NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR

CURRICULUM

OF

BACHELOR OF TECHNOLOGY IN METALLURGICAL AND MATERIALS ENGINEERING

2017 ONWARD UNDERGRADUATE ADMISSION BATCH

V0:

Resolution of 50th Senate	18-05-2018	ltem no: 50.7
Resolution of 51st Senate	04-10-2018	ltem no: 51.2
Resolution of UGAC meeting	10-05-2019	
Final approval in 53rd Senate	13-05-2019	ltem no: 52.3
Publication date	30-05-2019	

V1:

Incorporation of new elective subjects	27-06-2019
--	------------

V2:

Rectification of minor errors	UGAC 31-08-2022
-------------------------------	-----------------

Final Approval in 67th Senate dated 20/09/2022 vide Item no: # 67.3

DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING

Program Name: Bachelor of Technology in Metallurgical and Materials

Engineering

DETAILED CURRICULUM

CURRICULUM OF 2021 ONWARD UNDERGRADUATE ADMISSION BATCH FOR METALLURGICAL AND MATERIALS ENGINEERING - B.TECH.

L= Lecture hour/ week; T= Tutorial hour/ week; S= Sessional/ practical hour/ week C= Subject credit point; H= Subject contact hour/ week.

Sem	nester - I						
SI. No	Code	Subject	L	т	S	С	н
1	MAC01	Mathematics - I	3	1	0	4.0	4
2	PHC01	Engineering Physics	2	1	0	3.0	3
3	CYC01	Engineering Chemistry	2	1	0	3.0	3
4	XEC01	Engineering Mechanics	2	1	0	3.0	3
5	ESC01	Environmental Science	2	0	0	2.0	2
6	XES51	Engineering Graphics	1	0	3	2.5	4
7	HSS51	Professional Communication Laboratory	1	0	2	2.0	3
8	PHS51	Physics Laboratory	0	0	2	1.0	2
9	CYS51	Chemistry Laboratory	0	0	2	1.0	2
10	WSS51	Workshop Practice	0	0	3	1.5	3
11	XXS51	Co-curricular Activities - I	0	0	2	1.0	2
		TOTAL	13	4	14	24.0	31
Sem	ester - II						
SI. No	Code	Subject	L	т	S	С	н
1	MAC02	Mathematics - II	3	1	0	4.0	4
2	CSC01	Introduction to Computing	2	1	0	3.0	3
3	ECC01	Basic Electronics	2	1	0	3.0	3
4	EEC01	Electrical Technology	2	1	0	3.0	3
5	BTC01	Life Science	2	0	0	2.0	2
6	XXC01	Constitution of India and Civic Norms	1	0	0	1.0	1
7	XES52	Graphical Analysis using CAD	0	0	2	1.0	2
8	CSS51	Computing Laboratory	0	0	2	1.0	2
9	ECS51	Basic Electronics Laboratory	0	0	2	1.0	2
10	EES51	Electrical Technology Laboratory	0	0	2	1.0	2
11	XXS52	Co-curricular Activities - II	0	0	2	1.0	2
		TOTAL	12	4	10	21.0	26

Sem	ester - III						
SI.	Code	Subject	L	Т	S	С	Н
1	MAC331	Mathematics- III	3	1	0	4.0	4
2	MMC301	Metallurgical Thermodynamics and Kinetics	3	1	0	4.0	4
3	MMC302	Introduction of Metallurgy and Materials	3	1	0	4.0	4
4	MMC303	Non - Ferrous Process Metallurgy	3	1	0	4.0	4
5	ESC332	Economic Geology	3	0	0	3.0	3
6	ESS382	Economic Geology Laboratory	0	0	3	1.5	3
7	MMS351	Metallurgical Thermodynamics and Kinetics Laboratory	0	0	3	1.5	3
8	XXS381	Co-curricular Activities - III (Optional)	0	0	0	0.0	0
		TOTAL	15	4	6	22.0	25
Sem	ester - IV						
SI.	Code	Subject	L	Т	S	C	Н
1	MMC401	Transport Phenomena in Metallurgical Processes	3	1	0	4.0	4
2	MMC402	Phase Transformation and Phase Equilibria	3	1	0	4.0	4
3	MMC403	Materials Characterization		1	0	4.0	4
4	YYO44*	Open Elective - I	3	0	0	3.0	3
5	CSC433	Data Structures	3	0	0	3.0	3
6	CSS483	Data Structures Laboratory	0	0	3	1.5	3
7	MMS451	Transport Phenomena Laboratory	0	0	3	1.5	3
8	MMS452	Phase Transformation and Phase Equilibria Laboratory	0	0	3	1.5	3
9	XXS481	Co-curricular Activities - IV (Optional)	0	0	0	0.0	0
		TOTAL	15	3	9	22.5	27
Sem	nester - V					_	
SI.	Code	Subject	L	Т	S	C	Н
1	MMC501	Manufacturing Processes	3	1	0	4.0	4
2	MMC502	Heat Treatment of Materials	3	1	0	4.0	4
3	MMC503	Fundamentals of Plastic Deformation and	3	1	0	4.0	4
,	1011010505	Strengthening of Materials		-	Ŭ	4.0	-
4	MMC504	Iron Making	3	1	0	4.0	4
5	YYO54*	Open Elective - 2	3	0	0	3.0	3
6	MMS551	Manufacturing Processes Laboratory - I	0	0	3	1.5	3
7	MMS552	Heat Treatment of Materials Laboratory	0	0	3	1.5	3
8	MMS553	Plastic Deformation and Strengthening of Materials Laboratory	0	0	3	1.5	3
9	XXS581	Co-curricular Activities - V (Optional)	0	0	0	0.0	0
		TOTAL	15	4	9	23.5	28

Sem	ester - VI						
SI.	Code	Subject	L	Т	S	С	Н
1	HSC631	Economics and Management Accountancy	3	0	0	3.0	3
2	MMC601	Steel Making	3	1	0	4.0	4
3	MMC602	Mechanical Working of Materials	3	0	0	3.0	3
4	MME610	Depth Elective - 1300		3.0	3		
5	MME610	Depth Elective - 2 3 0 0		0	3.0	3	
6	MMS651	Mineral Beneficiation Laboratory	0	0	3	1.5	3
7	MMS652	Mechanical Working of Materials Laboratory	0	0	3	1.5	3
8	MMS653	Material Characterization Laboratory -I	0	0	3	1.5	3
9	XXS681	Co-curricular Activities - VI (Optional)	0	0	0	0.0	0
		TOTAL	15	1	9	20.5	25
Sem	ester - VII						
SI. No	Code	Subject	L	т	S	С	н
1	MSC731	Principles of Management	3	0	0	3.0	3
2	MME710	Depth Elective - 3	3	0	0	3.0	3
3	MME710	Depth Elective - 4	3	0	0	3.0	3
4	MME710	Depth Elective - 5	3	0	0	3.0	3
5	YYO74*	Open Elective - 3	3	0	0	3.0	3
6	MMS751	Manufacturing Processes Laboratory - II	0	0	3	1.5	3
7	MMS752	Material Characterization Laboratory -II	0	0	3	1.5	3
8	MMS753	Ferrous Process Metallurgy Laboratory	0	0	3	1.5	3
9	MMS754	Vocational Training / Summer Internship and Seminar	0	0	2	1.0	2
10	MMS755	Project - I	0	0	3	1.0	3
		TOTAL	15	0	14	21.5	29
Sem	ester - VIII						
SI. No	Code	Subject	L	т	S	С	н
1	MME810	Depth Elective - 6	3	0	0	3.0	3
2	YYO84*	Open Elective - 4	3	0	0	3.0	3
3	YYO85*	Open Elective - 5	3 0 0 3.0		3.0	3	
4	MMS851	Project - II	0	0	15	5.0	15
5	MMS852	Project Seminar	0	0	0	1.0	0
6	MMS853	Viva Voce	0	0	0	1.0	0
		TOTAL	9	0	15	16.0	24

CREDIT UNIT OF THE PROGRAM:

	Semester	+	III	IV	V	VI	VII	VIII	TOTAL
	Credit Unit	45.0	22.0	22.5	23.5	20.5	21.5	16.0	171.0
D -									

DEPTH ELECTIVE COURSE BASKETS

THE STUDENTS PRIMARILY WILL OPT FROM THE DEPTH ELECTIVE SUBJECT(S) THAT ARE OFFERED IN A PARTICULAR SEMESTER BY HIS/ HER OWN DEPARTMENT. HOWEVER, A STUDENT CAN OPT FOR DEPTH ELECTIVE SUBJECT(S) THAT ARE OFFERED BY OTHER DEPARTMENT IN A PARTICULAR SEMESTER, WITH THE PERMISSION/ CONSENT FROM HIS/ HER HEAD OF THE DEPARTMENT AND THE CONCERNED TEACHER OF THAT SUBJECT.

6th Semester

	DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING
MME610	Engineering Materials
MME611	Electronic and Thermal Properties of Materials
MME612	Alternative Routes of Iron Making
MME613	Production of Ferroalloys
MME615	Ceramic Technology
MME616	Solidification Phenomena
MME617	Metal Joining Processes

7th Semester

	DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING
MME710	Functional Materials
MME711	Fatigue, Creep and Fracture
MME712	Computational Materials Engineering
MME713	Fuel, Furnace and Refractories
MME714	Powder Metallurgy
MME715	Secondary Steel Making
MME716	Composite Materials
MME717	Corrosion Engineering
MME718	Energy and Environment in Metallurgical Industries

8th Semester

	DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING
MME810	Nano Science and Technology
MME811	FEM Modelling and Simulation for Materials Design
MME812	Mathematical Modelling and Simulation
MME813	Raw Materials Preparation for Iron and Steel Making

DETAILED SYLLABUS FIRST SEMESTER

Sen	nester - I						
SI. No	Code	Subject	L	т	S	С	н
1	MAC01	Mathematics - I	3	1	0	4.0	4
2	PHC01	Engineering Physics	2	1	0	3.0	3
3	CYC01	Engineering Chemistry	2	1	0	3.0	3
4	XEC01	Engineering Mechanics	2	1	0	3.0	3
5	ESC01	Environmental Science	2	0	0	2.0	2
6	XES51	Engineering Graphics	1	0	3	2.5	4
7	HSS51	Professional Communication Laboratory	1	0	2	2.0	3
8	PHS51	Physics Laboratory	0	0	2	1.0	2
9	CYS51	Chemistry Laboratory	0	0	2	1.0	2
10	WSS51	Workshop Practice	0	0	3	1.5	3
11	XXS51	Co-curricular Activities - I	0	0	2	1.0	2
		TOTAL	13	4	14	24.0	31

	Department of Mathematics							
Course	Title of the course	Program	Tota	l Number c	of contact he	ours	Credit	
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total		
		Electives	(L)	(T)	(P)	Hours		
		(PEL)						
MAC 01	MATHEMATICS - I	PCR	3	1	0	4	4	
F	re-requisites	Course Assess	ment meth	nods (Conti	nuous (CT),	mid-tern	ו (MT)	
		and end asses	sment (EA))				
Basic conc	epts of function, limit,	CT+MT+EA						
differentia	ation, and integration.							
Course	CO1: To introdu	ice the fundame	entals of d	ifferential o	calculus of s	ingle and	several	
Outcome	comes variables							
	CO2: To develop the basic concepts of integral calculus including multiple							
	integrals and it	s application in	finding ar	rea, volum	e, centre of	^a mass, ce	entre of	
	gravity etc.							
	CO3: To introdu	ice the fundame	ental conce	epts of vect	or calculus			
	CO4: To develop	o the concept o	f converge	nce				
Topics	Functions of Single	e Variable: Rolle	e's Theorer	n and Lagra	ange's Mea	n Value T	heorem	
Covered	(MVT), Cauchy's N	1VT, Taylor's a	nd Maclau	ırin's serie	s, Asympto	tes & Ci	urvature	
	(Cartesian, Polar fo	rm).	(8)					
	Functions of seve	ral variables: F	unction o	f two varia	ables, Limit	, Continu	uity and	
	Differentiability, F	Partial derivati	ves, Parti	al derivat	ives of ir	nplicit f	unction,	
	Homogeneous fur	iction, Euler's	theorem	and its c	onverse, E	kact diffe	erential,	
	Jacobian, Taylor's	& Maclaurin's	rin's series, Maxima and Minima, Necessary and					
	sufficient conditio	n for maxima	ima and minima (no proof), Stationary points,					
	Lagrange's method	of multipliers.		(10)				
	Sequences and Ser	ries: Sequences	, Limit of a	Sequence	and its pro	perties, S	eries of	
	positive terms, Nec	essary conditio	n for conve	ergence, Co	omparison t	est, D Ale	mbert's	

	ratio test, Cauchy's root test, Alternating series, Leibnitz's rule, Absolute and conditional convergence. (6)
	Integral Calculus: Mean value theorems of integral calculus, Improper integral and
	it classifications, Beta and Gamma functions, Area and length in Cartesian and polar
	forms. (12)
	Multiple Integrals: Double integrals, Evaluation of double integrals, Evaluation of
	triple integrals, change of order of integration, Change of variables, Area and
	Volume by double integration, volume as a triple integral. (10)
	Surface integral, Volume integral, Gradient, Curl, Divergence, Green's theorem in the
	plane (including vector form), Stokes' theorem, Gauss's divergence theorem and
	their applications. (10)
Text Books,	Text Books:
and/or	1. E. Kreyszig, Advanced Engineering Mathematics: 10th ed., Wiley India Ed. (2010).
reference	2. Daniel A. Murray, Differential, and Integral Calculus, Fb & c Limited, 2018.
material	3. Marsden, J. E; Tromba, A. J.; Weinstein: Basic Multivariable Calculus, Springer,
	2014.
	Reference Books:
	1. Tom Apostal, Calculus-Vol-I & II, Wiley Student Edition, 2011.
	2. Thomas and Finny: Calculus and Analytic Geometry, 11th Ed., Addison Wesley.

	mapping of co (course outcome) and to (trogramme outcome)												
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
MAC01	CO1	2	3	2	3	1	1	-	-	1	1	1	2
	CO2	2	3	2	3	-	1	-	-	1	1	2	2
	CO3	2	3	2	3	-	1	1	-	-	2	2	2
	CO4	3	3	2	3	1	1	-	1	-	2	1	2

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Total Nur	nber of con	tact hours		Credit					
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P)	Hour						
		(PEL)				S						
PHC01	Engineering	PCR	2	1	0	3	3					
	Physics											
Pre-requi	sites:	tes: Course Assessment methods: (Continuous (CT), mi										
		end assessmer	nt (EA))									
NIL		CT+MT+EA										
Course	CO1: To realize a	and apply the fu	undamental	concepts o	of physics su	uch as su	uperposition					
Outcomes	principle, simple	harmonic motior	n to real wor	ld problem	s.							
	CO2: Learn abou	t the quantum p	henomenor	n of subato	mic particles	s and its	applications					
	to the practical fi	to the practical field.										
	CO3: Gain an int	CO3: Gain an integrative overview and applications of fundamental optical phenomena										
	such as interferer	such as interference, diffraction and polarization.										
	CO4: Acquire bas	sic knowledge re	elated to th	e working	mechanism	of laser	s and signal					

	propagation through optical fibers.
Topics Covered	Harmonic Oscillations - Linear superposition principle, Superposition of two perpendicular oscillations having same and different frequencies and phases, Free, Damped and forced vibrations, Equation of motion, Amplitude resonance, Velocity resonance, Quality factor, sharpness of resonance, etc. [8] Wave Motion - Wave equation, Longitudinal waves, Transverse waves, Electro-magnetic
	Waves.[3]Introductory Quantum Mechanics - Inadequacy of classical mechanics, Blackbody radiation, Planck's quantum hypothesis, de Broglie's hypothesis, Heisenberg's uncertainty principle and applications, Schrodinger's wave equation and applications to simple problems: Particle in a one-dimensional box, Simple harmonic oscillator, Tunnelling effect.Interference & Diffraction - Huygens' principle, Young's experiment, Superposition of waves, Conditions of sustained Interference, Concepts of coherent sources, Interference by division of wavefront, Interference by division of amplitude with examples, The
	 Polarisation - Polarisation, Qualitative discussion on Plane, Circularly and elliptically polarized light, Malus law, Brewster's law, Double refraction (birefringence) - Ordinary and extra-ordinary rays, Optic axis etc.; Polaroid, Nicol prism, Retardation plates and analysis of polarized lights. [5] Laser and Optical Fiber - Spontaneous and stimulated emission of radiation, Population inversion, Einstein's A & B co-efficient, Optical resonator and pumping methods, He-Ne laser. Optical Fibre– Core and cladding, Total internal reflection, Calculation of numerical aperture and acceptance angle, Applications. [5]
Text	TEXT BOOKS:
Books.	1. The Physics of Vibrations and Wayes, H. John Pain, Willy and Sons
and/or	2. A Text Book of Oscillations and Waves, M. Goswami and S. Sahoo, Scitech
reference	Publications
material	3. Engineering Physics, H. K. Malik and A. K. Singh, McGraw-Hill.
	REFERENCE BOOKS:
	1. Vibrations and Waves in Physics, Iain G. Main, Cambridge University Press
	2. Quantum Physics, R. Eisberg and R. Resnick, John Wiley and Sons
	3. Fundamental of Optics, Jankins and White, McGraw-Hill
	4. Optics, A. K. Ghatak, Tata McGraw-Hill
	5. Waves and Oscillations, N. K. Bajaj, Tata McGraw-Hill
	6. Lasers and Non-linear Optics, B. B. Laud, New Age International Pvt Lt

