NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR CURRICULUM

OF

BACHELOR OF TECHNOLOGY IN CHEMICAL ENGINEERING

2017 ONWARD UNDERGRADUATE ADMISSION BATCH

V0:

Resolution of 50th Senate	18-05-2018	Item no: 50.7
Resolution of 51st Senate	04-10-2018	Item no: 51.2
Resolution of UGAC meeting	10-05-2019	
Final approval in 53rd Senate	13-05-2019	Item no: 52.3
Publication date	30-05-2019	

V1:

Incorporation of new elective subjects 27-06-2019	Incorporation of new elective subjects	27-06-2019
---	--	------------

V2:

Rectification of minor errors	UGAC 31-08-2022
-------------------------------	-----------------

Final Approval in 67th Senate dated 20/09/2022 vide Item no: # 67.3

DEPARTMENT OF CHEMICAL ENGINEERING

Program Name: Bachelor of Technology in Chemical Engineering DETAILED CURRICULUM

CURRICULUM OF 2021 ONWARD UNDERGRADUATE ADMISSION BATCH FOR CHEMICAL ENGINEERING - B.TECH.

L= Lecture hour/ week; T= Tutorial hour/ week; S= Sessional/ practical hour/ week

C= Subject credit point; H= Subject contact hour/ week.

Sei	mester - I						
SI. No	Code	Subject	L	Т	S	С	Н
1	MAC01	Mathematics – I	3	1	0	4.0	4
2	PHC01	Engineering Physics	2	1	0	3.0	3
3	CYC01	Engineering Chemistry	2	1	0	3.0	3
4	XEC01	Engineering Mechanics	2	1	0	3.0	3
5	ESC01	Environmental Science	2	0	0	2.0	2
6	XES51	Engineering Graphics	1	0	3	2.5	4
7	HSS51	Professional Communication Laboratory	1	0	2	2.0	3
8	PHS51	Physics Laboratory	0	0	2	1.0	2
9	CYS51	Chemistry Laboratory	0	0	2	1.0	2
10	WSS51	Workshop Practice	0	0	3	1.5	3
11	XXS51	Co-curricular Activities - I	0	0	2	1.0	2
		TOTAL	13	4	14	24.0	31
Ser	nester - II						
SI. No	Code	Subject	L	Т	S	С	Н
1	MAC02	Mathematics - II	3	1	0	4.0	4
2	CSC01	Introduction to Computing	2	1	0	3.0	3
3	ECC01	Basic Electronics	2	1	0	3.0	3
4	EEC01	Electrical Technology	2	1	0	3.0	3
5	BTC01	Life Science	2	0	0	2.0	2
6	XXC01	Constitution of India and Civic Norms	1	0	0	1.0	1
7	XES52	Graphical Analysis using CAD	0	0	2	1.0	2
8	CSS51	Computing Laboratory	0	0	2	1.0	2
9	ECS51	Basic Electronics Laboratory	0	0	2	1.0	2
10	EES51	Electrical Technology Laboratory	0	0	2	1.0	2
11	XXS52	Co-curricular Activities - II	0	0	2	1.0	2
		TOTAL	12	4	10	21.0	26

Sem	ester - III						
SI.	Code	Subject	L	T	S	С	Н
1	MAC331	Mathematics - III	3	1	0	4.0	4
2	CHC301	Process Calculations	3	1	0	4.0	4
3	CHC302	Chemical Engineering Thermodynamics	Chemical Engineering Thermodynamics 3 1 0 4.0		4.0	4	
4	CHC303	Fluid Mechanics	3	1	0	4.0	4
5	CYC331	Chemistry - II	3	0	0	3.0	3
6	CYS381	Chemistry Laboratory - II	0	0	3	1.5	3
7	CHS351	Chemical Engineering Computing Laboratory - I	0	0	3	1.5	3
8	XXS381	Co-curricular Activities - III (Optional)	0	0	0	0.0	0
		TOTAL	15	4	6	22.0	25
Sem	ester - IV						
SI.	Code	Subject	L	Т	S	С	Н
1	CHC401	Heat Transfer	3	1	0	4.0	4
2	CHC402	Mechanical Operation	3	1	0	4.0	4
3	CHC403	Mass Transfer- I	3	3 1 0 4.0		4.0	4
4	MEC432	Mechanical Design of Equipment and Components	3	0	0	3.0	3
5	YYO44*	Open Elective - I	3	0	0	3.0	3
6	CHS451	Fluid Mechanics Laboratory	0	0	3	1.5	3
7	CHS452	Process Equipment Design - I Sessional	0	0	3	1.5	3
8	WSS481	Workshop Practice- II	0	0	3	1.5	3
9	XXS481	Co-curricular Activities - IV (Optional)	0	0	0	0.0	0
		TOTAL		3	9	22.5	27
Sen	nester - V						
SI.	Code	Subject	L	T	S	С	Н
1	CHC501	Chemical Reaction Engineering	3	1	0	4.0	4
2	CHC502	Mass Transfer- II	3	1	0	4.0	4
3	CHC503	Chemical Process Technology	3	1	0	4.0	4
4	CHC504	Process Control and Instrumentation	3	1	0	4.0	4
5	YYO54*	Open Elective - 2	3	0	0	3.0	3
6	CHS551	Heat Transfer Laboratory	0	0	3	1.5	3
7	CHS552	Mechanical Operations Laboratory	0	0	3	1.5	3
8	CHS553	Process Equipment Design - II Sessional	0	0	3	1.5	3
9	XXS581	Co-curricular Activities - V (Optional)	0	0	0	0.0	0
		TOTAL	15	4	9	23.5	28

Sem	nester - VI						
SI.	Code	Subject	L	Т	S	С	Н
1	HSC631	Economics and Management Accountancy	3	0	0	3.0	3
2	CHC601	Transport Phenomena	3	1	0	4.0	4
3	CHC602	Petroleum Refining and Petrochemicals	3	1	0	4.0	4
4	CHC603	Process Modelling and Simulation	3	0	0	3.0	3
5	CHE610	Depth Elective - 1	3	0	0	3.0	3
6	CHS651	Fuel Laboratory	0	0	3	1.5	3
7	CHS652	Reaction Engineering Laboratory	0	0	3	1.5	3
8	CHS653	Mass Transfer Laboratory	0	0	3	1.5	3
9	XXS681	Co-curricular Activities - VI (Optional)	0	0	0	0.0	0
		TOTAL	15	2	9	21.5	26
Sem	nester - VII						
SI. No	Code	Subject	L	т	s	С	н
1	MSC731	Principles of Management	3	0	0	3.0	3
2	CHE710	Depth Elective - 2	3	0	0	3.0	3
3	CHE710	Depth Elective - 3	3	0	0	3.0	3
4	CHE710	Depth Elective - 4	3	0	0	3.0	3
5	YYO74*	Open Elective - 3	3	0	0	3.0	3
6	CHS751	Process Control and Instrumentation Laboratory	0	0	3	1.5	3
7	CHS752	Chemical Engineering Computing Laboratory- II	0	0	3	1.5	3
8	CHS753	Computer Aided Process Equipment Design Laboratory	0	0	3	1.5	3
9	CHS754	Vocational Training / Summer Internship and Seminar	0	0	2	1.0	2
10	CHS755	Project - I	0	0	3	1.0	3
		TOTAL	15	0	14	21.5	29
Sem	Semester - VIII						
SI. No	Code	Subject	L	Т	S	С	Н
1	CHE810	Depth Elective - 5	3	0	0	3.0	3
2	YYO84*	Open Elective - 4	3	0	0	3.0	3
3	YYO85*	Open Elective - 5		0	0	3.0	3
4	CHS851	Project - II	0	0	15	5.0	15
5	CHS852	Project Seminar	0	0	0	1.0	0
6	CHS853	Viva Voce	0	0	0	1.0	0
		TOTAL	9	0	15	16.0	24

CREDIT UNIT OF THE PROGRAM:

Semester	I + II	Ш	IV	V	VI	VII	VIII	TOTAL
Credit Unit	45.0	22.0	22.5	23.5	21.5	21.5	16.0	172.0

DEPTH ELECTIVE COURSE BASKETS

THE STUDENTS PRIMARILY WILL OPT FROM THE DEPTH ELECTIVE SUBJECT(S) THAT ARE OFFERED IN A PARTICULAR SEMESTER BY HIS/ HER OWN DEPARTMENT. HOWEVER, A STUDENT CAN OPT FOR DEPTH ELECTIVE SUBJECT(S) THAT ARE OFFERED BY OTHER DEPARTMENT IN A PARTICULAR SEMESTER, WITH THE PERMISSION/ CONSENT FROM HIS/ HER HEAD OF THE DEPARTMENT AND THE CONCERNED TEACHER OF THAT SUBJECT.

6th Semester

	DEPARTMENT OF CHEMICAL ENGINEERING
CHE610	Chemical Reactor Analysis
CHE611	Industrial Pollution Control and Treatment
CHE612	Non-conventional Energy Engineering
CHE613	Combustion Engineering
CHE614	Artificial Intelligence in Chemical Industries

7th Semester

	DEPARTMENT OF CHEMICAL ENGINEERING
CHE710	Energy Sources & Utilization
CHE711	Bioprocess and Bioreactor Engineering
CHE712	Process Engineering
CHE713	Chemical Plant Design and Economics
CHE714	Process Safety in Chemical Industries
CHE715	Membrane Separation Processes
CHE716	Process Intensification
CHE717	Colloids and Interface Engineering
CHE718	Pinch Technology
CHE719	Energy Management and Process Optimization in Chemical Industry
CHE720	Self-Mastery

8th Semester

	DEPARTMENT OF CHEMICAL ENGINEERING
CHE810	Multiphase Flow
CHE811	Process Analysis and Optimisation
CHE812	Boiling Heat Transfer
CHE813	CFD Applications in Chemical Engineering
CHE814	Nanotechnology

DETAILED SYLLABUS FIRST SEMESTER

Sen	nester - I						
SI. No	Code	Subject	L	Т	s	С	н
1	MAC01	Mathematics - I	3	1	0	4.0	4
2	PHC01	Engineering Physics	2	1	0	3.0	3
3	CYC01	Engineering Chemistry	2	1	0	3.0	3
4	XEC01	Engineering Mechanics	2	1	0	3.0	3
5	ESC01	Environmental Science	2	0	0	2.0	2
6	XES51	Engineering Graphics	1	0	3	2.5	4
7	HSS51	Professional Communication Laboratory	1	0	2	2.0	3
8	PHS51	Physics Laboratory	0	0	2	1.0	2
9	CYS51	Chemistry Laboratory	0	0	2	1.0	2
10	WSS51	Workshop Practice	0	0	3	1.5	3
11	XXS51	Co-curricular Activities - I	0	0	2	1.0	2
		TOTAL	13	4	14	24.0	31

	Department of Mathematics									
Course	Title of the course	Program	Tota	l Number c	of contact ho	ours	Credit			
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total				
		Electives	(L)	(T)	(P)	Hours				
		(PEL)								
MAC 01	MATHEMATICS - I	PCR	3	1	0	4	4			
P	re-requisites	Course Assess	ment meth	nods (Conti	nuous (CT),	mid-term	n (MT)			
		and end asses	sment (EA))						
Basic conc	epts of function, limit,	CT+MT+EA								
differentia	ntion, and integration.									
Course	CO1: To introdu	ice the fundam	entals of di	ifferential o	calculus of s	ingle and	several			
Outcomes	variables									
	• CO2: To devel	op the basic o	oncepts o	of integral	calculus in	cluding 1	multiple			
	integrals and its application in finding area, volume, centre of mass, centre of									
	gravity etc.									
	CO3: To introduce the fundamental concepts of vector calculus									
	CO4: To develop the concept of convergence									

Topics Covered

Functions of Single Variable: Rolle's Theorem and Lagrange's Mean Value Theorem (MVT), Cauchy's MVT, Taylor's and Maclaurin's series, Asymptotes & Curvature (Cartesian, Polar form). (8)

Functions of several variables: Function of two variables, Limit, Continuity and Differentiability, Partial derivatives, Partial derivatives of implicit function, Homogeneous function, Euler's theorem and its converse, Exact differential, Jacobian, Taylor's & Maclaurin's series, Maxima and Minima, Necessary and sufficient condition for maxima and minima (no proof), Stationary points, Lagrange's method of multipliers. (10)

Sequences and Series: Sequences, Limit of a Sequence and its properties, Series of positive terms, Necessary condition for convergence, Comparison test, D Alembert's ratio test, Cauchy's root test, Alternating series, Leibnitz's rule, Absolute and conditional convergence. (6)

Integral Calculus: Mean value theorems of integral calculus, Improper integral and it classifications, Beta and Gamma functions, Area and length in Cartesian and polar co-ordinates, Volume and surface area of solids of revolution in Cartesian and polar forms. (12)

Multiple Integrals: Double integrals, Evaluation of double integrals, Evaluation of triple integrals, change of order of integration, Change of variables, Area and volume by double integration, Volume as a triple integral. (10)

Vector Calculus: Vector valued functions and its differentiability, Line integral, Surface integral, Volume integral, Gradient, Curl, Divergence, Green's theorem in the plane (including vector form), Stokes' theorem, Gauss's divergence theorem and their applications. (10)

Text Books, and/or reference material

Text Books:

- 1. E. Kreyszig, Advanced Engineering Mathematics: 10th ed., Wiley India Ed. (2010).
- 2. Daniel A. Murray, Differential, and Integral Calculus, Fb & c Limited, 2018.
- 3. Marsden, J. E; Tromba, A. J.; Weinstein: Basic Multivariable Calculus, Springer, 2014.

Reference Books:

- 1. Tom Apostal, Calculus-Vol-I & II, Wiley Student Edition, 2011.
- 2. Thomas and Finny: Calculus and Analytic Geometry, 11th Ed., Addison Wesley.

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	3	2	3	1	1	-	-	1	1	1	2
NAA CO1	CO2	2	3	2	3	-	1	-	-	1	1	2	2
MAC01	CO3	2	3	2	3	-	1	1	-	-	2	2	2
	CO4	3	3	2	3	1	1	-	1	-	2	1	2

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Total Nun	nber of con	tact hours		Credit							
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total								
		Electives	(L)	(T)	(P)	Hour								
		(PEL)	_	_	_	S	_							
PHC01	Engineering	PCR	2	1	0	3	3							
Pre-requis	Physics	Course Assessr	nont motho	ds: /Contin	LIQUE (CT) m	id torm	(NAT) and							
Pre-requis	oites.	end assessmen		us. (Contin	uous (CT), III	iiu-teiiii	(IVII) allu							
NIL		CT+MT+EA	it (LA))											
Course	CO1: To realize a		ndamental	concents c	of nhysics si	ıch as sı	inernosition							
Outcomes		and apply the fundamental concepts of physics such as superposition harmonic motion to real world problems.												
Guttomes	CO2: Learn abou			•		s and its	applications							
	to the practical fie	•												
	CO3: Gain an inte		v and appli	cations of f	undamenta	l optical	phenomena							
	such as interferer	ice, diffraction ar	nd polarizati	ion.										
	CO4: Acquire bas	sic knowledge re	ic knowledge related to the working mechanism of lasers and signa											
	+ · · ·	propagation through optical fibers.												
Topics		Harmonic Oscillations - Linear superposition principle, Superposition of two												
Covered	1	perpendicular oscillations having same and different frequencies and phases, Free,												
	· ·	Damped and forced vibrations, Equation of motion, Amplitude resonance, Velocity												
	resonance, Quality factor, sharpness of resonance, etc. [8] Wave Motion - Wave equation, Longitudinal waves, Transverse waves, Electro-magnetic													
	waves.	vave equation, L	ongituumai	waves, 11a	iisveise wav	res, Elect	[3]							
	Introductory Qu	antum Mechan	i cs - Inade	equacy of	classical m	echanics								
	radiation, Planc													
	uncertainty princ	•		_			_							
	simple problems			_	=	=	-							
	Tunnelling effect		[8]											
	Interference & [=		-	=	=	-							
	waves, Condition			•										
	by division of w	•	•		•		• •							
	Michelson inter					fraction,	Single slit,							
	Multiple slits, Re Polarisation - Po	<u> </u>	-	[13]		ılarlı, an	d allintically							
	polarized light, N					-	• •							
	and extra-ordina				•	_								
	analysis of polari		(5) [5]	5.0., 11100	p,		. ,5.0.00 0110							
	Laser and Optica	· ·		timulated e	emission of i	radiation	, Population							
	inversion, Einste	•					•							
	laser. Optical Fibre– Core and cladding, Total internal reflection, Calculation of numerical													
	aperture and acc	eptance angle, A	pplications.	[5]										
Text	TEXT BOOKS:													
Books,	•	s of Vibrations a			•									
and/or		Text Book of Oscillations and Waves, M. Goswami and S. Sahoo, Scitech												
reference	Publicatio		ماد محاد	الا المصاد الا	loCross IIII									
material	3. Engineerir	ng Physics, H. K. N	vialik and A.	K. Singh, N	icGraw-Hill.									

REFERENCE BOOKS:

- 1. Vibrations and Waves in Physics, Iain G. Main, Cambridge University Press
- 2. Quantum Physics, R. Eisberg and R. Resnick, John Wiley and Sons
- 3. Fundamental of Optics, Jankins and White, McGraw-Hill
- 4. Optics, A. K. Ghatak, Tata McGraw-Hill
- 5. Waves and Oscillations, N. K. Bajaj, Tata McGraw-Hill
- 6. Lasers and Non-linear Optics, B. B. Laud, New Age International Pvt Lt

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	2	1	1	1	-	-	1	1	-	-	1
DLICO1	CO2	3	2	-	2	-	-	-	-	-	-	-	1
PHC01	CO3	3	2	2	2	1	1	1	1	1	-	1	1
	CO4	3	2	2	2	1	1	1	-	1	-	1	1

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program Core	Total	Number o	of contact ho	ours	Credit						
Code	course	(PCR) /	Lecture	Tutori	Practical	Total							
		Electives (PEL)	(L)	al (T)	(P)	Hours							
CYC 01	Engineering	PCR	2	1	0	3	3						
	Chemistry												
Pr	e-requisites	Course Assessm	nent metho	ds (Contin	uous (CT), m	nid-term (MT) and						
		end assessment (EA))											
	None		CT+MT+EA										
Course	CO1: Intro	duced to chemi	cal thermo	odynamics	, kinetics,	electro	chemistry,						
Outcome	absorption,	and catalytic proces	sses for eng	ineering a	pplications		-						
	CO2: To lear	rn fundamentals of	polymer che	emistry an	d petroleum	n enginee	ring.						
	CO3: Introd	uced to basic spect	roscopic ted	hniques f	or structure	determin	ation and						
	characteriza	characterization.											
	CO4: To stu	dy few inorganic an	d bioinorga	nic compo	unds of indเ	ustrial imp	oortance.						
Topics	ORGANIC CHEN	MISTRY											
Covered	l i. Fundame	entals of organic re	eaction med	chanisms;	Few impor	tant reac	tions and						
	their m	echanism along	with thei	r applica	tions; Rob	inson a	nnulation,						
	Hydrobo	ration reaction, Org	ganometallio	reagents	(Gilman rea	agents), N	/letathesis						
	using Gru	ubb's catalyst and W	littig reaction	on. (3)									
		ental concept on s		•	• •								
	_	ation of organic o	=				-selective,						
		ective, stereo-speci											
	=	chemistry and poly	_	_		=							
		chemistry; synthesis and application of important polymers, Rubber, and plastic											
		s. Conducting polym	` '										
		m Engineering and		-			-						
	principle	and techniques of	distillation	of crude	oil, Uses of	different	fractions,						

- octane number, cetane number, Knocking, anti-knock compounds, and Bio-Fuel. (2)
- v. Structure elucidation of organic compounds by modern spectroscopic methods; Application of UV-Visible and FT-IR spectroscopy. (3)

INORGANIC CHEMISTRY

- i. **Coordination Chemistry:** Crystal Field Theory of octahedral and tetrahedral complexes, colour and magnetic properties, Jahn-Teller distortion, pseudo Jahn-Teller distortion, Isomerism, and stereochemistry. (5)
- ii. **Bioinorganic Chemistry:** Heme and non-heme O₂ transport protein (Haemoglobin, Myoglobin), Chlorophyll and photosynthesis. (3)
- iii. **Inorganic Materials:** Introduction towards industrially important inorganic materials like cementing material, refractory material, fertiliser, inorganic polymer. (2)
- iv. Organometallic Chemistry: π -acid ligands, stabilization of metal low oxidation state and 18 electron rules, metal carbonyls and nitrosyls, metal-alkene complexes. (4)

PHYSICAL CHEMISTRY

- i. Thermodynamics: 2nd law of thermodynamics, entropy, free energy, Gibbs Helmholtz equation, change of phase. Cryogenics: joule Thomson experiment.
 (4)
- ii. **Chemical Kinetics:** 2nd and 3rd order rate expression, Reversible reaction, Chain reaction, Consecutive reaction, Temp effect on reaction rate. (4)
- iii. **Electrochemistry:** Electrochemical cell, Effect of pH, precipitation, and complex formation on EMF of oxidation/reduction processes. (2)
- iv. Absorption: Physical and Chemical absorption, Absorption isotherms. (1)
- v. **Catalysis:** Types of catalysis, Rate expression for Catalysed reaction, Acid-base and Enzyme catalysis. (2)

Text Books, and/or reference material

Suggested Text Books:

- (i) Physical Chemistry by P. Atkins, Oxford
- (ii) A guidebook to mechanism in Organic chemistry: Peter Sykes; Pearson Edu.
- (iii) Inorganic Chemistry Part-I & II, R. L. Dutta, The new book stall Suggested Reference Books:

Organic Chemistry:

- (i) Basic stereochemistry of organic molecules: S. Sengupta; Oxford University press
- (ii) Engineering Chemistry: Wiley
- (iii) Elementary Organic Spectroscopy: William Kemp, ELBS with Macmillan

Inorganic Chemistry:

- (i) Inorganic Chemistry: Principle structure and reactivity, J. E. Huheey, E. A. Keiter and R. L. Keiter, Pearson Education
- (ii) Bioinorganic Chemistry -- Inorganic Elements in the Chemistry of Life: An Introductionand Guide, 2nd Edition, Wolfgang Kaim, Brigitte Schwederski, Axel Klein.
- (iii) Inorganic Chemistry Fourth Edition, Shriver & Atkins, Oxford

Physical Chemistry:

- (i) Physical Chemistry by G.W Castellan
- (ii) Physical Chemistry by P. C. Rakshit

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	1	2	-	1	ı	-	-	-	-	-	1	-
CYC 01	CO2	1	-	-	-	-	-	2	-	-	-	-	-
CICUI	CO3	1	2	1	1	1	-	-	-	-	-	-	-
	CO4	-	1	-	-	2	-	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tota	l Number c	f contact ho	ours	Credit				
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total					
		Electives	(L)	(T)	(P)#	Hours					
		(PEL)									
XEC01	ENGINEERING	PCR	2	1	0	3	3				
	MECHANICS										
Pr	e-requisites	Course Asse		-	-	Γ), mid-te	rm (MT)				
			and		ment (EA))						
		CT+MT+EA									
Course		ire knowledge o			-	-	_				
Outcom	es • CO2: Apply	y knowledge of r	nechanics	for solving	special prob	olems like	truss and				
	frame ana	•									
		CO3: Ability to calculate centroid, moments of inertia for various shapes.									
	CO4: Learr	n momentum an	d energy p	rinciples.							
	CO5: Know	/ledge on virtual	Work Prin	ciple and it	s applicatio	n					
Topics		Engineering Mechanics; measurement and SI units. [1] Vectors and force as a vector; Resultant of a system of forces on a particle; free									
Covere				•		-	-				
		and conditions	=	ium of a p	article; pro	blems on	particles;				
	•	particles in spac	= =								
		system of fo		=	_	=					
		a rigid body;	-	_	_		jected to				
		of constraints;		=	_						
		static and kine			_	riction; ti	neories of				
	•	are threaded po			= =		.: [F]				
	=	analysis of trus	· ·	=							
	_	rity and centre									
		ea; second mo					radius oi				
	<u> </u>	area; parallel axi acceleration; red				= =	cyctom of				
		duction to the co					=				
		nd law of motic									
		ntum; angular									
		ork–energy and		•			,				
	· · · · · · · · · · · · · · · · · · ·	the concept of	=			-	particies,				
		rtual Work, Soli	-	_		=	rinciple of				
	Virtual Work [3			22.2.110 011							
	i i i i i i i i i i i i i i i i i i i	Virtual Work [3]									

Text Books,	1) S P Timoshenko and D H Young, Engineering Mechanics, 5 th Edition
and/or	2) J L Meriam and L G Kraige, Engineering Mechanics, 5 th Edition, Wiley India
reference	3) F P Beer and E R Johnston, Vector Mechanics for Engineers
material	4) I H Shames, Engineering Mechanics

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	1	-	-	1	ı	-	1	1	-	-	-	1
	CO2	1	1	1	1	-	-	-	-	-	-	-	1
XEC01	CO3	1	1	-	-	-	-	-	-	-	-	-	1
	CO4	1	2	-	-	-	-	-	-	-	-	-	1
	CO5	-	2	2	2	2	1	-	-	-	1	-	1

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program											
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total							
		Electives	(L)	(T)	(P)#	Hours							
		(PEL)											
ESC01	Environmental	PCR	2	0	0	2	2						
	Science												
Pr	e-requisites	Course Asse	essment me	ethods (Co	ntinuous (C	Γ), mid-te	rm (MT)						
		and end assessment (EA))											
		CT+MT+EA											
Course	CO1: Unde	1: Understand the importance of environment and ecosystem.											
Outcome	es • CO2: Unde	coli chacistana the randamental aspect of penatant trading and t											
	implement	implementation in natural and anthropogenic pollution of air and water											
	system.	system.											
	CO3: Unde	rstand the scien	tific basis c	of local and	as well as g	lobal issu	es.						
	CO4: Apply	of knowledge t	o develop s	sustainable	solution.								
Topics	Introduction:	Multidisciplinary	nature o	f Environm	nental Stud	ies; Basic	issues in						
Covered	d Environmental	Studies. [2]											
	• •	ion and the Env		[1]									
		d the Environm		[1]									
		of our Environr											
		aracters; Global	-	•									
		ts constituents,	Oceans, G	roundwate	r, Surface w	vaters; Hy	drological						
	cycle. [4]					_							
	=	constituents of	=		and Minera	al resour	ces; Plate						
		pt and its impor		[5]			r-1						
		Biosphere— its components; Ecosystems and Ecology; Biodiversity; Biomes. [5] Watural disaster and their management — Earthquakes, Floods, Landslides,											
		er and their	manageme	ent – Earl	thquakes, I	Floods, L	andslides,						
	Cyclones. [3]					[0]							
	Pollution: Pollu	Pollution: Pollutants and their role in air and water pollution. [2]											

Text Books,	1. Environmental Studies – Benny Joseph – Tata McgrawHill-2005
and/or	2.Environmental Studies – Dr. D.L. Manjunath, Pearson Education-2006.
reference	3.Principles of Environmental Science and Engineering – P. V. Rao, PHI.
material	4. Environmental Science and Engineering – Meenakshi, Prentice Hall India.
	5.Environmental studies – R. Rajagopalan – Oxford Publication - 2005.
	6. Text book of Environmental Science & Technology – M. A. Reddy – BS Pub.

