate Norm stribution and maximum Like ation, Detecting outliers ,Tra analysis: Population Principa special structures, Sample V	riate Techr del building. e Profiling, esting the al Density & elihood est nsformation al Compone /ariation by components s of Factor	Multivaria assumption k its proper imation, sa to near N ents, Princi Principal (analysis,	pes of Mu te Profiles, ons of Mu ties, Samp ampling dis lormality. pal compor Component designing a	Itivariate Missing Itivariate ling from stribution hents for ts, Large a Factor	04 04 06
Multivaria Techniqu Data, Ou Analysis. Multivari a multiva of mean a covarianc sample ir Factor a analysis, factor inte Multiple and Logi Analysis,	te Measureme es, Structured A ng Data for Mu titliers, Detection ate Normal Dis riate Normal Dis riate Normal Dis standard devi Component A standard devi Component A standard standard ferences, moni nalysis: What Assumptions ir erpretations, Va Discriminant A stic Regressior estimation of t	ant, Classification of Multiva Approach to Multivariate Moo Iltivariate Analysis: Bivariat g and Handling Outliers, T stribution: Multivariate Norm stribution and maximum Like ation, Detecting outliers ,Tra analysis: Population Principal special structures, Sample V toring quality with Principal c is Factor analysis, Objective a Factor analysis, Deriving fa	riate Techr del building. te Profiling, testing the al Density & elihood est nsformation al Compone /ariation by components s of Factor ctors and a	Multivaria assumption k its proper imation, sa to near N ents, Princi Principal (analysis, ssessing of hat are Dia assumption	pes of Mu te Profiles, ons of Mu tties, Samp ampling dis lormality. pal compor Component designing a overall fit, 3 scriminant ons of Disc	Itivariate Missing Itivariate ling from stribution nents for ts, Large a Factor process Analysis striminant	04 04 06 10

Text Books:

SI.	Name of the Book	Authors	Publisher	Year
No.				
1	Multivariate Data	J.F.Hair, W.C.Black,	Pearson Education, Inc.	2014
	Analysis	B.J.Babin, R.E.Anderson,		
		R.L.Tatham		
2	Applied Multivariate	R. A. Johnson, D. W.	Pearson Education, Inc.	2012
	Statistical Analysis	Wichern		

SI. No.	Name of the Book	Authors	Publisher	Year
1	Applied Multivariate Statistical Analysis	W.K. Härdle, L. Simar	Springer	2012
2	An introduction to multivariate statistical analysis	T.W. Anderson	Wiley	2003

		Department of	f Mathema	tics			
Course	Title of the	Program Core (PCR) /	Total Nun	nber of coi	ntact hours		Credit
Code	course	Electives (PEL)	Lecture	Tutorial	Practical	Total	
			(L)	(T)	(P)	Hours	
MA9130	Commutative algebra	PEL	3	1	0	4	4
Prerequisite Modern algebra and advanced modern algebra.							
Course O	utcomes	Upon successful completion					
		CO1: Know constructions theory for this		product ar		on, and u	
		CO2: Know basic theory f	or noetheri	an rings a	nd Hilbert b	asis theo	rem
		CO3: Know basic theory f					modules,
		and know primary decomp					
		CO4: Know the theory of		ases and E	Suchbergers	s algorithn	
		Course Conte	nt				No. of lectures
Rings an	d Ideals: Rings	and ring homomorphisms, I	Nilradical a	nd Jacobs	on radical.		4
		commutative rings, Example	es. Polynor	nial algebr	as and its ι	iniversal	4
		ation domains (UFDs).					
		Topology: The K-spectrur					6
•		pectrum of a commutative rir	0.0	ic Sets in S	Spectrums	and their	
		iski topology on Spectrums					
		Igebras : Algebraic and Intellensatz and its equivalent for		ents over	commutativ	/e rings.	6
Rings an	d Modules with	Chain Conditions: Ascen	ding and D	ecending	chain cond	itions on	6
modules,	Noetherian and	l Artinian Modules, Noethe	erian and A	Artinian rir	ngs, Hilbert	's Basis	
Theorem.							
Rings and Modules of Fractions : Definition and Universal property, Ideal structure in the rings of fractions, Local-Global principle.						8	
	Primary Decomposition: Primary decomposition for modules, Uniqueness of isolated primary						6
componer	nts. Associated	orime ideals, Support of a m	nodule.				

Integral Extensions : Integral dependence, Lying over, Going-up and Going-down theorems. Integrally closed domains, Transcendence degree, Noether's Normalisation Lemma (NNL) and	8
its consequences.	
Integrally closed Noetherian rings : Discrete valuation rings and Dedekind domains, Fractionary ideals, Integral extensions of Noetherian domains, Galois groups and prime ideals.	8

Text Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Introduction to Commutative Algebra	F. M. Atiyah and I. G. Macdonald	Addison-Wesley Publishing Company	1969
2	Basic Commutative Algebra	B. Singh	World Scientific Publications	2011

Reference Books:

SI. No.	Name of the Book	Authors	Publisher	Year
1	Introduction to Algebraic Geometry and Commutative Algebra	D. P. Patil and U. Storch	World Scientific Publications	2010
2	Homological Methods in Commutative Algebra	S. Raghavan, B. Singh and R. Sridharan	Oxford University Press	1977
3	Local Algebra (Translated from French)	J. P. Serre	Springer-Verlag	2000
4	Commutative Algebra, Vols. I, II	O. Zariski and P. Samuel	Van Nostrand	1960

XXXXXXXX