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
DUC01	CO1	3	2	1	1	1	-	-	1	-	-	-	1
	CO2	3	2	-	2	-	-	-	-	-	-	-	1
PHCUI	CO3	3	2	2	2	1	1	1	1	1	-	1	1
	CO4	3	2	2	2	1	1	1	-	1	-	1	1

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program Core	Total	Number of	of contact he	ours	Credit					
Code	course	(PCR) /	Lecture	Tutori	Practical	Total						
		Electives (PEL)	(L)	al (T)	(P)	Hours						
CYC 01	Engineering	PCR	2	1	0	3	3					
	Chemistry											
Pr	e-requisites	Course Assessn	nent metho	ds (Contin	uous (CT), m	nid-term (MT) and					
			end	assessme	nt (EA))							
	None			CT+MT+E	ΕA							
Course	• CO1: I	ntroduced to chemi	cal therm	odynamics	s, kinetics,	electro	chemistry,					
Outcome	es absorpt	on, and catalytic proce	sses for eng	ineering a	pplications							
	• CO2: To	learn fundamentals of	polymer ch	emistry ar	nd petroleun	n enginee	ring.					
	 CO3: Int 	roduced to basic spect	roscopic teo	chniques f	or structure	determin	nation and					
	characte	erization.										
	• CO4: To	study few inorganic an	d bioinorga	nic compo	ounds of indu	ustrial im	portance.					
Topics	ORGANIC C	HEMISTRY										
Covered	l i. Fund	amentals of organic re	eaction me	chanisms;	Few impor	tant read	ctions and					
	their	mechanism along	with thei	r applica	itions; Rob	inson a	nnulation,					
	Hydr	Hydroboration reaction, Organometallic reagents (Gilman reagents), M										
	using	Grubb's catalyst and V	Vittig reaction	on. (3)								
	ii. Fund	amental concept on s	tereochemi	stry and	application:	Conform	ation and					
	confi	guration of organic	compounds	, Diastere	eo-selective,	enantio	-selective,					
	regio	-selective, stereo-speci	fic, and ster	eo-selecti	ve reactions	. (3)						
	iii. Polyr	ner chemistry and poly	nemistry and polymer engineering: Fundamental concept on polymer									
	chem	istry; synthesis and ap	plication of	importan	t polymers,	Rubber, a	and plastic					
	mate	rials. Conducting polyn	ner. (2)									
	iv. Petro	eum Engineering and oil refinery: origin of mineral oils, separation										
	princ	nciple and techniques of distillation of crude oil, Uses of different fractions,										
	octar	e number, cetane number, Knocking, anti-knock compounds, and Bio-Fuel.										
	(2)											
	v. Struc	ture elucidation of org	anic compo	unds by n	nodern spec	troscopic	methods;					
	Appli	cation of UV-Visible an	d FT-IR spec	troscopy.	(3)							
	INORGANIC	CHEMISTRY										
	i. Coor	dination Chemistry: C	Crystal Field	Theory	of octahedr	al and t	etrahedral					
	comp	lexes, colour and mag	netic prope	rties, Jahn	-Teller disto	rtion, pse	udo Jahn-					
	Telle	^r distortion, Isomerism,	and stereo	chemistry	. (5)							
	ii. Bioin	organic Chemistry:	Heme an	id non-h	eme O ₂	transport	t protein					
	(Hae	noglobin, Myoglobin),	Chlorophyll	and photo	osynthesis. (3)						
	iii. Inorg	anic Materials: Intro	duction to	wards ind	dustrially in	nportant	inorganic					
	mate	rials like cementing	material, r	efractory	material, f	fertiliser,	inorganic					
	polyr	ner. (2)	!)									
	iv. Orga	nometallic Chemistry:	π-acid liga	nds, stabil	lization of n	netal low	oxidation					
	state	and 18 electron ru	les, metal	carbonyl	s and nitro	osyls, me	tal-alkene					
	comp	olexes. (4)										
	PHYSICAL CH	IEMISTRY										
	i. Ther	nodynamics: 2nd law	of thermo	odynamics	, entropy,	free ene	rgy, Gibbs					
	Helm	holtz equation, change	e of phase.	Cryogenie	cs: joule The	omson ex	operiment.					
	(4)		_ . .									
	ii. Chen	nical Kinetics: 2nd and	3rd order ra	ate expres	sion, Revers	ible react	ion, Chain:					
	react	ion. Consecutive reacti	on. Temp ef	fect on re	action rate.	(4)						

	iii. Electrochemistry: Electrochemical cell, Effect of pH, precipitation, and complex formation on EME of oxidation/reduction processes (2)
	iv Abcorntion: Deviced and Chemical abcorntion. Abcorntion isotherms. (1)
	Ausorption. Physical and Chemical absorption, Absorption isothermis. (1)
	v. Catalysis: Types of catalysis, Rate expression for Catalysed reaction, Acid-base
	and Enzyme catalysis. (2)
Text	Suggested Text Books:
Books,	(i) Physical Chemistry by P. Atkins, Oxford
and/or	(ii) A guidebook to mechanism in Organic chemistry: Peter Sykes; Pearson Edu.
reference	(iii) Inorganic Chemistry Part-I & II, R. L. Dutta, The new book stall
material	Suggested Reference Books:
	Organic Chemistry:
	(i) Basic stereochemistry of organic molecules: S. Sengupta; Oxford University press
	(ii) Engineering Chemistry: Wiley
	(iii) Elementary Organic Spectroscopy: William Kemp, ELBS with Macmillan
	Inorganic Chemistry:
	(i) Inorganic Chemistry: Principle structure and reactivity, J. E. Huheey, E. A. Keiter and
	R. L. Keiter, Pearson Education
	(ii) Bioinorganic Chemistry Inorganic Elements in the Chemistry of Life: An
	Introductionand Guide, 2nd Edition, Wolfgang Kaim, Brigitte Schwederski, Axel Klein.
	(iii) Inorganic Chemistry Fourth Edition, Shriver & Atkins, Oxford
	Physical Chemistry:
	(i) Physical Chemistry by G.W Castellan
	(ii) Physical Chemistry by P. C. Rakshit
1	

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12
CYC 01	CO1	1	2	-	-	-	-	-	-	-	-	-	-
	CO2	1	-	-	-	-	-	2	-	-	-	-	-
	CO3	1	2	1	1	1	-	-	-	-	-	-	-
	CO4	-	1	-	-	2	-	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tota	l Number o	of contact ho	ours	Credit					
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P) [#]	Hours						
		(PEL)										
XEC01	ENGINEERING	PCR	2	1	0	3	3					
	MECHANICS											
Pr	e-requisites	Course Asse	essment m	ethods (Coi	ntinuous (Cl	Г), mid-te	rm (MT)					
		and end assessment (EA))										
		CT+MT+EA										
Course	CO1: Acqu	ire knowledge o	f mechanio	s and abilit	y to draw fr	ree body	diagrams.					
Outcom	es 🔹 CO2: Apply	/ knowledge of r	mechanics	for solving	special prob	olems like	e truss and					
	frame ana	ysis.										
	CO3: Abilit	y to calculate ce	ntroid, mo	ments of ir	nertia for va	rious sha	pes.					
	CO4: Learr	CO4: Learn momentum and energy principles.										
	CO5: Know	CO5: Knowledge on virtual Work Principle and its application										
Topics	Engineering Mo	Engineering Mechanics; measurement and SI units. [1]										
Covere	d Vectors and fo	rce as a vector;	Resultant	of a syste	m of forces	on a pai	rticle; free					

	body diagram and conditions of equilibrium of a particle; problems on particles;
	equilibrium of particles in space. [2]
	Resultant of a system of forces and couples on a rigid body; conditions of
	equilibrium of a rigid body; free body diagrams of rigid bodies subjected to
	different types of constraints; simple space problems of rigid bodies. [4]
	Coefficients of static and kinetic friction; problems involving friction; theories of
	friction on square threaded power screw and flat belt. [5]
	Simple trusses; analysis of trusses by method of joints and method of sections. [5]
	Centre of gravity and centre of mass; centroids of lines, curves and areas; first
	moment of area; second moment of area; polar moment of inertia; radius of
	gyration of an area; parallel axis theorem; mass moment of inertia. [4]
	Path, velocity, acceleration; rectilinear and curvilinear motion; motion of system of
	particles; introduction to the concept of plane kinematics of rigid bodies. [6]
	Newton's second law of motion; dynamic equilibrium and D'Alembert's principle;
	linear momentum; angular momentum; rectilinear and curvilinear motion;
	principles of work-energy and impulse-momentum; impact of system of particles;
	introduction to the concept of plane kinetics of rigid bodies. [12]
	Principle of Virtual Work, Solution of Problems on Mechanics using Principle of
	Virtual Work [3]
Text Books,	1) S P Timoshenko and D H Young, Engineering Mechanics, 5 th Edition
and/or	2) J L Meriam and L G Kraige, Engineering Mechanics, 5 th Edition, Wiley India
reference	3) F P Beer and E R Johnston, Vector Mechanics for Engineers
material	4) I H Shames, Engineering Mechanics

	Марр	ing of	CO (Co	urse ou	utcome	e) and F	PO (Pro	ogramr	ne Out	come)	
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	РС

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	1	-	-	-	-	-	-	-	I	-	-	1
XEC01	CO2	1	1	1	1	-	-	-	-	I	-	-	1
	CO3	1	1	-	-	-	-	-	-	-	-	-	1
	CO4	1	2	-	-	-	-	-	-	I	-	-	1
	CO5	-	2	2	2	2	1	-	-	-	1	-	1

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tota	l Number o	of contact ho	ours	Credit				
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total					
		Electives	(L)	(T)	(P) [#]	Hours					
		(PEL)									
ESC01	Environmental	PCR	2	0	0	2	2				
	Science										
Pr	e-requisites	Course Asse	essment me	ethods (Coi	ntinuous (C1	Г) <i>,</i> mid-te	rm (MT)				
			and	end assess	ment (EA))						
				CT+MT-	+EA						
Course	• CO1: Unde	rstand the impo	rtance of e	nvironmen	it and ecosy	stem.					
Outcome	es 🔹 CO2: Unde	erstand the fu	ndamental	l aspect c	of pollutant	tracking	g and its				
	implement	ation in natura	al and ant	hropogeni	c pollution	of air a	and water				
	system.										
	CO3: Unde	rstand the scien	tific basis o	of local and	as well as g	lobal issu	ies.				

	CO4: Apply of knowledge to develop sustainable solution.
Topics	Introduction: Multidisciplinary nature of Environmental Studies; Basic issues in
Covered	Environmental Studies. [2]
	Human population and the Environment. [1]
	Social issues and the Environment. [1]
	Constituents of our Environment & the Natural Resources: Atmosphere– its layers their characters: Global warming. Ozone depletion. Acid rain. etc. [5]
	Hydrosphoro - Its constituents, Oceans, Groundwater, Surface waters: Hydrological
	cycle. [4]
	Lithosphere - constituents of lithosphere; Rock and Mineral resources; Plate
	Tectonic Concept and its importance. [5]
	Biosphere– its components; Ecosystems and Ecology; Biodiversity; Biomes. [5]
	Natural disaster and their management – Earthquakes, Floods, Landslides,
	Cyclones. [3]
	Pollution: Pollutants and their role in air and water pollution.[2]
Text Books,	1. Environmental Studies – Benny Joseph – Tata McgrawHill-2005
and/or	2.Environmental Studies – Dr. D.L. Manjunath, Pearson Education-2006.
reference	3. Principles of Environmental Science and Engineering – P. V. Rao, PHI.
material	4. Environmental Science and Engineering – Meenakshi, Prentice Hall India.
	5.Environmental studies – R. Rajagopalan – Oxford Publication - 2005.
	6. Text book of Environmental Science & Technology – M. A. Reddy – BS Pub.

Mapping of CO (Course outcome) and PO (Programme Outcome)

			<u> </u>						0		,		
Course	COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	-	-	-	-	-	2	-	-	-	-	-
ESC01	CO2	1	-	-	-	-	-	2	-	-	-	-	-
	CO3	2	-	-	-	-	-	2	-	-	-	-	-
	CO4	1	-	3	-	-	2	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Tota	l Number c	of contact ho	ours	Credit			
Code		(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
XES51	ENGINEERING GRAPHICS	PCR	1	0	3	4	2.5			
Pi	re-requisites	Course Assessment methods (Continuous (CT) and end								
		assessment (EA))								
	NIL CT+EA									
Course	• CO1: Ability o	f mental visualizat	tion of diffe	erent objec	ts					
Outcome	es •CO2: Theorem	tical knowledge c e dimensional obj	of orthogra ects	phic proje	ction to so	lve probl	ems on			
	• CO3: Able to people	read/interpret ind	ustrial drav	wing and to	o communic	ate with i	relevant			
Topics	Graphics as lang	guage of communi	cation; tec	hnical drav	ving tools a	nd their u	ıp-keep;			
Covered	d types of lines; co	f lines; construction of geometrical figures; lettering and dimensioning. [6]								
	Construction an such as curves	d use of scales; of conic section;	constructio spirals, cy	n of curve: /cloids, inv	s of enginee olutes and	ering imp different	ortance loci of			

	points; use of equations for drawing some curves. [9] Descriptive geometry: necessity and importance of orthographic projection; horizontal and vertical reference planes; coordinate of points; orthographic projection of points and lines situated in different quadrants, viz. 1 st , 2 nd , 3 rd and 4 th quadrants; traces of lines. First angle and third angle projection of lines and planes; views from top, front and left (or right); true length and true inclination of lines with planes of projections; primary auxiliary projection of points, lines and planes; auxiliary plan and auxiliary elevation. [9]
	Projection of simple regular solids, viz. prisms, cubes, cylinders, pyramids, cones,
	tetrahedrons, spheres, hemi-spheres etc. [6]
	Section of solids; section by perpendicular planes; sectional views; true shapes of
	sections. [6]
	Dimensional techniques; international and national standards (ISO and BIS). [3]
	Freehand graphics. [3]
Text and/or	1) Engineering Drawing and Graphics – K Venugopal
reference	2) Engineering Drawing – N D Bhat
material	3) Practical Geometry and Engineering Graphics – W Abbott

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
	CO1	1	-	-	-	-	-	-	-	-	-	-	-
XES51	CO2	1	1	-	-	-	-	-	-	-	-	-	-
	CO3	1	-	1	-	-	-	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tota	l Number o	f contact ho	ours	Credit
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total	
		(PEL)	(L)	(1)	(P)	Hours	
HSS51	Professional	PCR	1	0	2	3	2
	Communication						
	Lab						
Pr	e-requisites	Course Assessr	nent metho	ods (Continu	uous (CT) an	d end ass	essment
				(EA))			
	None			CT+EA			
Course	CO1: Impr	ovement in lingu	istic proficie	ency of the	learners		
Outcome	es • CO2: Impr	ovement in comr	nunicative a	ability of th	e learners		
	CO3: Impr	ovement in socia	l connectivi	ity skill			
Topics	1. Professi	onal Communica	tion: Introd	uction (1)			
Covered	d 2. Technic	al Writing: Basic (Concepts (2)			
	3. Style in	Technical Writing	g (3)				
	4. Technic	al Report (2)					
	5. Recomn	nendation Report	t (2)				
	6. Progress	s Report (1)					
	7. Technic	al Proposal (3)					
	8. Busines	s Letters (3)					
	9. Letters	of Job Applicatior	า (2)				

	10. Writing Scientific and Engineering Papers (3)
	11. Effective Use of Graphic Aids (2)
	12. Presentation Techniques (6)
	13. Group Discussion (6)
	14. Interview Techniques (6)
Text	Text Book:
Books,	1. English for Engineers –Sudharshana& Savitha (Cambridge UP)
and/or	Reference Books:
reference	1. English for Engineers -Sudharshana & Savitha (Cambridge UP)
material	2. Effective Technical Communication-M A Rizvi (McGraw Hill Education)
	3. References to relevant NPTEL, MOOC, SWAYAM courses be given by the
	Instructor

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	1	I	_	1	I	1		1	2	3	1	_
пэээт	CO2	1	-	_	1	-	2	_	2	2	3	2	_
	CO3	_	_	_	1	_	3	_	3	3	3	2	_

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Total Nur	nber of cont	act hours		Credit			
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total				
		/ Electives	(L)	(T)	(P)	Hours				
		(PEL)								
PHS51	Physics	PCR	0	0	2	2	1			
	Laboratory									
Pre-requi	isites	Course Asse	ssment met	hods: (Cont	inuous evalua	ation (CE)	and end			
		assessment (EA))								
NIL										
Course	CO1: To rea	CO1: To realize and apply different techniques for measuring refractive indices of								
Outcome	s different ma	aterials.								
	CO2: To rea	lize different ty	/pes of wave	eforms in ele	ectrical signal	ls using CR	0.			
	CO3: To und	lerstand chargi	ing and disc	harging mec	hanism of a d	capacitor.				
	CO4: To und	lerstand interfe	erence, diffr	action and p	polarization r	elated opt	ical			
	phenomena									
	CO5: To acq	uire basic knov	wledge of lig	sht propagat	ion through t	fibers.				
Topics	1. Find the i	efractive index	c of a liquid	by a travelliı	ng microscop	e.				
Covered	2. Determin	e the refractive	e index of th	ne material o	of prism using	g spectrom	ieter.			
	3. Determin	ation of amplit	ude and fre	quency of e	lectrical signa	als by oscil	loscope.			
	4. To study	the characteris	tics of RC ci	rcuits.						
	5. To study	Brewster's law	/Malus' law	using laser	light.					
	6. To study	the diffraction	of light by a	grating.						
	7. To study	the interferenc	e of light by	v Newton's r	ing apparatu	S.				
	8. To deterr	mine numerical aperture of optical fiber.								
	9. Determin	ation of Planck	constant.							
Text and	or SUGGESTED	BOOKS:								
reference	e 1) A Text Bo	ok on Practica	l Physics – K	. G. Mazum	dar and B. Gh	iosh				
material	2) Practical	Physics – Wors	nop and Fli	nt						