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	-	-	1	ı	-	2	-	-	-	-	-
ESC01	CO2	1	-	-	-	-	-	2	-	-	-	-	-
	CO3	2	-	-	-	-	-	2	-	-	-	-	-
	CO4	1	-	3	-	-	2	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Tota	l Number o	of contact ho	ours	Credit						
Code		(PCR) /	Lecture	Tutorial	Practical	Total							
		Electives (PEL)	(L)	(T)	(P)	Hours							
XES51	ENGINEERING GRAPHICS	PCR	1	0	3	4	2.5						
Pr	re-requisites	Course Assessm	ent method	ls (Continu (EA))	ous (CT) an	d end ass	essment						
	NIL	CT+EA											
Course	• CO1: Ability	of mental visualizat	tion of diffe	erent objec	ts								
Outcome	002	tical knowledge c ee dimensional obj	_	phic proje	ction to so	lve probl	ems on						
	• CO3: Able to people												
Topics	Graphics as lan	guage of communi	cation; tec	hnical drav	ving tools a	nd their u	ıp-keep;						
Covered	* *	types of lines; construction of geometrical figures; lettering and dimensioning. [6]											
		Construction and use of scales; construction of curves of engineering importance											
		as curves of conic section; spirals, cycloids, involutes and different loci of											
	'	quations for drawi	•		. (. 1. 1							
		ometry: necessity	•		_								
		l vertical referend pints and lines situation	•		•		•						
	1	es of lines. First an											
	'	, front and left (c	•	• .	•		•						
		projections; prima	•	_									
	auxiliary plan a	auxiliary plan and auxiliary elevation. [9]											
	Projection of s	imple regular solic	ls, viz. pris	ms, cubes,	cylinders,	pyramids	, cones,						
	-	pheres, hemi-sphe											
	Section of solic sections. [6]	ls; section by perp	endicular	planes; sec	tional view	s; true sh	apes of						

	Dimensional techniques; international and national standards (ISO and BIS). [3]
	Freehand graphics. [3]
Text and/or	1) Engineering Drawing and Graphics – K Venugopal
reference	2) Engineering Drawing – N D Bhat
material	3) Practical Geometry and Engineering Graphics – W Abbott

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	1	-	-	-	-	-	-	-	-	-	-	-
XES51	CO2	1	1	-	-	-	-	-	-	-	-	-	-
	CO3	1	-	1	-	-	-	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tota	l Number o	of contact ho	ours	Credit					
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P)	Hours						
		(PEL)										
HSS51	Professional	PCR	1	0	2	3	2					
	Communication											
	Lab											
Pro	e-requisites	Course Assess	Course Assessment methods (Continuous (CT) and end assessment									
			(EA))									
	None	CT+EA										
Course	•	ovement in lingu	•	•								
Outcome	00=1	rovement in comr		•	e learners							
	•	egg. improvement in again agrine curvey sixin										
Topics		1. Professional Communication: Introduction (1)										
Covered		al Writing: Basic (•)								
	· · · · · · · · · · · · · · · · · · ·	Technical Writing	g (3)									
		al Report (2)	(-)									
		mendation Report	t (2)									
		s Report (1)										
		al Proposal (3)										
		s Letters (3)	. (2)									
		of Job Application Scientific and Eng	• •	anore (2)								
		e Use of Graphic	-	apers (3)								
		ation Techniques	` '									
		•	(0)									
	·	13. Group Discussion (6) 14. Interview Techniques (6)										
Text	Text Book:	.vv reciniques (0)										
Books,		Engineers –Sudh	arshana& S	avitha (Can	nhridge LIP)							
and/or	_	-	a. J. Iai Ia Q	aricia (Cali								
referenc		Engineers -Sudha	arshana & S	avitha (Can	nbridge UP)							

material	2. Effective Technical Communication-M A Rizvi (McGraw Hill Education)
	3. References to relevant NPTEL, MOOC, SWAYAM courses be given by the
	Instructor

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
HSS51	CO1	1	_	- 1	1	_	1	_	1	2	3	1	ļ
пэээт	CO2	1	_		1	_	2	_	2	2	3	2	_
	CO3	_	_	_	1	_	3	_	3	3	3	2	_

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Total Nur	nber of con	tact hours		Credit			
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total				
		/ Electives	(L)	(T)	(P)	Hours				
		(PEL)								
PHS51	Physics	PCR	0	0	2	2	1			
	Laboratory									
Pre-requ	isites	Course Asse	ssment met	hods: (Cont	inuous evalua	ation (CE)	and end			
		assessment	(EA))							
NIL	T	CE+EA	=							
Course	CO1: To rea	lize and apply o	different ted	hniques for	measuring re	efractive ir	ndices of			
Outcome										
		lize different ty	•		•	•	0.			
		lerstand chargi	•	0 0		•				
		lerstand interfe	erence, diffr	action and _l	polarization r	elated opt	ical			
	phenomena									
		CO5: To acquire basic knowledge of light propagation through fibers.								
Topics		efractive index	•	•	•					
Covered		e the refractive			•	•				
		ation of amplit		•	lectrical sign	als by osci	lloscope.			
		the characteris								
		Brewster's law,		•	light.					
		the diffraction	• ,			_				
		the interferenc	•		•	5.				
		nine numerical aperture of optical fiber. nation of Planck constant.								
Tour or d										
Text and			l Dhysica - 14	C Ma	dar and D. Cl	a c c b				
reference	,	ok on Practical	•		uar and B. Gr	IOSN				
material	2) Practical	Physics – Wors	nop and Fill	IL						

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	2	1	-	-	-	-	-	2	1	-	1
	CO2	3	2	1	-	-	1	-	-	2	1	-	1
PHS51	CO3	3	1	-	-	-	-	-	-	2	1	-	1
	CO4	3	2	-	1	-	1	1	-	2	1	-	1
	CO5	3	2	1	-	1	1	1	-	2	1	-	1

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Title of t	he	Program Core	Tota	l Number c	of contact ho	ours	Credit				
Code	course	<u> </u>	(PCR) /	Lecture	Tutorial	Practical	Total					
			Electives (PEL)	(L)	(T)	(P)	Hours					
CYS51	CHEMIST	RY	PCR	0	0	2	2	1				
	LABORAT	ORY										
Pr	e-requisites		Course As			ontinuous (C	CT) and e	nd				
				as	sessment (l	EA))						
	None				CT+EA							
Course	• CO1	: To lea	arn basic analytica	rn basic analytical techniques useful for engg applications.								
Outcome	es • coa	: Synth	esis and characterization methods of few organic, inorganic and									
	poly	mer co	mpounds of industrial importance.									
	• CO3	: Learr	rn chromatographic separation methods.									
	• CO4	: Appli	ications of spectro	scopic mea	asurements	S.						
Topics	i. Ex	perime	nts based on pH n	netry: Dete	rmination	of dissociat	ion const	ant of we				
Covered	d aci	acids by pH meter.										
	ii. Ex	perime	ments based on conductivity measurement: Determination of amou									
		of HCl by conductometric titration with NaOH.										
	iii. Est	stimation of metal ion: Estimation of Fe ²⁺ by permangnomentry										
			nation of metal ion: Determ. of total hardness of water by EDTA titration.									
			and characterization of inorganic complexes: e. g. Mn(acac) ₃ , Fe(acac									
			cinato)copper (II) monohydrate and their characterization by m. p									
		R etc.										
	-		and charact. of or	•	_	g.Dibenzylid	eneaceto	ne.				
			of polymer: polyn	•	•							
			on of Beer-Lamber	rts law and	determina	tion of amo	unt of irc	n prese				
			ied solution.	۲.								
			graphy: Separation				nromatog	rapny				
			ation of saponifica	ation value	or rat/ veg	etable oll						
		Suggested Text Books:										
		ogel's Quantitative Chemical Analysis (6th Edition) Prentice Hall dvanced Physical Chemistry Experiments: By Gurtu&Gurtu										
			nsive Practical Organic Chemistry: Qualitative Analysis By V. K.									
			_	mic chemis	ci y. Qualită	ative Alidiys	15 Dy V. K	•				
			S. Dhingra									
			erence Books: emistry By R.C. Bh	nattacharus	1							
			periments in Physi	•		Mukhariaa						
	2. Seiec	. wiuknerjee										

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	1	-	1	1	-	-	-	-	-	1	-
CYS51	CO2	-	1	-	1	1	2	-	-	-	-	-	-
C1351	CO3	2	-	-	1	1	-	-	-	-	-	-	-
	CO4	-	1	-	1	1	-	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tota	al Number o	of contact ho	urs	Credit					
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total						
		/ Electives	(L)	(T)	(P)#	Hours						
		(PEL)										
WSS51	WORKSHOP	PCR	0	0	3	3	1.5					
	PRACTICE											
Pre	-requisites	Course Assessment methods (Continuous (CT) and end assessment										
		(EA))										
	NIL	CT+EA Study and practice on machine tools and their operations										
Course		• •			-							
Outcome		Practice on m		•	_	worksho	p trades					
		ing fitting, carp	•	•	_							
		Identify and a			machining p	rocesses	ncluding					
		g, facing, threa	_									
		Develop basic	electrical	engineering	knowledge	for hous	e wiring					
T!	praction			2V2 Ob								
Topics	I	Carpentry shop		3X3= 9hrs	5.							
Covered		 Introduction on machining process. Introduction to machine tools- Lathe, Shaper, Milling and Drill machine. 										
		duction to woods- Types, structure, disease and defect of wood.										
		luction to wood working machines and tools. In gof dovetail joint and bridle joint.										
		-		-	(3= 9hrs.							
		Sheet meta uction to weldi				7						
		tion of weld be	•	•	-	5 ·						
		ition of weld be	-			flat						
		uction to sheet		_	on mild steel	nat.						
		and Machines		_	ks							
		pt of developm										
		•		_	tai siiCCts.							
		Cutting and joining of metal sheets.										
	=	Safety precautions, General warning needed in the shop floor. mithy & Foundry 3X3= 9hrs.										
	_	uction Smithir	ng and For			Furnaces	and its					
		ories, fuels.	15 ana 101	P.1.16 1 0 0 13	, iviacinics,	Tarriaces	ana its					
		and precautio	ns in blacksi	mithv.								
	=	g of bars of dif		· ·								

- Making of hexagonal headed bolts.
- Forge welding.
- Introduction to Foundry Technology.
- Preparation of sand mould using Solid/Split Pattern.

Fitting & Electrical shop

-- 3X3= 9hrs.

- Introduction to hand metal cutting tools with specifications, nomenclature and their use.
- Marking tools, measuring tools and their use.
- Fitting of joints of mild steel flats.
- Introduction to electrical hazards and safety precaution.
- Wire jointing and soldering.
- PVC Conduit Wiring controlled by separate single way switches.
- PVC Cashing Capping Wiring for two-way switches.
- Conduit wiring for the connection of a Calling Bell with In& Out Indicators.
- Batten Wiring and Cleat Wiring.
- Tube Light Connection.
- Insulation Resistance Testing of 1ph / 3ph Motor and House Wiring.
- Earth Resistance Testing.
- DOL Starter Connection.

Viva voce -- 1X3= 3hrs.

Text Books, and/or reference material

- 1. Workshop Technology Part I and Part II by W. A. J. Chapman
- 2. Elements of Workshop Technology S. K. Hazra Chowdhury, A. K. Hazra
- Chowdhury and Nirjhar Roy

 3. Mechanical Workshop Practice by K. C. John

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	-	-	-	-	1	-	-	-	1	-	-
NACCE 4	CO2	1	-	1	-	-	1	-	-	-	1	-	-
WSS51	CO3	1	-	2	-	-	1	-	-	-	1	-	-
	CO4	1	_	_	-	-	2	_	-	_	1	_	_

Correlation levels 1, 2 or 3 as defined below:

Course Code	Title c	(PCR) /		Lecture	Number o Tutorial (T)	f contact ho Practical (P)	Total Hours	Credit		
XXS-51	Co-curricular Activities		PCR 0 0 2		2	2	1			
Pre-requ	isites	Cour	Course Assessment methods (Continuous (CT) and end assessment (EA)							
NIL					CT+EA					

Course Outcomes

- CO1: Social Interaction: Through the medium of sports
- CO2: Ethics: Recognize different value systems including your own, understand the moral dimensions of your decisions, and accept responsibility for them
- CO3: Self-directed and Life-long Learning: Acquire the ability to engage in independent and life-long learning in the broadest context sociotechnological changes.
- CO4: Personality development through community engagement
- CO5: Exposure to social service

Topics Covered

YOGA

- Introduction of Yoga.
- Sitting Posture/Asanas- Padmasana, Vajrasana, Ardhakurmasana, Ustrasana, Bakrasana, Sasankasana, Janusirshasana, Suryanamaskar.
- Mudra- Gyana mudra, Chin mudra, Shuni mudra, Prana mudra, Adi mudra, Anjali mudra.
- Laying Posture/Asanas- PavanaMuktasana, UttanaPadasana, Sarpasana, <u>Bhujangasana (Cobra Pose)</u>, Eka Pada Śalabhāsana, Dhanurasana, Chakrasana, Viparitkarani.
- Meditation- Yognidra, Om chant, Pray chant.
- Standing Posture/Asanas-<u>Tadasana (Mountain Pose)</u>, Vrikshasana (Tree Pose), Ardhachandrasana, Trikonasana, Utkatasana, Padahastasana.
- Pranayama- Deep breathing, AnulomVilom, Suryabhedi, Chandrabhedi.
- Kriya- Kapalbhati, Trataka.

ATHLETICS

- Introduction of Athletic.
- Starting Technique for Track events- Standing start, Crouch & Block start.
- Finishing Techniques.
- Relay Race- 4×100m, 4×400m & Baton Exchange Technique & Rules.
- Track Marking with Fundamentals- 200m, 400m and Diagonal Distance Radius, Straight Distance, Staggers of Different Lanes & Curve Distance.

BASKETBALL

- Introduction and Players stance and ball handling.
- Passing- Two hand chest pass, two hand bounce pass, One hand baseball pass, Side arm pass, Overhead pass, Hook pass.
- Receiving- Two hand receiving, one hand receiving, receiving in stationary position, Receiving while jumping and Receiving while running.
- Dribbling- Dribble, High dribble, Low dribble, Reverse dribble, Rolling dribble.
- Rules of Basketball.
- Basketball game.

VOLLEYBALL

- Introduction of Volleyball
- Service- Underarm service, Sidearm service, Tennis service, Floating service, Jump service.

- Pass: Underarm pass- Ready position, Teaching stage of underarm pass and Upper hand pass- Volley pass, Back pass, Short set, Jump set & Underarm set.
- Rules and their interpretation.

FOOTBALL

- Introduction of Football
- Push pass- Instep inside, Instep outer side.
- Kicking- Spot kick, Instep kick, Lofted kick.
- Dribbling- One leg, Both legs, Instep.
- Trapping- Rolling ball sole trapping, High ball sole trapping, High ball chest trapping, High ball thigh trapping.
- Throwing- Standing throw, Running throw, Seating throw.
- Goal Keeping- Griping the ball, Full volley, Half volley, Drop Kick.
- Rules and their interpretation.

CRICKET

- Introduction of Cricket
- Batting gripping & Stance, Bowling gripping technique.
- Batting front foot defense& Drive.
- Batting Back foot defense& Drive.
- Batting Square cut.
- Bowling medium pace, Bowling off break.
- Fielding drill, Catching (Short & High).
- Rules & Regulation.

BADMINTON

- Basic introduction about Badminton and Badminton court.
- Racket parts, Racket Grip, Shuttle Grip.
- Basic stance, Basic Footwork, Shadow practice (Full court movement).
- Strokes services: Forehand- Overhead & Underarm, Backhand- Overhead & Underarm.
- Match practice (Single & Double).
- Rules & Regulation.

TABLE TENNIS

- Introduction of Table Tennis.
- Basic Stance and Grip (Shake hand & Pen hold).
- Service Basic.
- Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash.
- Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash.
- Rules and their interpretations.
- Table Tennis Match (Singles & Doubles).

NCC

- FD-1 General Introduction and words of command.
- FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the

halt.

- FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing.
- FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out.
- FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt.
- FD-7 Turning on the March and Wheeling.
- FD-12 Parade practice.

TAEKWONDO

- Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc.
- Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc.
- Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc.
- Foot Technique (Balgisul)- Standing kick (Saseochagi), Front kick (Abchagi), Doliyo (Chagi), Abdalchagi (Butterfly kick), Back kick etc.

NSS

- Swachha Bharat Mission
- Free Medical Camp
- Sanitation drive in and around the campus.
- Unnat Bharat Abhiyaan
- MatribhashaSaptah celebration

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	-	-	1	1	-	2	-	-	3	ı	ı	-
	CO2	-	-	-	-	-	-	-	2	-	-	-	-
XXS51	CO3	-	-	-	-	-	-	1	-	-	-	-	3
	CO4	-	-	-	-	-	-	-	-	2	2	-	-
	CO5	-	-	-	-	-	3	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

SECOND SEMESTER

SI.	Code	Subject	L	Т	S	С	н
No		,					
1	MAC02	Mathematics - II	3	1	0	4.0	4
2	CSC01	Introduction to Computing	2	1	0	3.0	3
3	ECC01	Basic Electronics	2	1	0	3.0	3
4	EEC01	Electrical Technology	2	1	0	3.0	3
5	BTC01	Life Science	2	0	0	2.0	2
6	XXC01	The Constitution of India and Civic Norms	1	0	0	1.0	1
7	XES52	Graphical Analysis using CAD	0	0	2	1.0	2
8	CSS51	Computing Laboratory	0	0	2	1.0	2
9	ECS51	Basic Electronics Laboratory	0	0	2	1.0	2
10	EES51	Electrical Technology Laboratory	0	0	2	1.0	2
11	XXS52	Co-curricular Activities - II	0	0	2	1.0	2
		TOTAL	12	4	10	21.0	26

		Department of I	Mathemat	ics				
Course	Title of the course	Program	Program Total Number of contact hours					
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total		
		Electives	(L)	(T)	(P)	Hours		
		(PEL)						
MAC 02	MATHEMATICS - II	PCR	3	1	0	4	4	
P	re-requisites	Course Assess	ment meth	nods (Conti	nuous (CT),	mid-term	n (MT)	
		and end assessment (EA))						
Basic cor	ncepts of set theory,	CT+MT+EA						
differen	itial equations, and							
	probability.							
Course	CO1: Develop	the concept of basic linear algebra and matrix equations so as to						
Outcomes	apply mathema	atical methods	involving a	arithmetic,	algebra, ge	ometry 1	to solve	

- problems.
- CO2: To acquire the basic concepts required to understand, construct, solve and interpret differential equations.
- CO3: Develop the concepts of Laplace transformation & Fourier transformation with its property to solve ordinary differential equations with given boundary conditions which are helpful in all engineering & research work.
- CO4: To grasp the basic concepts of probability theory.

Topics	Elementary algebraic structures: Group, subgroup, ring, subring, integral domain,
Covered	and field. (5)
	Linear Algebra: Vector space, Subspaces, Linear dependence and independence of
	vectors, Linear span, Basis and dimension of a vector space. Rank of a matrix,
	Elementary transformations, Matrix inversion, Solution of system of Linear
	equations, Eigen values and Eigen vectors, Cayley-Hamilton Theorem,
	Diagonalization of matrices. (15)
	Ordinary Differential Equations: Existence and uniqueness of solutions of ODE
	(Statement Only), Equations of first order but higher degree, Clairaut's equation,
	Second order differential equations, Linear dependence of solutions, Wronskian
	determinant, Method of variation of parameters, Solution of simultaneous
	equations. (12)
	Fourier series: Basic properties, Dirichlet conditions, Sine series, Cosine series,
	Convergence. (4)
	Laplace and Fourier Transforms: Laplace transforms, Inverse Laplace transforms,
	Convolution theorem, Applications to Ordinary differential equations. Fourier transforms, Inverse Fourier transform, Fourier sine and cosine transforms
	and their inversion, Properties of Fourier transforms, Convolution.
	(10)
	Probability: Historical development of the subject and basic concepts, Axiomatic
	definition of probability, Examples to calculate probability, Random numbers.
	Random variables and probability distributions, Binomial distribution, Normal
	distribution. (10)
Text Books,	Text Books:
and/or ´	1. E. Kreyszig, Advanced Engineering Mathematics: 10 th ed, Wiley India Ed. (2010).
reference	2. Gilbert Strang, Linear algebra and its applications (4th Ed), Thomson (2006).
material	3. Shepley L. Ross, Differential Equations, 3 rd Edition, Wiley Student Ed (2017).
	Reference Books:
	1. S. Kumaresan, Linear algebra - A Geometric approach, PHI (2000).
	2. C. Grinstead, J. L. Snell, Introduction to Probability, American Math. Society.

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	3	2	1	2	-	2	-	-	-	1	2
N4AC02	CO2	3	3	2	2	2	-	2	-	-	1	-	2
MAC02	CO3	3	3	2	2	3	1	1	-	1	1	1	2
	CO4	3	2	1	3	2	1	1	1	1	-	-	2

Correlation levels 1, 2 or 3 as defined below:

Course	Tit	le of the course	Program Core	Tota	l Number c	of contact ho	ours	Credit				
Code			(PCR) /	Lecture	Tutorial	Practical	Total					
			Electives	(L)	(T)	(P)	Hours					
			(PEL)									
CSC01		NTRODUCTION O COMPUTING	PCR	2	1	0	3	3				
P	re-re	quisites	Course Assessment methods (Continuous (CT), mid-term (MT) and									
		•	end assessment (EA))									
Basic know	wled	ge of computer.	CT+MT+EA									
Course		•	gnize the changes in hardware and software technologies with respect to									
Outcom	es	_	of computers a			_		•				
			ems) and applica									
		gates.	,		, 0	O ,	,	, 0				
		_	he flowchart and	inscribe ar	n algorithm	for a given	problem	Inscribe				
		C programs usin			Ü	Ü	•					
			onditional and ite	rative state	ements to w	vrite C progr	ams.					
		=	er defined functi									
			orograms that use			•	and fund	tions.				
			•			, ,						
		problems.	O6: Exercise user defined data types including structures and unions to solv roblems.									
Topics	5	Fundamentals (of Computer:	History of	Computer	, Generatio	n of Co	mputer,				
Covere			Computers 2L	•	•			•				
			ory, Processing U		•	•		•				
		•	mbly language, h	•	•		assemble	er (basic				
		concepts) [1]	, , ,		0 0 ,	, ,		•				
			number systems	representa	ation of sig	ned and ur	nsigned n	umbers.				
			Arithmetic & log				_					
		Basic concepts of	of operating syste	ems like MS	DOS, MS	WINDOW, U	NIX, Algo	rithm &				
		flow chart. [1]										
		C Fundamentals	: The C characte	r set ident	ifiers and I	keywords, d	ata type	& sizes,				
		variable names,	declaration, state	ements. [2]								
		Operators & Ex	pressions: Arithr	netic oper	ators, relat	tional and I	ogical op	erators,				
		type, conversion	on, increment a	ınd decrei	ment opei	rators, bit	wise op	erators,				
		assignment ope	rators and expres	ssions, pred	cedence, ai	nd order of	evaluatio	n. Input				
		and Output: Sta	ndard input and o	output, for	matted out	put printf	, formatt	ed input				
		scanf. [8]									
		Flow of Control: Statement and blocks, if - else, switch, loops - while, for do while,										
		break and contir	nue, go to and lab	oels. [5]								
		Fundamentals a	itals and Program Structures: Basic of functions, function types, functions									
		returning values	values, functions not returning values, auto, external, static and register									
		Variables, scope	pe rules, recursion, function prototypes, C pre-processor, command									
1		line arguments.	[5]									
		Arrays and Po	inters: One-dim	ensional, t	wo-dimens	sional array	s, point	ers and				
ı		functions, multi-	dimensional arra	ys. [10]								
ı		Structures Unio	n and File: Stru	cture, unic	n, structu	res and fun	ctions, a	rrays of				
		structures, file re	ead, file write.[5]									

Text Books,	Text Books:
and/or	1. Let us C by Kanetkar
reference	2. C Programming by Gottfried
material	3. Introduction to Computing by Balaguruswamy
	4. The C-programming language by Dennis Ritchie
	Reference Books:
	1. Computer fundamental and programming in C by P Dey and M. Ghosh
	2. Computer fundamental and programming in C by Reema Thareja
	3. programming with C by Schaum Series

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	1	2	1	-	-	-	-	-	-	-	-
	CO2	-	2	1	2	1	-	-	-	-	ı	1	-
CCC01	CO3	1	2	-	-	3	-	-	-	-	-	-	-
CSC01	CO4	1	3	1	2	3	-	-	-	-	-	-	1
	CO5	2	1	-	-	3	-	-	-	-	-	-	-
_	CO6	2	-	3	-	1	-	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program Core	To	tal Numbe	r of contact	hours	Credit		
Code	course	(PCR) /	Lectur	Tutoria	Practical	Total			
		Electives (PEL)	e (L)	I (T)	(P)	Hours			
ECC01	Basic	PCR	2	1	0	3	3		
	Electronics								
	Pre-requis	ites	Course	. Assessme	nt methods	(Continuou	ıs (CT), mid-		
			term (MT) and end as	ssessment (EA))			
(10+2)	level mathema	tics and physics			CT+MT+	EA			
Cours	e • CO1:	Knowledge of Sem	niconduct	or physics	and devices				
Outcom	nes • CO2:	CO2: Have an in depth understanding of basic electronic circuit, construction,							
	oper	operation.							
	• CO3:	Ability to make pr	oper des	igns using	these circui	t elements	for different		
	appli	cations.							
	• CO4:	CO4: Learn to analyze the circuits and to find out relation between input and							
	outp	output.							
Topic	s 1. S e	miconductors							
Covere	ed 1.1. Co	oncept of band fo	rmation	in solids;	Fermi-Dira	c distribution	on function,		
	concept	of Fermi level, in	variance	of Fermi	level in a	system und	der thermal		
	equilibriu	equilibrium							
	1.2. Defii	nitions of insulator,	, conduct	or and sem	niconductor	using band	diagram		
	1.3. Crys	talline structure of	semicono	ductor					
	1.3.1. Co	valent bond							
	1.3.2. Ge	neration of holes a	nd electr	ons					

- 1.3.3. Effect of temperature on semiconductor
- 1.4 Intrinsic semiconductor
- 1.5 Doping and Extrinsic semiconductor
- 1.5.1 n-Type semiconductor and band diagram
- 1.5.2 p-Type semiconductor and band diagram
- 1.5.3 Mass-action law of semiconductor
- 1.6. Conductivity of semiconductor (including mathematical expression)
- 1.7 Carrier transport phenomenon. (03 hrs.)
- 2. Diodes
- 2.1. Construction
- 2.2. Unbiased diode; Depletion layer and Barrier potential; junction capacitance (expression only)
- 2.3. Principle of operation with forward biasing and reverse biasing
- 2.4. Characteristics
- 2.5 Diode's three models/equivalent circuits.(02 hrs.)

3. Diode Circuits

- 3.1 Diode rectifier
- 3.1.1 Half wave rectifier
- 3.1.2 Full wave rectifier:centre tap and bridge rectifier
- 3.1.3 Capacitive filter and DC power supply (Numerical problems)
- 3.2 Special Diodes
- 3.2.1 Zenerdiode: Avalanche breakdown and Zener breakdown and characteristics.
- 3.2.2 Zener diode as a voltage regulator
- 3.2.3 Displaydevices: LED and LCD. (03 hrs.)

4. Bipolar Junction Transistor (BJT)

- 4.1 n-p-n and p-n-p transistor and their constructions
- 4.2 Principle of operation
- 4.3 Transistor configuration: common base, common emitter, and common collector
- 4.4 Transistor characteristics: input and output characteristics of CB and CE configurations
- 4.5 DC load line: quiescent (Q) point; cut-off, active, and saturation region
- 4.6 Amplifier: Principle of operation
- 4.7 Transistor as a switch. (04 hrs.)

5. Transistor Biasing

- 5.1 Need of biasing
- 5.2 Methods of biasing: base resistor or fixed bias, emitter feedback, voltage divider biasing
- 5.3 Stability of Q-point (qualitative discussions)
- 5.4 (Numerical problems). (02 hrs.)

6. Single Stage Amplifier:

classification of amplifiers (voltage amplifier, current amplifier, power amplifier etc.) Class-A CE Amplifier with coupling and bypass capacitors, Qualitative discussions of magnitude characteristics of frequency response (graph only) (02 hrs.)

7. Feedback Amplifier

7.1 Positive and negative feedback

7.2 Deduction of gain with negative feedback, explanation of stability of gain with negative feedback, other effects of negative feedback (no deduction), numerical problems. (03 hrs.)

8. Other Semiconductor Devices

- 8.1 JFET: Construction, principle of operation, characteristics
- 8.2 MOSFET: Construction, principle of operation, characteristics
- 8.3 Power Electronic Device-SCR: Brief discussions. (02 hrs.)

9. Operational Amplifier

- 9.1 Characteristics of ideal operational amplifier
- 9.2 Pin Configuration of IC 741,
- 9.3 Analysis of simple operational amplifier circuits: concept of virtual ground; noninverting amplifier and inverting amplifier.
- 9.4 Applications: voltage follower, summer, differentiator, integrator, and comparator (04 hrs)

10.Oscillator

- 10.1 Positive feedback and condition of oscillation
- 10.2 R-C phase-shift oscillator, Wien bridge oscillator. (02 hrs.)

11. Boolean Algebra

- 11.1 Boolean algebra, De Morgan's theorem, simplification of Boolean expressions
- 11.2 Number system, range extension of numbers, overflow
- 11.3 Different codes: gray code, ASCII code and BCD codes and them Applications. (01 hrs.)
- 12. Logic Gates
- 12.1 NOT, OR, AND, NOR, NAND, EX-OR, EX-NOR gates
- 12.2 Simplification of logic functions
- 12.3 Realizations of logic expressions using logic gates. (01 hrs.)
- 13. CRO and its applications and other test and measurement instruments. (01 hrs.)

Text Books, and/or reference material

Text Books:

- 1. Introduction Electronic Devices & Circuit Theory,11/e, 2012, Pearson: Boylestad & Nashelsky
- 2. Electronic Principles, by Albert Paul MalvinoDr. and David J. Bates, 7/e. Reference Books:
- 1. Integrated Electronics by Millman, Halkias and Parikh, 2/e, McGrawHill.
- 2. ELECTRONICS Fundamentals and Applications by Chattopadhyay and Rakshit,15/e, New Age Publishers.
- 3. The Art of Electronics by Paul Horowitz, Winfield Hill, 2/e, Cambridge University.
- 4. Electronics Circuits and Systems by Owen Bishop, 4/e, Elsevier.
- 5. Electronics Fundamentals: Circuits, Devices & Applications by Thomas L. Floyd
- & David M. Buchla, 8/e, Pearson Education.