			0					- 1 - 2					
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	2	1	-	-	-	-	-	2	1	-	1
	CO2	3	2	1	-	-	1	-	-	2	1	-	1
PHS51	CO3	3	1	-	-	-	-	-	-	2	1	-	1
	CO4	3	2	-	1	-	1	1	-	2	1	-	1
	CO5	3	2	1	-	1	1	1	-	2	1	-	1

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course		Title of the	Program Core	Tota	l Number o	of contact ho	ours	Credit				
Code		course	(PCR) /	Lecture	Tutorial	Practical	Total					
			Electives (PEL)	(L)	(T)	(P)	Hours					
CYS51		CHEMISTRY	PCR	0	0	2	2	1				
	L	ABORATORY										
Pr	re-req	luisites	Course As	sessment n	nethods (C	ontinuous ((CT) and e	nd				
				as	sessment (EA))						
	No	ne			CT+EA							
Course	2	CO1: To lea	ırn basic analytica	l technique	es useful fo	r engg appli	cations.					
Outcom	es	CO2: Synth	esis and characterization methods of few organic, inorganic and									
		polymer co	mpounds of indus	strial impoi	rtance.							
		CO3: Learn	i chromatographic separation methods.									
		CO4: Appli	CO4: Applications of spectroscopic measurements.									
Topics		i. Experime	nts based on pH n	netry: Dete	ermination	of dissociati	ion const	ant of we				
Covere	d	acids by p	H meter.					c				
		II. Experime	nts based on co	nductivity	measurem	ent: Deterr	mination	of amou				
		OF HCI Dy	conductometric ti	tration wit	n NaOH. Fo ²⁺ by poy		ntr.					
		in. Estimation	n of motal ion: Do	torm of to	tal bardpor	indinghome		itration				
		v Synthesis	and characterization of inorganic complexes: e. g. Mn(acac) ₃ , Fe(acad									
		v. Synthesis cis-his(gly	cinato)copper (II) monohydrate and their characterization by m n									
		FTIR etc.		mononya				ο, p				
		vi. Synthesis	and charact. of or	ganic com	pounds: e.g	.Dibenzylid	eneaceto	ne.				
	,	vii. Synthesis	of polymer: polyn	nethylmeth	nacrylate							
	V	viii. Verificatio	on of Beer-Lamber	rts law and	determina	tion of amo	unt of irc	on prese				
		in a suppl	ied solution.									
		ix. Chromato	graphy: Separation	on of two a	imino acids	by paper cl	hromatog	raphy				
		x. Determina	ation of saponifica	ation value	of fat/ veg	etable oil						
		Suggested Text	t Books:									
		1. Vogel's Quai	ntitative Chemical	Analysis (6	5th Edition)	Prentice Ha	all					
		2. Advanced Pl	hysical Chemistry Experiments: By Gurtu&Gurtu									
		3. Comprehens	sive Practical Organic Chemistry: Qualitative Analysis By V. K.									
		Aniuwalia and	S. Uningra									
		1 Dractical Ch	erence BOOKS:	attachar								
		1. Practical Che	ennistry by K.C. Br	iattacharya	try Dy N C	Mukhariaa	,					
		2. Selected exp	enments in Physi		пувум. С	. wuknerjee	2					

			0 -						0				
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	2	1	-	1	-	-	-	-	-	-	-	-
CYS51	CO2	-	1	-	1	1	2	-	-	-	-	-	-
	CO3	2	-	-	1	1	-	-	-	-	-	-	-
	CO4	-	1	-	1	1	-	-	-	-	-	-	-

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tota	al Number o	of contact ho	urs	Credit					
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total						
		/ Electives	(L)	(T)	(P) [#]	Hours						
		(PEL)										
WSS51	WORKSHOP	PCR	0	0	3	3	1.5					
	PRACTICE											
Pre	e-requisites	Course Asse	ssment met	hods (Contir	nuous (CT) an	d end asse	essment					
				(EA))								
	NIL			CT+E/	4							
Course	• CO1: 5	Study and practice on machine tools and their operations										
Outcom	es • CO2:	Practice on m	nanufacturin	g of compo	onents using	worksho	p trades					
	includ	ing fitting, carp	entry, foun	dry and weld	ding							
	• CO3:	Identify and a	pply suitabl	e tools for	machining p	rocesses i	including					
	turnin	g, facing, threa	id cutting ar	nd tapping								
	• CO4:	Develop basic	electrical	engineering	knowledge	for hous	e wiring					
	practio	ce										
Topics	MI/c shop & C	& Carpentry shop 3X3= 9hrs.										
Covere	d • Introd	duction on machining process.										
	Introd	luction to machine tools- Lathe, Shaper, Milling and Drill machine.										
	Introd	duction to woods- Types, structure, disease and defect of wood.										
	Introd	duction to wood working machines and tools.										
	Makin	ing of dovetail joint and bridle joint.										
	Welding Shop	hop & Sheet metal 3X3= 9hrs.										
	• Introd	duction to welding. Safety and precautions in welding.										
	• Forma	ation of weld bead by SMAW on mild steel flat.										
	Forma	ation of weld bead by oxy-fuel welding on mild steel flat.										
	• Introd	oduction to sheet Metal works.										
	• 100IS	and Machines	used in snee	et metal wor	KS.							
	Conce	pt of developh	nent, markir	ig out of me	tal sheets.							
	Cuttin	g and joining o	f metal shee	ets.		- I						
	Safety	precautions, G	beneral wari	ning needed	in the shop f	loor.						
	Black smithy	& Foundry	an and Tar	37	(3= 9nrs.	F	منها الممرم					
	 Introd 	roduction Smithing and Forging- Tools, Machines, Furnaces and its										
	access	tessones, ruers.										
		aking of hars of different cross-sections										
	 ■ Makin 		headed he	-3000005.								
		aking of hexagonal headed boils.										
	• FUIGE	weiung.	dry Tachnal	001								
	 Introd 	uction to Foun	ury rechnol	ugy.								

	Prenaration of sand mould using Solid/Solit Pattern
	Eitting & Electrical shop
	 Fitting & Electrical shop 3X3= 9hrs. Introduction to hand metal cutting tools with specifications, nomenclature and their use. Marking tools, measuring tools and their use. Fitting of joints of mild steel flats. Introduction to electrical hazards and safety precaution. Wire jointing and soldering. PVC Conduit Wiring controlled by separate single way switches. PVC Cashing Capping Wiring for two-way switches. Conduit wiring for the connection of a Calling Bell with In& Out Indicators. Batten Wiring and Cleat Wiring.
	Tube Light Connection.
	 Insulation Resistance Testing of 1ph / 3ph Motor and House Wiring.
	Earth Resistance Testing.
	DOL Starter Connection.
	Viva voce 1X3= 3hrs.
Text Books,	1. Workshop Technology Part I and Part II by W. A. J. Chapman
and/or	2. Elements of Workshop Technology S. K. Hazra Chowdhury, A. K. Hazra
reference	Chowdhury and Nirjhar Roy
material	3. Mechanical Workshop Practice by K. C. John

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
WSS51	CO1	2	-	-	-	-	1	-	-	-	1	-	-
	CO2	1	-	1	-	-	1	-	-	-	1	-	-
	CO3	1	-	2	-	-	1	-	-	-	1	-	-
	CO4	1	-	-	-	-	2	-	-	-	1	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title e	.f.th.o	Program Core	Total	Number o	f contact ho	ours				
Code			(PCR) /	Lecture	Tutorial	Practical	Total	Credit			
coue	cou	130	Electives (PEL)	(L)	(T)	(P)	Hours				
XXS-51	Co-cur Activ	ricular ities	PCR	0	0	2	2	1			
Pre-requi	isites	Cour	se Assessment n	Assessment methods (Continuous (CT) and end assessment (EA))				nent (EA))			
NIL		CT+EA									
Course	•	CO1: Social Interaction: Through the medium of sports									
Outcomes	•	CO2: E	thics: Recogniz	e differer	nt value s	systems ind	cluding	your own,			
		underst	and the mor	al dimens	sions of	your decis	sions, ai	nd accept			
		CO2. C	olf-directed and	Lifo-long I	oprning: A	cauiro tho	ability to	ongogo in			
	•	indener	adent and life		rning in	the broad	ability to	engage in			
		technol	ogical changes.		ining in						
	•	CO4: Pe	ersonality develo	pment thr	ough comn	nunity enga	gement				
	•	CO5: Ex	posure to social	service							
Topics	YOGA										

	-
Covered	Introduction of Yoga.
	Sitting Posture/Asanas- Padmasana, Vajrasana, Ardhakurmasana, Ustrasana,
	Bakrasana, Sasankasana, Janusirshasana, Suryanamaskar.
	Mudra- Gyana mudra, Chin mudra, Shuni mudra, Prana mudra, Adi mudra,
	Anjali mudra.
	• Laying Posture/Asanas- PavanaMuktasana, UttanaPadasana, Sarpasana,
	Bhujangasana (Cobra Pose), Eka Pada Śalabhāsana, Dhanurasana,
	Chakrasana, Viparitkarani.
	 Meditation- Yognidra, Om chant, Pray chant.
	• Standing Posture/Asanas-Tadasana (Mountain Pose), Vrikshasana (Tree
	Pose), Ardhachandrasana, Trikonasana, Utkatasana, Padahastasana.
	 Pranayama- Deep breathing, AnulomVilom, Suryabhedi, Chandrabhedi.
	 Kriya- Kapalbhati, Trataka.
	ATHLETICS
	Introduction of Athletic.
	• Starting Technique for Track events- Standing start, Crouch & Block start.
	Finishing Techniques.
	 Relay Race- 4×100m, 4×400m & Baton Exchange Technique & Rules.
	• Track Marking with Fundamentals- 200m, 400m and Diagonal Distance
	Radius, Straight Distance, Staggers of Different Lanes & Curve Distance.
	BASKETBALL
	 Introduction and Players stance and ball handling.
	Passing- Two hand chest pass, two hand bounce pass, One hand baseball
	pass, Side arm pass, Overhead pass, Hook pass.
	• Receiving- Two hand receiving, one hand receiving, receiving in stationary
	position, Receiving while jumping and Receiving while running.
	Dribbling- Dribble, High dribble, Low dribble, Reverse dribble, Rolling
	dribble.
	Rules of Basketball.
	Basketball game.
	VOLLEYBALL
	Introduction of Volleyball
	• Service- Underarm service, Sidearm service, Tennis service, Floating service,
	Jump service.
	Pass: Underarm pass- Ready position, Teaching stage of underarm pass and
	Upper hand pass- Volley pass, Back pass, Short set, Jump set & Underarm
	set.
	Rules and their interpretation.
	FOOTBALL
	Introduction of Football
	Push pass- Instep inside, Instep outer side.
	Kicking- Spot kick, Instep kick, Lofted kick.
	Dribbling- One leg, Both legs, Instep.
	• Trapping- Rolling ball sole trapping, High ball sole trapping, High ball chest
	trapping, High ball thigh trapping.
	 Throwing- Standing throw, Running throw, Seating throw.
	 Goal Keeping- Griping the ball, Full volley, Half volley, Drop Kick.
	Rules and their interpretation.
	CRICKET

- Free Medical Camp
- Sanitation drive in and around the campus.
- Unnat Bharat Abhiyaan
- MatribhashaSaptah celebration

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	-	-	-	-	-	2	-	-	3	-	-	-
	CO2	-	-	-	-	-	-	-	2	-	-	-	-
XXS51	CO3	-	-	-	-	-	-	1	-	-	-	-	3
	CO4	-	-	-	-	-	-	-	-	2	2	-	-
	CO5	-	-	-	-	-	3	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

<u>Se</u>	<u>CC</u>	<u>ND</u>	SEN	1ES1	<u>rer</u>

SI. No	Code	Subject	L	т	S	С	н
1	MAC02	Mathematics - II	3	1	0	4.0	4
2	CSC01	Introduction to Computing	2	1	0	3.0	3
3	ECC01	Basic Electronics	2	1	0	3.0	3
4	EEC01	Electrical Technology	2	1	0	3.0	3
5	BTC01	Life Science	2	0	0	2.0	2
6	XXC01	The Constitution of India and Civic Norms	1	0	0	1.0	1
7	XES52	Graphical Analysis using CAD	0	0	2	1.0	2
8	CSS51	Computing Laboratory	0	0	2	1.0	2
9	ECS51	Basic Electronics Laboratory	0	0	2	1.0	2
10	EES51	Electrical Technology Laboratory	0	0	2	1.0	2
11	XXS52	Co-curricular Activities - II	0	0	2	1.0	2
		TOTAL	12	4	10	21.0	26

		Department of I	Mathemat	ics								
Course	Title of the course	Program	Tota	l Number c	of contact ho	ours	Credit					
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P)	Hours						
		(PEL)										
MAC 02	MATHEMATICS - II	PCR	PCR 3 1 0 4 4									
Р	re-requisites	Course Assessment methods (Continuous (CT), mid-term (MT)										
		and end asses	sment (EA))								
Basic cor	cepts of set theory,	CT+MT+EA										
differen	tial equations, and											
	probability.											
Course	CO1: Develop t	CO1: Develop the concept of basic linear algebra and matrix equations so as										
Outcomes	apply mathema	apply mathematical methods involving arithmetic, algebra, geometry to solv										
	problems.	problems.										
	CO2: To acqui	re the basic co	oncepts red	quired to u	understand,	construc	t, solve					
	and interpret d	ifferential equat	tions.									
	CO3: Develop 1	the concepts of	Laplace tr	ansformati	on & Fourie	er transfo	rmation					
	with its proper	ty to solve ord	inary diffe	rential equ	ations with	given bo	oundary					
	conditions whic	h are helpful in	all engine	ering & res	earch work.							
	CO4: To grasp t	the basic conce	ots of prob	ability theo	ory.							
Topics	Elementary algebra	aic structures: (Group, sub	ogroup, rin	g, subring,	integral of	domain,					
Covered	and field.	(5)										
	Linear Algebra: Veo	ctor space, Subs	spaces, Lin	ear depen	dence and	independ	ence of					
	vectors, Linear spa	n, Basis and d	imension	of a vecto	or space. Ra	ank of a	matrix,					
	Elementary transfo	ormations, Ma	trix inver	sion, Solu	tion of sy	stem of	Linear					
	equations, Eigen	values and	Eigen	vectors, (Cayley-Ham	ilton Th	neorem,					
	Diagonalization of m	natrices.	(1	5)	-							
	Ordinary Differenti	al Equations:	Existence	and uniqu	ueness of s	olutions	of ODE					
	(Statement Only), E	Equations of fir	st order b	out higher	degree, Cla	irauts e	quation,					
	Second order differe	ential equations	, Linear de	pendence	of solutions	,						

	Wronskian determinant, Method of variation of parameters, Solution of
	simultaneous equations. (12)
	Fourier series: Basic properties, Dirichlet conditions, Sine series, Cosine series,
	Convergence. (4)
	Laplace and Fourier Transforms: Laplace transforms, Inverse Laplace transforms,
	Convolution theorem, Applications to Ordinary differential equations.
	Fourier transforms, Inverse Fourier transform, Fourier sine and cosine transforms
	and their inversion, Properties of Fourier transforms, Convolution.
	(10)
	Probability: Historical development of the subject and basic concepts, Axiomatic
	definition of probability, Examples to calculate probability, Random numbers.
	Random variables and probability distributions, Binomial distribution, Normal
	distribution. (10)
Text Books,	Text Books:
and/or	1. E. Kreyszig, Advanced Engineering Mathematics: 10 th ed, Wiley India Ed. (2010).
reference	2. Gilbert Strang, Linear algebra and its applications (4th Ed), Thomson (2006).
material	3. Shepley L. Ross, Differential Equations, 3 rd Edition, Wiley Student Ed (2017).
	Reference Books:
	1. S. Kumaresan, Linear algebra - A Geometric approach, PHI (2000).
	2. C. Grinstead, J. L. Snell, Introduction to Probability, American Math. Society.