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	3	2	2	-	1	-	-	-	-	-	1
FCC01	CO2	3	2	1	2	2	1	-	2	2	-	-	1
ECC01	CO3	3	2	2	2	3	-	-	-	2	-	-	1
	CO4	3	3	2	2	-	-	-	-	2	-	-	1

Correlation levels 1, 2 or 3 as defined below:

	Dep	partment of Electric	cal Enginee	ering						
Course	Title of the	Duo outous Couto	Tota	l Number	of contact h	ours	Credit			
Code	course	Program Core (PCR) /Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours				
EEC01	ELECTRICAL TECHNOLOGY	PCR	3	0	0	3	3			
Pre-	-requisites	Course Assessment methods (Continuous (CT), Mid Term (MT), and end assessment (EA))								
	NIL		(CT+MT+1	EA					
Course Outcomes	 CO1: lea analysis of CO2: development CO2: development CO3: lea such circular CO4: introduction 	 Upon successful completion of this course, the student should be able to CO1: learn the fundamentals of Electric Circuits and Network theorems and analysis of electrical network based on these concepts. CO2: develop an idea on Magnetic circuits, Electromagnetism and learning the working principles of some fundamental electrical equipment's CO3: learn about single phase and poly-phase AC circuits and analysis of such circuits based on these concepts. CO4: introduce the basic concept of single-phase transformer. CO5: analyze the transient phenomena in electrical circuits with DC 								
Topics		ntroduction: Overview of Electrical power generation systems (2)								
Covered	Fundamentals of Dependent source Network theorem, Maxim Magnetic circuit transformer and circuits (self-indu Transients with I Generation of all value, Phase and Behavior of A.O. Network: Supe maximum power Single-Phase Tra Poly-phase syste Voltage, current	Electric Circuits: es, Analysis of sin ems: Superposition of Power Transfers: Review of fur rotational emfs, Suctance, mutual in D.C. excitation for ternating voltage and phase difference of transfer theorem ansformer, equivalent, Advantages of and power in a staticircuits, Power meansformer.	Ohm's law apple circuit on Theorem and amenta Solution of ductance, a R-L and R and current, e, Phasor ance in sem, Theve a solution of the circuits a phase sy ar and delta and	ws, Kirchles. (4) em, Thever (4) I laws of magnetice and dot concern and concern and min's the of network, open circulated a connected a connected as (4)	electroma circuits. Ar envention)(8 s. (3) quation, Av tion of alte parallel R- eorem, No ss with AC s cuit and sho neration of ed systems,	gnetic ir nalysis of 3) erage and ernating L-C circ rton's tources. (rt circuit 3-phase 3-phase	Norton's aduction, coupled d R.M.S. quantity, ruits. AC heorem, 10) tests (6) voltages,			

Textbooks/Referen	
ce material	Textbooks:
	1. Electrical & Electronic Technology by Hughes, Pearson Education India
	Reference Books:
	1. Advanced Electrical Technology by H. Cotton, Reem Publication Pvt. Ltd
	2. Electrical Engineering fundamentals by Vincent Deltoro, Pearson Edu India

Mapping of CO (Course Outcome) and PO (Programme Outcome)

				•				<u> </u>				
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	3	3	3	1	1	1	1	1	1	1
CO2	3	3	3	3	2	1	2	1	1	1	1	1
CO3	3	3	3	3	3	2	2	1	1	1	1	1
CO4	3	3	3	3	3	2	2	1	1	1	1	1
CO5	3	3	2	2	2	1	1	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)
-----------------	----------------------	-----------------------

Course	Title of	f the	Program Core	Tota	l Number c	of contact ho	ours	Credit			
Code	cour	se	(PCR) /	Lecture	Tutorial	Practical	Total				
			Electives (PEL)	(L)	(T)	(P)	Hours				
BTC01	LIFE SCI	ENCE	PCR	2	0	0	2	2			
Pr	e-requisites		Course Assess		nods (Conti		mid-term	n (MT)			
			CT+MT+EA								
Course	CO1: E	Basic und	lerstanding of bas	sic cellular	organizatio	on of organ	isms and	cellular			
Outcome	es comm	unicatior	ns, structure and	function	s of the	macromole	cules an	d their			
	biosyn	thesis an	d catabolism.								
		_	an understanding		-		ructure,	growth,			
	physio	physiology and behavior of bacteria, viruses, fungi and protozoa									
			luce molecular biology to understand biological processes in various								
	applica										
		•	provide a foundation in immunological processes and an overview of the								
			etween the immune system and pathogens. vide knowledge about biological and biochemical processes that								
						biocnemica	process	ses tnat			
	•	•	ering expertise to			hiochomica	l process	oc that			
			de knowledge alering expertise to			Diochemica	process	es mai			
Topics		Biology		Solve them							
Covered			ction to life scienc	e: prokarvo	otes & euka	arvotes					
			on; Difference	- 1-1		,					
	b)		ction to cells - Def	ine cell, dif	ferent type	es of cell					
	c)		r organelles - All organelles and functions in brief								
	d)	Cellular	ar communications								
		Introdu	ction to basic sign	aling; end	ocrine, par	acrine signa	ling; con	cepts of			

receptor, ligand, on-off switch by phosphorylation/dephosphorylation

2. Biochemistry (4)

- a) Biological function of carbohydrate and lipid Introduction, structure and function
- b) Biological function of nucleic acids and protein structure and function
- c) Catabolic pathways of Macromolecules Introduction to catabolism, hydrolysis and condensation reactions; Catabolism of glucose- Glycolysis, TCA; overall degradation of proteins and lipids
- d) Biosynthesis of Macromolecules Generation of ATP (ETS), Generation of Glucose (Photosynthesis)

3. Microbiology (5)

- Types of microorganisms and their general features Bacteria, Yeast, Fungi, Virus, Protozoa- general introduction with practical significance and diseases
- b) Microbial cell organization Internal and External features of cell- bacterial cell wall, viral capsule, pilus etc,
- c) Microbial nutritional requirements and growth Different Sources of energy; growth curve
- d) Basic microbial metabolism Fermentation, Respiration, Sulfur, N2 cycle

4. Immunology (5)

- a) Basic concept of innate and adaptive immunity Immunity-innate and adaptive, differences, components of the immune system
- b) Antigen and antibody interaction Antigen and antibody, immunogen, factors affecting immunogenicity, basic antigen-antibody mediated assays, introduction to monoclonal antibody
- c) Functions of B cell B cell, antibody production, memory generation and principle of vaccination
- d) Role of T cell in cell-mediated immunity Th and Tc, functions of the T cell with respect to different pathogen and cancer cell

5. Molecular Biology (5)

- a) Prokaryotic Genomes (Genome organization & structure) Nucleoid, circular or linear
- b) Eukaryotic Genomes (Genome organization & structure) Intron, exon, packaging, chromatin
- c) Central Dogma (Replication, Transcription and Translation)
- d) Applications of Molecular Biology (Diagnostics, DNA-fingerprinting, Recombinant products etc.) Introduction to Recombinant DNA, fingerprinting, cloning

6. Bioprocess Development (5)

- a) Microbial growth kinetics Batch, fed-batch and continuous systems, Monod Equation
- b) Enzyme kinetics, kinetics of enzyme inhibition and deactivation Definition of enzymes, activation energy, Concepts of Km, Vmax, Ki
- Microbial sterilization techniques and kinetics
 Introduction to sterilization, dry and moist sterilization
- d) Thermodynamics of biological system Concepts of Enthalpy, Entropy, favorable reactions, exergonic and endergonic reactions

	e) Material and energy balance for biological reactions - Stoichiometry
Text Books, and/or	1. Biotechnology 01 Edition, authored by U. Satyanarayana, BOOKS & ALLIED (P) LTD.
reference	2. Biochemistry by Lehninger. McMillan publishers
material	3. Microbiology by Pelczar, Chan and Krieg, Tata McGraw Hill
	4. Brown, T.A., Genetics a Molecular Approach, 4th Ed. Chapman and Hall, 1992
	5. Kuby J, Thomas J. Kindt, Barbara, A. Osborne Immunology, 6th Edition,
	Freeman, 2002.
	6. Bioprocess Engineering: Basic Concepts (2nd Ed), Shuler and Kargi, PHI.

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	1	1	-	1	-	-	-	-	-	-	-
	CO2	2	1	1	-	1	-	1	-	-	-	-	-
BTC01	CO3	2	1	1	-	1	-	-	-	-	-	-	-
	CO4	2	1	1	-	1	-	-	1	-	-	-	1
	CO5	2	1	1	1	1	1	1	-	1	ı	ı	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title	of the course	Program Core	Tota	l Number o	of contact ho	ours	Credit			
Code			(PCR) /	Lecture	Tutorial	Practical	Total				
			Electives (PEL)	(L)	(T)	(P)	Hours				
	The	Constitution									
XXC01	of Ir	ndia and Civic	PCR	1	0	0	1	1			
		Norms									
P	re-requ	uisites	Course Assess	Course Assessment methods (Continuous (CT), mid-term (MT)							
				and er	nd assessm	ent (EA))					
	NIL	-			CT+MT+E	A					
Course	j	CO1: Elementa	ry understanding of the evolution of historical events that led to								
Outcom	es	the making o	the Indian constitution, the philosophical values, basic structure								
		and fundame	ental concerns enshrined in the Constitution of India.								
		CO2: Aware of	the fundamental	rights and	duties as a	citizen of th	e country	<i>/</i> .			
		CO3: Enable t	o know the civic	norms to	be follow	ed accordin	ng to the	e Indian			
		constitution									
Topics		 Historica 	I background of th	ne Making	of Indian Co	onstitution ((1 Hour)				
Covere	d	2. Preamble	e and the Philosop	hical Value	es of the Co	nstitution (1 Hour)				
		3. Brief Ove	erview of Salient F	eatures of	Indian Con	stitution (1	Hour)				
		4. Parts I & II: Territoriality and Citizenship (1 Hour)									
		5. Part III: Fundamental Rights (2 Hours)									
			Directive Principles			ur)					
		7. Part IVA:	Fundamental Dut	ies (1 Hou	r)						
		8. Union G	8. Union Government: President, Prime Minister and Council of Ministers (2								

	Hours)
	9. Parliament: Council of States and House of the People (1 Hour)
	10. State Government: Governor, Chief Mister and Council of Ministers (1 Hour)
	11. State Legislature: Legislative Assemblies and Legislative Councils (1 Hour)
	12. Indian Judiciary: Supreme Court and High Courts (1 Hour)
	13. Centre-State Relations (1 Hour)
	14. Reservation Policy, Language Policy and Constitution Amendment (1 Hour)
Text Books,	Primary Readings:
and/or	1) P. M. Bakshi, <i>The Constitution of India</i> , 18 th ed. (2022)
reference	2) Durga Das Basu, Introduction to the Constitution of India, 25 th ed. (2021)
material	3) J.C. Johari, <i>Indian Government and Politics</i> , Vol. II, (2012)
	Secondary Readings:
	Granville Austin, The Indian Constitution: Cornerstone of a Nation (1966; paperback
	ed. 1999); Granville Austin, Working a Democratic Constitution: The Indian
	Experience (1999; paperback ed. 2003).

Course	Title of the course	Program Core	Tota	l Number o	of contact ho	ours	Credit			
Code		(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
XES52	GRAPHICAL									
VE337	ANALYSIS USING	PCR	0	0	2	2	1			
	CAD									
Pr	e-requisites	Course Assessm	ent method	`	ous (CT) an	d end ass	essment			
				(EA))						
	NIL			CT+EA						
Course	CO1: Introduction CO1: Introduction	 ◆CO1: Introduction to graphical solution of mechanics problems 								
Outcome	es • CO2: Knowle	ledge on graphical solution methods for solving equilibrium in								
	coplanar forc	lanar force system								
	• CO3: Introdu	ıcing Maxwell diagram and solution of plane trusses by graphical								
	method									
		nation of centroid	of plane fi	gures by gi	raphical met	thod				
		e to AutoCAD soft	ware for co	omputer aid	ded graphic	al solutio	n			
Topics	Graphical ar	nalysis of problems	s on statics	. [14]						
Covered	Graphical so	Graphical solution of engineering problems using CAD (with the help of								
	"AutoCAD")	"AutoCAD") [14]								
Text and/	or 1) Engineering	1) Engineering Drawing and Graphics – K Venugopal								
referenc	ce 2) AutoCAD —	2) AutoCAD — George Omura								
materia	l 3) Practical Ge	ometry and Engin	eering Gra _l	phics – W A	Abbott					

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	-	-	1	-	-	1	-	-	ı	1	1
	CO2	1	2	-	1	-	-	1	-	-	1	1	1
XES52	CO3	2	1	-	-	-	-	-	-	-	-	-	-
	CO4	2	1	-	-	-	-	-	-	-	-	-	-
	CO5	1	-	-	-	2	-	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course		Title of the	e of the Program Core Total Number of contact hours								
Code		course	(PCR) /	Lecture	Tutorial	Practical	Total				
			Electives (PEL)	(L)	(T)	(P)	Hours				
CSS51		COMPUTING ABORATORY	PCR	0	0	2	2	1			
D	<u> </u>	quisites	Course Assessment methods (Continuous (CT) and end assessment								
"	16-16	quisites	(EA))								
	N	JIL			CT+EA						
Course	ب	●CO1: To und	erstand the princ	ciple of on	erators. Id	ops. branc	hing state	ements.			
Outcome			ırsion, arrays, poir			•	_	,			
			I out the operation	• •	•	0					
			rstand structure, i	_	,-						
			eal time pro	l time problems							
Topics		List of Experime									
Covered	d	1. Assignments	on expression eva	luation							
		2. Assignments	on conditional branching, iterations, pattern matching								
		3. Assignments	on function, recursion								
		4. Assignments	on arrays, pointers, parameter passing								
		5. Assignments	on string using arr	ay and poir	nters						
		<u>-</u>	on structures, unic	on							
Text Boo	· ·	Text Books:									
and/or		1. Let us C by k									
referenc	_	_	ing by Gottfried								
materia	al	3. Introduction to Computing by Balaguruswamy									
			amming language	by Dennis I	Ritchie						
		Reference Book	-				.				
		•	ndamental and pro	-	•	•					
		•	ndamental and pro	-	in C by Ree	ema Thareja					
		3. programming	3. programming with C by Schaum Series								

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	-	1	-	-	-	-	-	-	-	-	-
CCCE1	CO2	-	2	1	3	-	-	-	-	-	-	-	-
CSS51	CO3	-	1	-	2	1	-	-	-	-	-	-	-
	CO4	-	-	3	2	1	1	1	1	-	ı	2	-

Correlation levels 1, 2 or 3 as defined below:

Course		Title of the	Program Core	Tota	l Number c	of contact ho	ours	Credit			
Code		course	(PCR) /	Lecture	Tutorial	Practical	Total				
			Electives (PEL)	(L)	(T)	(P)	Hours				
ECS 51	Ва	asic electronics	PCR	0	0	2	2	1			
		Lab									
Pr	re-re	quisites	Course As		,	ontinuous (C	CT) and e	nd			
			assessment (EA))								
		NIL			CT+EA						
Course		·	iire idea about b	pasic elect	ronic com	ponents, id	entificati	on, and			
Outcom	es	behavior.									
			etermine IV chara	acteristics	of these Ci	ircuit eleme	ents for c	lifferent			
		application									
			n to analyze the o	circuits and	d observe a	and relate i	nput and	output			
		signals.									
Labs		·	,								
Conducte	ea.		electronic and electrical instruments. To identify and understand name and related terms of various electronics								
		•	s used in electronic circuits.: Identify different terminals of ss, fid their values and observe numbering associate with it.								
		•	•			•		m 0 0 0 1 1 K 0			
			lloscope and function generator: Use of oscilloscope to measure quency/time and Lissajous figures of displayed waveforms.								
		filter circuit	alf wave and Full-wave (Bridge) rectifier with and without capacitor								
			ι. of basic logic gates: Truth table verification of OR, AND, NOT, NOT								
			logic gates from T		abic verific		, AIVD, IV	31, 1101			
			power supply: stu		and LM79	XX voltage r	egulator	ICs			
			as a Switch: study	-		_	_				
		gate		•							
		8. Zenner dio	de as voltage regu	lator							
		9. To study cli	pping and Clampi	ng circuits							
		10. To study di	fferent biasing cirt	tis.							
		11. Study of CE	amplifier and obs	serve its fre	equency res	sponse.					
Text Boo	ks,	Text Books:									
and/or	r	1. Experiments	Manual for use w	vith Electro	nic Princip	les (Enginee	ring				
referenc	ce	_	• •	des) by Albert Paul MalvinoDr., David J. Bates, et al.							
materia	al	Reference Boo	<u>ks</u> :								
			of Electronics 3e,	•							
		2. Electro	nic Principles, by A	by Albert Paul MalvinoDr. and David J. Bates							

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	2	1	2	2	1	-	-	2	-	-	-
ECS51	CO2	3	2	2	2	3	-	-	-	2	-	-	-
	CO3	3	3	2	2	-	-	-	-	2	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Department of Electrical Engineering												
Course	Titl	e of the course	Program	Tota	l Number c	of contact he	ours	Credit				
Code			Core (PCR) /	Lecture	Tutorial	Practical	Total					
			Electives	(L)	(T)	(P)	Hours					
			(PEL)									
EES51	EL	ECTRICAL										
		CHNOLOGY	PCR 0 0 2 2									
	LAF	BORATORY										
P	re-rec	quisites	Course As		,	Continuous (CT) and	end				
				a	ssessment ((EA))						
	No	ne			CT+EA							
Course	دِ	Upon suc	ccessful complet	ion of this	course, the	student sho	ould be ab	ole to				
Outcom	es	 CO1: une 	derstand the principle of superposition.									
			derstand the principle of maximum power transfer									
		• CO3: un	lerstand the characteristics of CFL, incandescent Lamp, carbon									
		lamp.										
			derstand the calibration of energy meter.									
			derstand open circuit and short circuit test of single-phase									
		transform	ner. alyze RLC series and parallel circuits									
			•									
			derstand three pl									
Topics		List of Experim	derstand determination of B-H curve									
Topics Covered		-		and Thever	nin's Theor	em						
Covere	u	 To verify Superposition and Thevenin's Theorem. To verify Norton and Maximum power transfer theorem 										
		3. Characteristics of fluorescent and compact fluorescent lamp										
		4. Calibration on energy meter										
		5. To perform the open circuit and short circuit test on single phase										
		transformer										
		6. To study the balanced three phase system for star and delta connected load										
	•			eristics of different types of Incandescent lamps								
		8. Study of	Series and parallel R-L-C circuit									
9. Determination of B-H Curve for magnetic material												
Textbool	ks,	Textbooks:										
and/or	r		f Laboratory Experiments in Electronics and Electrical									
referenc	се	Engineering										
materia	al	•	Courses in Electrical Engineering (5 th Edition) by S. G. Tarnekar,									
		P. K. Kharbanda, S. B. Bodhke, S. D. Naik, D. J. Dahigaonkar (S. Chand Pub)										

Mapping of CO (Course Outcome) and PO (Programme Outcome)

mapping of the (course outcome) and the (the section of												
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	3	3	3	1	1	1	2	2	2	3
CO2	3	3	3	3	3	1	1	1	2	2	2	3
CO3	3	3	3	3	3	1	1	1	2	2	2	3
CO4	3	3	3	3	3	1	1	1	2	2	2	3
CO5	3	3	3	3	3	1	1	1	2	2	2	3

CO6	3	3	3	3	3	1	1	1	2	2	2	3
CO7	3	3	3	3	3	1	1	1	2	2	2	3
CO8	3	3	3	3	3	1	1	1	2	2	2	3

Correlation levels 1, 2 or 3 as defined below:

	Title of the	Program Core (PCR)	Tota								
Course Code	course	/ Electives (PEL)	Lecture (L)			Total Hours	Credit				
XXS-52	Co-curricular Activities	PCR	0	0	2	2	1				
Pre-requisites	Course assessment methods: (Continuous evaluation((CE) and end assessment (EA)										
NIL	CE + EA										
Course Outcomes	 CO1: Social Interaction: Through the medium of sports CO2: Ethics: Recognize different value systems including your own, understand the moral dimensions of your decisions, and accept responsibility for them CO3: Self-directed and Life-long Learning: Acquire the ability to engage in independent and life-long learning in the broadest context socio-technological changes. CO4: Personality development through community engagement 										
Topics Covered	 CO5: Exposure to social service YOGA Sitting Posture/Asanas- Gomukhasana, Swastikasana, Siddhasana, Ustrasana, Janusirsasana, ArdhaMatsyendrasana (Half-Spinal Twist Pose), Paschimottanasana, Shashankasana, Bhadrasana. Mudra- Vayu, Shunya, Prithvi, Varuna, Apana, Hridaya, Bhairav mudra. Laying Posture/Asanas- Shalabhasana (Locust Posture), Dhanurasana (Bow Posture), ArdhaHalasana (Half Plough Pose), Sarvangasana (Shoulder Stand), Halasana (Plough Pose), Matsyasana, SuptaVajrasana, Chakrasana (Wheel Posture), Naukasana (Boat Posture), Shavasana (Relaxing Pose), Makaraasana. Meditation- 'Om'meditation, Kundalini or Chakra Meditation, Mantrameditation. Standing Posture/Asanas- ArdhaChakrsana (Half Wheel Posture), Trikonasana (Triangle Posture), ParshwaKonasana (Side Angle Posture), Padahastasana, Vrikshasana (Tree Pose), Garudasana (Eagle Pose). Pranayama- Nadisodha, Shitali, Ujjayi, Bhastrika, Bhramari. Bandha- Uddiyana Bandha, Mula Bandha, Jalandhara Bandha, Maha Bandha. 										

ATHLETICS

- Long Jump- Hitch kick, Paddling, Approach run, Take off, Velocity, Techniques, Flight & Landing
- Discus throw, Javelin throw and Shot-put- Basic skill & Technique, Grip, Stance, Release & Follow through.
- Field events marking.
- General Rules of Track & Field Events.

BASKETBALL

- Shooting- Layup shot, Set shot, Hook shot, Jump shot. Free throw.
- Rebounding- Defensive rebound, Offensive rebound.
- Individual Defensive- Guarding the man without ball and with ball.
- Pivoting.
- Rules of Basketball.
- Basketball game.

VOLLEYBALL

- Spike- Straight spike, Body turn spike, Tip spike, Back attack, Slide spike, Wipe out spike.
- Block- Single block, Double block, Triple block, Group block.
- Field Defense- Dig pass, Double pass, Roll pass.
- Rules and their interpretation.

FOOTBALL

- Dribbling- Square pass, Parallel pass, Forward pass.
- Heading (Standing & Running)- Fore head, Side fore head, Drop heading, Body covering during heading.
- Kicking- Full volley, Half volley, Drop kick, Back volley, Side volley, Chiping (lobe).
- Tackling: Covering the angle, Chessing time sliding chese, Heading time shoulder tackle etc.
- Feinting- Body movement to misbalance the opponent and find space to go with ball.
- Rules of Football.

CRICKET

- Batting straight drive.
- Batting pull shot.
- Batting hook shot.
- Bowling good length, In swing.
- Bowling out swing, Leg break, Goggle.
- Fielding drill.
- Catching (Long & Slip).
- Wicket keeping technique.
- Rules & Regulation.

BADMINTON

- Net play- Tumbling net shot, Net Kill, and Net Lift.
- Smashing.
- Defensive high clear/Lob.
- Half court toss practice, Cross court toss drop practice, Full court Game practice.
- Player Positioning, Placements.
- Rules & Regulation.
- Doubles & Mixed doubles match practice.

TABLE TENNIS

- Stroke: Backhand- Topspin against push ball, Topspin against deep ball, Topspin against rally ball, Topspin against topspin.
- Stroke: Forehand- Topspin against push ball, Topspin against deep ball, Topspin against rally ball, Topspin against topspin.
- Stroke- Backhand lob with rally, Backhand lob with sidespin, Forehand lob with rally, Forehand lob with sidespin.
- Service: Backhand/Forehand- Push service, Deep push service, Rally service.
- Service: Backhand sidespin (Left to right & Right to left).
- Service: Forehand- High toss backspin service, High toss sidespin service, High toss reverse spin service.
- Rules and their interpretations.
- Table Tennis Match (Singles & Doubles).

NCC

- FD-6 Side pace, Pace Forward and to the Rear.
- FD-7 Turning on the March and Wheeling.
- FD-8 Saluting on the March.
- FD-9 Marking time, Forward March and Halt in Quick Time.
- FD-10 Changing step.
- FD-11 Formation of Squad and Squad Drill.
- FD-12 Parade practice.

TAEKWONDO

- Poomsae (Forms)- Jang, Yi Jang.
- Self Defense Technique- Self defense from arms, Fist and Punch.
- Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).
- Combination Technique- Combined kick and punch.
- Board Breaking (Kyokpa)- Sheet breaking.
- Interpretation Rules above Technique of Taekwondo.

NSS

- No Smoking Campaign
- Anti- Terrorism Day Celebration
- Any other observation/celebration proposed by Ministry/institute
- Public Speaking
- Discussion on Current Affairs
- Viva voce

Mapping of CO (Course outcome) and PO (Programme Outcome)

							•						
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	-	-	-	-	-	2	-	-	3	-	-	-
	CO2	-	-	-	-	-	-	-	2	-	-	I	-
XXS52	CO3	-	-	-	-	-	-	1	-	-	-	ı	3
	CO4	-	-	-	-	-	-	-	-	2	2	ı	-
	CO5	-	-	-	-	-	3	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

CO-PO Mapping and Matrix

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Course	CO1	3	3	1	2	-	-	-	-	1	-	-	-
	CO2	3	3	1	2	-	_	-	-	1	-	-	-
MAC01	CO3	3	3	1	2	_	_	_	_	1	_	1	1
	CO4	3	-	_	2	_	2	_	_	1	-	-	-
	CO1	3	2	1	1	1	-	_	1	-	_	_	1
	CO2	3	2	_	2	_	_	_	_	_	_	_	1
PHC01	CO3	3	2	2	2	1	1	1	1	1	_	1	1
	CO4	3	2	2	2	1	1	1	-	1	-	1	1
	CO1	1	2	-	-	-	-	-	-	-	_	-	-
	CO2	1	-	-	-	-	-	2	-	_	_	-	_
CYC01	CO3	1	2	1	1	1	-	-	-	-	-	-	-
	CO4	_	1	_	_	2	-	1	_	-	_	_	-
	CO1	1	_	_	_	_	-	_	-	_	-	-	1
	CO2	1	1	1	1	-	-	-	-	-	-	-	1
XEC01	CO3	1	1	-	-	-	-	-	-	-	-	-	1
	CO4	1	2	-	-	-	-	-	-	-	-	-	1
	CO5	-	2	2	2	2	1	-	-	-	1	-	1
	CO1	3	-	-	-	-	-	2	-	-	-	-	-
FC CO4	CO2	1	-	-	-	-	-	2	-	-	-	-	1
ESC01	CO3	2	-	-	-	-	-	2	-	-	-	-	-
	CO4	1	-	3	-	-	2	1	-	-	-	-	-
	CO1	1	-	-	-	-	-	-	-	-	-	-	-
XES51	CO2	1	1	-	-	-	-	-	-	-	-	-	-
	CO3	1	-	1	-	-	-	-	-	-	-	-	-
LICCE1	CO1	-	-	-	-	-	1	-	-	1	3	-	3
HSS51	CO2	-	-	-	-	-	2	-	-	2	3	-	3
	CO1	3	2	1	-	-	-	-	-	2	1	-	1
PHS51	CO2	3	2	1	-	-	1	-	-	2	1	-	1
LU331	CO3	3	1	-	-	-	-	-	-	2	1	-	1
	CO4	3	2	-	1	-	1	1	-	2	1	-	1

	CO5	3	2	1	_	1	1	1	_	2	1	_	1
	CO1	2	1	-	1	-	-	-	-	-	-	-	-
CVCE1	CO2	-	1	-	1	1	2	-	-	-	-	-	-
CYS51	CO3	2	-	-	1	1	-	-	-	-	-	-	-
	CO4	-	1	-	1	1	-	-	-	-	-	-	-
	CO1	2	-	-	-	-	1	-	-	-	1	-	-
WCCE1	CO2	1	-	1	-	-	1	-	-	-	1	-	-
WSS51	CO3	1	-	2	-	-	1	-	-	-	1	-	-
	CO4	1	-	-	-	-	2	-	-	-	1	-	-
	CO1	2	3	1	3	-	-	-	-	2	-	-	-
N4ACO2	CO2	2	3	1	2	-	-	-	-	2	-	-	-
MAC02	CO3	2	2	2	3	2	-	-	-	3	-	1	1
	CO4	2	3	2	3	2	1	1	-	2	-	-	-
	CO1	3	1	2	1	-	-	-	-	-	-	-	-
	CO2	-	2	1	2	1	-	-	-	-	-	-	-
66604	CO3	1	2	=.	-	3	=.	-	=.	-	-	-	-
CSC01	CO4	1	3	1	2	3	=.	-	=.	-	-	-	1
	CO5	2	1	=.	-	3	=.	-	=.	-	-	-	-
	CO6	2	-	3	-	1	-	-	-	-	-	-	-
	CO1	-	-	-	-	-	-	-	-	-	-	-	-
50004	CO2	-	-	-	-	-	-	-	-	-	-	-	-
ECC01	CO3												
	CO4	-	-	-	-	-	-	-	-	-	-	-	-
	CO1	3	1	-	-	2	-	-	-	-	1	-	-
	CO2	2	3	2	-	2	-	-	-	-	-	-	-
EEC01	CO3	2	3	1	-	-	-	-	-	-	1	-	-
	CO4	3	1	2	-	1	-	-	-	-	-	-	-
	CO5	3	1	2	-	1	-	-	-	-	-	-	-
	CO1	2	1	1	-	1	-	-	-	-	-	-	-
	CO2	2	1	1	-	1	=.	1	=.	-	-	-	-
BTC01	CO3	2	1	1	-	1	=.	-	=.	-	-	-	-
	CO4	2	1	1	-	1	-	-	1	-	-	-	1
	CO5	2	1	1	-	1	1	1	=.	-	-	-	-
	CO1	2	-	=.	-	=.	=.	-	=.	-	-	-	-
	CO2	1	2	=.	-	=	=.	-	=.	-	-	-	-
XES52	CO3	2	1	=.	-	=	=.	-	=.	-	-	-	-
	CO4	2	1	-	-	-	-	-	-	-	-	-	-
	CO5	1	-	-	-	2	-	-	-	-	-	-	-
	CO1	3	-	1	-	-	-	-	-	-	-	-	-
00054	CO2	-	2	1	3	-	-	-	-	-	-	-	-
CSS51	CO3	-	1	-	2	1	-	-	_	-	_	_	-
	CO4	-	-	3	2	-	-	1	-	-	-	2	-
	CO1	3	2	1	2	2	1	-	-	2	-	-	
ECS51	CO2	3	2	2	2	3	-	-	-	2	-	-	-
	CO3	3	3	2	2	_	-	-	_	2	-	-	-

	CO1	3	ı	2	-	3	-	ı	-	1	-	-	-
	CO2	3	ı	2	-	3	ı	ı	1	1	1	1	-
EES51	CO3	2	3	2	2	1	-	2	-	1	-	-	-
EESSI	CO4	2	3	1	2	2	ı	1	1	1	1	1	-
	CO5	2	3	1	2	2	ı	ı	1	1	1	1	-
	CO6	2	3	2	2	2	ı	1	1	1	1	ı	-
	CO1	-	ı	ı	-	ı	2	ı	1	3	1	1	-
	CO2	-	1	-	-	-	-	-	2	-	-	-	-
XXS51	CO3	-	1	1	-	1	1	1	1	1	1	ı	3
	CO4	-	1	-	-	-	-	-	-	2	2	-	-
	CO5	-	1	1	-	1	3	1	1	1	1	ı	-
	CO1	-	ı	ı	-	ı	2	ı	1	3	1	1	-
	CO2	-	1	-	-	-	-	-	2	-	-	-	-
XXS51	CO3	-	1	1	-	1	1	1	1	1	1	-	3
	CO4	-	-	-	-	-	-	-	-	2	2	-	-
	CO5	-	-	-	-	-	3	1	-	•		-	-

THIRD SEMESTER

		Department of I	Mathemat	ics			
Course	Title of the course	Program Core	Total Nu	mber of co	ntact hours	5	Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
MAC331	MATHEMATICS-III	PCR	3	1	0	4	4
Pre-requisi	tes	Basic knowledge	of topics	included i	n MAC01 &	MAC02	1
Course Outcomes		d the common notable mathemating the basics of ied contexts.	numerical cal proble f complex n methods	methods ms. x analysis s and a	to obtain t	the appropries	oximate modern
Topics Covered	Module - I Partial Differential Eq of first order quasi	•			-		

Homogenous and Nonhomogeneous linear PDE with constant coefficients: Complimentary Function, Particular integral; Classification of second order linear PDE and canonical forms; Initial & Boundary Value Problems involving one dimensional wave equation, one dimensional heat equation and two dimensional Laplace equation.

[14 hrs]

Module - II

Numerical Methods: Significant digits, Errors; Difference operators; Newton's Forward, Backward and Lagrange's interpolation formulae; Numerical solutions of nonlinear algebraic/transcendental equations by Bisection and Newton-Raphson methods; Trapezoidal and Simpson's 1/3 rule for numerical integration; Euler's method and modified Eular's methods for solving first order differential equations.[14 hrs]

Module - III

Complex Analysis: Functions of complex variable, Limit, Continuity and Derivative; Analytic function; Harmonic function; Conformal transformation and Bilinear transformation; Complex integration; Cauchy's integral theorem; Cauchy's integral formula; Taylor's theorem, Laurent's theorem (Statement only); Singular points and residues; Cauchy's residue theorem. [17 hrs.]

Module - VI

Optimization:

Mathematical Preliminaries: Hyperplanes and Linear Varieties; Convex Sets, Polytopes and Polyhedra.

Linear Programming Problem (LPP): Introduction; Formulation of linear programming problem (LPP); Graphical method for its solution; Standard form of LPP; Basic feasible solutions; Simplex Method for solving LPP. [11 hrs.]

Text Books, and/or reference material

Suggested Text Books:

- 1. An Elementary Course in Partial Differential Equations-T. Amarnath
- ${\bf 2.\ Numerical\ Methods\ for\ scientific\ \&\ Engineering\ Computation-\ M.K. Jain,}$

S.R.K. Iyengar& R.K. Jain.

- 3. Foundations of Complex Analysis- S. Ponnuswami
- 4. Operations Research Principles and Practices- Ravindran, Phillips, Solberg
- 5. Advanced Engineering Mathematics- E. Kreyszig

Suggested Reference Books:

- 1. Complex Analysis-L. V. Ahfors
- 2. Elements of partial differential equations- I. N. Sneddon
- 3. Operations Research- H. A. Taha

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	3	3	2	2	1	2	-	-	1	ı	2
MAC331	CO2	3	3	2	2	2	1	2	-	-	ı	1	2
IVIAC331	CO3	3	3	2	2	3	-	1	-	-	1	-	2
	CO4	3	2	2	3	2	1	1	-	1	-	-	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

		Department of Che	emical Engi	ineering			T
Course	Title of the course	Program Core	Total Nur	mber of co	ntact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
CHC301	PROCESS	PCR	3	1	0	4	4
	CALCULATIONS						
Pre-requis	ites	Course Assessme	ent method	ls (CT) and	End Sem As	ssessmen	t (EA)
Nil		CT+EA					
Course Outcomes Topics Covered	 their implicate CO2:Graphicate plots for none CO3:Underste CO4:Underste psychrometri Module - I 	al interpretation of -linear equations anding of mass and anding the Ideal ga	f experiment d energy bas as equation	ntal data, i alance for n, Raoult's	use of log-lovarious che law, Henry'	ng and send mical pro s law, and	mi log cesses d
	variables, Rayle Adiabatic Flam reactor, Compu Basic understar	nd analysis: Buckin igh methods, Step e Temperature a tation of AFT, effe nding of applicatio tal data fittings i ues	wise methon nd its imported its on of semi-	odology cortance, erature an log and lo and semi-	Energy bala d pressure ng-log graph	ance in	thermal peration
	partial volume, applications Fundamental of equation, Anto Numerical prob	and its significance Dalton's law and concept of vapor pine equation and lems on Duhring& and their application.	Amagat's pressure d numeric k Cox plots	law and N & boiling cal proble s. Ideal& r	umerical programs on the non-ideal sc	roblems of ausius-Cla eir appli blutions,	on their apeyron cations,
	various proble leaching. Mater Atmospheric air Humidity and absolute, relative Fundamental controls.	terial balance, bas ms on material ial balance with char and its composit its significance, we we & percentage sa oncept of dry-bull Psychometric/hum	balance- lemical rea ion, the pr various hu turation b, wet-bul	drying, extion. Toperty of umidity/sa	evaporation moist air ar turation te ic saturatio	, crystal nd ideal g rms like	lization, gas law, molar,

Humid volume, enthalpy and specific heat of moist air, humidification and dehumidification operation and material balance. Theoretical analysis and Energy balance during adiabatic saturation and wet bulb temperature [13 hrs.]

Module - IV

Energy conservation laws, Energy balance, Laws of thermodynamics with examples, Enthalpy calculation for systems without Chemical Reaction, Estimation of Heat Capacities of solids, Estimation of Heat Capacities: liquids and gases. Heat of fusion and vaporization.

Enthalpy calculation for systems with Chemical Reaction, Calculations of heat of reaction, heat of combustions, heat of formation and heat of neutralization, Kopps rule

Effect of Temperature and Pressure on Heat of Reaction, Hess's Law, Application of Energy balance to problems of various chemical processes [12 hrs.]

• Tutorial on above topics and class tests (14)

Text Books, and/or reference material

Suggested Text Books:

1. Basic Principles and Calculations in Chemical Engineering — David Himmelblau, PHI

Suggested Reference Books:

- 1. Chemical Process Principles Hougen and Watson, Part-I, CRC Press, CBS.
- 2. Stoichiometry-4thedn, Bhatt and Vora, Tata Mc-Graw Hill

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO12
COs										0	1	
CO1	3		3		3						3	
CO2	3		3		3						3	
CO3	3	3			3							
CO4	2	2	2		2			3	3	3	2	

		De	partment of Che	mical Engi	neering						
Course	Title	of the course	Program Core	Total Nui	mber of co	ntact hours	;	Credit			
Code			(PCR) /	Lecture	Tutorial	Practical	Total				
			Electives (PEL)	(L)	(T)	(P)	Hours				
CHC302		CHEMICAL	PCR	3	1	0	4	4			
	E	NGINEERING									
	THE	RMODYNAMICS									
Pre-requis	ites		Course Assessm	ent metho	ds (Contin	uous (CT) a	nd end				
			assessment (EA))							
Nil			CT+EA								
Course		• CO1: Apply the	CO1: Apply the laws of thermodynamics to chemical engineering processes and								
Outcomes				devices.							
		• CO2: Calculate tables.	thermodynamic p	properties	using equa	ations of sta	ite, chart	s and			
		• CO3: Apply the	concept of phase	e equilibriu	m to mult	i-phase syst	ems.				

	• CO4: Solve problems of single and multi-phase chemically reactive systems using
	the concept of chemical reaction equilibrium.
Topics	Module - I
Covered	Scope of thermodynamics and fundamental concepts. Microscopic and microscopic view. First law of thermodynamics: Applications to batch and flow systems.
	Second and third law of thermodynamics: Reversibility and irreversibility, Carnot cycle, entropy, free energies, exergy [5 hrs.]
	Module - II
	Real gases: Equations of state, compressibility charts, departure functions Thermodynamics of flow processes: Single and multi-stage compression, expansion through nozzles.
	Refrigeration and liquefaction of gases: Vapour compression, cascade, absorption and gas refrigeration cycles, Choice of refrigerants, Linde and Claude processes of liquefaction of gases. [9 hrs.]
	Module - III Thermodynamic property relations: Maxwell's relations and thermodynamic functions of pure substances. Residual properties, fugacity. [5 hrs.]
	Module - IV Solution thermodynamics and phase equilibrium: Multi-component gaseous systems and solution. Partial molal properties and thermodynamic potential, criteria for equilibrium, thermodynamic properties of solutions, Gibbs-Duhem equation and consistency of thermodynamic data. Activity and activity coefficient, estimation of activity coefficient- Margules and Van laar equations, ASOG and UNIFAC methods. Generation of VLE data. Calculation of bubble and dew points of ideal and non-ideal solutions. Azeotropes. systems. Phase equilibrium at elevated pressure. [12hrs.] Module - V Chemical reaction equilibrium: Estimation of equilibrium constant. Homogeneous reactions. Heterogeneous reactions. [9hrs.]
Text Books,	Suggested Text Books:
and/or	1. Chemical Engineering Thermodynamics – J. M. Smith & H. C. Van Ness and
reference	M. M. Abbott (Tata McGraw Hill)
material	2. Chemical Engineering Thermodynamics – G. N. Halder (Prentice Hall of
	India)
	SuggestedReference Book:
	 Chemical & Engineering Thermodynamics – S. I. Sandler (Wiley) Applications of Thermodynamics, V. Kadambi , T. R. Seetharam, K. B.
	Subramanya Kumar, Wiley (2019)
	Jabramanya Kamar, Wiley (2013)

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	1	1	1	1	1	1	1	1
CO2	3	3	3	3	3	2	2	1	1	1	1	1
CO3	3	3	3	3	3	2	2	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

		Department of					_
Course	Title of the course	Program Core	e Total Nur	nber of co	ntact hours	S	Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEI	L) (L)	(T)	(P)	Hours	
CHC303	FLUID	PCR	3	1	0	4	4
	MECHANICS						
Pre-requis	ites	Course Asses	sment method	ls [Continu	ious (CT) ar	nd end	
		assessment (EA)]				
Nil		CT+EA					
Course	CO1: Crea	te a fundamenta	al understandir	ng of fluids	tatistics		
Outcomes	kinematic	sandkinetics					
	CO2: Appl	y mass,moment	umandenergy	balance to) hydrostati	ic and flui	d flow
	problems		0.		•		
	CO3: Acqu	ire knowledge c	of Fluid machin	eries and f	flow measu	ring devi	ces
Topics	Module - I						
Covered	Fluids and fl	uid properties,	continuum c	concept, F	-luid statio	s: Pressi	ure and
		suring devices, F		• •			
	continuity.	Boundary			_	•	friction.
	[6 hrs.]	,	•				
	Module - II						
	Bernoulli's ed	quation, Hagen-	Poiseuille equ	ıation, Fai	nning's eq	uation ar	nd their
	applications						
	Pipes, fittings	and valves. Pres	sure losses due	e to sudde	n expansio	n, contrac	tion
	and fittings						
	Navier-Stoke's	s equation and to	otal energy bal	ance equa	ition		
	Turbulent flov	v, Reynold's stre	ss, universal ve	elocity pro	file	[16	hrs.]
	Module - III						
	Flow past sol	id surface, drag	, flow through	n packed b	oed, fluidiz	ation, pn	eumatic
	conveying						
	Flow of comp	ressible fluids, flo	ow through co	nvergent-d	divergent n	ozzles	
	Non-Newtonia	an fluids: Their o	characteristics	and calcu	lation of p	ressure d	rop due
	to their flow t	hrough pipes					
	Flow measu	ring devices:	Orificemeter,	venturii	meter, ro	tameter,	weirs,
	anemometer,		nitot		ممطيية		
	anemometer,		pitot		tubes,		etc.

	Module - IV	
	Fluid machineries: Pumps, blowers and compressors	[10hrs.]
	Tutorial on above topics and class tests	[14 hrs.]
Text Books,	Suggested Text Books:	
and/or	1. Unit Operations – McCabe W L and Smith J L (McGraw Hill)	
reference material	2. Transport Processes and Unit Operations – GeankoplisJ G, Allen (Prentice Hall)	A H, Lepek D H
	Suggested Reference Books:	
	1. Principle of Unit Operations – Foust A S, Wenzel L A, Curt	is W, Maus L,
	Anderson L B (Wiley)	

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	1	1	1	1	1	1	1	1
CO2	3	3	3	3	3	2	2	1	1	1	1	1
CO3	3	3	3	3	3	2	2	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

		Department of	of Chemisti	γ						
Course	Title of the	Program Core	Total Nu	mber of co	ntact hours		Credit			
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
CYC 331	CHEMISTRY - II	PCR	3	0	0	3	3			
Pre-requis	sites	Course Assessment methods (Continuous (CT), mid-term (MT)								
		and end assessn	nent (EA))							
Engineerii 01	ng Chemistry CYC									
Course Outcomes CO1: To learn advanced analytical techniques useful for chemical engineering. CO2: To learn the few catalytic process commonly used in industrial applications. CO3: To learn thermodynamics of solutions and understanding of phase diagrams of single and multicomponent systems. CO4: To learn fundamentals of fats, oils and carbohydrate chemistry together with basics of large scale organic synthesis.										
Topics Covered	Organic C-C bo	Organic Chemistry Organic C-C bond formation: application of Grignard reagents, ethyl acetoacetate and malonic esters. Principles of large scale organic synthesis having industrial								

Carbohydrate chemistry: Classification, structure elucidation. Reactions of glucose and fructose; mutarotation, inversion of cane sugar.

Fats and oils, soaps and detergents.[11 hrs.]

Module - II

Inorganic Chemistry

Application of coordination compound in analytical chemistry: complexometric titration, biological application.

Analytical methods used to metal ions estimation: Gravimetric, UV-Vis spectrophotometric, atomic absorption spectrometric, solvent extraction etc.

Catalyst: General principles, homogeneous catalysts: hydrogenation of alkenes, hydroformylation, methanol carbonylation, Wacker oxidation of alkenes etc.

Heterogeneous catalyst: hydrogenation catalysts, ammonia synthesis, alkene polymerisation (Zigler Natta catalyst). [11 hrs.]

Module - III

Physical Chemistry

Thermodynamic condition of chemical equilibrium, Chemical potential, Activity, Fugacity, Gibbs-Duhem equation, Duhem-Margules equation. 1st and 2nd order transition.

Transition state theory towards rate of elementary chemical reaction, salt effect on rate of a chemical reaction. photochemical and photophysical processes, Jablonsky diagram.

Phase rule and its derivation, phase diagram of CO₂, H₂O and Sulphur system, two component system, solid-liquid and binary liquid mixture, fractional distillation, steam distillation, azotrope, ideal and nonideal solution, Routs law and Henrys law, Colligative properties. Conductance and tansport number, Buffer solution, Debye-Huckel limiting law, Salt effect and common ion effect on solubility of weak electrolytes. Ion-solvent and ion-ion interaction. Electrochemical cell with transference: liquid junction potential. [15 hrs.]

Text Books, and/or reference material

Suggested Text Books:

- (i) Organic Chemistry: R.T. Morrison and R.N Boyd, Prentice Hall of India Pvt.Ltd.
- (ii) Inorganic Chemistry Part-I & II, R. L. Dutta
- (iii) Inorganic Chemistry Fourth Edition, Shriver & Atkins, Oxford
- (iv) Physical Chemistry by P. Atkins, Oxford
- (v) Physical Chemistry by G.W Castellan

Suggested Reference Books:

- (i) Organic Chemistry by Volhardt
- (ii) Fundamentals of Analytical Chemistry By Skoog, West, Holler and Crouch
- (iii) Physical Chemistry by P. C. Rakshit

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	2	2	1	3	2	3

CO2	3	3	3	3	3	3	3	3	1	3	3	3
CO3	3	3	3	3	2	2	1	1	1	3	2	3
CO4	3	3	3	3	3	3	3	3	1	3	2	3

Correlation levels 1, 2 or 3 as defined below:

	•	
1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)

	Department	of Chemist	ry						
Title of the course	Program	Total Nu	mber of co	ntact hours		Credit			
	Core (PCR) /	Lecture	Tutorial	Practical	Total				
	Electives	(L)	(T)	(P)	Hours				
	(PEL)								
CHEMISTRY – II	PCR	0	0	3	3	1.5			
LABORATORY									
tes	Course Assessment methods (Continuous (CT), mid-term (MT)								
		sment (EA)))						
	CT+ EA								
CO1: To learn	n advanced cher	nical analy:	sis useful fo	or chemical	engineeri	ing.			
CO2: Estimat	ion of metal ion	concentra	tion using a	advanced sp	ectrosco	pic			
techniques.									
CO3: Advance	ed synthesis and	d character	ization me	thods for fe	w compo	unds of			
industrial im	portance.								
1. Determinatio	n of CMC of a su	ırfactant: c	onductome	etrically and	l surface t	ension			
				r's salt.					
	· ·								
	• •								
	base content of commercially available antacid and acid content								
	. 4 a la								
•									
,		Analysis 16	th Edition\	Prontico ⊔a	ш				
				FIEHLICE Ha	111				
	• •	actaciiaiya							
•	•			-	•				
2. / tavaricear my	•	•	•						
3. Comprehensiv	e Practical Orga	nic Chemis	stry: Qualita	ative Analys	is by V. K				
	CHEMISTRY – II LABORATORY tes CO1: To learn CO2: Estimate techniques. CO3: Advance industrial im 1. Determination measuremen Determination Kinetics of es Spectroscopie Estimation of Estimation of Spectroscopie Suggested Text II Suggested Text II Suggested Refer Suggested Refer Selected expe	Title of the course Program Core (PCR) / Electives (PEL) CHEMISTRY – II PCR LABORATORY Course Assess and end asses CT+ EA • CO1: To learn advanced cher • CO2: Estimation of metal ion techniques. • CO3: Advanced synthesis and industrial importance. 1. Determination of CMC of a sumeasurement. 2. Potentiometric titration: estimation of solubility programment. 3. Determination of solubility programment. 4. Kinetics of ester hydrolysis. 5. Spectroscopic Estimation of metal ion: Estimation of metal ion: Estimation of metal ion: Estimation of paracetamol 7. Estimation of base content of of vitamin C. 8. Synthesis of Mohr's salt. 9. Synthesis of paracetamol Analysis of pyrolusite ore. Suggested Text Books: 1. Vogel's Quantitative Chemical 2. Practical Chemistry by R.C. Bh Suggested Reference Books: 1. Selected experiments in Physical 3. Selected experiments in Physical 3. Selected experiments in Physical 4. Suggested Reference Books: 5. Suggested Reference Books: 6. Suggested Reference Books: 7. Selected experiments in Physical 8. Suggested Reference Books: 8. Suggested Reference Books: 9. Suggested Re	Title of the course Program Core (PCR) / Electives (L)	Core (PCR) / Electives (L) (T) CHEMISTRY – II PCR 0 0 LABORATORY tes Course Assessment methods (Conti and end assessment (EA)) CT+ EA • CO1: To learn advanced chemical analysis useful for techniques. • CO3: Advanced synthesis and characterization merindustrial importance. 1. Determination of CMC of a surfactant: conductome measurement. 2. Potentiometric titration: estimation of Fe ²⁺ in Moh 3. Determination of solubility product of lead iodide. 4. Kinetics of ester hydrolysis. 5. Spectroscopic Estimation of metal ion: Estimation of Estimation of Ma+, K+, Ca ²⁺ 7. Estimation of metal ion: Estimation of Na+, K+, Ca ²⁺ 7. Estimation of base content of commercially availabe of vitamin C. 8. Synthesis of Mohr's salt. 9. Synthesis of paracetamol. Analysis of pyrolusite ore. Suggested Text Books: 1. Vogel's Quantitative Chemical Analysis (6th Edition) 2. Practical Chemistry by R.C. Bhattacharya Suggested Reference Books: 1. Selected experiments in Physical Chemistry by N. G.	Title of the course Program Total Number of contact hours Core (PCR) / Electives (L) (T) (P)	Title of the course			

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	РО	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs	1											
CO1	3	3	3	3	3	2	3	2	3	3	2	3
CO2	3	3	3	3	3	2	2	2	3	3	3	3
CO3	3	2	3	3	3	2	2	2	3	3	2	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

		Dep	artment of Che	mical Engir	neering			
Course	Title	of the course	Program	Total Nu	mber of co	ntact hours	;	Credit
Code			Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)#	Total Hours	
CHS 351	ENG COM	MICAL INEERING IPUTING DRATORY 1	PCR	0	0	3	3	1.5
Pre-requis	ites							
Process ca mechanics		ons, Fluid modynamics	Viva-Voce					
Course Outcomes			chemical Engg. nathematical m	=			eering pı	oblem
Topics Covered		Module I 1. Familiarization of programs 2. Expression evaluation of the second secon	uation	g environm	ent and ex	ecution of s	sample [9 hrs.	1
		6. Arrays Module II Solution of liner ar System of linear ar	=			-	hrs.]	
		Module III Initial value ODES System of Linear C System of non-line	DEs		plicit tech	nique. Non-	·linear OI [9 hı	
		Module IV The problems re	related to chemical engineering are given as laborat lost of the problems deals with the various numerical meth					

	taught in the Mathematics course. The problems on Phase Equilibrium, Equation of State, Determination of Bubble point and Dew Point calculation. [9 hrs.]
Text Books,	Suggested Text Books:
and/or	1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language,
reference	Prentice Hall of India.
material	2. E. Balaguruswamy, Programming in ANSI C, Tata McGraw-Hill.
	Suggested Refernce Books:
	1. John H. Mathews, Numerical Methods Using FORTRAN. Prentice-Hall India
	2. R. White and V. R. Subramanian, Computational Methods in Chemical
	Engineering.PHI.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1	1							1
CO2	2	2		2	2							2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

FOURTH SEMESTER

		Dep	partment of Ch	emical Eng	ineering					
Course	Title	of the course	Program	Total Nur	mber of co	ntact hours		Credit		
Code			Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)#	Total Hours			
CHC401	HEA	T TRANSFER	PCR	3	1	0	4	4		
Pre-requis	ites		Course Assess assessment (E		nods (Conti	inuous (CT)	and end			
CHC301, C	HC30	3	CT+EA							
Course Outcomes		 CO1:Illustrate p phenomena CO2: Solve heat CO3:Design and Module - I 	transfer proble	ems of diffe	erent diffic		eat excha	inging		
Topics Covered		Mechanism of Conduction: Fou composite slabs, thickness of insu transfer - use o different geomet Module - II Convection: Forc Coefficients; Log transfer; Equivale boundary layer; A hrs.]	rier's law; Stea , cylinders and ulation, Optimu f Gurnie-Lurie ry. ed convection; g-mean temper ent diameter; (ady-state d spheres; um thickned chart, on Heat tran rature diff General eq	heat trans; Thermal ess of insue and two sfer coefficerence; Diquation for	fer through contact replaced in the contact replaced in the contact replaced in the contact replaced in the contact replaced repl	n plane vesistance, steady-sta al condu [10 h rall Heat analysis avection;	wall and Critical ate heat action in ars.] Transfer of heat		
		Derivation of he Concept of excess Black body and G between surfaces Module - IV	ction: Empirical equations; Condensation: Film Condensation, neat transfer coefficient, Empirical equations; Boiling of liquids: ess temperature, Pool boiling, Forced convection boiling; Radiation: Gray body; Laws of radiation; View factor; Radiant heat exchange es [12hrs.]							
		Heat exchangers pipe, Shell and tureboilers. Evaporation: Type Boiling point rise	be, Finned tub	e and Com	npact heat essories; C	exchangers apacity and	; Conden Steam e	sers and conomy;		

	multiple effect evaporators. [10 hrs.]	
	Tutorial on above topics and class Tests [14 hrs.]	
Text Books,	Suggested Text Books:	
and/or	1. Process Heat Transfer: D. Q. Kern, MGH	
reference	2. Heat Transfer Principles and Application, B. K. Dutta, PHI.	
material		
	SuggestedReference Books:	
	1. Heat Transfer: An Engineering Approach: Cengel and Boles, Tata Mc-Graw Hill	ı

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	1	1	1	1	1	1	1	1
CO2	3	3	3	3	3	2	2	1	1	1	1	1
CO3	3	3	3	3	3	2	2	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

			neering	nical Engir	artment of Cher	Dep			
Credit		ntact hours	mber of co	Total Nur	Program	Title of the course	Course		
-	Total Hours	Practical (P)#	Tutorial (T)	Lecture (L)	Core (PCR) / Electives (PEL)		Code		
4	4	0	1	3	PCR	MECHANICAL OPERATIONS	CHC402		
m (MT)	mid-terr	inuous (CT),	es	Pre-requisit					
			Fluid Mechanics						
• CO1: Identify principles of separation of liquid-solid, gas-solid, and solid-solid									
		ţ	equipment	operation (yze mechanical	CO2: Design and analy	Outcomes		
	liquid	ation, solid-	size separ	ect type of	mances and sele	• CO3: Compare perfor			
						separation and size red			
on, size	separation	olid-liquid	paration, s	of size ser	l applications of	◆CO4: Learn industria			
						• •			
		_					-		
cle size,	ean partio	ation of me			•	•	Covered		
						• •			
Size reduction and classification of solid particles: Principles of crushing and grinding,									
Equipment – selection, Operating principles of Coarse crushing equipment, Intermediate & Grinding equipment, Laws of crushing and grinding – limitation and									
ion and	– iimitati	a grinaing .	rusning an	Laws of Cr	ng equipment,				
c l									
ii ii	separatean partengand	ation, solid- solid-liquid nation of me es of crushing arse crushing	equipment size separ paration, s : Determin f screens s: Principle s of Coarushing an	operation of ect type of ent of size septiments of creations of creati	yze mechanical mances and sele uction equipmed applications of a screens, Effects ification of solon, Operating and equipment,	CO1: Identify principle CO2: Design and analy CO3: Compare perfors separation and size red CO4: Learn industriated reduction equipment Module - I Particle size and shape Sieve analysis, Industriated size reduction and class Equipment — selection intermediate & Grindia applicability	Course		

Module - II

Agitation and mixing: solid-solid mixture, solid-liquid paste and solution preparation, Types of equipment and power requirement, Mixing Index.[8 hrs.]

Module - III

Fluid – particles separation: Terminal settling velocity, free and hindered settling, equal settling velocity and sedimentation; Classifications and clarifications; Settling chambers, thickening, tabling, jigging, floatation, centrifugal separators, centrifuge, cyclone separators, electro-static precipitator, magnetic separator, etc. [8 hrs.]

Module - IV

Filtration: Introduction; Types of filtration; Filtration equations; batch and continuous filtration equipment – Bed, Plate and Frame, Leaf and Rotary Drum Vacuum Filters; Filter Aid and Filter Medium; Washing

Conveying of solids: Bins, silo and hoppers, Conveyors and elevators, Hydraulic and pneumatic transport [10 hrs.]

Tutorial on above topics and class tests

[14hrs.]