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MAC02	CO1	3	3	2	1	2	-	2	-	-	-	1	2
	CO2	3	3	2	2	2	-	2	-	-	1	-	2
	CO3	3	3	2	2	3	1	1	-	1	1	1	2
	CO4	3	2	1	3	2	1	1	1	1	-	-	2

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Tota	l Number o	f contact ho	ours	Credit	
Code		(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives	(L)	(T)	(P)	Hours		
		(PEL)						
CSC01	INTRODUCTION TO COMPUTING	PCR	2	1	0	3	3	
Р	re-requisites	Course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))						
Basic know	wledge of computer.	CT+MT+EA						
Course	e CO1: Recognize	the changes in hardware and software technologies with respect to						
Outcom	es the evolution	of computers and describe the function of system software's						
	(operating System	ems) and applica	tion softw	are's, langu	uages, numl	ber syste	m, logic	
	gates.							
	CO2: Illustrate the flowchart and inscribe an algorithm for a given problem In						Inscribe	
	C programs using operators.							
	CO3: Develop co	onditional and ite	rative state	ments to w	rite C progr	ams.		
	CO4: Exercise us	ser defined functi	ons to solv	e real time	problems			

	CO5: Inscribe C programs that use Pointers to access arrays, strings and functions. CO6: Exercise user defined data types including structures and unions to solve problems.
Topics Covered	Fundamentals of Computer: History of Computer, Generation of Computer, Classification of Computers 2L Basic Anatomy of Computer System, Primary & Secondary Memory, Processing Unit, Input & Output devices. [2]
	concepts) [1]
	Binary & Allied number systems representation of signed and unsigned numbers. BCD ASIL Binary Arithmetic & logic gates [2]
	Basic concepts of operating systems like MS DOS, MS WINDOW, UNIX, Algorithm & flow chart. [1]
	C Fundamentals: The C character set identifiers and keywords, data type & sizes, variable names, declaration, statements. [2]
	Operators & Expressions: Arithmetic operators, relational and logical operators, type, conversion, increment and decrement operators, bit wise operators,
	assignment operators and expressions, precedence, and order of evaluation. Input and Output: Standard input and output, formatted output printf, formatted input scanf. [8]
	Flow of Control: Statement and blocks, if - else, switch, loops - while, for do while, break and continue, go to and labels. [5]
	Fundamentals and Program Structures: Basic of functions, function types, functions returning values, functions not returning values, auto, external, static and register Variables, scope rules, recursion, function prototypes, C pre-processor, command line arguments. [5]
	Arrays and Pointers: One-dimensional, two-dimensional arrays, pointers and functions, multi-dimensional arrays. [10]
	Structures Union and File: Structure, union, structures and functions, arrays of structures, file read, file write.[5]
Text Books,	Text Books:
and/or	1. Let us C by Kanetkar
reference	2. C Programming by Gottfried
material	3. Introduction to Computing by Balaguruswamy
	4. The C-programming language by Dennis Ritchie
	Reference Books:
	1. Computer fundamental and programming in C by P Dey and M. Ghosh
	2. Computer fundamental and programming in C by Reema Thareja
	s. programming with C by Schaum Series

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
	CO1	3	1	2	1	-	-	-	-	-	-	-	-
	CO2	-	2	1	2	1	-	-	-	-	-	-	-
CSC01	CO3	1	2	-	-	3	-	-	-	-	-	-	-
CSCUI	CO4	1	3	1	2	3	-	-	-	-	-	-	1
	CO5	2	1	-	-	3	-	-	-	-	-	-	-
	CO6	2	-	3	-	1	-	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Courso	Title of the	Brogram Coro	То	tal Numbo	r of contact	hours	Crodit			
Codo			Loctur	Tutoria	Dractical	Total	Crean			
Coue	course	(PCR) / Electives (DEL)								
FCC01	Pasia			1	(P)		2			
ECCOI	Electronics	PCR	2	T	0	5	5			
			Course		nt mothoda	Continuou	(CT) mid			
	Pre-requ	isites	Course	torm (MT) and and a	s (Continuou	(CI), IIIIU-			
(10+2)	loval mathem	atics and physics				.EV				
(10+2)						'EA				
Cours	e • CO	L: Knowledge of Sen	niconduct	or physics	and devices	5. 				
Outcon	ies • (0	2: Have an in depth	understa	naing of ba	asic electroi	nic circuit, c	onstruction,			
	ope	ration. Na Ability to moleo m			+ + + + + + + + + + + + + + + + + + + +	+	for difforent			
	• 00	S: Addity to make p	roper des	igns using	these circui	telements	for different			
	app	nications.		he and the fi	مما من + بيمام	tion hoturo				
	•	E Learn to analyze	the circui	is and to n	ind out rela	tion betwee	en input and			
Tania		pul.								
Covere	$S \downarrow I.$	Semiconductors	ormation	in colider	Earmi Dira	a diatributi	on function			
Covere		of Formi loval in	varianco	of Formi	lovel in a	system un	dor thormal			
	equilibr	ium	Ivaliance	or renni		system un				
		finitions of insulator	conduct	or and sem	niconductor	using hand	diagram			
	1.2. DC	stalline structure of	ductor	neonauctor	using bunu	alagram				
	1.3.1. Covalent bond									
	1.3.2. Generation of holes and electrons									
	1.3.3. E	ffect of temperature	e on semi	conductor						
	1.4 Intri	nsic semiconductor								
	1.5 Dop	ing and Extrinsic ser	niconduct	tor						
	1.5.1 n-	Type semiconductor	and ban	and band diagram						
	1.5.2 p-	Type semiconductor	and band diagram							
	1.5.3 M	ass-action law of ser	niconduc	conductor						
	1.6. Co	nductivity of semico	onductor (including mathematical expression)							
	1.7 Ca	rier transport phen	omenon. (03 hrs.)							
	2.	Diodes								
	2.1. Co	nstruction								
	2.2. Ur	biased diode; Depl	letion layer and Barrier potential; junction capacitance							
	(expres	sion only)								
	2.3. Pri	nciple of operation v	with forward biasing and reverse biasing							
	2.4. Cn	aracteristics)) has)					
	2.5 Dic	Circuite	equivalen	t circuits.(t)Z M(S.)					
		de rectifier								
	2.1.1 Half ways rectifior									
	312 Fi	II wave rectifier cen	tre tan ar	nd bridge re	ectifier					
	3.1.3 Ca	pacitive filter and D	C power «	supply (Nur	merical prob	olems)				
	3.2 Sn	ecial Diodes								
	3.2.1 Ze	nerdiode: Avalanche	e breakdo	wn and Ze	ner breakdo	own and cha	aracteristics.			
	3.2.2 Ze	ner diode as a volta	ge regula	tor		-				
	3.2.3 Di	splaydevices: LED ar	nd LCD. (0	3 hrs.)						
	4.Bipola	r Junction Transisto	or (BJT)							

4.1 n-p-n and p-n-p transistor and their constructions

4.2 Principle of operation

4.3 Transistor configuration: common base, common emitter, and common collector

4.4 Transistor characteristics: input and output characteristics of CB and CE configurations

4.5 DC load line: quiescent (Q) point; cut-off, active, and saturation region

4.6 Amplifier: Principle of operation

4.7 Transistor as a switch. (04 hrs.)

5. Transistor Biasing

5.1 Need of biasing

5.2 Methods of biasing: base resistor or fixed bias, emitter feedback, voltage divider biasing

5.3 Stability of Q-point (qualitative discussions)

5.4 (Numerical problems). (02 hrs.)

6.Single Stage Amplifier:

classification of amplifiers (voltage amplifier, current amplifier, power amplifier etc.) Class-A CE Amplifier with coupling and bypass capacitors, Qualitative discussions of magnitude characteristics of frequency response (graph only) (02 hrs.)

7.Feedback Amplifier

7.1 Positive and negative feedback

7.2 Deduction of gain with negative feedback, explanation of stability of gain with negative feedback, other effects of negative feedback (no deduction), numerical problems. (03 hrs.)

8. Other Semiconductor Devices

8.1 JFET: Construction, principle of operation, characteristics

8.2 MOSFET: Construction, principle of operation, characteristics

8.3 Power Electronic Device-SCR: Brief discussions. (02 hrs.)

9. Operational Amplifier

9.1 Characteristics of ideal operational amplifier

9.2 Pin Configuration of IC 741,

9.3 Analysis of simple operational amplifier circuits: concept of virtual ground; noninverting amplifier and inverting amplifier.

9.4 Applications: voltage follower, summer, differentiator, integrator, and comparator (04 hrs)

10.Oscillator

10.1 Positive feedback and condition of oscillation

10.2 R-C phase-shift oscillator, Wien bridge oscillator.(02 hrs.)

11.Boolean Algebra

11.1 Boolean algebra, De Morgan's theorem, simplification of Boolean expressions

11.2 Number system, range extension of numbers, overflow

11.3 Different codes: gray code, ASCII code and BCD codes and them (01 hrs.)

Applications.

12. Logic Gates

12.1 NOT, OR, AND, NOR, NAND, EX-OR, EX-NOR gates

12.2 Simplification of logic functions

12.3 Realizations of logic expressions using logic gates. (01 hrs.)

13. CRO and its applications and other test and measurement instruments. (01

	hrs.)
Text Books, and/or reference material	 <u>Text Books</u>: Introduction Electronic Devices & Circuit Theory,11/e, 2012, Pearson: Boylestad & Nashelsky Electronic Principles, by Albert Paul MalvinoDr. and David J. Bates, 7/e. <u>Reference Books</u>:
	 Electronics - Circuits and Systems by Owen Bishop, 4/e, Elsevier. Electronics Fundamentals: Circuits, Devices & Applications by Thomas L. Floyd
	& David M. Buchla, 8/e, Pearson Education.

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	3	2	2	-	1	-	-	-	-	-	1
FCC01	CO2	3	2	1	2	2	1	-	2	2	-	-	1
ECCOI	CO3	3	2	2	2	3	-	-	-	2	-	-	1
	CO4	3	3	2	2	-	-	-	-	2	_	_	1

Correlation levels 1, 2 or 3 as defined below:

	Department of Electrical Engineering								
Course	Title of the	Program Core	Tota	Number (of contact h	ours	Credit		
Code	course	(PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours			
EEC01	ELECTRICAL TECHNOLOGY	PCR	3	0	0	3	3		
Pre-	requisites	Course Assessment methods (Continuous (CT), Mid Term (MT), and end assessment (EA))							
	NIL	CT+MT+ EA							
Course Outcomes	Upon suc CO1: lean analysis of CO2: dev the work CO3: lean such circ CO4: intr CO5: ann excitatio	ccessful completion of the fundamentan of electrical network velop an idea on N ing principles of so rn about single ph uits based on these oduce the basic co alyze the transie n.	n of this co Is of Electron Magnetic ci Ime fundar Inase and p Inase and p Incept of si Int phenor	urse, the s ric Circuits n these co rcuits, Ele mental ele poly-phase ngle-phas mena in	tudent sho and Netwo ncepts. ctromagnet ctrical equip AC circuits e transform electrical	uld be al ork theor cism and oment's s and ar er. circuits	ole to rems and learning nalysis of with DC		

Topics Covered	Introduction: Overview of Electrical power generation systems (2) Fundamentals of Electric Circuits: Ohm's laws, Kirchhoff's laws, Independent and Dependent sources, Analysis of simple circuits. (4) Network theorems: Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem (4) Magnetic circuits: Review of fundamental laws of electromagnetic induction, transformer and rotational emfs, Solution of magnetic circuits. Analysis of coupled circuits (self-inductance, mutual inductance, and dot convention)(8) Transients with D.C. excitation for R-L and R-C circuits. (3) Generation of alternating voltage and current, E.M.F. equation, Average and R.M.S. value, Phase and phase difference, Phasor representation of alternating quantity, Behavior of A.C. circuits, Resonance in series and parallel R-L-C circuits. AC Network: Superposition theorem, Thevenin's theorem, Norton's theorem, maximum power transfer theorem, solution of networks with AC sources. (10) Single-Phase Transformer, equivalent circuits, open circuit and short circuit tests (6) Poly-phase system, Advantages of 3-phase system, Generation of 3-phase voltages, Voltage, current and power in a star and delta connected systems, 3- phase balanced and unbalanced circuits, Power measurement in 3-phase circuits. (5)
Textbooks/Refere nce material	 Textbooks: 1. Electrical & Electronic Technology by Hughes, Pearson Education India Reference Books: 1. Advanced Electrical Technology by H. Cotton, Reem Publication Pvt. Ltd 2. Electrical Engineering fundamentals by Vincent Deltoro, Pearson Edu India

2. Electrical Engineering fundamentals by Vincent Deltoro, Pearson Edu India

	Mapping of CO (Course Outcome) and PO (Programme Outcome)											
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	3	3	3	1	1	1	1	1	1	1
CO2	3	3	3	3	2	1	2	1	1	1	1	1
CO3	3	3	3	3	3	2	2	1	1	1	1	1
CO4	3	3	3	3	3	2	2	1	1	1	1	1
CO5	3	3	2	2	2	1	1	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Course	Title of the	Program Core	Tota	l Number c	of contact he	ours	Credit		
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
BTC01 LIFE SCIENCE		PCR	2	0	0	2	2		
Pre-requisites		Course Assessment methods (Continuous (CT), mid-term (MT)							
		and end assessment (EA))							
		CT+MT+EA							
Course CO1: Basic understanding of basic cellular organization					on of organ	isms and	cellular		
Outcome	es communication	communications, structure and functions of the macromolecules and their							
	biosynthesis and catabolism.								

	CO2: 1	To give an understanding of the key features of the structure, growth,
	physio	logy and behavior of bacteria, viruses, fungi and protozoa
	CO3: 1	To introduce molecular biology to understand biological processes in various
	applica	ations.
	CO4: 1	To provide a foundation in immunological processes and an overview of the
	intera	ction between the immune system and pathogens.
	CO5:	To provide knowledge about biological and biochemical processes that
	requir	e engineering expertise to solve them
	CO6:	To provide knowledge about biological and biochemical processes that
	requir	e engineering expertise to solve them
Topics	1. Cell	Biology (4)
Covered	a)	Introduction to life science: prokaryotes & eukaryotes
		Definition; Difference
	b)	Introduction to cells - Define cell, different types of cell
	c)	Cellular organelles - All organelles and functions in brief
	d)	Cellular communications
		Introduction to basic signaling; endocrine, paracrine signaling; concepts of
		receptor, ligand, on-off switch by phosphorylation/dephosphorylation
	2. Biod	chemistry (4)
	a)	Biological function of carbohydrate and lipid - Introduction, structure and
		function
	b)	Biological function of nucleic acids and protein - structure and function
	c)	Catabolic pathways of Macromolecules - Introduction to catabolism,
		hydrolysis and condensation reactions; Catabolism of glucose- Glycolysis,
		TCA; overall degradation of proteins and lipids
	d)	Biosynthesis of Macromolecules
		Generation of ATP (ETS), Generation of Glucose (Photosynthesis)
	3. Mic	robiology (5)
	a)	Types of microorganisms and their general features - Bacteria, Yeast, Fungi,
		Virus, Protozoa- general introduction with practical significance and
		diseases
	b)	Microbial cell organization - Internal and External features of cell- bacterial
		cell wall, viral capsule, pilus etc,
	c)	Microbial nutritional requirements and growth - Different Sources of
		energy; growth curve
	d)	Basic microbial metabolism - Fermentation, Respiration, Sulfur, N ₂ cycle
	4. Imn	nunology (5)
	a)	Basic concept of innate and adaptive immunity - Immunity-innate and
		adaptive, differences, components of the immune system
	b)	Antigen and antibody interaction - Antigen and antibody, immunogen,
		factors affecting immunogenicity, basic antigen-antibody mediated assays,
		introduction to monoclonal antibody
	c)	Functions of B cell - B cell, antibody production, memory generation and
		principle of vaccination
	d)	Role of T cell in cell-mediated immunity - Th and Tc, functions of the T cell
		with respect to different pathogen and cancer cell
	5. Mo	lecular Biology (5)
	a)	Prokaryotic Genomes (Genome organization & structure) - Nucleoid,
		circular or linear
	b)	Fukaryotic Genomes (Genome organization & structure) - Intron, exon

	packaging, chromatin
	c) Central Dogma (Replication, Transcription and Translation)
	d) Applications of Molecular Biology (Diagnostics, DNA-fingerprinting,
	Recombinant products etc.) - Introduction to Recombinant DNA,
	fingerprinting, cloning
	6. Bioprocess Development (5)
	a) Microbial growth kinetics - Batch, fed-batch and continuous systems.
	Monod Equation
	b) Enzyme kinetics, kinetics of enzyme inhibition and deactivation
	Definition of enzymes, activation energy, Concepts of Km, Vmax, Ki
	c) Microbial sterilization techniques and kinetics
	Introduction to sterilization, dry and moist sterilization
	d) Thermodynamics of biological system - Concepts of Enthalpy, Entropy,
	favorable reactions, exergonic and endergonic reactions
	e) Material and energy balance for biological reactions - Stoichiometry
Text Books,	1. Biotechnology 01 Edition, authored by U. Satyanarayana, BOOKS & ALLIED (P)
and/or	LTD.
reference	2. Biochemistry by Lehninger. McMillan publishers
material	3. Microbiology by Pelczar, Chan and Krieg, Tata McGraw Hill
	4. Brown, T.A., Genetics a Molecular Approach, 4th Ed. Chapman and Hall, 1992
	5. Kuby J, Thomas J. Kindt, Barbara, A. Osborne Immunology, 6th Edition,
	Freeman, 2002.
	6. Bioprocess Engineering: Basic Concepts (2nd Ed), Shuler and Kargi, PHI.

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	1	1	-	1	-	-	-	-	-	-	-
	CO2	2	1	1	-	1	-	1	-	-	-	-	-
BTC01	CO3	2	1	1	-	1	-	-	-	-	-	-	-
	CO4	2	1	1	-	1	-	-	1	-	-	-	1
	CO5	2	1	1	-	1	1	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Tota	l Number c	of contact ho	ours	Credit			
Code		(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
	The Constitution	e Constitution								
XXC01	of India and Civic	PCR	1	0	0	1	1			
	Norms									
P	re-requisites	Course Assessment methods (Continuous (CT), mid-term (MT								
			and er	nd assessm	ent (EA))					
	NIL	CT+MT+EA								
Course	e CO1: Elementa	Itary understanding of the evolution of historical events that led to								
Outcom	es the making o	g of the Indian constitution, the philosophical values, basic structure								
	and fundame	and fundamental concerns enshrined in the Constitution of India.								