Text Books, and/or reference material

Suggested Text Books:

- 1. G. G. Brown, Unit Operations, CBS Publishers & Distributors, 2005
- 2. W. McCabe. J. Smith, P. Harriott , Unit Operations of Chemical Engineering, McGraw Hill Education, 2017

Suggested Reference Books:

- 1. W.L. Badger and J. T. Banchero, Introduction to Chemical Engineering, McGraw-Hill book company, 1955
- 2. C.J.Geankoplis, Transport Processes and Separation Process Principles (Includes Unit Operations), Prentice Hall India Learning Private Limited, 2004
- 3. Richardson, Coulson and Richardson's Chemical Engineering, Volume 2, 5th Edition: Particle Technology And Separation Processes, Elsevier, 2006

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		3		3						3	
CO2	3		3		3						3	
CO3	3	3			3							
CO4	2	2	2		2			3	3	3	2	

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

		Department of	Chemical E	ngg								
Course	Title of the	Program Core	Total Nu		ntact hours		Credit					
Code	course	(PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours						
CHC 403	MASS TRANSFER- I	PCR	3	1	0	4	4					
Pre-requisi		Course Assessme		ls (Continu	ious (CT), m	id-term (MT)					
None		CT+MT+EA										
Course	• CO1 Principles	of mass transfer for	chemical p	orocesses								
Outcomes	• CO2 Various lav	ws of mass transfer	and mass	balance of	chemical p	rocesses						
		d analyze mass tran	sfer equip	ment thro	ugh problen	n solutior	1					
Topics	Module - I											
	diffusion, surface diffusion and self-diffusion [10 hrs.] Module - II Convective mass transfer and mass transfer coefficients: Introduction. Dimensionless groups in mass transfer and correlations for the convective mass transfer coefficient Theories of mass transfer, Analogy between Momentum, Heat and Mass Transfer Inter-phase mass transfer and Basic laws, Two-film theory, overall mass transfer coefficient, Material balance in contacting equipment – the operating line and Mas transfer in stage-wise contact of two phases. [10 hrs.] Module III											
	Gas absorption and stripping: Introduction. Design of a packed tower: De method based on individual mass transfer coefficients. Design method based on overall mass transfer coefficient. Determination of the number of stages in a tower, HETP, Tray efficiency, Gas-liquid contacting equipment, tray or plate colu operational features of tray column: Hydraulic gradient and multi-pass tr weeping and dumping, entrainment, flooding, turndown ratio and estimation diameter of tray. [12 hrs] Module IV Elementary idea about multi-component absorption and adsorption with chem reactions. Extraction: Liquid-liquid extraction, Equilibrium data, Use of triang diagrams, selectivity and choice of solvent, Single and multi-stage calculation liquid-liquid extraction. Extraction efficiency, Principles of leaching and st calculation methods. [10 hrs.]											
		e topics and class Te	ะงเง		[14 hrs]							
Text Books, and/or reference material	 Principles of N Suggested Reference P. Sinha and 		oaration Pr er Principle	es and Ope	erations, PH	ı						

Mapping of CO (Course Outcome) and PO (Programme Outcome)

	а	b	С	d	е	f	g	h	i	j	k	I
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1		3			2				
CO2	3		3		3					1	3	1
CO3	3		3		3		1		1		3	

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

	Department of Chemical Engineering Course Title of the Program Core Total Number of contact hours Credit													
Course	Title of the	Program Core	Total Nu	mber of co	ntact hours		Credit							
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total								
		Electives (PEL)	(L)	(T)	(P)	Hours								
MEC 432	MECHANICAL	PCR	3	0	0	3	3							
	DESIGN OF													
	EQUIPMENT													
	AND													
	COMPONENTS													
Pre-requisit														
		end assessment	(EA))											
None		CT+MT+EA												
Course		coli lo develop a montable faca of the thermo meditamear behaviour of madacitar												
Outcomes		equipment used in various chemical industries.												
		dy the application	of differer	it thermod	ynamic prin	ciples for	thermal							
	system desi	_												
		arn the concepts												
- ·		nd the methods of	machine (design pert	aining to ch	emical er	ngineering							
Topics	Module – I						_							
Covered		en system and con			•									
	· ·	I second law of the cycle, reversed Ca	•	•			•							
		nd law-based pe	•	_	•	•	_							
		ankine cycle. Air s		•	-		•							
	cycles.	drikirie eyele. 7111 3	tanaara ey	reies Otto	, Diesei, aa		hrs.]							
	7,0.00.					1-0								
	Module – II													
	Review of stress	Review of stress, strain and deformation. Engineering materials and their properties.												
		le of machine des				=	-							
	design. Design	of shaft and key,	Mechanica	ıl drives: In	troduction	to simple	e gear drive							
	and belt drive.	Types of pressure v	essels: Th	in cylinder	and thick cy	linder.	[20 hrs.]							

Text Books,	Suggested Text Books
and/or	1. Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, McGraw-
reference	Hill.
material	2. M. Zemansky and R. Dittman, Heat and Thermodynamics, McGraw-Hill.
	3. V B Vhandari, Design of Machine elements [3rd edition]
	Suggested Reference Books:
	1. M. Planck. Treatise on thermodynamics. Dover.
	2. E. P. Gyftopoulos, G. P. Beretta, Thermodynamics: Foundations and applications,
	Dover.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

שי	philig of Co (course outcome) and to (trogramme outcome)														
	POs	РО	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	COs	1													
	CO1	3	3	2	1	1		1			1	1	3		
	CO2	3	3	3	1			1					3		
	CO3	3	3	3	1	1					2	1	3		

	D	epartment of Che	mical Engi	neering							
Course	Title of the course	Program Core	Total Nu	mber of co	ntact hours		Credit				
Code		(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives (PEL)	(L)	(T)	(P)#	Hours					
CHS451	FLUID	PCR	0	0	3	3	1.5				
	MECHANICS										
	LABORATORY										
Pre-requisi	tes	Course Assessment methods (Continuous evaluation (CE) and									
		end assessment	(EA))								
CHC 303 [F	luid Mechanics]	CE+EA									
Course	•CO1 To prove experimentally laws/equations like Bernoulli's equation, Fanning's										
Outcomes	equation, etc.										
	●CO2. To determin	e discharge coeff	ficients of	flow met	ers like orif	ice and	venture				
	meter, and velo	city profiles using	pitot tube								
	●CO3. To determine	e K factor of pipe f	ittings and	l valves							
	◆CO4. To draw char	acteristic curves o	of pumps								
	●CO5. To create a	an experimental	understan	ding of la	aminar and	turbule	nt flow				
	regimes										
Topics	1. To study differen	t types of flow usi	ng Reynolo	d's apparat	tus.						
Covered	2. To verify Bernoul	li's equation expe	rimentally.								
	3. To determine poi	nt velocity by usin	g Pitot tuk	oe.							
	4. To determine flow	4. To determine flow velocity by using Venturi meter and Orifice meter.									
	5. To study the flow										
	6. To study the flow										
	7. To study the recip	procating pump ch	naracterist	ics.							

	8. To determine the losses due to friction in pipes and fittings. 9. Flow measurement by using V-notches	[36 hrs]
Text	Suggested Text Books	
Books,	1. Transport Processes and Unit Operations - C. J. Geankoplis	
and/or	2. Principle of Unit Operations – Foust A S, Wenzel L A, Curtis W, M	laus L, Anderson L
reference	B (Wiley)	
material	Suggested Reference Books:	
	1. W. McCabe. J. Smith, P. Harriott, Unit Operations of Chemical Eng	gineering, McGraw
	Hill Education, 2017	

Mapping of CO (Course Outcome) and PO (Programme Outcome)

<u> </u>	, p													
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
COs														
CO1	1	1		1	1							1		
CO2	2	2		2	2							2		
CO3	2	2		2	2							2		
CO4	2	2		2	2							2		
CO5	3	3		3	3							3		

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

		[Department of Che	mical Engi	neering				
Course	Titl	le of the course	Program Core	Total Nu	mber of co	ntact hours		Credit	
Code			(PCR) /	Lecture	Tutorial	Practical	Total		
			Electives (PEL)	(L)	(T)	(P)	Hours		
CHS 452	PR	OCESS	PCR	0	0	3	3	1.5	
	EQ	UIPMENT							
	DE	SIGN-1 (CHS							
	452	2)							
Pre-requis	sites		Course Assessme	nt method	ls (Continu	ious (CT), m	id-term (MT)	
			and end assessment (EA))						
None Report submission and Viva-Voce									
Course		●CO1: Knowle	dge of basics o	f process	equipme	ent design	and im	portant	
Outcomes	6	parameters of e	quipment design						
		• CO2: Ability to	o choose material for equipment design						
		• CO3: Ability to	design pressurize	vessels an	d various p	parts of vess	sels		
		● CO4: Knowled	ge of equipment fa	abrication a	and testing	g methods			
Topics		1. Introduction	n to the basic princ	iples and o	criteria of p	oressure ves	sel desig	n.	
Covered		2. Unfired pre	ssure vessels with	internal an	nd external	l and extern	al pressu	re.	
		3. Introduction	n to standards, cod	les and reg	gulations.				
	4. Selection of material and design of various parts of vessel								
		5. Design of st	orage vessels and	their desig	n.				
		6. Design of su	pports for vertical	and horizo	ontal towe	ers.			
		7. Pipe joints a	ind fittings, gasket	S.					

	9. Numerical solutions for vessel design [36 hrs.]
Text Books, and/or reference material	 Suggested Text Books: Process Equipment Design by Lloyd E. Brownell & Edwin H. Young Process Equipment Design by M. V. Joshi Suggested Reference Books: Introduction to Chemical Equipment Design: Mechanical Aspects by B. C. Bhattacharya Plant Design and Economics for Chemical Engineers by M.S. Peters and K.D. Timmerhaus Chemical Process Equipment: Selection and Design by James R. Couper

Mapping of CO (Course Outcome) and PO (Programme Outcome)

_	pping of co (course outcome) and i o (i rogianime outcome)												
	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	COs												
	CO1	3	3	3	2	3	3	2	3	3	2	2	3
	CO2	3	3	3	3	3	3	3	3	3	2	3	3
	CO3	3	3	3	3	3	3	3	3	3	2	3	3
	CO4	3	3	3	3	3	3	3	3	3	2	3	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)
1. 3116111 (LOW)	2. Moderate (Mediani)	J. Jabatantiai (ingii)

Signt (Low) 2. Moderate (Medium) 3. Substantial (Fign)									
		Works	shop						
Course Code	Title of the	Program		Contact	t Hours		Credit		
	course	Core (PCR)	Lecture	Tutorial	Practical	Total			
		/ Electives	(L)	(T)	(P)	Hours			
		(PEL)							
WSS481	ADVANCED								
	WORKSHOP	PCR	0	0	3	3	3		
	TECHNOLOGY								
Pre-requisites		Course Asses	sment me	thods : Viv	/a-voce, Ch	necking Jo	ob,		
WSS51 (Works	hop Practices)	Report							
Course	CO1: Acquiring the skills in conventional machining operations like turning,								
Outcomes	milling and kno	wledge in mac	hine tools						
	CO2: Acquiring	the skills in CN	IC machini	ng.					
	CO3: Acquiring	the skills in Pa	ttern maki	ing.					
	CO4: Acquiring	the skills in Fo	undry.						
Topics	Machine Shop :								
Covered	1) Introduction to	lathe Machine	<u>.</u>						
	2) Explanation of	All Gear Heads	tock Mech	anism.					
	3) Explanation of	Norton Gearbo	x Mechan	ism with T	umbler Ge	ear Arran	gement.		
	4) Job on Lathe &	Milling Machi	ne.						
	CNC Shop:								
	1) Introduction to	Conventional N	Machine, N	IC Machin	e & CNC N	1achine v	vith		
	their advantages 8	k disadvantage	s.						

	2) Explanation of various G Codes & M Codes.							
	3) Introduction to programming on CNC Lathe & CNC Milling Machine.							
	Pattern Shop:							
	1) Introduction to Pattern Shop							
	2) Drawing Orthographic Projection of a "V Block" Pattern using Pattern Maker							
	Scale on a wooden board.							
	3) Preparation of a Wooden V Block Pattern using various carpentry tools in							
	accordance with the previously prepared drawing.							
	Foundry Shop:							
	1) Introduction to Metal Casting Process.							
	❖ General Foundry Safety Precautions.							
	Process Selection of Casting.							
	Classification of Pattern with Allowances.							
	❖ Tools & Equipment used in hand moulding.							
	Organic & Inorganic Bonding agents used in moulding sand.							
	Furnaces used for Melting.							
	❖ Casting Defects & their remedies.							
	2) Testing of Green Moulding Sand							
	Preparation of Standard Sand Sample.							
	Determining Moisture Content of Green Moulding Sand.							
	❖ To determine Green Compressive Strength of Sand Sample.							
	❖ To determine Green Shear Strength of Sand Sample.							
	Determination of Permeability of Sand Sample.							
	❖ Mould Hardness Test.							
	3) Preparation of green sand mold using Split Pattern.							
	4) Preparation of green sand core using Split Core Box.							
	5) Casting of the above mould using Aluminium.							
	6) Foundry Tooling Design of Gate Valve Body with Selection of Parting Plane,							
	Riser & Gating Design, Use of Chaplet, Chills & Ceramic Filters. [36 hrs.]							
Text Books,	Suggested Text Books:							
and/or	1. Elements of Workshop Technology (Volume I and II) by Hazra and Choudhury							
reference	2. Workshop Technology by W.A.J. Chapman							
material	3. A Course in Workshop Technology by Raghuwanshi							
	Suggested Reference Books:							
	1. Principles of Foundry Technology by P.L. Jain							
	2. Production Technology, hmt							

Mapping of CO (Course Outcome) and PO (Programme Outcome)

	•				<u> </u>							
POs	РО	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs	1											
CO1	3	3	3	3	3	2	3	2	3	3	2	3
CO2	3	3	3	3	3	2	2	2	3	3	3	3
CO3	3	2	3	3	3	2	2	2	3	3	2	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

FIFTH SEMESTER

		epartment of Che					I 6 ''					
Course	Title of the course	Program Core			ntact hours	1	Credit					
Code		(PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours						
CHC501	CHEMICAL	PCR	3	1	0	4	4					
	REACTION											
	ENGINEERING											
Pre-requisi	tes	Course Assessment methods (Continuous (CT), Mid Term (MT) and end assessment (EA))										
Nil		CT+MT + EA										
Course	• CO1: Understand	the fundamentals	of chemica	al kinetics								
Outcomes	 CO2: Design and analyzeideal and non-ideal chemical reactors and bioreactors CO3: Design and analyze the fluid-solid catalytic &noncatalytic reactors, and fluid-fluid reactors 											
Topics	Module - I											
Covered	Review of elements	of reaction kinet	ics: The rat	e expressi	on, mechan	ism of re	actions					
	Arrhenius' equation.											
	Interpretation of rate data: Constant volume and variable volume batch reactors [6											
	hrs.]											
	Module - II Single homogeneous reaction: Design of isothermal and adiabatic batch, plug flow and back mix reactors Multiple reactions: Independent, parallel and series reactions, autocatalytic reactions. Choice of reactors for single and multiple reactions and multiple reactor systems [12 hrs.]											
	Module - III Biochemical reactions: Enzyme-catalyzed and biomass growth reaction kinetics, design of bioreactors Non ideal flow in reactors, residence time distribution of fluid in vessels. BTD in ideal											
		Non-ideal flow in reactors:, residence time distribution of fluid in vessels, RTD in idea and non-ideal reactors, modeling of non-ideal reactors [8 hrs.]										
	surface kinetics, pophysical and chen distribution in mult Catalytic reactors	Solid-fluid catalyzed reactions: Catalysis, porous catalyst, steps in catalytic reactions, surface kinetics, pore diffusion resistance, performance equations, interaction of physical and chemical rate processes, effectiveness factor, selectivity, product distribution in multiple reactions, effect of pore distribution, experimental methods. Catalytic reactors Fluid-fluid reactions: Overall rate equations, application to reactor design										
	Module - IV											
	1	lytic reactions: 9	المسائد المائد ما		مسمحاما							

	controlling steps and application to design of reactors [7hrs.]								
	Tutorial on above topics and class tests [14 hrs.]								
Text	Suggested Text Books:								
Books,	1. H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall India	1. H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall India							
and/or	2. O. Levenspiel, Chemical Reaction Engineering, Wiley.								
reference	Suggested Reference Books:								
material	1. J M Smith Chemical Engineering Kinetics, McGraw-Hill Education; 3rd edition								

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	1	1	1	1	1	1	1	1
CO2	3	3	3	3	3	2	2	1	1	1	1	1
CO3	3	3	3	3	3	2	2	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Subst	tantial (High)
---	----------------

	Depar	tment of Che	emical Engi	neering					
Course	Title of the course	Program	Total Nur	nber of cor	ntact hours		Credit		
Code		Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)#	Total Hours			
CHC 502	MASS TRANSFER-2	PCR	3	1	0	4	4		
Pre-requisite	es	Course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))							
CHC 403, CH	IC301	CT+MT+EA							
Course Outcomes	 CO1: Understanding fundamentals of some major Mass transfer operations CO2: Application of design principles for mass transfer devices CO3: Learning operations of various mass transfer systems CO4: Building foundation for process intensification 								
Topics Covered									

Module-III

Distillation processes: Vapor- liquid equilibrium, relative volatility, azeotropism, Equilibrium and flash distillation, types of distillation columns and construction, Rectification of binary systems, enthalpy-composition diagram and construction. [6 hrs.]

Module-IV

Rectification column design methods: Lewis-Sorel &Ponchon—Savarit, McCabe-Thiele method, Design problems [6 hrs.]

Module-V

Special distillation processes: Membrane, molecular, extractive, catalytic Distillation, multi-component Distillation & introduction to ASPEN PLUS [9 hrs.]

Module-VI

Theory of crystallization, Nucleation and crystal growth, Batch and continuous crystallizers, Design calculations for crystallizers [3 hrs.]

Module-VII

Membrane separation basics, classification, transport & exclusion mechanisms, Membrane modules and design problems on micro, ultra, nano& reverse osmosis [3hrs.]

Tutorial on above topics and class Tests

[14 hrs.]

Text Books, and/or reference material

Suggested Text Books:

- 1. Unit Operations of Chemical Engineering: W.L. McCabe & J.C. Smith
- 2. Principles of Mass Transfer & Separation Processes: B. K. Dutta
- 3. Mass Transfer Operations: R.E. Treybal

Suggested Reference Books:

- 1. Introduction to chemical engineering: W.L.Badger&J.T.Banchero
- 2. Membrane Science & Technology, Osada& Nakagawa
- 3. Industrial Water Treatment Process Technology, P. Pal, Elsevier Science
- 4. Chemical Engineering: Coulson & Richardson
- 5. Principles of Unit Operation: C. J. Geankoplis

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12
COs											1	
CO1	3	1	2	2	3	2	2	2	1	2	2	1
CO2	3	2	3	2	3	1	1	2	1	2	2	2
CO3	3	1	3	2	2	2	1	2	2	1	3	2
CO4	3	2	3	1	2	1	1	3	2	2	3	2
CO5	3	1	2	2	2	3	1	2	2	2	2	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

		partment of Che									
Course Code	Title of the course	Program	Total Nur	mber of cor	ntact hours	1	Credit				
		Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)#	Total Hours					
CHC503	CHEMICAL PROCESS TECHNOLOGY	PCR	3	1	0	4	4				
Pre-requisites		Course Assess		•	inuous (CT),	mid-terr	n (MT)				
		and end asses	sment (EA))							
_	Unit operations and	CT+MT+EA									
Unit processe											
Course	•	derstand the manufacturing of various inorganic and organic									
Outcomes	chemicals.			.							
	,	understand the	understand the process flow diagram and various process								
	parameters.										
	-	cify and solve engineering problems during production.									
T!	CO4: Knows current scenario of chemical & allied process industries.										
Topics	Module I:			(DED) =		DED.	•				
Covered	Basic philosophy of	•	_								
	discussion on Influer	=	parameters	on decidii	ng process i	or a prod	auct and				
	method of drawing PFD. Water-sources and it's economic use. Water conditioning processes, Industrial waste										
	water treatment - di			Onantioning	g processes	, maustri	ai wasi				
		nerent processes an of oxygen and nitrogen, cryogenic and non-cryogenic processes.									
	•	. •		. •	•	•					
	processes.	ure from different source-steam reforming and partial oxidation									
	Cement, glass, cerai sheet	mic industries:	Raw mate	erials, prind	ciples of ma [20 hrs.]	anufactu	re, flow				
	Module II: Chlor-alkali industries: Production and consumption pattern, manufacture Chlorine-caustic soda: Raw materials, principles of manufacture, Mercury-cathod Membrane process: flow-sheet and sequence of operation, other process advancement of process technology and major engineering problems, uses. Soda-ash: Production and consumption pattern, Raw materials, Solvey process process technology and major engineering problems are stepping and modified Solvey process.										
	process technology and modified Solvey process, major engineering problems, uses. [12 hrs.] Module III: Industrial Acids: Hydrochloric Acid: Raw materials, principles of manufacture, flow-sheet and sequence of operation, Sulfuric acid: sulfuric acid production process, Contact process, Physico-chemical principles and general theory of contact reaction with										

thermodynamic and reaction engineering aspects, different types of catalyst, DCDA process, uses. Nitric Acid: Raw materials, Ostwald Process —physico-chemical principles, catalyst, process flow sheet, Phosphoric Acid: Raw materials, manufacturing process with process flow sheet [5 hrs.]

Module IV:

Fertilizer Industries: Nitrogenous fertilizers: Synthesis of ammonia- physico chemical principles, catalyst for synthesis of ammonia, process flow sheet, Urea - Raw materials, manufacturing process with flow sheet, sequence of operation, Ammonium sulphate: Raw materials, manufacturing process with flow sheet, Phosphatic fertilizers: Manufacturing process of super phosphate of lime, triple super phosphate and ammonium phosphate, Mixed fertilizers: NPK —manufacturing process, details of major equipment.[7 hrs.]

Module V:

Organic chemical industries

Oils & Fats: Methods of extracting vegetable oils, Hydrogenation of oils, major engineering problems and improved technology

Soaps, Detergents & Glycerin: Classification of cleaning compounds, uses, Methods of soap production, Methods of detergent manufacture, Methods of production of Glycerin. Process description & flow sheet of each process.

Sugar and starch industries: Manufacturing process with flow diagram, Sugar refining, manufacturing process of starch and their different by-products; Glucose, Sorbitol & PolyolsPulp and paper Industries, technology and manufacturing methods, world market [12hrs.]

Text Books, and/or reference material

Suggested Text Books:

- 1. Dryden, C. E., and Rao, M.G. (Ed.), Outlines of Chemical Technology Affiliated East West Press.
- 2. Austins, G.T., Sherve's Chemical Process Industries, MGH 5thEdn.

Suggested Reference Books:

- 1. Venkateswarlu, S. (Ed.) Chemtech (II) Chemical Engineering Development Centre, IIT, Madras.
- 2. S. K. Ghoshal, S. K. Sanyal and S. Datta, Introduction to Chemical Engineering, Tata McGraw Hill, New Delhi.
- 3. Kirk &Othmer (Ed.), Encyclopedia of Chemical Technology

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1		2	3		3							
CO2		2										
CO3					3							
CO4										1	2	

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

	Depar	tment of Ch	emical Engi	neering							
Course	Title of the course	Program	Total Nur	nber of cor	ntact hours		Credit				
Code		Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)#	Total Hours					
CHC504	PROCESS CONTROL AND INSTRUMENTATION	PCR	3	1	0	4	4				
Pre-requis	ites	Course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))									
Knowledge Unit opera	e of applied mathematics, ations	CE+MT+EA									
Course	CO1: Understanding the	working prir	nciple of va	rious meas	suring instru	ıments lil	ke, level				
Outcomes	temperature, pressure, f	low and con	centration	etc.							
		ng fundamentals: Differential equation models, Laplace n, idealized dynamic behavior, transfer functions, block timization.									
	CO3: Evaluate stability, process control.	frequency	response,	and other	characteri	stics rele	evant to				
Topics	Module I:										
Covered	Introduction to Instrumentation Measurement of High temperature, Measurement of Moderate to Low Temperature, Measurement of High Pressure, Measurement of Moderate to Low Pressure, Measurement of gas and liquid flow, Measurement of multiphase flow, Measurement of liquid level & Composition [15hrs.]										
	Process Dynamics & Linearization and conce Different forcing function distributed parameter sy Transfer function: SISO higher order systems,	Module II: Process Dynamics & Transfer function Process Dynamics & Model: I/O model-first-order and second-order process, Linearization and concept of deviation variable, Laplace Transform, Block Diagram, Different forcing function: step, pulse, impulse, ramp, and sinusoid. Lumped and distributed parameter system Transfer function: SISO & MIMO systems, Transient response of first, second and higher order systems, Transportation lag; Pade approximation, Control valve: Characteristics curves and transfer function. Open loop transfer [10 hrs.]									
	Module III: Closed loop systems and Stability Closed loop systems and its components: Measuring device, Controller, Final Control Element (FCE), transmission line; Block diagram, Servo and Regulator control, closed loop response, Different type of analog controller: P, PI, PD, PID, On-Off. Concept of Stability: BIBO, characteristics equation, Routh— Hurwitz method, root locus method.										

	Frequency Response Analysis and Controller Tuning: Amplitude Ratio and Phase Lag calculation for: General, first, second and higher order systems, Dead time, P, PI, PD, PID controllers and their respective Bode plot &Nyquist plot; Bode &Nyquist stability criteria; [10 hrs.]
	Module IV: Controller design Empirical tuning criteria: one quarter decay ratio, ISE, IAE, ITAE. Controller tuning: Cohen-Coon, Zeigler-Nicholas method; Elementary idea of feed forward, cascade, ratio, adaptive and digital computer control. Model-based control –Internal model controller [7hrs.]
Text Books, and/or reference material	SuggestedText Book: 1. Process Systems Analysis and Control, Donald Coughanowr McGraw-Hill Science/Engineering/Math; 2 edition (March 1, 1991) 2. Chemical Process control, G. Stephanopoulos, PHI, 2008 3. Essentials of Process Control, Luyben et al. McGraw-Hill Companies (August 1, 1996) Suggested Reference Books: 1. Process control, Thomas Marlin, McGraw-Hill Education; 2nd International edition

Mapping of CO (Course Outcome) and PO (Programme Outcome)

(July 1, 2000)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1		1						1	
CO2	3	2	1								1	
CO3	3	2	1		1						1	

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	Department of Chemical Engineering												
Course	Title of the	Program Core	Total Nur	mber of co	ntact hours		Credit						
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total							
		Electives (PEL)	(L)	(T)	(P)	Hours							
CHS 551	HEAT TRANSFER	PCR	0	0	3	3	1.5						
	LABORATORY												
Pre-requisi	tes	Course Assessment methods: Continuous (CT) and Viva-Voce											
Basic know	ledge of heat	CT+Viva-Voce											
transfer													
Course	Course • CO1: Apply the knowledge of fundamentals of heat transfer equipment of												
Outcomes laboratory													

	CO2: Experimentation and data analysis
	CO3: Handling various instruments and solve various difficulty levels
	CO4: Learn industrial applications of heat transfer equipment
	CO5: Complete process design through assignment / group task
Topics	1. Determination of overall heat transfer coefficient using plate type heat exchanger
Covered	2. Determination of overall heat transfer coefficient for drop wise & film wise condensation
	3. Determination of overall heat transfer coefficient using counter flow/parallel flow concentric pipe heat exchanger.
	4. Determination of boiling point elevation of aqueous salt solutions.
	5. Determination of thermal conductivity of metal rod.
	6. Determination of emissivity for black body and test plate.
	7. Determination of overall heat transfer coefficient using shell and tube heat
	exchanger.
	[36 hrs.]
Text	Suggested Text Books:
Books,	1. Laboratory manual
and/or	Suggested Reference Books:
reference	1. Process Heat Transfer: D Q Kern
material	2. Heat Transfer: Principles and Applications: B. K Dutta

Mapping of CO (Course Outcome) and PO (Programme Outcome)

<u> </u>					<u> </u>							
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3		2									
CO2		3	2									
CO3			3		2							
CO4			3		2							
CO5											2	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	De	partment of Che	emical Engi	neering					
Course	Title of the course	Program	Total Nu	mber of co	ntact hours		Credit		
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total			
		Electives	(L)	(T)	(P)	Hours			
		(PEL)							
CHS552	MECHANICAL	PCR	0	0	3	3	1.5		
	OPERATION								
	LABORATORY								
Pre-requis	ites								
		Viva-Voce	iva-Voce						
Course • CO1 : Understand of the fundamental principles underlying mechanical operation									
Outcomes	through practical	experimentation.							
	CO2: Know the principles of different mechanical operation equipment.								

	 ◆ CO3: Design and analyse mechanical operation equipment. ◆ CO4: Compare performances and select type of mechanical operation 										
	equipment.										
	CO4: Learn industrial applications of size reduction equipment (k)										
Topics	1. To verify Rittinger's Law in a Jaw Crusher										
Covered	2. To Study comminution through a Ball Mill and calculate its theoretical Efficiency										
	3. Studies on the performance of the Cyclone Separator-(I. To study										
	characteristics of a cyclone separator. II. To measure the fractional collection efficiency of different particle size ratio)										
	·										
	4. To determine overall effectiveness of a vibrating screen for a given solid sample										
	of unknown size 5. To determine the mixing index of flour and pulses in kneader mixer										
	6. To determine the mixing index of flour and pulses in kneader mixer 6. To determine the power consumption in a propeller mixer and compare it with										
	the actual power requirements in agitated vessel										
	7. To run the operation of Plate and Frame Filter Press For filtration of calcium										
	carbonate slurry. (I. To determine the lost quantity of calcium carbonate after										
	filtration process.)										
	8. To study the influence of different flow rates of water on separation efficiency										
	of an Elutriator										
	9. To determine average size of a group of particles in a mixture based on volume										
	and surface and graphical representation of screen analysis data for size										
	distribution of the mixture.										
	10. To study the working of continuous type thickener [36 hrs]										
Text Books,	Suggested Text Books:										
and/or	Lab Manual										
reference	1. Unit Operations- G. G Brown (CBS Publishers & Distribution)										
material	2. Introduction to Chemical Engineering-Badger and Banchero (McGraw-Hill)										
	3. Transport Processes and Unit Operation-C. J. Geankoplis (Prentice-Hall India)										
	Suggested Reference Books: 1. Mechanical Operations for Chemical Engineers-C.M. Narayanan, B.C.										
	, ,										
	Bhattacharyya (Khanna Publishers)										
	 Unit Operations Of Chemical Engineering-Mc. Cabe Smith & Harriot (TMH) Unit Operation-C.J. King 										
	4. Coulson & Richardson's Chemical Engineering Volume.2										
	1. Coulon & Menarason's Chemical Engineering Volume.2										

Mapping of CO (Course Outcome) and PO (Programme Outcome)

<u> </u>	- 1				10			, .				
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3		2									
CO2		3	2									
CO3			3		2							
CO4			3		2							
CO5											2	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

		Depa	artment of Che	mical Engi	neering							
Course	Tit	le of the course	Program	Total Nu	mber of co	ntact hours		Credit				
Code			Core (PCR)	Lecture	Tutorial	Practical	Total					
			/ Electives	(L)	(T)	(P)	Hours					
			(PEL)									
CHS553	PR	OCESS EQUIPMENT	PCR	0	0	3	3	3				
		DESIGNS 2										
Pre-requis	ites											
Heat Trans	sfer,	Process Equipment	Viva-Voce									
Design 1												
Course		CO1: Ability to desi	gn Evaporator and techno-economic evaluation									
Outcomes		CO2: Ability to design Shell and Tube Heat Exchanger and selection of materials										
Topics			ple Effects Evaporator and techno-economic evaluation.									
Covered		2. Selection of ma	terial Design of Shell and tube heat exchanger [36 hrs]									
Text Book	s,	Suggested Text Books:										
and/or		1. Process Heat Transfer by Kern										
reference		2. Coulson & Richardson's Chemical Engineering Design (Vol 6)										
material		3. Process Equipment Design by Lloyd E. Brownell & Edwin H. Young										
		4. Process Equipment Design by M. V. Joshi										
		Suggested Reference Books:										
		1. Introduction to Chemical Equipment Design: Mechanical Aspects by B. C.										
		Bhattacharya										
		2. Plant Design and Economics for Chemical Engineers by M.S. Peters and K.D.										
		Timmerhaus										
		3. Chemical Process Equipment: Selection and Design by James R. Couper.										