	CO2: Aware of the fundamental rights and duties as a citizen of the country.
	CO3: Enable to know the civic norms to be followed according to the Indian
	constitution
Topics	1. Historical background of the Making of Indian Constitution (1 Hour)
Covered	2. Preamble and the Philosophical Values of the Constitution (1 Hour)
	3. Brief Overview of Salient Features of Indian Constitution (1 Hour)
	4. Parts I & II: Territoriality and Citizenship (1 Hour)
	5. Part III: Fundamental Rights (2 Hours)
	6. Part IV: Directive Principles of State Policy (1 Hour)
	7. Part IVA: Fundamental Duties (1 Hour)
	8. Union Government: President, Prime Minister and Council of Ministers (2
	Hours)
	Parliament: Council of States and House of the People (1 Hour)
	10. State Government: Governor, Chief Mister and Council of Ministers (1 Hour)
	11. State Legislature: Legislative Assemblies and Legislative Councils (1 Hour)
	12. Indian Judiciary: Supreme Court and High Courts (1 Hour)
	13. Centre-State Relations (1 Hour)
	14. Reservation Policy, Language Policy and Constitution Amendment (1 Hour)
Text Books,	Primary Readings:
and/or	1) P. M. Bakshi, The Constitution of India, 18 th ed. (2022)
reference	2) Durga Das Basu, Introduction to the Constitution of India, 25 th ed. (2021)
material	3) J.C. Johari, Indian Government and Politics, Vol. II, (2012)
	Secondary Readings: Granville Austin, The Indian Constitution: Cornerstone of a
	Nation (1966; paperback ed. 1999); Granville Austin, Working a Democratic
	Constitution: The Indian Experience (1999; paperback ed. 2003).

Course	Title of the course	Program Core	Tota	l Number c	of contact ho	ours	Credit		
Code		(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
VECE2	GRAPHICAL								
ALJJZ	ANALYSIS USING	PCR	0	0	2	2	1		
	CAD								
Pr	e-requisites	Course As	sessment n	nethods (C	ontinuous ((CT) and e	nd		
			as	sessment (EA))				
	NIL			CT+EA					
Course	• CO1: Introduc	ction to graphical s	solution of	mechanics	problems				
Outcome	es •CO2: Knowle	edge on graphica	I solution	methods	for solving	g equilib	rium in		
	coplanar forc	e system							
	•CO3: Introdu	cing Maxwell diag	ses by g	raphical					
	method								
	• CO4: Determ	ination of centroid	l of plane fi	igures by gi	raphical met	thod			
	• CO5: Exposur	e to AutoCAD soft	ware for co	omputer ai	ded graphic	al solutio	n		
Topics	Graphical ar	nalysis of problem	s on statics	. [14]					
Covered	d • Graphical so	Graphical solution of engineering problems using CAD (with the help of							
	"AutoCAD")	[14]							
Text and/	or 1) Engineering	Drawing and Gra	phics – K V	enugopal					
referenc	e 2) AutoCAD —	George Omura							
materia	l 3) Practical Ge	ometry and Engin	eering Gra	phics – W A	Abbott				

			0 -						0 -				
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	-	-	-	-	-	-	-	-	-	-	-
	CO2	1	2	-	-	-	-	-	-	-	-	-	-
XES52	CO3	2	1	-	-	-	-	-	-	-	-	-	-
	CO4	2	1	-	-	-	-	-	-	-	-	-	-
	CO5	1	-	-	-	2	-	-	-	-	-	-	-

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	٦	Title of the	Program Core	Tota	l Number c	of contact ho	ours	Credit						
Code		course	(PCR) /	Lecture	Tutorial	Practical	Total							
			Electives (PEL)	(L)	(T)	(P)	Hours							
CSS51	C	OMPUTING	PCR	0	0	2	2	1						
	LA	BORATORY	. •	•	•	_	_							
Pr	re-requ	uisites	Course Ass	sessment n	nethods (Co	ontinuous (C	CT) and er	nd						
				as	sessment (EA))								
	NII	L			CT+EA									
Course	e	•CO1: To und	lerstand the prind	ciple of op	perators, lo	ops, brancl	hing stat	ements,						
Outcome	es	function, recursion, arrays, pointer, parameter passing techniques												
		• CO2: To deta	il out the operatio	ns of string	s									
		• CO3: To unde	erstand structure, u	union										
		• CO4: Application of C-programming to solve various real time problems												
Topics	L	List of Experiments:												
Covered	d 1	. Assignments	on expression eval	luation										
	2	2. Assignments	on conditional bra	nching, ite	rations, pattern matching									
	3	8. Assignments	on function, recur	sion										
	4	I. Assignments	on arrays, pointers	s, paramete	er passing									
	5	5. Assignments	on string using arr	ay and poir	nters									
	6	5. Assignments	on structures, unic	on										
Text Boo	ks, T	ext Books:												
and/or	· 1	L. Let us C by H	Kanetkar											
referenc	ce 2	2. C Programm	ning by Gottfried											
materia	al 3	3. Introduction to Computing by Balaguruswamy												
	4	I. The C-progr	amming language	by Dennis l	Ritchie									
	F	Reference Book	(S:											
	1	. Computer fur	ndamental and pro	ogramming	in C by P D	ey and M. G	Shosh							
	2	2. Computer fur	ndamental and pro	ogramming	in C by Ree	ema Thareja								
	3	 programming 	s with C by Schaum	n Series										

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	-	1	-	-	-	-	-	-	-	-	-
	CO2	-	2	1	3	-	-	-	-	-	-	-	-
C2221	CO3	-	1	-	2	1	-	-	-	-	-	-	-
	CO4	-	-	3	2	-	-	1	-	-	-	2	-

Correlation levels 1, 2 or 3 as defined below:

[
Course		Title of the	Program Core	Tota	l Number c	of contact he	ours	Credit				
Code		course	(PCR) /	Lecture	Tutorial	Practical	Total					
			Electives (PEL)	(L)	(T)	(P)	Hours					
ECS 51	Ba	asic electronics	PCR	0	0	2	2	1				
		Lab										
Pr	re-re	quisites	Course As	sessment n	nethods (Co	ontinuous ((CT) and e	nd				
				as	sessment (EA))						
	Ν	NIL			CT+EA							
Course	5	• CO1: Acqu	ire idea about k	basic elect	ronic com	ponents, id	entificati	on, and				
Outcom	es	behavior.										
		• CO2: To de	etermine IV chara	acteristics	of these Ci	ircuit eleme	ents for c	lifferent				
		application	IS.									
		CO3: Learr	n to analyze the o	circuits and	d observe a	and relate i	nput and	l output				
		signals.										
Labs		1. To know y	our laboratory: 1	To identify	and unde	rstand the	use of c	different				
Conducte	ed.	electronic a	and electrical instr	uments.								
		2. To identify	and understand	name and	d related t	erms of va	rious ele	ctronics				
		component	ts used in elect	ronic circ	uits.: Iden	tify differe	nt term	inals of				
		component	s, fid their values and observe numbering associate with it.									
		3. Use of osc	illoscope and function generator: Use of oscilloscope to measure									
		voltage, fre	quency/time and	Lissajous fi	igures of di	splayed way	veforms.					
		4. Study of ha	lf wave and Full-	wave (Brid	ge) rectifie	r with and w	without c	apacitor				
		filter circuit	Ι.									
		5. Realization	of basic logic gat	es: Truth ta	able verific	ation of OR	, AND, NO	эт, пот				
		and NAND	logic gates from T	TL ICs								
		6. Regulated	power supply: stu	dy LM78XX	and LM79	XX voltage r	egulator	ICs				
		7. Transistor a	as a Switch: study	and perfo	orm transis	tor as a swi	tch throu	igh NOT				
		gate										
		8. Zenner dio	diode as voltage regulator									
		9. To study cli	ay clipping and clamping circuits									
		10. To study dr	fferent blasing cir	tis.								
		11. Study of CE	amplifier and obs	serve its fre	equency res	sponse.						
I ext Boo	OKS,	<u>Text BOOKS</u> :	Manualfaria			امم (<u>۲</u> .۲.۰۰۰	ution of					
and/or	r	I. Experiments	s ivianual for use v			ies (Enginee	ering					
reference	ce	i echnologies &	k the Trades) by A	ibert Paul I	vialvinoDr.	, David J. Ba	ites, et al.	,				
materia	al	Keterence Boo	<u>KS</u> :	hu Davil II								
		1. The Art	of Electronics 3e,	, by Paul He	prowitz, Wi		L D					
1		2. Electro	nic Principles, by A	Albert Paul	ivialvinoDr	. and David	J. Bates					

		Iviapp	ing or		uise ou	ittome	j anu r		grann		comej		
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
	CO1	3	2	1	2	2	1	-	-	2	-	-	-
ECS51	CO2	3	2	2	2	3	-	-	-	2	-	-	-
	CO3	3	3	2	2	-	-	-	-	2	_	_	_

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

		Department of Electrical Engineering Title of the Program Core Total Number of contact hours Credi											
Course		itle of the courseProgram Core (PCR) /Total Number of contact hoursCreation Creation											
Code		course	(PCR) /	Lecture	Tutorial	Practical	Total						
			Electives (PEL)	(L)	(T)	(P)	Hours						
EES51	EL	ECTRICAL											
	TEC	HNOLOGY	PCR	0	0	2	2	1					
	LAE	BORATORY											
Pre	e-req	uisites	Course Ass	sessment n	nethods (Co	ontinuous ((CT) and e	nd					
				as	sessment (EA))							
	Nor	ne			CT+EA								
Course	j	• CO1: u	nderstand the prin	nciple of su	iperpositio	n.							
Outcom	es	• CO2: u	nderstand the prin	nciple of m	aximum po	ower transfe	er						
		• CO3: u	nderstand the cha	racteristic	s of CFL, ind	candescent	Lamp, ca	rbon					
		lamp.											
		• CO4: u	nderstand the cali	bration of	energy me	ter.							
		• CO5: u	nderstand open ci	rcuit and s	hort circuit	test of sing	le-phase						
		transfo	ormer.										
		 CO6: a 											
		• CO7: u	nderstand three p	hase conn	ections.								
		 C08: ui 	nderstand determination of B-H curve										
Topics	5	List of Experi	t of Experiments:										
Covere	d	1. To veri	fy Superposition a	nd Thever	in's Theore	em.							
		2. To veri	fy Norton and Ma	ximum pov	wer transfe	r theorem							
		3. Charac	teristics of fluores	cent and c	ompact flu	orescent lar	mp						
		4. Calibra	tion on energy me	eter									
		5. To per	form the open circ	cuit and sh	ort circuit t	est on single	e phase						
		transfo	ormer										
		6. IO STUC	by the balanced th	ree pnase	system for	star and de	ita conne	cted					
		IOad	toristics of difform	nt tunna of	Incondoco	ont lomac							
		7. Characteristics of different types of incandescent famps											
		a. Study (pination of P U Cu	rvo for mo	anotic mat	orial							
Toythool	ks	9. Detern			gnetic mat								
and/or	r.,	1 Handbook	of Laboratory Evo	eriments i	n Electronia	rs and Flert	rical Engi	neering					
reference	re		17ungeru IM Chi	ima HIIF	762								
materia	al	2 Laboratory	/ Courses in Flectri	ical Engine	ering (5 th F	dition) hv S	G. Tarne	kar. P					
		K. Kharbar	da. S. B. Bodhke	S. D. Naik	D. J. Dahiø	aonkar (S. C	hand						
		Publication	ns)										

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	1	1	1	2	2	2	3
CO2	3	3	3	3	3	1	1	1	2	2	2	3
CO3	3	3	3	3	3	1	1	1	2	2	2	3
CO4	3	3	3	3	3	1	1	1	2	2	2	3
CO5	3	3	3	3	3	1	1	1	2	2	2	3
CO6	3	3	3	3	3	1	1	1	2	2	2	3
CO7	3	3	3	3	3	1	1	1	2	2	2	3

Mapping of CO (Course Outcome) and PO (Programme Outcome)

CUI	RRICUL	UM	ANI	D SYL	LABL	JS F	OR B	.TECH	I. IN	M	ETAL	LUR	GIC	AL AN	ID I	MATE	RIAL	S EN	IGINI	ER	ING
	CO8		3	3		3	3	3		1	1		1	2		2		2	3]
			_			Corr	elatio	n leve	els 1,	20	or 3 as	s de	finec	l belov	w:			-]
		1: 5	ligh	t (Lov	v)		2: M	oderat	, te (N	/ledi	ium)			3	3: Su	ubstar	ntial (I	High	ı)		
			т:	+lo of	the		Prog	gram C	Core			Tot	tal N	umbe	r of	cont	act ho	ours			
Со	urse Coo	de		cour	se		(PCR)) / Elec (PEL)	ctives	S	Lec (ture L)	e T	utoria (T)	al	Prac (P	tical)#	T H	otal ours	Cro	edit
	XXS-52		Co- A	-curri Activit	cular ies			PCR				0		0			2		2		1
Pre	-requisit	tes	C	Course	e asse	ssm	nent n	netho	ds: (0	Cont	tinuo	us e	valu	ation((CE)) and	end a	sses	smen	t (EA	4)
	NIL										С	E + E	ΕA		<u>, ,</u>	,					
	Course			 CO1: Social Interaction: Through the medium of sports CO2: Ethics: Recognize different value systems including your own, understand 																	
0	utcome	s		 CO2: Ethics: Recognize different value systems including your own, understand the moral dimensions of your decisions, and accept responsibility for them 															and		
				 the moral dimensions of your decisions, and accept responsibility for them CO3: Self-directed and Life-long Learning: Acquire the ability to engage in independent and life long learning in the baseline. 																	
				 CO3: Self-directed and Life-long Learning: Acquire the ability to engage in independent and life-long learning in the broadest context socio-technological changes. CO4: Personality development through community engagement CO5: Exposure to social service 															e in		
																			gical		
	Topics		VO	CO5: Exposure to social service DGA																	
	Covered		100	 OGA Sitting Posture/Asanas- Gomukhasana, Swastikasana, Siddhasana, <u>Ustrasana</u> 															ana		
				 Sitting Posture/Asanas- Gomukhasana, Swastikasana, Siddhasana, <u>Ustrasana</u>, Janusirsasana, ArdhaMatsyendrasana (Half-Spinal Twist Pose), 														use).			
				P	aschi	mot	tanas	ana. S	Shash	nank	kasan	ia. B	hadr	asana.		opin			100		,,
				• N	/ludra	- Va	iyu, Sł	nunya	, Prit	hvi,	Varu	una,	Apar	na, Hri	iday	ya, Bh	airav	muc	dra.		
				• L	aying	Ро	sture	/Asana	as-	Sha	labha	asan	a (L	ocust	Pc	osture), Dł	nanu	ırasan	a (I	Bow
				Р	ostur	e),	Ardha	Halas	ana	(Ha	alf Pl	ougl	h Po	se), S	arv	angas	ana	(Sho	ulder	Sta	nd),
				F	lalasa	na	(Plou	gh Po	ose),	, <u>M</u>	latsya	asar	<u>na</u> , S	Suptav	/ajra	asana	, Ch	akra	sana	(W	heel
				Р	ostur	e), I	Vauka	isana ((Boat	t Po	sture	e), Sł	navas	sana (I	Rela	axing	Pose)	, Ma	akaraa	sana	a.
				• N	/ledita	atio	า-		ʻOm	n'me	editat	tion,	,		Kun	ndalin	i or C	hakr	a Meo	ditat	ion,
				Ν	/lantra	ame	ditati	on.													
				• S	tandiı 	ng F	Postu	re/Asa	anas-	- Ar	dhaC	Chak	rsana	a (Hal	f W	Vheel	Post	ure),	, Triko	onas	ana
				(Triang	gle	Postu	ire), F	Parsh	nwa	Kona	sana	a (Si	de Ai	ngle	e Pos	sture)	, Pa	adaha	stas	ana,
					riksna	asar	ia (Tre	ee Pos	se), G	aru aital	idasa I: IIII	na (ovi	Eagle	e Pose	:). Dhr	amar	:				
				• r	andh	am 2-11	a- Nau ddivo	no Boi	ndha		lula B	ayı, Iand	bilds	alandi	barr	alliai 2 Bani	ı. dha N	J-h-	a Banı	lha	
				• K	riva- l	a- O Kan:	alahh:	ati Tra	ataka	2, IVI 2 No	auli	anu	11a, J	alanui	lard		una, r	viaiio		ina.	
			АТН	ILETI	CS	αp		, 110	ature	a, 14	aun.										
				• L	ong J	umr	o- Hito	ch kicl	k, Pa	nddli	ing, A	Аррі	roach	n run,	Tak	ke off	, Velo	ocitv	, Tecł	nnia	ues,
				F	light 8	s La	nding	5			0,	••						,			
				• D	iscus	thr	ow, Ja	avelin	thro	w a	nd Sl	hot-	put-	Basic	skil	II & Те	echnio	que,	Grip,	Sta	nce,
				R	eleas	e &	Follov	w thro	ough.												
				• F	ield e	ven	ts ma	rking.													
				• @	ienera	al Ru	ules o	f Tracl	k & F	ield	l Ever	nts.									
			BAS	SKETE	BALL		_		_					_							
				• S	hooti	ng-	Layup	shot,	Set	shot '	t, Ho	ok s	hot, .	Jump :	sho	t. Fre	e thro	ow.			
				• R	ebou	ndir	ng- De	etensiv	ve rel	bou	nd, C	otter	nsive	rebou	und	•	,				
				• li -	ndivid	ual	Defer	sive-	Guar	rdin	g the	ma	n wit	nout l	ball	and v	with b	all.			
				• P	ivotin	ıg.															

- Rules of Basketball.
- Basketball game.

VOLLEYBALL

- Spike- Straight spike, Body turn spike, Tip spike, Back attack, Slide spike, Wipe out spike.
- Block- Single block, Double block, Triple block, Group block.
- Field Defense- Dig pass, Double pass, Roll pass.
- Rules and their interpretation.