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1		1							
CO2	3	2	1		1							

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Mo

2: Moderate (Medium)

3: Substantial (High)

SIXTH SEMESTER

Department of Humanities and Social Sciences									
Course	Title of the course	Program Total Number of contact hours							
Code		Core (PCR)	Lecture	Tutorial	Practical	Total			
		/ Electives	(L)	(T)	(P)	Hours			
		(PEL)							
HSC631	ECONOMICS AND	PCR	3	0	0	3	3		
	MANAGEMENT								
	ACCOUNTANCY								

Pre-requisite	course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))							
NIL	CT+MT+EA							
Course	CO1: To review basic economic principles with students;							
Outcomes	 CO2: To introduce students basic capital appraisal methods used for carrying out economic analysis of different alternatives of engineering projects or works; CO3: To educate the students on how to evaluate systematically the various cost elements of a typical manufactured product, an engineering project or service, with a view to determining the price offer. 							
Topics	Module I:							
Covered	PART 1: Economics							
	Group A: Microeconomics							
	Economics: Basic Concepts							
	Theory of Production, Cost and Firms, Analyses of Market Structures: Perfect							
	Competition, Monopoly Market, General Equilibrium & Welfare Economics [14 hrs.]							
	Module II:							
	Group B: Macroeconomics							
	Introduction to Macroeconomic Theory, National Income Accounting,							
	Determination of Equilibrium Level of Income, Money, Interest and Income,							
	Inflation and Unemployment, Output, Price and Employment. [14 hrs.]							
	Module III:							
	PART 2: Accountancy							
	Introduction to Accounting, Financial Statement Preparation and Analysis							
	Financial Ratio Analysis. [14 hrs.]							
Text Books,	Suggested Text Books							
and/or	1. Koutsoyiannis: Modern Microeconomics							
reference	2. Maddala and Miller: Microeconomics							
material	3. Gupta, R. L. and Radhaswamy, M: Financial Accounting; S. Chand & Sons							
	4. Ashoke Banerjee: Financial Accounting; Excel Books							
	5. W. H. Branson: Macroeconomics – Theory and Policy (2nd ed)							
	6. N. G. Mankiw: Macroeconomics, Worth Publishers							
	Suggested Reference book 1. Derebush and Fisher: Macroscopomic Theory							
	 Dornbush and Fisher: Macroeconomic Theory SoumyenSikder: Principles of Macroeconomics 							
	3. AnindyaSen: Microeconomics: Theory and Applications							
	4. Pindyck&Rubenfeld: Microeconomics							
	5. Maheshwari: Introduction to Accounting; Vikas Publishing							
	6. Shukla, MC, Grewal TS and Gupta, SC: Advanced Accounts; S. Chand & Co.							

CO-PO MAPPING of Economics and Management Accountancy

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	3	2	3	2	3	3	3
CO2	3	3	3	3	3	3	2	2	3	3	3	3
CO3	3	3	3	3	3	3	2	2	3	3	3	3

		DepartmentofC	hemicalEng	gineering							
Course	Title of the course	Program Core	TotalNur	<u>nberofcont</u>	acthours		Credit				
Code		(PCR)/	Lecture	Tutorial	Practical	Total					
		Electives	(L)	(T)	(P)	Hours					
CHC601	TRANS PORT	PCR	3	1	0	4	4				
Pre-re quis it	es	CourseAssessme	CourseAssessment methods(Continuous (CT)andend								
CHC301, CH	HC303,CHC401,	assessment(EA))									
		CT+EA									
Course	• CO1:To createan	understanding or	n universal	approach	of transport	phenon	nena an d				
Outcomes	fundamental trans	sport processeslik	ke mass, m	omentum	and energy.						
(CO)		understanding	onshellba	lancetechni	que, sett	ing o	f				
	boundaryconditions etc.fordifferent geometryofasystem										
	• CO3:TodevelopNSE, equation of continuity, equation of energy etc. from										
	thefundamental c	the fundamental concept of conservation									
	• CO4:To solveproblemson mass, momentum and energy transport using										

Topics Covered

Module I

Transport Phenomena: Basic concepts, fundamental transport Processes and theirrelation, transport properties, measurement of properties, boundary conditionsetc. [6hrs.]

Module II:

Momentumtransport phenomena: Shell balance technique, Derivationmomentum, velocity, shear force. in rectangular, cylindrical and spherical coordinate systems by using shell balance, Equation of continuity and change (mass, momentum & energy), Navier stokes equation (NSE), Euler equation, application of NSE in rectangular, cylindrical and spherical coordinate systems. [10 hrs.]

Module III:

Flow of fluids in thin films, parallel plates, circular tubes and annulus, adjacent flow of two immiscible fluids, couette flow, rotating surface flow and radial flow, flow near a wall suddenly set in motion.[10 hrs.]

Module IV:

Energy transport: Basic energy transport equations, derivation using elementary volume concept and conservation theorems in different coordinate system, analysis of energy transport using hell balance techniques and basic transport equations. [8 hrs.]

Module V:

Conduction with energy sources in fixed bed catalytic reactors and in cooling fins, forced convection circular tubes, natural convection from a heated plate and unsteady state conduction of inthe slab [10 hrs.]

Module VI:

Mass transport: Types of fluxes and their relation, continuity equation for a binary mixture, boundary conditions , analysis of mass transport using balancetechniques and equation of continuity for different coordinate systems, steady and unsteadystate systems, diffusion in porous catalyst with and without chemical reaction, diffusion in falling liquid film, turbulent mass flux, interphasemass transport [12hrs.]

TextBooks Suggested TextBooks:

and/or reference material

- 1. TransportPhenomena byBird,Stewart&Lightfoot, Wiley, 2ndEdition,2010.
- 2. Introduction to Transport Phenomena: Momentum, Heat and Mass by Bodh Raj,

PHILearning, 2012

Suggested ReferenceBooks:

1.TransportPhenomena: AUnified Approachby Brodkey&Hershey, McGraw-HillChemicalEngineering Series, BrodkeyPublishing, 2003

Mapping ofCO(CourseOutcome) andPO(ProgrammeOutcome)

ROs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	1	1		1	1							1
CO2		2	2	2	2							3
CO3			2	2	3						3	3
CO4		3	3	3	3						3	3

Correlation levels1,2or3asdefined below:

	Departr	nent of Cher	nical Engir	neering									
Course	Title of the course	Program	Total Nu	mber of co	ontact hour	S	Credit						
Code		Core	Lecture	Tutorial	Practical	Total							
		(PCR)/	(L)	(T)	(P)	Hours							
		Electives											
		(PEL)											
CHC602	PETROLEUM REFINING &	PCR	3	1	0	4	4						
	PETROCHEMICALS					/ o= \	_						
Pre-requisi	tes				ontinuous ((CT), mid	-term						
None		(MT) and end assessment (EA)) CT+MT+EA											
Course	• CO1: Understanding tech	CO1: Understanding technical, economic, environmental and international market											
Outcomes	issues in petroleum refinir			oc.i.cai	arra mreeme		arnet						
	• CO2: Understanding corr	•	etroleum p	roperties	with systen	n design a	and						
	operation	•	'	'	,	Ü							
	• CO3: Understanding des	ign and safe	operation	of comple	x refinery u	inits for v	arious						
	petroleum products	_	·	•	•								
		cation of Ch	emical Eng	ineering P	rinciples in	one of m	ost						
	relevant industrial sectors	of the econo	omy										
	• CO5: Ignited minds with	passion for i	nnovation	and susta	inable deve	lopment							
Topics	Module I:												
Covered	Petroleum - Origin and Oc	currence, Ex	ploration,	Estimation	n and recov	ery [3	3 hrs.]						
	Module II:												
	Evaluation of crude, Prope	erties, testing	g and spec	ifications o	of petroleur	n produc	ts						
	[6hrs.]												
	Module III:					. r							
	Technical, Economic, env	vironmentai	and socie	etai issues	sinPetroleu		_						
	marketing business.	Cruda Data	alaumu arı	da pro +n	ootmont A	[4 hrs	•						
	Module IV: Processing of Vacuum distillation, colum			ude pre-tr	eatment, A	-	hrs.]						
	Module V:	iii control sc	nemes.			ĮŪ	1115.]						
	Cracking, Reforming, Vis-l	nreaking De	laved Cok	ing nroces	ses to cate	er to the	marke						
	demand of various petro		•	• .									
	processing and abatemen	•	2117110111110	mai pona	11011 455001		hrs.]						
	Module VI:					[_0							
	Rebuilding possibilities with	th small mole	ecules: Alk	ylation, Is	omerizatior	n. [3	hrs.]						
	Module VII: Production			•		· -	-						
	Diesel, Lubricating Oil, Bit			_									
	in Hydrogen production as green fuel. [10 hrs.]												
	Module VIII: Petrochemical- feedstocks, classification of petrochemicals, Cracking of												
	raw feed stock for intermediate feed stock production, manufacture of												
	importantpetrochemicalp	roducts				[8]	hrs.]						

Text	Suggested Text Books:
Books,	1. Petroleum Refining Engineering: W.L. Nelson
and/or	2. Advanced Petroleum Refining: G.M. Sarkar
reference	3. Modern Petroleum Refining: B.K.B. Rao
material	4. Petroleum Refining: J.P. Fauquier
	5. Petroleum Refining Technology: Ram Das
	Suggested Reference Books:
	1. Catalytic Naphtha Reforming: Sc. & Technology: G.M. Antos, A.M. Aitani, J.M.
	Pereira
	2. Environmental Control in Petroleum Refining: J.C. Reis
	3. Petroleum Refining Technology & Economics: J.H. Gary & G.E. Handwerk
	4. Petrochemicals Technology: B.K.B. Rao
	5. Lubricant base oil and wax processing: AvilinoSequeira Jr.
	6. Hydrocarbon Technology Journal (Center for High Technology, Delhi)

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	3	2	2	2	3	1	3	1	1
CO2	3	2	3	2	3	1	1	2	1	2	2	2
CO3	3	1	3	2	2	3	1	2	2	1	3	2
CO4	3	2	2	3	1	1	1	3	2	3	3	2
CO5	3	1	2	3	2	3	1	2	3	2	2	2

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium)

Slight (L	ow) 2: Modei	rate (Medium	n)	3: Subst	antial (High)							
		Donartm	ent of Chem	ical Engine	oring							
Cour	Title of the course	•		ber of conta			Credit					
	Title of the course	Program				Takal	Credit					
se		Core (PCR)	Lecture	Tutorial	Practical	Total						
Code		/ Electives (PEL)	(L) (T) (P) Hours									
СНС												
603 MODELLING AND												
	SIMULATION											
Pre-re	quisites: Process calc	culation,	Course Ass	sessment m	ethods (Conti	nuous (CT), N	Лidterm					
Engg.	Math I-III		(MT) and end assessment (EA))									
			CT+MT+EA									
Cour	● CO1: Understand	ding the pr	inciple ofm	nass, energ	y and mon	nentum con	servation					
se	equations.											
Outc	• CO2: Concept of	steady state a	and unstead	y state mod	el equations							
ome	• CO3: Numerical to	•		•	•							
S	• CO4: Solution of various model equations and graphical presentation (a,c,e, m)											
Topi	Module I:											
cs	Introduction to Mathematical Model and its Necessity: Empirical relationship,											
Cove	experimentation, of	data interpre	etation, cor	relation an	id mathema	tical modelli	ng using					

red

example

Model Development Principles and Classification of Models:

Dimensional Analysis, Synthesis of sub-models, Experimental facts, Hypothesis, Scale up concept, Steady state, unsteady state model, dynamic response, Constitutive relationships, Deterministic and Stochastic – Macroscopic diffusion equation, Lumped and Distributed Parameter - Stirred tank and plug flow models, Linear and non-linear models

Conservation principles of mass and energy and momentum balance equations and Modelling of few simple systems, Gravity flow tank, Flash drum, Distillation column, Double pipe heat exchanger, Gas-liquid absorption column, CSTR, Batch reactor, Plug flow reactor. [18 hrs.]

Module II:

Development of dynamic model, Input output model vs. state model, system parameters, numerical integration, Linear models and deviation variables, linearization of non-linear models,

System with one state variables, one input. State space model, Heated mixing tank, Isothermal CSTR, Non-isothermal CSTR with 2nd order chemical reaction, linearized model for the system and state space representation, Stability analysis and Eigen values. Model development of Pyrolysis, Combustion, Gasification process of coal and biomass and comprehensive modelling in TGDA, Isothermal mass loss Apparatus. [12 hrs.]

Module III:

Specialized Modeling for distributed parameter system: Distributed parameter system and model equations, the general conservation equation and interpretation of individual terms, the, Detail derivation of Finite Volume Method (FVM) and its application to steady state diffusive, convective and convective-diffusive problem. Extensions of the same for unsteady state operation, Presence of non-linear reaction terms, radiation term and linearization technique. Solution of model equations. [14hrs.]

Tutorial and class test

[14 hrs.]

Text
Book
s,

Suggested Text Books:

1. Lyuben, W.L, Process Modelling, Simulation and Control, McGraw-Hill, N.Y. 1990.

and/ or refer ence

mate rial <u>Suggested Reference books:</u>

1. Patankar, S. V., 'Numerical fluid flow and heat transfer', 1980, Hemisphere

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	1	1	2	1	2	2	1

CO2	3	3	3	2	3	2	1	3	1	3	3	1
CO3	3	3	3	2	3	2	1	3	1	3	3	1

	Dep	partment of Ch	emical Eng	gineering								
Course	Title of the course	Program	Total Nur	mber of cor	ntact hours		Credit					
Code		Core (PCR)	Lecture	Tutorial	Practical	Total						
		/ Electives	(L)	(T)	(P)	Hours						
		(PEL)										
CHS 651	FUEL LABORATORY	PCR	0	0	3	3	1.5					
Pre-requisi	tes		1	I	l		<u> </u>					
		Viva-Voce										
Course	• CO1: Demonstrate	and underst	and the	principles	of fuel pi	roperties	testing					
Outcomes	instrument.				•	•						
	• CO2:Conduct the exp	periments for o	determinat	tion of prop	erties of di	fferent fu	iels.					
	• CO3:Analyze the per	formance of e	quipment t	through gro	oup tasks.							
Topics	1. Proximate Analys	is of Coal dete	rmines the	moisture a	ash, volatile	matter a	nd fixed					
Covered	carbon of coal in term	s of weight pe	rcentage.									
	2. Shattering Index of	of Coke										
	3. Caking Index											
	4. Swelling Index											
	5. Viscosity of Fuel C											
	6. Determination of	Flash point an	id Fire poir	nt of an oil	by closed c	up Pensky	y Martin					
	Apparatus											
	7. Determination of			oil by Dea	n and Stark	Apparatu	IS					
	8. Aniline point dete	•										
	9. Determination of	•	•	•	_							
	10. To perform atmos	•	•	•		find out	percent					
	recovery, percent tota	• • •		•								
	11. Determination of			•								
T. 1	12. Determination of		e of fuel by	/ Conradso	n ivietnod į	36 nrs.j						
Text	Suggested Text Books	-	V D D									
Books,	1. Modern Petroleur	•										
and/or reference	2. Fuels & Combusti		dí									
	Suggested Reference		· \	con								
material		Petroleum Refining Engineering: W. L. Nelson Petroleum Refining Technology & Economics: J.H. Gary & G.E. Handwerk										
	2. Petroleum Kefinir	ig recrinology	& Econom	ics: J.H. Ga	ry & G.E. Ha	mawerk						

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1	1							1
CO2	2	2		2	2							2
CO3	2	2		2	2							2

Correlation levels 1, 2 or 3 as defined below:

	Dep	artment of Ch	emical Eng	gineering									
Course	Title of the course	Program	Total Nur	nber of cor	ntact hours		Credit						
Code		Core (PCR)	Lecture	Tutorial	Practical	Total							
		/ Electives	(L)	(T)	(P)	Hours							
		(PEL)											
CHS652	REACTION	PCR	0	0	3	3	1.5						
	ENGINEERING												
	LABORATORY												
Pre-requisit	tes												
		Viva-Voce											
Course	CO1:Understand the	fundamental	principles	of reaction	kinetics in	different	reactor						
Outcomes	through practical experimentation												
	• CO2:Study the non-	=	_	saponifica	ation reacti	on in CS	STR and						
	residence time												
	• CO3:Study the non-	• CO3:Study the non-catalytic homogeneous saponification reaction in plug flow											
	reactor.												
	CO4:Study the non-catalytic homogeneous saponification reaction in isothermal												
	batch reactor. 1. Study of Non-catalytic homogeneous reaction in an Isothermal Batch Reactor.												
Topics	•												
Covered	2. Study of non-cata	-	' - '										
	reactor and to inte	erpret the kine	etic data of	the given i	reaction in t	he form (of a rate						
	equation.	+: (DTD) C+	dias in CCT	·D									
	3. Residence distribu				n roaction	in a cor	stinuous						
	4. Study of non-cat stirred tank reactors	-		=									
	form of a rate equ		pret the k	inetic data	or the give	ii reactio	ii iii tiie						
	5. Removal of dye us		dation nro	ress and e	valuation of	its Kineti	c data						
	6. Study the perform	_	=										
	saponification of e			cc cquai v	ordine com	o in serie.	o ror tire						
	7. Study RTD of a page			s.l									
Text	Suggested Text Books:		<u>.</u> · · · ·										
Books,	1. Laboratory Manual	•											
and/or	2. Chemical Reaction E	ngineering, Oc	tave Leven	spiel , Wile	y; Third edi	tion (200	6)						
reference	3. Elements of Chemica	-		-	-	,	*						
material													
	Suggested Reference I	<u> Books:</u>											
	1. The engineering of	chemical reac	tions, Lann	y D. Schmi	dt, Oxford L	Jniversity	Press						
	Inc; 2nd edition (20	004)											

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	2	3	2	2	2	1	2	2	1
CO2	3	2	3	2	3	1	1	2	1	2	2	2
CO3	3	1	3	2	2	2	1	2	2	1	3	2
CO4	3	2	3	1	2	1	1	3	2	2	3	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

		Dep	partment of Che	emical Engi	neering							
Course	Titl	e of the course	Program	Total Nu	mber of co	ntact hours		Credit				
Code			Core (PCR) /	Lecture	Tutorial	Practical	Total					
			Electives	(L)	(T)	(P)	Hours					
			(PEL)									
CHS653	N	MASS TRANSFER	PCR	0	0	3	3	1.5				
		LABORATORY										
Pre-requis	ites											
			Viva-Voce									
Course		• CO1: To demonst	rate an underst	tanding of	mass trans	fer modes a	and mode	els				
Outcomes		• CO2: To formula	te the idea of th	ne differen	t types of s	set up						
		CO3:To apply print Fig. 1.	nciples of mass	transfer ph	nenomena	to chemica	l process					
		industries										
		● CO4: To enable s	CO4: To enable solving the problems on process and materials related to mass									
		transfer phenome	na									
Topics		•	acteristics of sir	•								
Covered			of diffusivity of				ir					
		·	ormance of dryi	_	•	•						
			eat transfer co-		-	e & film wis	e conden	sation				
		-	ristics of bubble	-								
			of overall heat		pefficient d	of an open p	an evapo	orator				
		7. Calculate hold	•		mana in a	nackad aba	aration t	011101				
		8. Experiment on [36 hrs.]	flooding & load	aing pheno	mena m a	раскей арѕ	orption t	ower				
Text Books	c	Suggested Text Bo	oks:									
and/or	٠,	1. Mass Transfer:										
reference			s of chemical er	ngineering	W.L. McC	abe & L.C.Sm	nith					
material		3. Laboratory ma										
		Suggested Referen	ce Books:									
		Principles of M		Separation	Processes	: B. K. Dutta	Э					

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	2	3	2	2	2	1	2	2	1
CO2	3	2	3	2	3	1	1	2	1	2	2	2
CO3	3	1	3	2	2	2	1	2	2	1	3	2
CO4	3	2	3	1	2	1	1	3	2	2	3	2

Correlation levels 1, 2 or 3 as defined below:

		Department of Che										
Course	Title of the course	Program Core	Total Nur	mber of co	ntact hours		Credit					
Code		(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives (PEL)	(L)	(T)	(P)	Hours						
CHE610	CHEMICAL	PEL	3	0	0	3	3					
	REACTOR											
	ANALYSIS											
Pre-requisi	tes	Course Assessme	ent method	ls (Continu	ious (CT), M	id Term a	and end					
		assessment (EA)										
CHC501		CT+MT+EA										
Course	◆CO1: Design & an	& analyze fluid-solidnon-catalytic, catalytic and fluid-fluid reactors										
Outcomes	• CO2: Design &ana	alyse multiphase re	eactors									
	• CO3: Design and	analyze bioreactor	s and non-	ideal react	ors							
	• CO4: Analyse the	thermal instability	of CSTRs									
Topics	Module I:	Module I:										
Covered	Design and analysis of non-catalytic solid-fluid reactors [3 hrs.]											
	Module II:											
	Analysis of catalytic	c reactors: Packed	, Moving-b	ed and Flu	idized-bed ı	reactors	[10hrs.]					
	Module III:											
	Multiphase reactor	rs: slurry and trick	le bed reac	tors		[9hrs.]					
	Module IV:											
	Multiple steady sta		instability o	of reactors	; Dynamic	-						
	Sustained oscillation	on and limit cycle				[5hı	rs.]					
	Module V:											
	Modelling of non-i	of non-ideal reactors [4hrs.]										
	Module VI:											
	Biochemical reacto	r design				[2hr	s.]					
	Module VII:											

	Fluid-fluid reactor design	[5 hrs.]
	Tutorial on above topics and class tests	[4hrs.]
Text	SuggestedText books:	
Books,	1. H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice H	all India.
and/or	2. O. Levenspiel, Chemical Reaction Engineering, Wiley.	
reference		
material	Suggested Reference book:	
	1. Chemical Reactor Analysis and Design - G F Froment& K B Bischoff (Wiley).

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	1	1	1	1	1	1	1
CO2	3	3	3	3	3	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1	1	1
CO4	3	3	3	3	3	1	1	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

	De	partment of C	hemical E	ngineering	1				
Course	Title of the course	Program	Tota	l Number	of contact h	ours	Credit		
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total			
		Electives	(L)	(T)	(P)	Hours			
		(PEL)							
CHE611	INDUSTRIAL	PEL	3	0	0	3	3		
	POLLUTION								
	CONTROL AND								
	TREATMENT								
Pre-requisi	tes	Course Assessment methods (Continuous (CT), mid-term							
	and end assessment (EA))								
Knowledge	of all Unit	CT+MT+EA							
Operations	and Unit processes								
Course	●CO1: The fundame	ntal concepts	in environ	mental en	gineering d	lealing wit	h water,		
Outcome	air, and land pollu	ition.							
S		l learn a solid f	oundation	in mathe	matics, sciei	nces, and t	technical		
	skills needed to a	nalyze and des	ign enviror	nmental er	ngineering s	ystems.			
	◆CO3: Graduates	will be famili	ar with	current a	nd emergi	ng enviro	nmental		
	engineering and a	global issues, a	nd have a	an underst	anding of e	thical and	societal		
	responsibilities.								
	•CO4: The necessary qualifications for employment in environmental engineering								
	and related pro	fessions, for e	entry into	advanced	d studies, a	and for a	ssuming		
	eventual leadersh	ip roles in thei	r professio	n.					

Topics Covered

Module I:

Introduction to Water Treatment: National & International Scenario; World-wide Water resources Management; Water quality standards — Drinking water standards; Industrial effluent standards [3 hrs]

Module II:

Physico-Chemical Treatment Technology: Aeration, Ion exchange, Ozone treatment, adsorption. Chemical coagulation-precipitation, settling, flocculation theorems, Chlorination, advanced scheme for municipal water treatment.[6hrs.]

Module III:

Biological Treatment: Basics of biological water treatment, relevant kinetics, biological reactor configurations, Activated sludge process, trickling filtration, lagoon treatment, submerged aerators, upward flow sludge blanket reactor, rotating disc biological contactors, advances in biological treatment. [7hrs.]

Module IV:

Membrane Treatment: Different membranes and modules in water treatment; Transport mechanisms in membrane separation; Principles of Forward and Reverse osmosis; Membrane distillation, Micro and ultrafiltration; Nanofiltration and hybrid processes in water treatment processes.[7 hrs.]

Module V:

Industry-specific advanced water treatment schemes: Petroleum refinery waste treatment, coke-oven waste treatment, pharmaceutical waste treatment, tannery wastewater treatment.[5 hrs.]

Module VI

Air Pollution

Environmental threats

Role of Atmosphere in dispersion , Plume behavior

Dispersion problems and Stack Design(Tutorial):

Control devices – Cyclone Separators, ESP, Venturi scrubber, gravity separator, filters Design Problems (Tutorial)

Abatement of gaseous pollutants & VOCs

[10 hrs.]

ModuleVII:

Solid and hazardous Waste management

[4 hrs.]

Text Books, and/or reference material

Suggested Text Books:

- Industrial water treatment Process Technology, P. Pal, Elsevier Science
- 2. Membrane Technology in Environmental Pollution Control, P.Pal
- 3. Environmental Pollution Control Engineering C.S. Rao

Suggested Reference Books:

- 1. Groundwater Arsenic remediation: Treatment Technology and Scale up, P. Pal, Elsevier Science
- 2. Handbook of Chlorination and Alternative disinfection, Geo. Clifford White, Wiley
- 3. Water Treatment Plant Design, Stephen J. Randtke, Michael B. Horsley(EDs.), ASCE
- 4. Water Technology, N.F. Gray, Elsevier Science

Mapping of CO (Course Outcome) and PO (Programme Outcome)

					<u> </u>							
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
-												
CO1							3					
CO2	3	3	3			1						
CO3								3				
CO4						1			1		1	

Correlation levels 1, 2 or 3 as defined below:

	0	epartment o	f Chemical	Engineerin	g							
Course	Title of the course	Program	Total Num	ber of cont	act hours		Credit					
Code		Core (PCR)	Lecture	Tutorial	Practical	Total						
		/ Electives	(L)	(T)	(P)	Hours						
		(PEL)										
CHE612	NON-	PEL	3	0	0	3	3					
	CONVENTIONAL											
	ENERGY											
	ENGINEERING											
Pre-requis	ites	Course Asse	ssment me	thods (Con	tinuous (CT)	and end						
		assessment	EA))									
CHC401		CT+EA										
Course	• CO1: Learn about	CO1: Learn about energy technology of different conventional and non-										
Outcome	conventional energy resource and Recent worldwide energy market scenario											
S	•CO2: Design & analyze of different renewable energy collectors and renewable											
	energy thermal power plants											
	• CO3: Learn indust	rial and dome	estic applica	ations of dif	ferent rene	wable ene	rgy					
	sources											
	●CO4: Solve ener	gy technolog	gy problem	ns of diffe	rent difficu	ılty levels	through					
	tutorials											
Topics	Module I:											
Covered	Wind Energy: Sour	ces and pote	ntials, Wind	l energy co	nversion, G	eneral for	mula -Lift					
	and Drag- Basis of	wind energy	conversion	n – Effect o	f density, fr	equency v	variances,					
	angle of attack, ar	nd wind spee	ed. Windmi	II rotors H	orizontal ax	is and ve	rtical axis					
	rotors. Determinat	ion of torqu	e coefficier	nt, horizont	al and vert	ical axis v	windmills,					
	performance chara	acteristics, B	etz criteria,	, Design a	nd analysis	of wind	turbines.					
	geographical aspec	ts.		[10 hrs.]								
	Module II:											
	Solar Energy: Energ	=										
	into heat, Flat pla		_			•						
	analysis of solar	•	•		•		•					
	collectors and colle	ector efficien	cy, collecto	or efficienc	y factor, til	t factors,	collector					

heat removal factor, Hottel-Willier-Bliss equation. Principle of Natural and Forced convection, Salt gradient solar ponds: construction, operation, technical problems, Solar drying and dehumidification: Solar cabinet dryers, convective dryers Solar engines-Stirling, Brayton engines, Photovoltaic, p-n junction, solar cells, PV systems, Stand-alone, Grid connected solar power satellite. [10 hrs.]

Module III:

Nuclear Energy: Nuclear fission principles, types of nuclear reactors (BWR, PWR, PHWR, LMCR, GCR, FFR). Nuclear reactor analysis: four factor formula, resonance absorption, reactor buckling, multiplication factor, thermal utilisation coefficient, reflector saving, fast fission factor, optimum moderator to fuel ratio. Radioactive waste disposal

Energy from Ocean: Wave, Tidal and OTEC energy- Difference between tidal and wave power generation, Principles of tidal and wave power generation, OTEC power plants (closed cycle, open cycle, hybrid cycle), operation and technical problems, environmental impact, Tidal power, salinity power plants,

Geothermal systems: Resources, types of wells, methods of harnessing the energy, Hot water and dry steam systems, energy extraction principles. [10 hrs.]

Module IV:

Energy from biomass: Biomass utilization: pyrolysis, gasification, anaerobic digestion (biogas production). Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of bio-gas, Biodiesels: Manufacture and characteristics.

Gasohol: Characteristics and manufacture, use of pervaporation technology.

Synthetic liquid fuels from coal: F – T Process, Coal hydrogenation, MTOG process. [10 hrs.]

Text Books, and/or reference material

Suggested Text Books:

- 1. Ashok V Desai, Non-Conventional Energy, Wiley Eastern Ltd, New Delhi, 2003
- 2.K M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, New Delhi, 2003.

Suggested Reference Books:

- 1. Ramesh R & Kumar K U, Renewable Energy Technologies, Narosa Publishing House, New Delhi, 2004
- 2. Wakil MM, Power Plant Technology, McGraw Hill Book Co, New Delhi, 2004.
- 3. G. D. Rai Non Conventional Energy Sources. Khanna Publication
- 4. S P Sukhatme and J K Nayak, Solar Energy, McGraw Hill Book Co, New Delhi 4th Edition, 2017

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	3	3	1	1	1	1	1	1	1	1
CO2	3	3	3	3	3	2	2	1	1	1	1	1
CO3	3	3	3	3	3	2	2	1	1	1	1	1
CO4	3	3	3	3	3	2	2	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

		Departme	nt of Chemi	ical Engineerir	ng		
Course	Title of the course	Program	Total Num	ber of contac	t hours		
Code		Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	Credit
CHE 613	COMBUSTION ENGINEERING	PEL	3	0	0	3	3
energy bala Numerical	ites: Process calculati ance, Engg. Mathema techniques, modellir skill using c and Mat	atics, ODE, F ng simulatio	PDE, n with	Course Asses Midterm (MT		•	• • •
				CT+MT+EA			
Course Outcomes	CO1: Clean coalCO2: Mass and 6CO3: Reaction kCO4: Burner des	energy balar cinetics and	nce during o	combustion of of Pyrolysis,	solid, liquid Combustion	d and gase	ous fuel.
Covered	Properties of solic Classification, Contechniques of solic Gasification of conditions, design process route. Clawhat is clean concerning, Refined network, Primary injection technique. Module II: Stoichiometry of Chemical equation combustion, concerniciency, excess. Module III: Combustion of I diffusion flame exproperties of diffusion flame exproperties of diffusion gaseous fuel,	mposition, Cod, liquid and coal—Coal and coal Technological technological technological technological technological technological coal, Coal I ambiguid and quations and coal flame Types of Burns of Bur	Calorific Valued gaseous for gasification equipment chnologies: gy? Princip Carbon second methar Dewatering [24 hrs.] - and energy sture fracted draft. Gas gaseous for dits solution & Premixe grand energy and energy stures, designments, d	ues, Lower and uels. In technologic nent. Undergrate and object questration, Knie deposits, Clarocess, Section and equipanalyzers- Orsels, Theory in technique, In the techniq	es, chemic ound coal gives. Oxyfue yoto Protoc BM recovers ondary me sat and modes of diffusion length of	cal reaction casification casif	ions, process technology, ion, Biochar, ion of global microporous bon dioxide asseous fuel alyzers hrs.] development me, chemical gn for liquid]
	Combustion of s combustion, com Combustion in fl	bustion of r	esidual cha	r, Pulverized c	oal combus	tion,	

combustion efficiency.

Combustion in bubbling fluidized bed boilers

Combustion mechanism dense phase and lean phase concept and mass and energy balance, Recirculation of fly ash, effect of design parameters on combustion efficiency. Single particle combustion modelling-

Single particle combustion modelling using volume reaction model, reaction mechanism and role of pore surface area. Heat and species transport equation in porous medium. Excremental technique in TG/DTA and drop tube furnace. [24 hrs.]

Tutorial and class test [5 hrs.]

Text Books, and/or reference material

Suggested Text Books:

- 1. Combustion and Fuel Technology, A.K.Saha
- 2. Combustion and gasification in Fluidized bed, PrabirBasu, Taylor & Francis

Suggested Reference Books:

1. Fundamentals of Combustion Engineering by Achintya Mukhopadhyay and Swarnendu Sen

Mapping of CO (Course Outcome) and PO (Programme Outcome)

<u> </u>	ping or oo (course outcome) and rest, registration of											
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
८७३												
CO1	3		3		3					1	3	1
CO2	3	1	1		3			2				
CO3	3		3		3					1	3	1
CO4	1	3	3		3		1		1		3	

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

	Department of Chemical Engineering											
Course	Title of the course	Program Core	Total Nur	mber of co	ntact hours	i	Credit					
Code		(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives (PEL)	(L)	(T)	(P)	Hours						
CHE 614	ARTIFICIAL	PEL	3	0	0	3	3					
	INTELLIGENCE (AI)											
	IN PROCESS											
	INDUSTRY											
Pre-requisit	es	Course Assessment methods (Continuous (CT), Midterm (MT)										
		and end assessr	nent (EA))									
		CT+MT+EA										
Course	• CO1 : Acquire an id	ea about the app	lication of	artificial in	itelligence i	n chemic	al					
Outcomes	process industry											
	• CO2 : To learn the fundamental knowledge of Neural network base modeling and											
	their application in c	hemical process i	ndustries									
	• CO3: To learn the fo	• CO3: To learn the fundamental knowledge of different stochastic optimization										

techniques and their application in industry

Topics Covered

Module I:

Basic concept and introduction

Challenges faces by process industries, Paradigm shift of chemical business, What is artificial intelligence (AI)?, What is advance data analytics (ADA)?, Use of artificial intelligence (AI) and advance data analytics in different fields, Use of AI in chemical process industry and changing business scenario of chemical process industry , Areas where AI have impact on process industry, Different real life case studies of application of AI in process industry , How AI based techniques can be used to increase profit in chemical industry. [08 hrs.]

Module II:

Application of artificial neural network (ANN) for modeling industrial processes What is process modeling? ,Difference between process design and process simulation, Different process modeling strategy, Comparative advantage and disadvantage of different modeling strategy, Limitations of first principle base modeling, Limitations of commercial simulators to model complex industrial reactors ,Data driven black box or grey box modeling technique and its advantage, Necessity to build a platform to utilize large number of process data, Artificial neural network (ANN) as effective tool of black box modeling, What is artificial neural network (ANN)?, Network architecture, Back propagation algorithm, How ANN can be used to develop complex industrial processes, Steps in ANN modeling technique, Modeling of process performance parameters like selectivity, yield, efficiency etc., Different examples of ANN modeling applied in diverse field of process industries, A step by step matlab based ANN case study for modeling of industrial reactor ,Different aspects of ANN modeling. [12 hrs.]

Module III:

Artificial intelligence based process optimization

What is process optimization?, How parameter optimization can increase profit?, Limitations of conventional methods to apply complex industrial context, Use of metaheuristic method for optimization, Different Meta heuristics strategies like genetic programming, differential evolution and particle swarm optimization,

Genetic algorithm (GA), what is GA? Basic algorithm and matlabcode ,Explanation of different parameters in GA algorithm ,Different uses of GA in various fields of process optimization ,

Differential evolution (DE), what is DE? Basic algorithm and matlabcode ,Explanation of different parameters in DE algorithm,Different uses of DE in various fields of process optimization

Particle swarm optimization (PSO), What is PSO?, Basic algorithm and matlab code, Explanation of different parameters in PSO algorithm, Different uses of PSO in various fields of process optimization ,How metaheuristics algorithm can be used for parameter optimization,3 case study in reactor optimization, Advantage of metaheuristics methods over conventional methods. [10 hrs.]

Module IV:

Artificial intelligence based fault diagnosis in process industry

Development of system to use and generate knowledge from process data ,Online advance process monitoring ,Generation of dashboard of different KPI ,Use of different advance computational technique to visualize data ,Artificial neural network based monitoring system ,How ANN can be used to develop advance process monitoring system ,Steps to develop ANN based process monitoring system

Principal component based monitoring system, What is Principal component analysis (PCA)?, PCA algorithm, How PCA can be used to develop advance process monitoring system ,Advantage of PCA based monitoring system ,Steps to develop PCA based process monitoring system

Development of Fault diagnosis system

What is fault diagnosis system?, Features of fault diagnosis system ,How a robust fault diagnosis system can be made by PCA and ANN, Steps to build efficient fault diagnosis system, Matlab code, Case study. [10 hrs.]

Text Books, and/or reference material

Suggested Text Books:

- 1. Profit Maximization Techniques for operating Chemical Plants, Sandip Kumar Lahiri, Wiley, ISBN 978-1-119-53215-6
- 2. Process plant simulations, B.V. Babu ,Oxford University Press 2004, ISBN **0**-19-566805-7

Suggested Reference books :

3. Energy and process optimization for the process industries By Frank (Xin X) Zhu (Wiley, ISBN 978-1-118-10116-2)

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PO13
COs											1		
CO1	2	2	2	2	2	1	1	2	1	2	2	1	2
CO2	3	3	3	2	3	2	1	3	1	3	3	1	3
CO3	3	3	3	2	3	2	1	3	1	3	3	1	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

SEVENTH SEMESTER

	Department of Chemical Engineering								
Course	Title of the course	Program	Total Nu	mber of co	ntact hours		Credit		
Code		Core	Lecture	Tutorial	Practical	Total			
		(PCR) /	(L)	(T)	(P)	Hours			
		Electives							
		(PEL)							
MSC731	PRINCIPLES OF	PCR	3	0	0	3	3		
IVI3C/31	MANAGEMENT	PCR	3	O	O	0	5		
Pre-requisit	ces	Course Assessment methods (Continuous assessment (CA)							
		and end assessment (EA))							
		CA+EA							

Course Outcomes

- CO1:To make budding engineers aware of various management functions required for any organization
- CO2:To impart knowledge on various tools and techniques applied by the executives of an organization
- CO3:To make potential engineers aware of managerial function so that it would help for their professional career
- CO4:To impart knowledge on organizational activities operational and strategic both in nature
- C05: To impart knowledge on each functional area of management like Marketing,
 Finance, Behavioral Science, Quantitative Techniques and Decision Science

Topics Covered

Module I:

Management Functions and Business Environment: Business environment- macro, Business environment -micro; Porter's five forces, Management functions —overview, Different levels and roles of management, Planning- Steps, Planning andenvironmental analysis with SWOT, Application of BCG matrix in organization [8 hrs.]

Module II:

Quantitative tools and techniques used in management: Forecasting techniques, Decision analysis, PERT & CPM as controlling technique [7 hrs.]

Module III:

Creating and delivering superior customer value: Basic understanding of marketing, Consumer behavior-fundamentals, Segmentation, Targeting & Positioning, Product Life cycle. [8 hrs.]

Module IV:

Behavioral management of individual: Motivation, Leadership, Perception, Learning. [8 hrs.]

Module V:

Finance and Accounting: Basics of Financial management of an organization, Preparation of Final Accounts, Analysis of Financial statements, Cost Volume Profit

	(CVP) Analysis, An overview of financial market with special reference to India. [12]
	hrs.]
Text	Suggested Text Books:
Books,	1. Financial Management, 11th Edition, I M Pandey, Vikas Publishing House.
and/or	2. Marketing Management 15th Edition, Philip Kotler and Kelvin Keller, Pearson
reference	India
material	3. Management Principles, Processes and practice, first edition, Anil Bhat and Arya
	Kumar, Oxford Higher education
	Suggested Reference Books:
	1. Organizational Behavior,13 th edition, Stephen P Robbins, Pearson Prentice hall
	India
	2. Operations Management, 7th edition (Quality control, Forecasting), Buffa &
	Sarin, Willey

Mapping of CO (Course Outcome) and PO (Programme Outcome)

<u> </u>					<u> </u>			•				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1									3	2	2	
CO2				2					2	2		
CO3				2					3	2		
CO4							1		3			
CO5				2					2	2	2	

Correlation levels 1, 2 or 3 as defined below:

	Depart	ment of Cher	nical Engir	neering					
Course	Title of the course	Program	Total Nu	mber of co	ntact hour	S	Credit		
Code		Core	Lecture	Tutorial	Practical	Total			
		(PCR) /	(L)	(T)	(P)	Hours			
		Electives							
		(PEL)							
CHS	PROCESS CONTROL AND	PCR	0	0	3	3	1.5		
751	INSTRUMENTATION								
	LABORATORY								
Pre-requ	isites	Course Ass	essment m	nethods (C	ontinuous (CT), mid-	-term		
		(MT) and e	nd assessn	nent (EA))					
Process (Control and Instrumentation	CT and Viva	CT and Viva-Voce						
Course	• CO1: Understand the	fundamental principles of process control through practical							
Outcome	es experimentation								
	CO2: Handling various	s instruments	and solve	various di	fficulty leve	els			
Topics	1. Study the control v	valve flow coefficient (C _v) and its inherent characteristics.							
Covered	2. Study the temperat	ture control trainer and to find out steady state process gain.							
	3. Study the level con	ntrol trainer and to find out steady state process gain.							
	4. Compare the obs	erved transi	ent respo	onse with	the theor	etical tr	ansient		
	response for the interacting – non-interacting system.								
	5. Study the step resp	onse of mero	onse of mercury manometer and water manometer.						

	6. Plot Bode diagram of manometer systems and design the controller using Z-N tuning method.
	7. Study the root locus of a manometer and hence to determine the region of
	stability. [36 hrs.]
Text Books,	Suggested Text Books:
and/or reference	1. Process Systems Analysis and Control, Donald Coughanowr McGraw-Hill Science/Engineering/Math; 2 Edition (1991)
material	2. Chemical Process Control, G. Stephanopoulos, PHI, (2008)
	Suggested Reference Books: 1. Essentials of Process Control, Luyben et al. McGraw-Hill Companies (1996)

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2	1	2				1		2	
CO2	3		2	1	2				1		2	

Correlation levels 1, 2 or 3 as defined below:

	Dep	artment of Che	mical Engi	neering					
Course	Title of the course	Program	Total Nur	mber of co	ntact hours	1	Credit		
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total			
		Electives	(L)	(T)	(P)	Hours			
		(PEL)							
CHS	CHEMICAL	PCR	0	0	3	3	1.5		
752	ENGINEERING								
	COMPUTING								
	LABORATORY- 2								
Pre-requ	iisites	Course Asses	sment met	thods (Con	tinuous (CT), mid-te	rm (MT)		
		and end assessment (EA))							
CHEMIC	AL ENGINEERING	EA and Viva-\	/oce						
COMPU	TING LABORATORY- 1								
(CHS 352	1)								
Course	CO1: To improv	e the skill of programming with numerical methods							
Outcom	es • CO2: To sol	ve Chemical Engg problems using computers (using							
	Matlab/Aspen/Ansy	/s)							
Topics	Module I								
Covered	1. Arrays Operation	s, Loops in Mat	tlab						
	2. Script and Functi	-							
	3. Plotting in Matlal	b							
	4. Truncation Error	and Numerical	error in M	latlab					
	5. Numerical Differe	entiation and Ir	ntegration	using Mat	lab				
	Module II	Module II							
	Solving Linera/non-	linear equatior	ns using Ma	atlab					

	Solving set of linear equation
	Solving ODEs in Matlab (RK/ODE45)
	Module III
	Intruduction to Matlab-Simulink
	Tuning of PID controller using Simulink
	Example cases using Simulink
	Module IV
	Introduction to Aspen-Plus
	Property analysis using Aspen-Plus
	Process Modelling and simulation using Aspen-Plus [36 hrs.]
Text Books,	Suggested Text Books:
and/or	1. Computational Techniques for Process Simulation and Analysis Using MATLAB,
reference	Niket S. Kaisare, CRC Press
material	2. Teach Yourself the Basics of Aspen Plus, Ralph Schefflan, 2nd Edition, AIChE,
	Willey
	Suggested Reference Books:
	1. Introduction to Simulink: With Engineering Applications, by Steven T. Karris,
	Orchard Pubns; 3rd edition

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2	1	2				1		2	
CO2	3		2	1	2				1		2	

Correlation levels 1, 2 or 3 as defined below:

	Depa	artment of Che	mical Engi	neering	<u> </u>				
Course	Title of the course	Program	Total Nur	mber of co	ntact hours		Credit		
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total			
		Electives	(L)	(T)	(P)	Hours			
		(PEL)							
CHS 753	COMPUTER-AIDED	PCR	0	0	3	3	1.5		
	PROCESS								
	EQUIPMENT								
	DESIGN								
Pre-requisite	es	Course Assessment methods (Continuous (CT), mid-term (MT)							
		and end assessment (EA))							
Process Equi	pment Design I & II	Report submission and Viva-Voce							
Course	• CO1: Students are	e groomed to	groomed to become confident design engineers / process						
Outcomes	simulators. They	are also made conversant with all aspects of chemical							
	engineering science, since development of CAD packages demands proficiency						iency in		
	all unit operations a	all unit operations and unit processes.							
Topics	1. Introduction to	1. Introduction to the basic principles of pressure vessel, Heat Exchanger,							
Covered	Evaporator and	Evaporator and distillation process and its applications							

	2. Computer Aided process design of Pressure Vessel by Auto-CAD
	3. Computer Aided process design of Heat Exchanger column by Auto-CAD
	4. Computer Aided process design of Evaporator by Auto-CAD
	5. Computer Aided process design of distillation column by Auto-CAD
Text Books,	Suggested Text Books:
and/or	1. L. E. Brownell, E. H. Youg, "Process Equipment Design" John Wiley & Sons
reference	Publications, 2004.
material	2. J.M. Coulson and J. Richardson, "Chemical Engineering", Vol. 6, Asian Books Printers Ltd.
	3. Indian Standard Specifications IS-803, 1962; IS-4072, 1967; IS-2825, 1969. Indian
	Standards Institution, New Delhi.
	Suggested Reference Books:
	1. R.H. Perry, "Chemical Engineers' Handbook", McGraw-Hill.
	2. W.L. McCabe, J.C. Smith and P. Harriot, "Unit Operation of Chemical
	Engineering", McGraw-Hill, 2001.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	3	2	3	3	2	2	3

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Total Num	ber of con	tact hours		Credit		
Code		(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
CHS754	VOCATIONAL		0	0	2	2	1		
	TRAINING /								
	SUMMER								
	INTERNSHIP &								
	SEMINAR								
Course Ou	tcomes	 ◆CO1: Ability to Processes in ◆CO2: Knowledge 	real-life pro	blem.	e Unit Ope	rations a	nd Unit		
Topics Cov	ered	Industrial Training, Internship etc. 4 -8 weeks							
Text Books material	s, and/or reference	NA							

Seventh Semester Departmental Electives (CHE710-719)

	Dej	partment of Che	emical Engi	neering								
Course	Title of the course	Program	Total Nur	nber of co	ntact hours		Credit					
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P)	Hours						
		(PEL)										
CHE 710	ENERGY SOURCES	PCR	2	1	0	3	3					
	AND UTILISATION											
Pre-requisite	S	Course Assessment methods (Continuous (CT), mid-term (MT)										
		and end assessment (EA))										
None		CT+MT+EA										
Course	• CO1: Learn differ	ent sources of e	energy and	basic tern	ninology							
Outcomes	• CO2: Identify of	characteristic p	roperties (of fuels a	nd analyze	fuel pro	cessing					
	equipment											
_	• CO3: Compare pe	erformances and	d select typ	e of fuel p	rocessing e	quipmen	t					
Topics	Module I:											
Covered	Introduction: Surv	ey of different s	ources of e	energy and	l their utiliza	ation.						
	Fossil fuels: Coal, F	etroleum and gaseous fuels.										
	Coal: Origin and fo	ormation of coa	al . Petrogr	aphic con	stituents of	coal, Pro	operties					
	and testing. Clas	ssifition of coa	fition of coal, Coal preparation- washing and blending,									
	Metallurgical and	other uses. Car	rbonisatior	of coal,	coke ovens	and reco	overy of					
	by-products.				[5 ł	nrs.]						
	Module II:	itution of natroloum. Origin and Ossumanae of anida. Furlication										
		itution of petroleum, Origin and Occurrence of crude, Evaluation										
		es, testing and specifications of petroleum products- Octane essure; Flash point; Fire point; Smoke point; Pour point; Cloud										
		•	•		•	•						
	point; Aniline po		el index;	Cetane n	o. , Proce	ssing of	Crude					
	Petroleum.[12hrs.]											
l	Module III:	:£:+:		C								
	Gaseous fuels: Clas			=		_	ianaaa					
	Combustion and				s, combust							
	furnaces, waste he Module IV:	eat recovery sys	tem, burne	:15.		Į±.	1 hrs.]					
		anaray caureas	· Salar ana	ray Wind	Tidal Enorg	\\/avo	Enormy					
		energy sources: Solar energy, Wind, Tidal Energy, Wave Energy,										
Text Books,	Energy from bioma Suggested Text Bo											
and/or			efining: B. K. B. Rao									
reference	2. Fuels & Combus	_	_									
material	Suggested Referen											
material		ice books.										
			:W.I Nel	son								
	 Petroleum Refir Petroleum Refir 	ning Engineering			arv & G F H	andwerk						

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	3	3	2	3	3	3	2	3
CO2	3	3	3	1	3	3	2	3	3	3	3	3
CO3	3	3	3	1	3	3	2	3	3	3	3	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

	Department of Chemical Engineering											
Course	Title of the course	Program	Total Number	er of conta	ct hours		Credit					
Code		Core (PCR)	Lecture (L)	Tutorial	Practical	Total						
		/ Electives		(T)	(P)	Hours						
		(PEL)										
CHE 711	BIOPROCESS &	PEL	3	0	0	3	3					
	BIOREACTOR											
	ENGINEERING											
Pre-requisi	tes	Course Asse	ssment metho	ods (Contin	uous (CT), r	nid-term	(MT)					
		and end assessment (EA))										
CHC 301, C	HC 403, CHC501	CT+MT+EA										
Course • CO1: Apply kinetics of biochemical reactions for design of bioreactor.												
Outcomes • CO2: Analyze performance of ideal and non-ideal bioreactors.												
	• CO3: Integrate different type of reactor and reactor assembly.											
Topics	S Module I:											
Covered	Introduction to th	e kinetics o	f Bioprocess;	Free enz	yme kinet	ics; Inhib	ition in					
	enzymatic reaction	s. Kinetics o	f immobilized	d enzymes	. Bioreacto	rs for er	nzymatic					
	reactions.					[15 hrs.]					
	Module II:											
	Cell growth kinetic			_	-							
	cell growth system	. Reactors for	cell growth s	system. Co	mbination (
	cell growth.						15 hrs.]					
	Module III:		ما امت اما			of Diox						
	Multiplicity in Bio	•			•							
	Bioreactor controll					-						
	measurement and and control, Detect				ioi, ph/reu		10 hrs.]					
	and control, Detect	ion and preve	ו מוניטוו טו נוופ ונ	oaiii.		L	10 1112.]					
	Module IV:											
	Downstream proce	ssing in biop	rocesses; Intr	a and extr	acellular p	roduct ex	traction					
	and separation. Ind	•			•							

Text	SuggestedText Books:
Books,	1. J. E. Bailey, D. F. Ollis, Biochemical Engineering Fundamentals, Second Edition, Mc.
and/or	Graw Hill Inc., Singapore, 1986.
reference	2. H. W. Blanch, D. S. Clark, Biochemical Engineering, Special Indian Edition, Marcel
material	Dekker Inc. New York, 2007.
	3. M. L. Shuler, F. Kargi, Bioprocess Engineering - Basic Concepts, Second Edition,
	Prentice Hall of India Private Ltd., New Delhi, 2002.
	SuggestedReference Books:
	1. P. M. Doran, Bioprocess Engineering Principles, Academic Press, California, 2009.
	2. J. Nielsen, J. Villadsen, G. Liden, Bioreaction Engineering, Second Edition, Springer,
	2007.
	3. D. G. Rao, Introduction to Biochemical Engineering, Tata McGraw-Hill Publishing

Mapping of CO (Course Outcome) and PO (Programme Outcome)

Company Ltd., New Delhi, 2008.

<u> </u>					<u> </u>							
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	2	3	2	3	1	1	2	2	2	3	1
CO2	3	2	3	2	3	1	1	2	2	2	3	1
CO3	3	2	3	2	3	1	1	2	2	2	3	1

Correlation levels 1, 2 or 3 as defined below:

CC	orrelation lev	els 1, 2 or 3 as defined b	elow:					
1:	Slight (Low)	2: Moderate (Me	edium)	3: Subst	antial (High	n)		
		Dep	partment of Ch	emical Engine	ering			
	Course	Title of the course	Program	Total Numbe	er of contac	t hours		Credit
	Code		Core (PCR) /	Lecture (L)	Tutorial	Practic	Total	
			Electives		(T)	al (P)	Hour	
	1		1			l		

		(PEL)				S				
CHE 712	PROCESS	PEL	3	0	0	3	3			
	ENGINEERING									
Pre-requisit	ces	Course Assess	Course Assessment methods (Continuous (CT) and end							
reactor, Ch	ions and Chemical emical Process , Optimal design	assessment (I	EA))							
		CT+EA								
Course	• CO1: Understanding	process design	concepts							
Outcomes	• CO2: To troubleshoo	t real-time che	mical process	es						

Course	• CO1: Understanding process design concepts
Outcomes	CO2: To troubleshoot real-time chemical processes
	CO3: To do optimal plant operation
Topics	Module I:
Covered	Introduction
	Course objectives and course outcomes- Definition of process engineering—
	responsibilities of Process Engineers. Structure of Processes and Process Engineering
	[5hrs.]

Module II:

Process Design and Flow sheeting, Process design principles; process selection; Degree of freedom; selection of design variable; mass balance and energy balance; process flow sheeting; sizing of equipment. [12hrs.]

Module III:

Process dynamics and dynamic optimization: Process response and retrofitting; Dynamic models; Optimization models for process synthesis and design; dynamic optimization; real-time optimization; [12hrs.]

Module IV:

Process Synthesis: Basic concepts in process synthesis; flowsheet optimization and economic analysis; process trouble shooting; case studies, [12hrs.]