FOOTBALL

- Dribbling- Square pass, Parallel pass, Forward pass.
- Heading (Standing & Running)- Fore head, Side fore head, Drop heading, Body covering during heading.
- Kicking- Full volley, Half volley, Drop kick, Back volley, Side volley, Chiping (lobe).
- Tackling: Covering the angle, Chessing time sliding chese, Heading time shoulder tackle etc.
- Feinting- Body movement to misbalance the opponent and find space to go with ball.
- Rules of Football.

CRICKET

- Batting straight drive.
- Batting pull shot.
- Batting hook shot.
- Bowling good length, In swing.
- Bowling out swing, Leg break, Goggle.
- Fielding drill.
- Catching (Long & Slip).
- Wicket keeping technique.
- Rules & Regulation.

BADMINTON

- Net play- Tumbling net shot, Net Kill, and Net Lift.
- Smashing.
- Defensive high clear/Lob.
- Half court toss practice, Cross court toss drop practice, Full court Game practice.
- Player Positioning, Placements.
- Rules & Regulation.
- Doubles & Mixed doubles match practice.

TABLE TENNIS

- Stroke: Backhand- Topspin against push ball, Topspin against deep ball, Topspin against rally ball, Topspin against topspin.
- Stroke: Forehand- Topspin against push ball, Topspin against deep ball, Topspin against rally ball, Topspin against topspin.
- Stroke- Backhand lob with rally, Backhand lob with sidespin, Forehand lob with rally, Forehand lob with sidespin.
- Service: Backhand/Forehand- Push service, Deep push service, Rally service.
- Service: Backhand sidespin (Left to right & Right to left).
- Service: Forehand- High toss backspin service, High toss sidespin service, High toss reverse spin service.
- Rules and their interpretations.

•	Table Tennis Match (Singles & Doubles).
NCC	
•	FD-6 Side pace, Pace Forward and to the Rear.
•	FD-7 Turning on the March and Wheeling.
•	FD-8 Saluting on the March.
•	FD-9 Marking time, Forward March and Halt in Quick Time.
•	FD-10 Changing step.
•	FD-11 Formation of Squad and Squad Drill.
•	FD-12 Parade practice.
TAEK	VONDO
•	Poomsae (Forms)- Jang, Yi Jang.
•	Self Defense Technique- Self defense from arms, Fist and Punch.
•	Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).
•	Combination Technique- Combined kick and punch.
•	Board Breaking (Kyokpa)- Sheet breaking.
•	Interpretation Rules above Technique of Taekwondo.
NSS	
•	No Smoking Campaign
•	Anti- Terrorism Day Celebration
•	Any other observation/celebration proposed by Ministry/institute
•	Public Speaking
•	Discussion on Current Affairs
•	Viva voce

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
XXS52	CO1	-	-	-	-	-	2	-	-	3	-	-	-
	CO2	-	-	-	-	-	-	I	2	-	-	-	-
	CO3	-	-	-	-	-	-	1	-	-	-	-	3
	CO4	-	-	-	-	-	-	-	-	2	2	-	-
	CO5	-	-	-	-	-	3	1	-	-	-	_	-

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

CO-PO Mapping and Matrix

Cours e	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12
	CO1	3	3	1	2	-	-	-	-	1	-	-	-
MAC0	CO2	3	3	1	2	-	-	-	-	1	_	-	-
1	CO3	3	3	1	2	-	-	-	-	1	_	1	1
	CO4	3	-	-	2	-	2	-	-	1	-	-	-
	CO1	3	2	1	1	1	-	-	1	-	-	-	1
	CO2	3	2	-	2	-	-	-	-	-	-	-	1
PHCUI	CO3	3	2	2	2	1	1	1	1	1	-	1	1
	CO4	3	2	2	2	1	1	1	-	1	-	1	1
CYC01	CO1	1	2	-	-	-	-	-	-	-	-	-	-
	CO2	1	-	-	-	_	_	2	-	-	_	-	-
	CO3	1	2	1	1	1	-	-	-	-	-	-	-
	CO4	-	1	-	-	2	-	1	-	-	-	-	-
--------	-----	--------	--------	-----	---	---	---	--------	---	---	---	---	--------
	CO1	1	_	-	-	-	-	-	-	-	_	_	1
	CO2	1	1	1	1	_	-	-	_	_	_	_	1
XEC01	CO3	1	1	_	_	_	_	_	_	_	_	_	1
12001	CO4	1	2	_	_	_	_	_	_	_	_	_	1
	CO5	-	2	2	2	2	1	_	_	_	1	_	1
	CO1	2	-	-	-	-	-	2	_		-	_	
	CO2	1	_	_	_	_		2	_		_	_	
ESC01	CO2	2	_	_		_		2			_	_	
	CO3	 1	_	- 2	-	_	2	2 1	-				
	CO4	1	_	-	_	_	-	-	_		_	_	
XES51	CO2	1	1	_	_	_	_	_	_	_	_	_	
ALGOI	CO3	1	-	1	_	_	_	_	_	_	_	_	_
	CO1	-	_	-	_	_	1	_	_	1	3	_	3
HSS51	CO2	_	_	_	_	_	2	_	_	2	3	_	ר ר
	CO1	2	2	1			2		_	2	1		
	CO1	3	2	1			1		_	2	1		1
	CO2	2 2	2 1		-	-		-	-	2	1	-	1
PH351	CO3	2 2	2	-	-	-	-	-	-	2	1	-	1
		2	2	-	T	-	1	1	-	2	1	-	1
	CO3	2 2	2 1	L	-	1	L		-	Ζ	1	-	1
	CO1	Z	1	-	1	-	-	-	-	-	-	-	-
CYS51	602	-	1	-	1	1	2	-	-	-	-	-	-
	03	2	-	-	1	1	-	-	-	-	-	-	-
	CO4	-	T	-	T	T	-	-	-	-	-	-	-
14/665	C01	2	-	-	-	-	1	-	-	-	1	-	-
WSS5	CO2	1	-	1	-	-	1	-	-	-	1	-	-
T	03	1	-	2	-	-	1	-	-	-	1	-	-
	CO4	1	-	-	-	-	2	-	-	-	1	-	-
	CO1	2	3	1	3	-	-	-	-	2	-	-	-
MACO	02	2	3	1	2	-	-	-	-	2	-	-	-
2	03	2	2	2	3	2	-	-	-	3	-	1	1
	CO4	2	3	2	3	2	1	1	-	2	-	-	-
	CO1	3	1	2	1	-	-	-	-	-	-	-	-
	CO2	-	2	1	2	1	-	-	-	-	-	-	-
CSC01	CO3	1	2	-	-	3	-	-	-	-	-	-	-
	CO4	1	3	1	2	3	-	-	-	-	-	-	1
	CO5	2	1	-	-	3	-	-	-	-	-	-	-
	CO6	2	-	3	-	1	-	-	-	-	-	-	-
	CO1	-	-	-	-	-	-	-	-	-	-	-	-
ECC01	CO2	-	-	-	-	-	-	-	-	-	-	-	-
	CO3												
	CO4	-	-	-	-	-	-	-	-	-	-	-	-
	CO1	3	1	-	-	2	-	-	-	-	1	-	-
	CO2	2	3	2	-	2	-	-	-	-	-	-	-
EEC01	CO3	2	3	1	-	-	-	-	-	-	1	-	-
	CO4	3	1	2	-	1	-	-	-	-	-	-	-
	CO5	3	1	2	-	1	-	-	-	-	-	-	-
57004	CO1	2	1	1	-	1	-	-	-		-	-	-

i.			i i	i i	i i	i	i.	i .	i i		i .	i .	i i
	CO2	2	1	1	-	1	-	1	-	-	-	-	-
	CO3	2	1	1	-	1	-	-	-	-	-	-	-
	CO4	2	1	1	-	1	-	-	1	-	-	-	1
	CO5	2	1	1	-	1	1	1	-	-	-	-	-
	CO1	2	-	-	-	-	-	-	-	-	-	-	-
	CO2	1	2	-	-	-	-	-	-	-	-	-	-
XES52	CO3	2	1	-	-	-	-	-	-	-	-	-	-
	CO4	2	1	-	-	-	-	-	-	-	-	-	-
	CO5	1	-	-	-	2	-	-	-	-	-	-	-
	CO1	3	-	1	-	-	-	-	-	-	-	-	-
CCCF 1	CO2	-	2	1	3	-	-	-	-	-	-	-	-
C2221	CO3	-	1	-	2	1	-	-	-	-	-	-	-
	CO4	-	-	3	2	-	-	1	-	-	-	2	-
	CO1	3	2	1	2	2	1	-	-	2	-	-	-
ECS51	CO2	3	2	2	2	3	-	-	-	2	-	-	-
	CO3	3	3	2	2	-	-	-	-	2	-	-	-
	CO1	3	-	2	-	3	-	-	-	1	-	-	-
	CO2	3	-	2	-	3	-	-	-	1	-	-	-
	CO3	2	3	2	2	1	-	2	-	1	-	-	-
EE221	CO4	2	3	1	2	2	-	1	-	1	1	-	-
	CO5	2	3	1	2	2	-	-	-	1	-	-	-
	CO6	2	3	2	2	2	-	-	-	1	-	-	-
	CO1	-	-	-	-	-	2	-	-	3	-	-	-
	CO2	-	-	-	-	-	-	-	2	-	-	-	-
XXS51	CO3	-	-	-	-	-	-	1	-	-	-	-	3
	CO4	-	-	-	-	-	-	-	-	2	2	-	-
	CO5	-	-	-	-	-	3	1	-	-	-	-	-
	CO1	-	-	-	-	-	2	-	-	3	-	-	-
	CO2	-	-	-	-	-	-	-	2	-	-	-	-
XXS51	CO3	-	-	-	-	-	-	1	-	-	-	-	3
	CO4	-	-	-	-	-	-	-	-	2	2	-	-
	CO5	-	-	-	-	-	3	1	-	-	-	-	-

			J SEIVIES I	EK									
	Departme	nt of Metallurgical	and Mater	ials Engine	eering		I						
Course	Title of the	Program Core	Total Nu	mber of c	ontact hours	S	Credi						
Code	course	(PCR) /	Lectur	Tutori	Practical	Total	t						
		Electives (PEL)	e (L)	al (T)	(P)	Hour							
						S							
MAC33	Mathematics- III	PCR	3	1	0	4	4						
1													
Pre-requi	sites	Course Assessm	ent metho	ds (Contin	uous (CT), n	nid-term	(MT)						
		and end assessn	nent (EA))										
Basic knov	vledge of topics	CT+MT+EA											
included in	n MAC01 & MAC02												
Course	CO1: Acqu	uire the idea about	t mathen	natical for	mulations o	f phenor	mena in						
Outcome	s physics an	d engineering.											
	• CO2: To	understand the	common	numerical	methods	to obta	ain the						
	approximate solutions for the intractable mathematical problems.												
	• CO3: To u	role in	modern										
	mathematics and applied contexts.												
	• CO4: To u	nderstand the opti	mization m	nethods ar	nd algorithm	ns develo	ped for						
	solving var	ious types of optim	ization pro	oblems.									
Topics	Partial Differe	Partial Differential Equations (PDE): Formation of PDEs; Lagrange method for											
Covered	solution of first order quasilinear PDE; Charpit method for first order nonlinear												
	PDE; Homogenous and Nonhomogeneous linear PDE with constant												
	coefficients: C	omplimentary Fund	tion, Parti	cular integ	gral; Classifi	cation of	second						
	order linear PD	E and canonical fo	rms; Initial	& Bounda	ary Value Pro	oblems ir	nvolving						
	one dimension	hal wave equation	n, one di	imensiona	l heat equ	uation a	nd two						
	dimensional La	place equation.				[14]							
	Numerical Me	thods: Significant	digits, Err	rors; Diffe	rence oper	ators; N	ewton's						
	Forward, Backy	ward and Lagrange	s interpola	ation form	ulae; Nume	rical solu	tions of						
	nonlinear alge	braic/transcendent	al equation	ns by Bise	ction and M	Newton-H	kaphson						
	methods; Irap	ezoidal and Simps	on's 1/3 r	ule for nu	imerical inte	egration;	Eulers						
	method and m	odified Eular's meti	nods for so	lving first	order differ	ential eqi	uations.						
				•									
	Complex Analy	vsis: Functions of co	omplex var	iable, Limi	t, Continuity	y and Dei	rivative;						
	Analytic funct	ion; Harmonic fun	iction; Col	nformal t	ransformatio	on and	Billnear						
	transformation	; Complex Integrati	ion; Cauch	y's integra	i theorem; (Lauchy's	Integral						
	formula; Taylo	r's theorem, Laure	ent's theor	em (State	ment only);	Singulai	r points						
	and residues; C	auchy's residue the	eorem. [17	1									
	Optimization:	Dualization dia a											
		Preuminaries: Hy	perplanes	and Line	ar varietie	s; conve	ex Sets,						
	Linear Brogram	ruiyneurd. [2] aming Brahlam (1 D	D). Intradu	ction. For	nulation of	linoar							
			rj: murouu	uion; Forr		nnedi Nedara fa	rm of						
		ible solutions: Sime		d for column		anuaru 10 1							
Toyt Doc!	LFP, DASIC IEAS	iole solutions; simp			ig LFF. [9	1							
iext BOOk	1 An Element	any Course in Dartin	Difforant	ial Equation		aath							
		ary course in Partia		iai Equatio	nis-i. Amari								
matorial			inc a Engine	eening Cor	nputation- ľ	vı.ĸ.Jdl[],							
material	S.K.K. Iyeng	ai & K.K. Jain.	lycic S Ponnucwami										
	3. Foundation	s of complex Ahalys	sis- S. Ponr	iuswami									

THIRD SEMESTER

4. Operations Research Principles and Practices- Ravindran, Phillips, Solberg

5. Advanced Engineering Mathematics- E. Kreyszig

Reference Books:

1. Complex Analysis-L. V. Ahfors

2. Elements of partial differential equations- I. N. Sneddon

3. Operations Research- H. A. Taha

Mapping of CO (Course Outcome) and PO (Programme Outcome)

	-											
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	1	2	-	-	-	-	2
CO2	3	3	2	2	2	1	2	-	-	-	1	2
CO3	3	3	2	2	3	-	1	-	-	1	-	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

		Departmer	nt of Metallurgical	and Mater	ials Engine	ering							
Course	Tit	tle of the	Program Core	Total Nu	mber of co	ontact hours	5	Credi					
Code	со	ourse	(PCR) /	Lectur	Tutori	Practical	Total	t					
			Electives (PEL)	e (L)	al (T)	(P)	Hour						
							S						
MMC30	Μ	etallurgical	PCR	3	1	0	4	4					
1	Th	ermodynamics											
	ar	nd Kinetics											
Pre-requis	sites	i	Course Assessme	ent metho	ds (Contin	uous (CT), m	nid-term	(MT)					
			and end assessment (EA))										
CYC01: En	ngine	eering	CT+MT+EA										
Chemistry	/	ſ											
Course		CO1: Acquire t	he knowledge of	thermody	namic law	s to apply	in meta	llurgical					
Outcomes	S	processes and n	naterials.										
		CO2: Identify the feasibility of metallurgical processes and reactions.											
		CO3: Learn to a	nalyze the kinetics	s of metall	urgical pro	cesses and	design t	he alloy					
		systems by appl	ying the concepts	of thermo	dynamics.			<u> </u>					
Topics		Definitions, be	haviour of gasse	s, vapour	s and ga	seous moi	sture, m	aterials					
Covered		balances in met	allurgical processe	S.			((4)					
		First law of the	ermodynamics, He	eat and w	ork chang	es in rever	sible pro	ocesses,					
		Concept of Hea	at Capacity, Entha	ipy energy	y balance	in metallui	gical pro	ocesses,					
		Reversible adia	batic process.	an Fatur			(4) ihla ima						
				opy, Entre	ppy change	es in revers	opt of fi	rct and					
		processes and	ropy change for irr	ovorsiblo (y, Combin shomical re	actions	ent of fi						
		Holmboltz froo	operate and the	Gibbs fro				(0) tions in					
		differential for	n Thermodynami	notentia	le The M	avwoll rolat	ions Cri	toria of					
		equilibrium and	t spontaneity (or	irrovorsih	ility) The	Gibbs-Holn	nholtz er						
		Third law of thermodynamics (6)											
		Concept of ch	emical notential	Chemical	notential	of oxyger	n nartial	n I molar					
		quantities Inte	gral molar quantit	ties. Raou	It's law ar	nd Henry's	law. Alte	rnative					
		standard states	Sievert's law, Mix	ing functi	on. Excess	function. F	Regular s	olution					
		concept of inter	action parameter.		, 2.0000		(13	3)					
		concept of inter	detion parameter.				(13	·/					