Text Books, and/or reference material

<u>SuggestedText Books:</u>

- 1. Rudd DF, Watson, CC. Strategies of process engineering, John Wiley, 1968
- 2. Seader WD, Seader, JD, Lewin, DR. Product & process design principles, John Wiley, 2004

Suggested Reference Books:

1. Arthur W. Westerberg, I.E. Grossmann, and Lorenz T. Biegler, Systematic Methods of Chemical Process Design. Prentice Hall

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3			1	1						1	
CO2	3		2								1	
CO3	3				1							1

Course	Title of the course	Program	Total Numbe	er of contac	t hours		Cred			
Code		Core (PCR) /	Lecture (L)	Tutorial	Practic	Total	it			
		Electives		(T)	al (P)	Hour				
		(PEL)				S				
CHE713	CHEMICAL PLANT	PEL	3	0	0	3	3			
	DESIGN AND									
	ECONOMICS									
Pre-requisit	tes: Unit operations	Course Assessment methods (Continuous (CT) and end								
and Chemic	cal reactor, Chemical	assessment (EA))								
Process Ted	chnology, Optimal									
design met	hods									
		CT+EA								
Course	• CO1:Managing var	rious process design projects								
Outcomes										

	CO2: Understanding process design concept based on mass-energy balance and optimization
	CO3: Determining design-project feasibility and implementation time
Topics	Module I:
Covered	Plant Design life cycle: Various stages of a plant design project – managing the various stages of plant design project – various approaches. Various scheduling methods for plant design[10hrs.]
	Module II:
	Plant Design Projects: Process design principles; process selection-DOF-design variable; -mass balance and energy balance; flowsheeting; sizing of equipment; P&ID-basic engineering package (BEP); Principles of equipment layout in and site selection for chemical plants; Types and selection of materials of construction for process equipment. [12 hrs.]
	Module III:
	Feasibility of Plant Design: Estimation of cost and profit - taxes & depreciation-rate of return (ROI)-case studies; Screening of Process Alternatives; Concepts of investment, interest and time value of money; Profitability analysis. Analysis of alternative investments and replacements.[10hrs.]
	Module IV:
	Case studies: Design of Reactors; Design of Separation Processes; Energy Integration and Design of Heat Exchanger Network (Pinch Technology);[13 hrs.]
Text Books,	SuggestedText Books:
and/or	1. Peters, M S, Timmerhaus, KD, Plant Design and Economics, McGraw Hill, 1991
reference material	2. Towler G, Sinnott, Ray, Chemical Engineering Design, Elsevier, 2008
	SuggestedReference Books:
	1. Rudd DF, Watson, CC. Strategies of process engineering, John Wiley, 1968
	2. Seader WD, Seader, JD, Lewin, DR. Product & process design principles, John Wiley, 2004.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3			1							1	1
CO2	3				1						1	1
CO3	3			1	1						1	1

	De	partment of Che	mical Engi	neering							
Course	Title of the course	Program	Total Nur	mber of co	ntact hours		Credit				
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total					
		Electives	(L)	(T)	(P)	Hours					
		(PEL)									
CHE 714	PROCESS SAFETY	PEL	3	0	0	3	3				
	IN CHEMICAL										
	INDUSTRIES										
Pre-requisit	ces	Course Assessi	ment meth	ods (Conti	inuous (CT),	mid-terr	n (MT)				
		and end assess	sment (EA))							
None CT+MT+EA											
Course	CO1: Understand	• CO1: Understand the key principles of process safety and its management and									
Outcomes	consequences of	poor process	safety (h	numan, er	nvironmenta	al and b	ousiness				
	consequences)										
	CO2: Understand	• CO2: Understand the hazards associated with process plant and how the risks									
	can be controlled										
	CO3: Understand		•	•		_					
	cycle of process p	lant from conce	ptual desig	gn through	n to operati	on, main	tenance				
	and modification										
	• CO4: Understand			nd the ne	ed for ove	rall orga	nization				
- ·	process safety ma	nagement capak	oility								
Topics	Module I:		m. Assidos	to Dogiala	shawataw. Ca	.fd	D:a				
Covered	Introduction and R		•		•	•	RIO-				
	safety levels, Impo	ortance of persor	nai protect	ive equipi	nent,[8 nrs.	J					
	Basics of process s	afoty managom	ont Toxic	ology and	Industrial H	vaiono	[7 hrc]				
	Module III:	alety managem	ent, roxic	ology allu	iiiuustiiai ii	ygierie,	[/ 1113.]				
	Source Models and	d Dispersion Mo	dels								
		•		re extingui	ishers and S	nrinklers					
		Fire and Explosion, Designs to prevent fire Fire extinguishers and Sprinklers Introduction to reliefs. [20 hrs.]									
Text Books,						[2011	,				
and/or	1. Chemical Proces		mentals wi	ith Applica	tions: Danie	el Crowl a	ınd				
reference	Joseph F. Louvar, 3										
material	Suggested Referen										
		nemical Plants/I	ndustry &	its Manage	ement, B. K.	Bhaskar	a Rao,				
	R. K Jain, Vineet Ku		=		.,		- ,				

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		3	1	2	3		2	1	3	3	2
CO2	3		3	1	2	3		2	1	3	3	2
CO3	3		3	1	2	3		2	1	3	3	2
CO4	3		3	1	2	3		2	2	3	3	3

Correlation levels 1, 2 or 3 as defined below:

	·	rtment of Che					T					
Course	Title of the course	Program	Total Number	er of contac	ct hours		Cred					
Code		Core (PCR) /	Lecture (L)	Tutorial	Practic	Total	it					
		Electives		(T)	al (P)	Hour						
		(PEL)				S						
CHC 715	MEMBRANE	PEL	3	0	0	3	3					
	SEPARATION											
	PROCESS											
Pre-requis	ites	Course Assessment methods (Continuous (CT), mid-term										
		(MT) and end	assessment (EA))								
CHC 502		CT+MT+EA										
Course	• CO1: Learn fundamen	tals of membra	ne separation	n processes	and curre	ent mar	ket					
Outcome	scenario											
S	• CO2: Classify and cha	racterize mem	brane separat	ion proces	ses							
	• CO3: Principles and methodologies of separation and transport of molecules											
	through membrane and latest development											
	• CO4: Complete process design of separation and exercise problems through											
	tutorials/ assignment / group task											
Topics	Module I:											
Covered	Membrane Separatio	n Processes:	Types of	membra	nes and	mem	brane					
	characterization, Mem					h meml	orane,					
	Classification & charact	erization of Me	embrane Sepa	ration Prod	cesses.							
	Reserve Osmosis (RO)	: Fundamenta	ls, Osmotic P	ressure, N	Models of	Solven	t and					
	solute Transport thro	ugh membran	e – Fluxes, I	Rejection a	and Sepa	ration f	actor,					
	Mechanism of salt	rejection by	CA membra	ne, Conc	entration	Polariz	ation,					
	applications	[3	12 hrs.]									
	Module II:											
	Nano-filtration (NF): Fu		NF, Models a	nd Types o	of transpo	rt mech	anism					
	in NF membranes, Appl											
	Ultra-filtration (UF): M	• •	•									
	for UF – Fouling and co			•	ition scher	mes usii	ng UF,					
	Dia-filtration – process	•		_								
	Micro-filtration (MF): N	1embranes for	MF – transpoi	rt mechani	sm	[12 h	rs.]					
	Module III:											
	Dialysis: Solute transpo	•	•	alysis oper	ation, Mo	de ot di	alysis,					
	Hemo-dialysis – dialysis	• •	• •									
	Electro –dialysis (ED):		=									
	voltages in ED cells – p	· · · · · · · · · · · · · · · · · · ·		ibranes an	d cells, Pr							
	operation, Plant design	and process co	ost.			[8 hı	S.]					
	Mandale D4											
	Module IV:	f D) /		· · · Clareit	-1:(D)	,						
	Pervaporation (PV): The	eory of PV – pa	irameter stud	y, ciassitica	ation of P	v – air r	ieated					

	PV, Osmotic distillation, thermo-pervaporation, Advantages and disadvantages of PV, Application of PV, Gas Separation: Membrane gas separation, Industrial applications. [8 hrs.]
Text	Suggested Text Books:
Books,	1. Separation Processes – C. J. King
and/or	2. Synthetic membranes – P. M. Bungay, H. K. Lonsdale, M. N. de Pinho
reference	Suggested Reference Books:
material	Membrane Separation Processes – KaushikNath
	2. Membrane Hand Book – W. Ho and K. K. Sirkar
	3. Industrial Processing with membranes – R. E. Lacey & S Loeb
	4. Reverse Osmosis – S. Sourirajan
	5. Ultrafiltration Handbook – M. Cheryan
	6. Principles of Mass Transfer and Separation Processes – B. K. Dutta
	7. Membrane Technology in Environmental Pollution Control, P.Pal
	8. Industrial Water Treatment Process Technology, P.Pal, Elsevier Science
	9. Membrane Technology in Environmental Pollution Control. P.Pal

Mapping of CO (Course Outcome) and PO (Programme Outcome)

<u> </u>					<u> </u>							
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	2	2	2	2	2	2	2	1	2	2	1
CO2	3	2	3	2	2	1	1	2	1	2	2	2
CO3	3	2	3	2	2	2	1	2	2	1	1	2
CO4	2	3	2	1	2	1	1	3	2	2	3	2

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium)

	Department of Chemical Engineering											
Course	Title of the course	Program	Total Numbe	Total Number of contact hours								
Code		Core (PCR) /	Lecture (L)	Tutorial	Practic	Total	it					
		Electives		(T)	al (P)	Hour						
		(PEL)				S						
CHE 716	PROCESS	PEL	3	0	0	3	3					
	INTENSIFICATION											
Pre-requisi	ites	Course Assess	Course Assessment methods (Continuous (CT) and end									

Pre-requisites	Course Assessment methods (Continuous (CT) and end
	assessment (EA))
	CT+EA

Course
Outcome
•

• CO1: Understanding the concept, need and benefits of process intensification amidst

- stringent environmental regulations, concerns for energy security and sustainable
- development
- CO2: Learn different approaches of achieving process intensification
- CO3: Learning design, operation, analysis and application of selected process intensification technologies

Topics Module I: Covered Basics of Process Intensification, definitions, routes, benefits, need for process intensification, sustainable development issues [4 hrs.] Module II: Twelve principles of green chemistry. Matrices for chemistry: Effective mass yield, carbon efficiency, atom economy, reaction mass efficiency, Environmental factor (E) [4 hrs.] **Module III:** Process Intensification by Multifunctional equipment, Principles, design, operation and case studies [4 hrs.] Module IV: Process Intensification by reactive distillation: Principles, design, control, feasibility, technical evaluation, case studies [4 hrs.] Module V: Process Intensification by catalytic distillation: Principles, design, operation, application, economics [4 hrs.] Module VI: Process Intensification by Membrane application: principles, modular design issues, energy saving prospects, space-saving prospects, green processing prospects, case studies [4 hrs.] Module VII: Case studies of process intensification in lactic acid manufacture, glutamic acid manufacture, industrial wastewater treatment and reuse, recovery of valuables. [6hrs.] **Module VIII:** Process Intensification through cavitation reactors, oscillatory baffled reactors, sonochemical, hydrodynamic cavitation reactors, case studies [4 hrs.] Module IX: Process Intensification through monolith reactors: Hydrodynamics, design, advantages, applications [4 hrs.] Text Suggested Text Book: Books, Intensification of bio-based processes, A. Gorak, Andrzej Stankiewicz edited. and/or **RSC** publication reference A.Stankiewicz, J.A. Moulijin, Re-engineering the Chemical Processing Plant, material Process intensification, Marcel Dekker, New York (2004) Suggested References Book: 1. Membrane based technologies for environmental pollution control, P.Pal, Elsevier Sci.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	3	3	2	3	3	3	2	3
CO2	3	3	3	1	3	3	2	3	3	3	3	3
CO3	3	3	3	1	3	3	2	3	3	3	3	3

Correlation levels 1, 2 or 3 as defined below:

	D	epartment of Che	mical Engi	neering								
Course	Title of the	Program Core	Total Nu	mber of co	ntact hours		Credit					
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives (PEL)	(L)	(T)	(P)	Hours						
CHE 717	COLLOIDS AND	PEL	3	0	0	3	3					
	INTERFACE											
	ENGINEERING											
Pre-requisi	tes	Course Assessment methods (Continuous (CT), mid-term (MT)										
		and end assessment (EA))										
NIL		CT+MT+EA										
Course	• CO1: Acquire an i	dea about the app	olication of	colloidal	chemistry, fl	uid-fluid	and					
Outcomes	solid-fluid interface	-										
	• CO2: To learn the	fundamental kno	wledge of	intermole	cular forces	involved	in					
	colloids and interfa	aces										
		iction to surface active agent and learn about the application of surface										
	active agents to er	hance the efficien	cy in the p	rocess.								
Topics	Module I:											
Covered	Importance and so	cope of the subjec	t. Overvie	w of collo	idal system	s, interfa	ces and					
	surface.											
	Properties and app				•		•					
	colloidal systems:		entrifugation	on, diffusi	on, Domest	ic and in	dustrial					
	application of collo											
	•		d-fluid and fluid-solid interface, Thermodynamics of interfaces,									
	Interfacial rheolog	y and transport pr	ocess.[10h	rs.]								
	Module II:											
	Surface active age	nt: Surfactant Sur	face and in	nterfacial t	ancion cur	face free	anarav					
	Surface tension for						energy.					
	Theory of surface				•		micalla					
	and mixed micel		_	_	-							
	interfaces, Mixed r			_			ants at					
	Preparation, mech	• •			-		IIR and					
	solubility paramete				ationsinp bi		Ohrs.]					
	30/dbilley paramete	er, eriaracterizatio	п апа Аррі	ication.		[51113.]					
	Module III:											
i	Intermolecular for	ces relevant to co	lloidal syst	tems: Elec	trostatic an	d van de	r Waals					
	forces. DLVO theor		•									
	potential, particle	•	. 4.50				, -,					
1	Module IV											
	Module IV:	trial applications	f various !-	atorfosial :	honomore	in tha in	ductrics					
	Overview of industr	• •		-								
	[Mattress industr											
	industry, Mineral	processing ind	ustry Pes	suciues, I	ıı erigildiliğ,	person	ai care					

	formulations], Super hydrophobic surface and self-cleaning surfaces. Case studies related interfacial science. Application of interfacial engineering concept through the surface modification for the synthesis of nanostructured material by using surface active agent.[12hrs.]
Text Books, and/or reference material	 Suggested Text Books: 1.P. C. Hiemenz, and R. Rajagopalan, Principle of colloid and surface chemistry, 3rd edition, MercelDekher, N. Y. 1997. 2.Pallab Ghosh, Colloid and Interface Science, 1st Edition, PHI Learning, 2009. 3.M. J. Rosen, Surfactants and Interfacial Phenomena, Wiley-Interscience Publication, New York, 2004.
	 Suggested Reference Books: 1.Drew Myers, Surfaces, Interfaces and Colloids, 3rd Edition, Wiley, 2006. 2.Tharwat F. Tadros, Applied Surfactants Principles and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005. 3.J. Israelachvili, Intermolecular and Surface Forces, Academic Press, New York, 1992.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3							2				1
CO2			2		2							1
CO3		2	2					2				

	Dep	artment of Ch	emical Eng	gineering						
Course	Title of the course	Program	Total Nur	nber of cor	ntact hours		Credit			
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total				
		Electives	(L)	(P)	Hours					
		(PEL)	(PEL)							
CHE 718	PINCH	PEL	3	0	0	3	3			
	TECHNOLOGY									
Pre-requisit	Pre-requisites Course Assessment methods (Continuous (CT), mid-term									
		and end asses	ssment (EA	A))						
Heat Transf	⁻ er	CT+EA								
Course	CO1: Identify the min	imum heating	and coolin	g requiren	nents for a p	orocess b	ased on			
Outcomes	thermodynamic know	ledge.								
	CO2: Evaluate lower c	ost solutions fo	or arrangei	ments of he	eat exchang	ers.				
	CO3: Design optimal	heat exchang	gers netwo	orks to im	prove ener	gy recov	ery and			
	global energy efficiency of processes.									
Topics	Module I:									
Covered	Introduction to prod	cess Intensific	ation and	Process	Integration	(PI). A	reas of			

application and techniques available for PI, onion diagram. Introduction to Pinch Technology, Concept of ΔT_{min} , Data Extraction, Composite curve, Grand Composite Curve Targeting, Grid Diagram, Problem Table Algorithm. [4 hrs.]

Module II:

Energy Targeting, Area Targeting, Number of units targeting, Shell Targeting and Cost targeting. [8hrs.]

Module III:

Pinch Design Methods of HEN, Heuristic rules, stream splitting, and design of maximum energy recovery (MER). Use of multiple utilities and concept of utility pinches, Design for multiple utilities pinches, Concept of threshold problems and design strategy. Network evolution and evaluation-identification of loops and paths, loop breaking and path relaxation. [10hrs.]

Module IV:

Design tools to achieve targets, driving force plot, remaining problem analysis, diverse pinch concepts, MCp ratio heuristics. Targeting and designing of HENs. [4 hrs.]

Module V:

Case studies on heat integration by pinch technology. [8hrs.]

Text Books, and/or reference material

Suggested Text Books:

- 1. Ian C. Kemp, Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy, 2nd Edition, ISBN: 9780750682602, Butterworth-Heinemann, 2016.
- 2. Shenoy U. V.; "Heat Exchanger Network Synthesis", Gulf Publishing Co.
- **3.** Linnhoff B., Townsend D. W., Boland D, Hewitt G. F., Thomas B. E. A., Guy A. R., and Marsland R. H.; "A User Guide on Process Integration for the Efficient Uses of Energy", Inst. Of Chemical Engineers.

<u>Suggested Reference Book:</u>

1. Smith R.; "Chemical Process Design", McGraw-Hill.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	-	-	2	-	-	-	-	-	-	-
CO2	3	2	3	2	3	-	-	-	-	-	-	-
CO3	3	1	3	3	3	-	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Department of Chemical Engineering											
Course Code	Title of the course	Program	Total Nur	Total Number of contact hours							
		Core	Lecture	Tutorial	Practical	Total					
		(PCR) /	(L)	(T)	(P)	Hours					
		Electives									
		(PEL)									
CHE 719	ENERGY	PEL	3	0	0	3	3				
	MANAGEMENT AND										
	PROCESS										

	OPTIMIZATION IN CHEMICAL INDUSTRIES						
Pre-requisites	5	Course Asse		•	ontinuous (C	CT), mid-t	erm
		(MT) and er	nd assessm	ent (EA))			
		CT+MT+EA					
Outcomes	 CO1: Acquire an idea abbenchmarking energy int CO2: To learn the step be finding optimization opposition CO3: To learn the fundatechniques to increase presented 	ensity by step methortunities and amental know	odology fo d how to e	r energy a xploit ther	ssessment i n in industr	n industr y.	у,
Covered	Module I: Basic concept and introduce Challenges faces by per performance index method targets for key indicator indicators [10hrs.] Module II: Pinch Technology for hecomposite curve, Pinch to Minimum hot and cold under the exchanger Distillated calculations, understand drop, Improving heat exceptions evaluations, Brainston Distillation operating window, Typical capacity case, Building process since basis, Energy optimization [10hrs.] Module IV: Process optimization in Determine the true benefit of the service optons of the process optimization in Determine the true benefit of the service opportunities.	and process key element brocess energe te, Benchman energy usage ind ,Key indices, Economic into at exchanger emperature, tility target, Co tion system ing performation,Er rming, Energy window,Dist mulation, To on for dist industryColle efit from pro-	optimization for continuity intensity arking energy for and evaluation of the continuity of the contin	on in inductions in inductions improved the content of the content	istry ,Five vovement , To fuel equity, Data at ,Energy Define key indicators ,Indicators ,	vays to in Theory of uivalent extraction balance, indicators, indi	mprove energy ,Energy n from Energy ,Set up ting key hboard. Ind cold ransfer, 2hrs.] The pt and pressure ssment, the based Energy nent perating a base mization hization.

Text
Books,
and/or
reference
material

Suggested Text Books:

- 1. Energy and process optimization for the process industries By Frank (Xin X) Zhu (Wiley, ISBN 978-1-118-10116-2)
- 2. Profit Maximization Techniques for operating Chemical Plants, Sandip Kumar Lahiri, Wiley, ISBN 978-1-119-53215-6

Suggested Reference books:

1. Process Heat Transfer - D.Q.Kern (McGraw-Hill)

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13
CO1	2	2	2	1	2	1	1	2	1	2	2	1	2
CO2	3	3	3	2	3	2	1	3	1	3	3	1	3
CO3	3	3	3	2	3	2	1	3	1	3	3	1	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

EIGHTH SEMESTER

		rtment of Mech	_				T
Course	Title of the course	Program		ı	ntact hours	1	Credit
Code		Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	
CHE810	MULTIPHASE FLOW	PEL	3	0	0	3	3
Pre-requisi	tes	Course Assess assessment (E		nods (Cont	inuous (CT)	and end	
CHC-303 (F	luid Mechanics)	CT+EA					
Course Outcomes	 CO1: To learn funda CO2: To learn trans multiphase flow CO3: To learn different methods in multiph 	port mechanisn	n of multip	hase flow	and industr	ial applic	
	systems: Flow pattern holdup and pressure Martinelli parameters velocity. holdup ratio [7hrs.] Module II: Flow Models:Flow pattransition - momentumodels -correlations fraction and slip rattreatment of two phaannular flows [10hrs.]	drop or volums, Bubble coluns, pressure dro	e fraction, nn and its p and tran cation and balance omogeneo - influen flux mode	Bubble s design a nsport velo classificat - homoge us and se ce of pre el - correl	ize in pipe spects, Minocities and flow peneous and parated flow structure graduations for k	flow, Loo imum ca their pre attern m separate w model ient - e oubble, s	ekchart- arryover ediction. aps and ed flow s - void mpirical lug and
	Module III: Design and Stability (agitated vessels, pactrickle beds), Flow retransfer, reactions, Ap	ked bed, fluidiz egimes, pressu	zed bed, p re drop, h	neumatic oldup, di	conveying,	bubble of mass ar	column,
	Module IV: Measurement techn multiphase flow: Con systems (Laser [10hrs.]	ventional and	•	surement	techniques	for mu	

	Module V:
	Hydrodynamics of three phase systems:An introduction of three phase flow; liquid –
	solid flow, gas-solid flow; liquid-liquid-gas flow; gas-liquid-solid flow; principle of
	hydraulic and pneumatic transportation; flow regime identification; related
	measurement techniques. [5hrs.]
Text	Suggested Text Books
Books,	1. Clift, R., Weber, M.E. and Grace, J.R., Bubbles, Drops, and Particles, Academic Press,
and/or	New York, 1978.
reference	2. Y. T. Shah, Gas-Liquid-Solid reactors design, McGraw Hill Inc, 1979
material	3. Fan, L. S. and Zhu, C., Principles of Gas-solid Flows, Cambridge University Press,
	1998
	4. Govier, G. W. and Aziz. K., "The Flow of Complex Mixture in Pipes", Van Nostrand
	Reinhold, New York, 1972.
	Suggested Reference Books
	1. Wallis, G.B., "One Dimensional Two Phase Flow", McGraw Hill Book Co., New York,
	1969.
	2. Crowe, C. T., Sommerfeld, M. and Tsuji, Y., Multiphase Flows with Droplets and
	Particles, CRC Press, 1998
	3.Kleinstreuer, C., Two-phase Flow: Theory and Applications, Taylor & Francis, 2003
	Rhodes, M., Introduction to Particle Technology, John Wiley & Sons, New York.
	1998.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

<u> </u>					<u> </u>							
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		1		1					1		
CO2				1				1		1		
CO3	3		1	1		1		1	1	1		

	Department of Chemical Engineering										
Course	Title of the course	Program	Total Nu	mber of co	ntact hours		Credit				
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total					
		Electives (PEL)	(L)	(T)	(P)	Hours					
CHE 811	PROCESS ANALYSIS	PEL	3	0	0	3	3				
	AND OPTIMIZATION										
Pre-requisit	ces	Course Assess		•	tinuous (CT)), mid-ter	m (MT)				
MAC01, MA	AC02, CHS351	CT+MT+EA									
Course	ourse • CO1: Conceptualization of a chemical process and its needs										
Outcomes	• CO2: Solving materia	al and heat balance for a large-scale process									
CO3: Understanding process synthesis											

	CO4: Solving optimal design and control problems simultaneously
_	CO5: Real time optimization techniques and their implementations
Topics	Module I:
Covered	Cramer's rule, Inverse of matrix, Gauss elimination, Gauss Jordan method, LU
	decomposition, Gauss Seidel method, error analysis, Linear regression. [9hrs.]
	Module II:
	Bisection method, successive substitution method, Newton-Raphson method, Secant
	method, Eigen values, Eigen vectors and its application in solving differential
	equations. [10hrs.]
	Module III:
	Multi-variable optimization algorithms: Unidirectional search, Direct search methods,
	Gradient based methods, Constrained optimization algorithms: Kuhn-Tucker
	conditions, Transformation methods. [8 hrs.]
	Module IV:
	Sensitivity analysis, Direct search for constrained minimization, Linearized search
	techniques, Feasible direction method, Generalized reduced gradient method,
	Gradient projection method.
	[6hrs.]
	Module V:
	ODE- Initial Value Problem, Boundary Value Problem, Specialized algorithms: Integer
	programming, Geometric programming, Nontraditional optimization algorithms:
	Genetic algorithms, Simulated annealing, Global optimization. [5hrs.]
Text	Suggested Text Books:
Books,	1. Steven C. Chapra& Raymond P. Canale, "Numerical methods for engineers"
and/or	McGraw-Hill, Sixth Edition
reference	2. S. K. Gupta, "Numerical Techniques for Engineers", New Age International
material	Publishers, 3 rd edition, 2015
	3. Deb K., Optimization for engineering design, Algorithms and examples, Prentice
	Hall of India, New Delhi, 2005.
	Suggested Reference Books: 1. S. Dutta, "Optimization in Chemical Engineering", Cambridge University Press,
	2017
	2. Mathematical Methods in Chemical & Environmental Engineering: Ajay K. Ray,
	Thomson Learning, 2000.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	1	1		3			2	2		3	
CO2	3	1	1		3			3	1		2	
CO3	3	1	1		3			3	1		2	
CO4	3	1	1		3			3	1	_	2	
CO5	3	1	1		3			3	1	2	2	

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program	Total Nu	Credit								
Code		Core (PCR)	Lecture	Tutorial	Practical	Total						
		/ Electives	(L)	(T)	(P)	Hours						
		(PEL)										
CHE 812	BOILING HEAT	PEL	3	0	0	3	3					
	TRANSFER											
Pre-requis			Course Assessment methods (Continuous (CT) and end									
	tical methods, Transport	assessment	assessment (EA))									
Phenomer	na, Heat transfer											
		CT+EA										
Course	• CO1: Concept of a var	oor bubbles										
Outcomes	◆CO2: Understanding r	micro-convect	tion of hea	t								
	• CO3: Computing boili	ng regimes ar	nd heat tra	nsfer coef	ficients							
Topics	Module I:											
Covered	Concept of a vapor bul	bbles : Boiling	g; Bubbles;	growth m	nechanisms;	modelin	g issues					
	for pool boiling and flo	w boiling.				[10hr	s.]					
	Module II:											
	Boiling regimes and he	at transfer co	efficients									
	Various boiling regime	es; determin	ation of I	neat trans	fer coeffici	ents; su	bcooled					
	boiling; saturated/bulk	boiling; [10h	rs.]									
	Module III:											
	Interfacial Instabilities	and Flow Inst	abilities in	Boiling								
	Types of interfacial	instabilities	and flo	w instab	ilities; the		-					
	consequences.					[10hrs	5.]					
	Module IV:											
	Condensation: Collaps	•	bubbles; t	heir mecl	nanism; coi	ndensatio	on heat					
	transfer coefficients.[1	-										
	Course Assessment Mo	ethod: The th	eory perfo	rmance of	students a	re evalua	ted					
Text Book												
and/or	1. John G. Collier, John	R. Thome, Co	onvective I	Boiling and	d Condensat	ion, Clar	endon					
reference	· ·	Press, 1994										
material	2. LS Tong, YS Tang, I	_	ransfer An	id Two-Pha	ase Flow, CF	RC Press,	1997					
	Suggested Reference B											
	1. R.T. Lahey, Boiling H	leat Transfer,	ELSEVIER,	1992								

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	1						1	
CO2	3	2	1	1	1						1	
CO3	3	2	1	1	1						1	

	Dep	artment of Che	mical Engi	neering							
Course	Title of the course	Program	Total Nur	nber of co	ntact hours		Credit				
Code		Core (PCR)	Lecture	Tutorial	Practical	Total					
		/ Electives	(L)	(T)	(P)	Hours					
		(PEL)									
CHE	CFD APPLICATIONS IN	PCR	3	0	0	3	3				
813	CHEMICAL ENGINEERING										
Pre-requ	uisites	Course Asses	Course Assessment methods (Continuous (CT), mid-term								
		(MT) and end	d assessme	ent (EA))							
MAC 33	1, CHC 303	CT+MT+EA									
Course	• CO1: To learn basics	of continuum-	based mod	lelling and	simulation;	Its area	of				
Outcom	es applications and limita	ations									
	• CO2: To learn differ	ent discretizati	on method	ls of contir	nuum based	governir	ng				
	equations										
	• CO3: To learn difference	ent steps of CFE) simulatio	ns							
	CO4: To learn the us		•	•							
Topics		•	n to Computational Fluid Dynamics, Conservation Equations,								
Covered		nt Numerical methods and their comparison; Finite Difference									
		e Method, Finite Element Method, etc. Source terms and their									
		of discretized equations. [12hrs.] mass and energy equations:Solution of diffusive problems:									
	Steady 1D, Steady 2D	•	•	•		-					
	unsteady problems, S			=	iems: Stead	y and un	steady				
	problems; Different so	•	-	18hrs.]	MIDIED CIM	וחו בכ מומי	ori+hmoc				
	Module III: Solution o	i momentum e	quations. :	SIIVIPLE, SII	IVIPLER, SIIVI	PLEC algo	DITUTITIS				
Text	Suggested Text Books	•									
Books,	1. Numerical heat tran	=	low by S V	Patankar	Hemisnher	e Puhlish	ing				
and/or	Corporation, 1980.	s.c. and naid i		. acarikar,	. remisprier	C 1 4011311	סיייי				
reference	· ·	putational Flui	d Dvnamic	s bv Anil V	V. Date. Can	nbridge					
materia		•	•								
	Suggested Reference	•									
		id Dynamics and Heat Transfer by P. S. Ghosh Dastidar,									
	Cengage India Priv	•									

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	2			3			2			3	
CO2	3	2			3						3	
CO3	3	3			3						3	
CO4	3	3			3			2		2	3	

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

		Departr	ment of Che	emical Eng	ineering						
Course	Titl	le of the course	Program	Total Nur	mber of co	ntact hours		Credit			
Code			Core	Lecture	Tutorial	Practical	Total				
			(PCR) /	(L)	(T)	(P)	Hours				
			Elective								
			s (PEL)								
CHE 814	NA	NOTECHNOLOGY	PEL	3	0	0	3	3			
Pre-requis	ites		Course As	sessment	methods (0	Continuous	(CT), mid	-term			
			(MT) and	end assess	ment (EA)						
NIL			CT+MT+E	A							
Course		◆CO1: Acquire the con	cept of nar	notechnolo	ogy at the b	asic level to	apply fo	r			
Outcomes		different application.									
		■ CO2: Acquire the con	cept of syn	thesis and	l characteri	zation of na	nomater	ials.			
		• CO3: Acquire the idea	a how to apply nanotechnology in different fields (catalysis,								
		energy and environme	nt) for better efficiency.								
Topics		Module I: Introduction to the physics of solid state.									
Covered		Structure and bonding				_					
		Module II: Synthesis o			•		•				
		' '	Methods, Chemical Methods & Biological Methods.								
		•	al, Thermal, Electrical & Optical properties. [10hrs.]								
			ization techniques of nanomaterials: Spectroscopy, XRD, EM. Some special nanomaterials: Carbon nanotubes, Porous								
			•								
		silicon, Zeolites, Aerog				=					
		Module IV: Applicatio									
		Nanocomposites, Na environment application	=		=	-		gy and			
Text Books	-	Suggested Text Books:		ii tities iii t	Jonneulcai	аррпсацоп	[121113.]				
and/or	۰,	1.T. Pradeep, Nano:	-"	ntials IIn	derstandir	na Nanoscii	anca an	d Nano			
reference		Technology, Tata Mo				_					
material											
		2. Nanotechnology: Principles & Practices; Sulabh K. Kulkarni, Capital Publishing Company, Kolkata									
		Suggested Reference E	Books:								
			echnology: N. Phanikumar; Scitech, Kolkata								
		•	otechnology: Charles P. Poole & Frank Li Owens, Wiley India								
	(p) Ltd, New Delhi						•	•			

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3			1	2							
CO2		2										2
CO3			3		2			3				

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)