	Fugacity, Activity, standard state, equilibrium constant, Van't Hoff reaction isotherm,Le Chatelier's Principle, Free-energy Charts and Ellingham diagrams, Gas- solid reaction, Van't Hoff equation, Sigma Function (Σ), Clausius-Clapeyron Equation, Trouton's Rule. (8)
	thermodynamics quantities using reversible electrochemical cells, Electrochemical
	cell based on solid electrolytes. (3)
	Types of reaction, Order of reaction, Determination of order and rate constant of a
	reaction. (6)
Text Books, and/or reference material	 <u>Suggested Text Books:</u> Introduction to Metallurgical Thermodynamics – David R Gaskell. 2. Metallurgical Textbook of Materials and Metallurgical Thermodynamics –A. Ghosh Thermochemistry – O. Kubaschewski, E LL Evans and C B Alcock
	 <u>Suggested Reference Books:</u> Stoichometry and thermodynamics of Metallurgical processes - Y K Rao. Problems in Metallurgical Thermodynamics and Kinetics – G S Upadhyay and R K Dube. Chemical Kinetics - Keith Laidler.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	2	1	1	1	1	1	1	1	1	1	1
CO2	2	3	1	1	1	1	1	1	1	1	1	1
CO3	1	2	3	1	1	1	1	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Lo	1: Slight (Low) 2: Modera			e (Medium) 3: Substantial (High)									
			Depa	artment of Metallu	urgical and	Materials							
				Engine	ering								
Course	Title	ofthe	e course	Program	Total Nun	nber of con	tact hours		Credit				
Code				Core(PCR) /	Lecture	Tutorial	Practical	Total					
				Electives(PEL)	(L)	(T)	(P)	Hours					
MMC302	Intro	oducti	on to	PCR	3	1	0	4	4				
	Met	allurg	y and										
	Materials												
Pre-requisites				Course Assessme	Course Assessment methods (Continuous (CT) and end assessment								
				(EA))									
PHC01: Eng	ineeri	ing Ph	ysics	CT+EA									
Course		Ι.	To correla	ite atomic structure, periodic table, elemental properties, chemical									
Outcomes			bonding a	ind material properties.									
		II.	To interp	ret crystal structure in view of translational periodicity and									
			symmetry	and as well as to	introspect	different k	inds of defe	ects in a c	rystal.				
		III.	To study t	he binary phase di	iagrams an	d a brief in	troduction	to differe	nt				
			engineeri	ing materials.									
TopicsCo		Ato	mic Structı	ure and chemical E	Bonding: Q	uantum me	chanical ap	proach,					
vered		Schi	rödinger w	ave equation, way	ve function	, Quantum	state, Perio	odic Table	2,				
		elec	tronic con	nfiguration and atomic structure. Bonding in solids, different types									

Text Books,and rreference aterial	/o m	of bonds, B Structure of Alloys,Cera conceptofla pacelattice, bicandhexa perfections equilibrium Solidificatio Phase diagr with refere Corrosion a against corr Introductio Alloys, Inter nano-crysta Text Books: 1. Materials Learning Pvt 2. Introducti 3. Structure R. B.Gordon 4. The Struct and J.Wulff. 5. Introducti 6. Crystallog	ond energy, effe ond energy, effe of Solids: The cr mics, semicondu atticeandcrystal, representation gonalsystems; at – point defect concentration of on of metals and rams: The phase nce to a few imp nd oxidation of rosion; Mechania n to Materials (Or metallics, Polyn alline materials. Science and Eng Ltd., 2004. ontoMetallurgy and Properties of ture and properties of cure and properties of cure and properties of cure and properties of cure and properties of cure and properties	ling on mat ind the no olymers;Cry nalperiodic osition,lattic ng,voidsinF fect, surfa fect, surfa fect. uding Rapic e compone tallic syste The princip ation; Oxid on, Selectio es and Cers A first cours ell,Arnold,1 ring Materi erials (1 – 1 aMcGraw-H ohysics-A. F	erial proper ncrystalline ystalstructur ityandsymm cedirections CC,BCCand ce defect d Solidificati nt system. E ms. oles of corro ation resista n and Appli amics, Comp se – V. Ragh 968. als – R. M. E V) – R.M. Ro Hill, 1990.	ties. (10) states – re– hetry,crys andlattic HCPcryst and vol on Techn Binary ph sion; Pro- ant mater cations): posite Ma avan, PHI Brick, A. V ose, L. A.	 Metals and talsystems,s eplanesincu als;crystalim ume defect; (12) ology (6) ase diagrams (6) tection rials. (6) Metals and sterials, (10) V.Pense and Shepard 	
		Denai	rtment of Farh a	nd Enviror	mental Sti	ideis		
Course	Tit	le of the	Program	Total Nu	mber of co	ntact hours		Credit
Code	CO	urse	Core (PCR) / Electives (PEL)	Lectur e (L)	Tutoria I (T)	Practica I (P) [#]	Total Hour s	
ESC332	Eco Ge	onomic ology	PCR	3	0	0	3	3
Pre-requi	sites		Course Assess assessment (E	ment met A))	hods (Conti	inuous (CT)	and end	
			CT+EA					
Course Outcomes	5	 It helps to a application i Enhances kr purposes. It enables to industrial pr 	ocquire technica n Metallurgical nowledge of nat o scientifically as oblems related	I knowled Engineerin ural resou ssess the r to materia	ge of basic g. rces and th naterials of Is.	geological peir utilization	principles on for Me and helps	and their etallurgical in solving

Topics Covered	Mineralogy: Definition, simple classifications, examples; Studies of crystals - symmetry elements, crystal classes and systems, twinning of crystals; Physical properties of minerals, Optical properties of minerals, Chemical characteristics, Atomic bonding in minerals, Structural classification of silicate minerals, occurrence. [10] Petrology: Igneous rocks - Magma – composition, physical properties; Rock cycle; Formation of Igneous rocks; Form and Structure; Classification; Texture; Phase diagram and crystallisation behaviour, Bowen's Reaction Series; Sedimentary rocks – Origin, classifications and examples, primary structures, textures; Metamorphic rocks – roles of agents of metamorphism, types of metamorphism, grades and degrees of metamorphism, metamorphic textures. [12] Structural Geology: Dip, Strike; Folds, Faults, Joints, Cleavage & Schistosity. [4] Economic Geology: Processes of formation of mineral deposits; Economic mineral deposits with special reference to Indian occurrences – Metallic minerals – Iron, Copper, Manganese, Aluminium, etc.; Non-metallic minerals – Refractory minerals, phosphate minerals. [10]
Text Books	1) A Teythook of Geology: P. K. Mukherige World Press
and for	2) The Dringing of Detrology . F. N. WUNITEIJEE, WORL FIESS
and/or	2) The Principles of Petrology : G. W. Tyrrel; B. I. Publications
reference	3) Dana's Manual of Mineralogy: Dana & ford
material	4) Economic Mineral Deposits: Jensen M. L & Bateman A. M

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	2	-	2	2	1	-	2	3	3	2	3
CO2	2	3	3	2	3	-	2	2	2	3	3	3
CO3	3	3	3	2	2	1	3	1	2	3	3	3

Correlation levels 1, 2 or 3 as defined below:

	Department of Metallurgical and Materials Engineering												
Course	Title of the	Program Core	Total	Number o	of contact h	ours	Credi						
Code	course	(PCR) /	Lectur	Tutori	Practical	Total	t						
		Electives (PEL)	e (L)	al (T)	(P)	Hour							
						S							
MMC30	Non- Ferrous	PCR	3	1	0	4	4						
3	Process												
	Metallurgy												
Pre-requis	sites	Course Assessment methods (Continuous (CT), mid-term (MT)											
		and end assessm	nent (EA))										
CYC-01: E	ngineering	CT+MT+EA											
Chemistry	/	I											
Course	CO1: Under	rstand fundamentals and unit operations of Mineral Beneficiation											
Outcomes	s (MB).												
	CO2: Under	stand developme	ents in proc	essing of ı	non-ferrous	metals.							
	CO3: Identi	fy and solve the pr	oblems of	industrial	applications	of MB u	ınit.						
Topics	Sources of non	ferrous metals (So	urces in la	nd and sea	i, exploratio	n metho	ds,						
Covered	methods of be	neficiation, nonfer	rous metal	s wealth ii	n India)								
	(2)												

	Principles of metals extraction, (Thermodynamic principles, homogeneous and heterogeneous reactions, Ellingham diagrams, kinetic principles, electro- chemistry) (8)
	General methods of extraction, (Pyro-metallurgy – calcinations, roasting
	(predominance area diagram) and smelting, Hydrometallurgy – leaching, solvent
	extraction, ion exchange, precipitation, and electrometallurgy – electrolysis and electro-refining)(6)
	General methods of refining, (Basic approaches, preparation of pure compounds,
	purification of crude metal produced in bulk)
	(2)
	Extraction of metals from oxide sources, (Basic approaches and special features
	of specific extraction processes, extraction of metals such as Mg, Al, Sn) (5)
	Extraction of metals from sulphide ores, (Pyro-metallurgy and hydro-metallurgy
	of sulphides, production of metals such as copper, lead, zinc, nickel etc.)
	(5)
	Extraction of metals from halides, (Production of halides and refining methods,
	production of reactive and reactor metals. Methods of extraction of metals such
	as Ti, Ur) (5)
	Production of precious metals (Methods applied for gold, silver and Pt.)
	(3)
Text Books,	Suggested Text Books:
and/or	1. Extraction of nonferrous metals, H.S. Ray, R.Sridhar and K.P. Abraham Affiliated
reference	East West Press Pvt Ltd., New Delhi (2007).
material	2. H.S. Ray and A. Ghosh, Principles of extractive metallurgy, Wiley Eastern Ltd.,
	New Delhi (1991)
	Suggested Reference Books:
	1. W.H. Dennis, Extractive Metallurgy, Philosophical Library, New York (1965)
	2. F. Habashi, Principles of Extractive Metallurgy, Vol.1, Gordon and Breach, New
	York (1969).
	3. T. Rosenqvist, Principles of Extractive Metallurgy, McGraw Hill, New York
	(1983).
	4. J.L. Bray, Nonferrous production metallurgy, Wiley, NewYork(1954).

Mapping of CO (Course Outcome) and PO (Programme Outcome)

	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
РО												
СО												
CO1	3	3	2	2	1	1	1	1	1	1	1	3
CO2	3	3	2	2	1	1	2	1	1	1	1	3
CO3	3	3	3	3	2	1	2	1	3	1	1	2

Correlation levels 1, 2 or 3 as defined below:

	Department of Earth and Environmental Studies											
Course	Title of the	Program	Program Total Number of contact hours									
Code	course	Core (PCR) /	Lectur	Practica	Total							
		Electives	e (L)	I (T)	l (P)#	Hour						
		(PEL)				S						
ESS382	Economic	PCR	0	0	3	3	1.5					
	Geology											
	•		•	•								

	Laboratory							
Pre-requis	sites	Course Assess	sment metl	hods (Cont	inuous (CT)	assessme	ent)	
- ·		СТ		•				
 Students will develop concept of symmetry of crystals of minerals used to metallurgical purposes. The students will learn to study the properties of minerals including ores unde polarizing microscope which will contribute to the beneficiation process. Students will learn to solve geological problems associated with occurrence o new materials to be used for metallurgical purposes. 								
Topics Experiment 1: To study the symmetry elements of crystals (Part 1). [3]								
Covered	Experiment 1: To study the symmetry elements of crystals (Part 1). [3] Experiment 2: To study the symmetry elements of crystals (Part 2). [3] Experiment 3: To study the physical properties of minerals in hand specimens. [3] Experiment 4: Identification of minerals in hand specimens on the basis of physical properties. [3]							
	Experiment 5 Microscopes (F Experiment 6 Microscopes (F Experiment 7: Experiment 8:	: To study c Part 1). [3] : To study c Part 2). [3] Determination c Study of a geolo	optical pro optical pro of apparent of true dip to opical map	operties o operties o t dips in giv from given	f minerals f minerals ren directior apparent di	under under ns from tr ips. [3]	Polarising Polarising ue dip. [3]	

	Department	of Metallurgical	and Mate	rials Engine	eering						
Course	Title of the	Program	Total Nu	mber of co	ntact hours	5	Cred				
Code	course	Core (PCR) /	Lectur	Tutoria	Practica	Total	it				
		Electives	e (L)	I (T)	l (P)	Hour					
		(PEL)				S					
MMS35	Metallurgical	PCR	0	0	3	3	1.5				
1	Thermodynamics										
	and Kinetics Lab	and Kinetics Lab									
Pre-requi	sites	Course Assess	ment meth	nods (Conti	nuous (CT) a	assessme	nt)				
NIL		СТ									
Course	CO1: Learn to estimation	ate the thermod	ynamic pai	rameters fr	om experin	nents					
Outcom	CO2: Identify the rat	e law of a reacti	on and det	ermine the	e rate const	ant					
es	CO3: Determine the value of activation energy for a reaction in a temperature range.										
Topics	Experiment 1: Non-I	sothermal Decor	mposition	of pure Cal	cium Carbo	nate (3)					
Covered	Experiment 2: Non-I	sothermal Decor	nposition	of pure Ma	gnesium Ca	rbonate	(3)				
	Experiment 3: Oxida	tion kinetics of c	opper at e	levated ter	nperature (12)					
	Experiment 4: Oxida	tion kinetics of r	nild steel a	it elevated	temperatur	re (12)					
	Experiment 5: Deter	mination of part	ial molar v	olume (3)							
	Experiment 6: Dete	rmination of the	stability o	of the oxid	e using Elliı	ngham di	agram.				
	(3)										
	Experiment 7: Study	the reducibility	of iron ore	to evaluat	e(dr/dt) 40%	6 (3)					
Text	Suggested Text Boc	Suggested Text Books:									
Books,	4. Introduction to	Introduction to Metallurgical Thermodynamics – David R Gaskell. 2.									
and/or	Metallurgical										
referen	5. Textbook of Ma	terials and Meta	llurgical Th	nermodyna	mics –A. Gł	nosh					
ce	6. Thermochemist	ry – O. Kubasche	ewski, E LL	Evans and	C B Alcock						

material <u>Suggested Reference Books:</u>

- 4. Stoichometry and thermodynamics of Metallurgical processes Y K Rao.
- 5. Problems in Metallurgical Thermodynamics and Kinetics G S Upadhyay and R K Dube.
- 6. Chemical Kinetics Keith Laidler.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	3	1	1	1	1	1	1	1	1	1	1
CO2	3	3	1	1	1	1	1	1	1	1	1	1
CO3	3	2	1	1	1	1	1	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

	Department of Metallurgical and Materials Engineering											
Course	Title of the	Program Core		umber of o	ontact hour	c	Cradi					
Code		(PCR) / Electives			Dractica	Total	+					
Coue	course	(PCR) / LIECTIVES		(T)		Hour	L					
		(FLL)	e (L)	(1)	1(F)	noui						
	Transport	DCD	2	1	0	5	1					
1	Dhonomono in	PCK	5	T	0	4	4					
Ŧ												
	Processos											
Dro roquio	ritor		nt motho	de (Continu		id torm (I	 NAT)					
Fleflequis	Siles	and and assessme	nt method		ous (CT), III	iu-terin (i	vi i),					
	aginooring		ent (EA))									
Mochanic	rgineering	CITIVITEA										
Course	CO1. Understand	the fundamentals of	ffluid flo	wandman		ofor						
Outcom	CO1: Understand	different modes of	hoot trop	w anu mon	nentum tran	ister.						
Outcom		unerent modes of	neat trans	sier and me	ass transier.	uina hoo	+ mass					
es	CO3: Ability to so	olve metallurgical in	idustry of	iented pro		iving nea	l, MdSS,					
Tanias	Topics Introduction, Conservation, fluid statics, (3)											
Topics	Fluid flow: Newton's law of viscosity, Non-newtonian fluids. (5)											
Covered	Fluid now: Newto	on slaw of viscosity,	Non-new	tonian nui Lominor fle	us.	(5)	Ň					
	Turbulance and a	on, Navier-Stokes e	quations,)W. f.f.:tion for	(0) tor)					
	Iurbulence and experimental correlations, the concept of friction factor. (3)											
	Flow through porous media, fluidized bed, Ergun equation. EX: centrifugal casting,											
	Nodes of boot tr	stern.	omoloc F	undomonto		(D)	low(2)					
	Concept of ther	mal registance and	ampies, ru	hoot trong	for cooffici	iont Diff	idw (5)					
	concept of the	and resistance and	u overall	neat trans		ient, Din	erential					
	equation of neat	conduction. (3)	ting fine	A maliantin	a in actions	ting hoo	+					
	Conduction-conv	ection system, wo	ving tins,	Applicatio	n in estima	iting nea						
	from furnaces, fv	vo dimensional stea	dy state r			of to man	(3)					
	Lumped neat ca	pacity analysis, fim		nt and res	ponse time	ortemp	erature					
	measuring instru	uments, Heisler's	charts,	application	in neat	treatme	nt and					
	Solidification.	houndary lover of	rralation	(4)	al flow on	d intern	al flow					
	Concept of the	boundary layer, co		from hot o		a intern	al now,					
	continuous castin	g cooling system, no	eat losses	Trom not s	urraces.		(3)					
	view factor betw	een surraces, radiat	ion neat i		rurnace enc	losures, i						
	In used in mater	iais processing, rad		elds Case	studies invo	nving mu	itimode					
	neat transfer in m	naterials processing.	. (5)				C 11. 1.1					
	FICK'S Laws of di	musion, advection	aue to a	ITTUSION, Ca	se of evap	oration c	n liquia					
	unrougn a colur	nn, Analogy betw	veen mas	is and ne	at transfer	, mass	transfer					
	coemcient, appl	ication in gas-solic	i reaction	is such as	s oxidation	, reducti	on etc.					
Tout) o o ko										
Text Books	<u>Suggested Text E</u>	<u>SUUKS:</u>	allura	Cachelar -	nd N I Them	nolic						
BUUKS,	7. Kate Phenom	anomana in process met	anurgy – J	і. Szekely a	יייביע איז או אווי ארייייייייייייייייייייייייייייייייי	nens						
and/or	8. Transport Ph	enomena in Metalli	urgy – G.H	i. Geiger ar	IU D.K.POIRIE	:r						
reierenc	Suggested Keter											
e	7. Heat Transfe	I – J.P. HOIMAN			<\\/;++							
material	o. Heat and Ma	iss Transfer – F. P. II	ncropera a	anu D. P. D		faat						
	9. Transport Pr	ienomena – K. B. Bi	rd, W. E. S	stewart and	I E. N. Lighti	100T						

FOURTH SEMESTER

ινιαμμιτ	guico	(Course		inej an	u F O (F	Tugran	inte Ot	ittome	/			
POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	1	1	1	1	1	1	1	1	1	1
CO2	3	3	1	1	1	1	1	1	1	1	1	1
CO3	3	3	3	1	1	1	1	1	1	1	1	1

Manning of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

		Depa	artment of Metallu	irgical and	Materials					
	T		Engine	ering						
Cours	Title o	f the course	Program	Total Num	ber of con	tact hours		Credit		
е			Core(PCR) /	Lecture	Tutorial	Practical	Total			
Code			Electives(PEL)	(L)	(T)	(P)	Hours			
MMC402	Phase	2	PCR	3	1	0	4	4		
	Trans	formation and								
	Phase	e Equilibria								
Pre-requis	ites		Course Assessment methods (Continuous (CT) and end assessment (EA))							
MMC302:	Introdu	uction to	CT+EA							
Metallurg	y and N	/laterials								
Course	-	I. To understa	nd and interpret Fi	ree energy	-compositio	on diagram	and origi	'n		
Outcomes	of phase diagra									
II. A detailed understanding on diffusion in solid and solid state phase										
	transformations in steel.									
		III. To understa	and the fundament	tals of solic	dification in	order to ap	oply it in			
		Foundry indust	ry.							
Topics Covered		Introduction: B PhaseTransform	Basic concepts abo mations.Orderoftra	out Stabilit ansformati	y of Phase ons.	s and equil	librium; ⁻ (5 hc	Types of ours)		
covered		Phase Equilibr	ia: Thermodynan	nics of p	hase chan	ges, phase	- diagra	ms and		
		equilibria				inrelat	iontoFree	energy-		
		compositiondia	grams.Interpretat	ionofphase	ediagrams.	determinati	ion	and		
		calculations.	Solid-liquid	Miscibilit	v gap;	invaria	ant r	eaction.		
		Principlesofter	naryphasediagram	,Examples	ofafewmet	allicandcera	amicphas	ediagra		
		ms.(6 hours)	,, 0	· •				0		
		Diffusion:Phene	omenologicalequa	tionofdiffu	sion,Chem	icalpotentia	algradien	t,Fick'sfi		
		rst law of diffu	usion, diffusion co	efficient (d	diffusivity),	representa	ation of a	diffusion		
		flux interms of	chemical potentia	al gradient;	; Nernst-Eir	nstein Equa	tion, Diff	usion in		
		ideal solutiona	and in solutions	with pos	itive and	negative of	deviation	; Uphill		
		diffusion, dete	rmination ofdiffus	ion coeffic	cient (diffu	sivity) for i	deal bina	ary solid		
		solution in ter	ms of jump frequence	uencyand	jump dista	nce, atomi	ic mecha	nism of		
		diffusion,Expre	ssion of diffusion	coefficien	t(diffusivity	/) for self	diffusion	in pure		
		metal or diffus	ion in substitution	al solid so	lutionthrou	igh vacancy	/ mechan	ism and		
		in intersti	tial solid	solution;	; Stea	dy sta	ite o	diffusion		
		andtransientdif	ffusion;Fick'ssecon	Idlawofdiff	usion;dete	rminationo ⁻	fselfdiffu	sioncoe		
		fficient by rad	dioactive methoo	l; solution	n of Fick's	second l	aw: ana	lysis of		
		carburizingand	decarburizingproc	esses;solut	ionofFick's	secondlawf	orvariabl	ediffusi		
		vity:Boltzmann	-Matano analysis,	Matano in	iterface, de	terminatio	n of diffu	sivity as		

	a function
	of concentration; Diffusion insubstitutional solid solution: Kirkendalleffect, Darken's an
	alysis. (10hours)
	Liquid-
	SolidPhaseTransformation:PrinciplesofSolidificationinmetalsandalloys:thermodyna
	micsinvolved, eutecticand peritectic Solidification, Homogeneous and heterogeneous
	nucleation, Mechanisms of growth. RapidSolidification Processing. (8 hours)
	Solid State Phase Transformations: Nucleation and growth Kinetics, homogeneous
	andheterogeneoustransformation, Precipitation: Coherency, agehardening, particleC
	oarsening.Ostwaldripening.Order-
	disordertransformation, spinodal decomposition, massive transformations.
	(8hours)
	Solid State Phase Transformations in steel: Reconstructive and displacive
	transformations: Pearlitic transformation: mechanism and kinetics: Johnson-Mehl
	equation, morphology of pearlite: Bainitic transformation; mechanism and kinetics;
	morphology of upper bainite
	and lower bain ite: Martensitic transformation: Mechanism-
	diffusionless displacive nature: morphology of high carbon and low carbon
	martensite (8hours)
Taxt Deale	
Text BOOKS,	Text Books:
and/or	1.Phasetransformationsinmetaisandalloys-D.A.Potterandk.E.Easterling,CRCPress,
reference	1992. 2. Iransformationsinivietais, P.G.Snewmon, Mc-GrawHill, 1969.
material	3. Introductionto PhysicalMetallurgy– S. N. Avner, TataMcGrawHill, 1997.
	4.Physical Metallurgy–PeterHaasen,CambridgeUniversityPress, 1996.
	5.PhysicalivietallurgyPrinciples,R.E.Reed-HillandR.Abbaschian,3rded,PWS-Kent
	Publishing,1992.
	6.PhysicalMetallurgyforEngineers–A. G.Guy,Addison-WesleyPub.Co.,1962.
	7.ModernPhysicalMetallurgy,R.E.Smallman,Butterworths,1963.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO12
COs										0	1	
CO1	3	3	2	2	1	-	1	-	3	-	-	3
CO2	3	3	3	3	2	-	2	-	2	1	2	2
CO3	3	3	3	-	3	3	3	2	3	2	2	2

Correlation levels 1, 2 or 3 as defined below:

	Departmer	nt of Metallurgical	and Mater	ials Engine	ering				
Course	Title of the	Program Core Total Number of contact hours							
Code	course	(PCR) /	Lectur	Tutoria	Practical	Total	t		
		Electives (PEL)	e (L)	I (T)	(P)	Hour			
						S			
MMC403	Materials	PCR	3	1	0	4	4		
	Characterization								
Pre-requisi	ites	Course Assessm	ent metho	ds (Contin	uous (CT), m	nid-term	(MT)		

		and end assessment (FA))						
MMC_202. Intr	oduction to							
Motallurgy and								
Course	I. Learn funda	amentals of X-ray diffraction, electron microscopy and other						
Outcomes	characterization	n techniques.						
	II. Identify the	crystal structure and index the diffraction patterns of different						
	phases to meet	contemporary needs (including tutorials).						
	III. Learn differe	ent applications and developments in characterization techniques.						
Topics	X-ray basics: P	roduction of X-ray; The continuous and characteristic spectrum;						
Covered	Absorption; Filt	ers. 4h						
	Elementary Cr	ystallography: Overview the basics of crystallography; real and						
	X-ray diffractio	ne. Zii Rragg's Law: Ewald sphere construction: Diffraction methods—						
	Laue method	rotating crystal methods nowder methods. Diffractometers:						
	diffraction under	ar non ideal condition:						
	Intensity of di	ffracted heams: Structure factor calculations and other factors:						
	Extinction rules	· Ah						
	Application of	X-ray diffraction: Crystal structure determination: Precise lattice						
	narameter me	asurements: Phase diagram determination. Chemical analysis by						
	diffraction resi	dual stress determination particle size determination 10h						
	Electron micro	scopy: elements of transmission electron microscopy: Sample						
	preparation tec	choiques for TEM Image contrast in TEM. Identification of crystal						
	defects and nre	cinitates Diffraction nattern analysis 12h						
	Advanced Mat	registerization pattern analysis. 121						
	Precinitation ki	netics Characterization through atomic force microscope 6h						
Text Books	Text Books							
and/or	1 "Floments of	X-Ray Diffraction" by B.D. Cullity, Addision Wesley Publishing Co						
reference	Massachusetts	1968						
material	2 "X-ray diffra	action-a practical approach" by C Survanarayana and M Grant						
material	Norton Springe	ar 1998						
	3 "X-ray Diffra	action: Its Theory and Annlications" by S. K. Chatteriee. Prentice-						
	Hall of India Pvt	Limited 2004						
	4 "Electron M	licroscopy in the Study of Materials" by PI Grundy and GA						
	Iones Arnold I	London 1976						
	5 "Transmissio	ion Electron Microscopy: A Textbook for Materials Science (4 Vol						
	set)" hy David	B Williams and C Barry Carter 2nd ed Springer 2009						
	6 "Electron Mi	croscopy and Analysis" by Peter I Goodhew John Humphreys and						
	Richard Beanlar	nd. Third Edition. CRC Press. 2000.						

Mapping of CO (Course Outcome) and PO (Programme Outcome)

CO		PO										
↓	1	2	3	4	5	6	7	8	9	10	11	12
1	3	1	1	1			1	1	2	1		1
П	3	3	3	3	1	2	1	2	3	2	2	2
III	1		1	2	3		3	1	1	1	1	3

Correlation levels 1, 2 or 3 as defined below:

	Department of Computer Science and Engineering											
Course	Title o	of the	Program Core	Total Nu	mber of co	ontact hours	5	Credi				
Code	course	e	(PCR) /	Lectur	Tutori	Practical	Total	t				
			Electives (PEL)	e (L)	al (T)	(P)	Hour					
							S					
CSC433	Data St	tructures	PCR	3	0	0	3	3				
Pre-requis	sites			Course Asse	ssment me	ethods (Con	tinuous					
1.1				evaluation (CE) and end assessment (EA))								
following	on to col	mputing whic	n covers the	CE+EA								
(a) Numbo	r Syston	ary concepts:	arts of a									
	svetem	flowchart Al	arts of a									
(b) Time a	nd Space	e Complexitie	s of									
algorithm.	high lev	el programm	ing									
(c) Langua	ge-C, etc	C.	0									
Course		1. Student	will be able to ch	oose approp	oriate data	structure a	s applied	to				
Outcomes	5	specified	l problem definit	ion.								
		2. Student	will be able to ha	indle operat	ions like se	earching, ins	ertion,					
		deletion	traversing mech	nanism etc. o	on various	data structu	ires.					
		3. Students	will be able to ir	nplement th	e concept	s learned in	various					
		domains	like DBMS, com	oiler constru	ction etc.	C + 1						
		4. Students	s will be able to d	plicability	of the conc	epts of st	acks,					
Topics		queues,	linked list etc. In	amerent typ	ramming	Dofinition of	f Data					
Covered		Structur	es Characteristi	rs of algorith	nms Δhstr	act data tvn	η Data Ας Δενμ	ntotic				
covered		notation	is, Computation	of time com	nlexity. Sta	atic and dyn	amic mei	morv				
		allocatio	ons. [6]		pickity, ou			nory				
		• Arrays:	Single and multi-	dimensional	arrays, Ro	w and colu	mn majoi	r				
		represe	ntation of matric	es, sparse m	natrices		-					
		[4]										
		 Linked L 	ists: Linked list a	s ADT, Singly	y, doubly, a	and circular	linked lis	ts.				
		Differen	t operations on s	singly and do	oubly linke	d lists: insei	tion, del	etion,				
		searchir	ng and modificati	on of a node	e. Array re	presentatio	n of linke	d lists.				
		Applicat	cions: Operations	s on polynon	nials.							
			Stack as an ADT	Stack ropror	ontations	with array a	nd linkor	licto				
		 Slacks. Operation 	ons on stacks: nu	ish AND non	Annlicati	ons of stack	s' subrou	i lists, Itine				
		call rec	ursive function c	all conversion	on of infix	to nostfix ex	nression	s				
		evaluati	on of postfix exp	ression usin	g stack. ch	ecking valid	itv of a	ς,				
		parenth	esized expressio	n. [5]	J, J		1					
		Queues	: Queue as an AD	T, Queue re	presentati	ons with ar	ray and li	nked				
		lists, Qu	eue operations:	ons: addqueue and dequeue, circular queue and its								
		operatio	ons, concept of p	t of priority queues.								
		[5]										
		• Trees: B	asic terminology	, Binary tree	and its im	iplementati	on, Tree					
		traversa	ii techniques, thr	eaded binar	y tree, Bin	ary search t	ree and i	ξS				
			nis. [b] ng: Sequential co	arch hinany	soarch							
		 Searchir 	ng: Sequential se	arch, binary	search.							

	 [2] Sorting: Definition of sorting, internal and external sorts, Insertion Sort, Bubble Sort, Selection sort, Quick Sort, Merge Sort, Heap sort. [8]
Text Books, and/or reference material	 Text Books: Data Structures: A Pseudo code Approach with C, Richard F. Gilberg & Behrouz A. Forouzan, second edition, CENGAGE Learning. Data Structures using C, Reema Thareja, Oxford University press. Data Structure using C & C++, Angenstein & Tanenbaum, PHI. An introduction to Data Structure, Trembly & Sorensen, MCHILL. Data Structure & Algorithms, Aho, Hopcroft & Ullman, AddnWesley.

Department of Computer Science and Engineering											
Course	Tit	le of the	Program Core	Total Nu	mber of co	ontact hours	5	Credi			
Code	со	urse	(PCR) /	Lectur	Tutori	Practical	Total	t			
			Electives (PEL)	e (L)	al (T)	(P)	Hour				
							S				
CSS483	Dat	ta Structures	PCR	0	0	3	3	1.5			
	Lab	oratory									
Pre-requi	sites		Course Assessment methods (Continuous evaluation (CE) and								
			end assessment (EA))								
Knowledge	e of I	programming	CE+EA								
Course		CO1: Student w	Il be able to implement basic applications using data structures as								
Outcome	S	applied to speci	fied problem defin	ition.							
		CO2: Student wi	ill be able to handl	e operatio	ns like sea	rching, insei	rtion, del	etion,			
		traversing mech	anism etc. on vario	ous data st	ructures.			_			
		CO3: Students w	vill be able to imple	ement the	concepts I	earned in va	arious do	mains.			
		CO4: Students w	in be able to decide the applicability of the concepts of stacks,								
- ·		queues, linked l	ist etc. in different	types of a	pplications	5.					
Topics		 Arrays: 	Implementation of	insertion,	deletion,	merging and	d sparse r	matrix			
Covered		using ar	rays. istor (s) las slove out	ation of in	م میناند.	lation coor	ah in a an	-			
		Linked I morgo I	vith singly and dou	ation of in	sertion, at	licte (b) Im	ching and	u ation			
		of polyr	with singly and doubly connected linked lists. (b) implementation								
		 Stacks: 	(a) Implementation		and DOD o	nerations us	ing array	hand			
		linked li	sts (h) Implement	ation of co	nversion c	of infix to no	sing array stfix	and			
		express	ions evaluation of	nostfix ex	nression u	sing stack a	nd checki	ing			
		validity	of a parenthesized	expressio	n.						
		 Queues 	: (a) Implementation	on of Engu	eue and D	equeue ope	rations u	sing			
		array ar	nd linked lists. (b) li	mplementa	ation of cir	cular queue		0			
		• Trees: (a	a) Implementation	of tree tra	versal tecl	, hniques. (b)					
		Implem	entation of insertion	on, deletio	n and sear	ching a nod	e on a bi	nary			
		search t	ree.			-		-			
		 Searching 	ng: Implementatio	n of seque	ntial and b	inary search	า.				
		 Sorting: 	Implementation o	of Insertion	Sort, Bub	ble Sort, Sel	ection so	rt,			
		Quick So	ort, Merge Sort and	d Heap sor	t.						
Text Book	κs,	Text Books:									
and/or		 Data Str 	uctures: A Pseudo	code Appr	oach with	C, Richard F	. Gilberg	&			
reference		Behrouz	A. Forouzan, seco	nd edition,	CENGAGE	Learning.					

material	 Data Structures using C, Reema Thareja, Oxford University press.
	 Data Structure using C & C++, Angenstein & Tanenbaum, PHI.
	 An introduction to Data Structure, Trembly & Sorensen, MCHILL.
	 Data Structure & Algorithms, Aho, Hopcroft & Ullman, AddnWesley.

Department of Metallurgical and Materials Engineering											
Course	Title of the	Program Core	Total Nu	mber of co	ntact hours		Credit				
Code	course	(PCR) /	Lectur	Tutorial	Practica	Total					
		Electives (PEL)	e (L)	(T)	l (P)	Hour					
						S					
MMS451	Transport	PCR	0	0	3	3	1.5				
	Phenomena										
	Lab										
Pre-requisi	tes	Course Assessm	ent metho	ds (Continu	ous (CT) ass	sessment)				
NIL		СТ									
Course	CO1: Identify	the nature of Flow	<i>'</i> .								
Outcomes CO2: Determine the value of the different constants in a fluid flow and heat											
transfer.											
	CO3: Evaluate	d diffusivity	/ for a partion	cular syste	em.						
Topics	Experiment 1	Experiment 1: Measurement of Reynold's Number									
Covered	Experiment 2	: Measurement of	friction fac	tor during	fluid flow in	a pipe					
	Experiment 3	: Measurement of	f total ene	rgy across	various poi	ints in a	fluid flow				
	system	_									
	Experiment 4	: Measurement of	coefficient	discharge	through a v	enturime	ter.				
	Experiment 5	Measurement of coefficient discharge through an orificemeter.									
	Experiment 6	: Measurement of	pressure d	rop throug	h a packed l	bed					
	Experiment	: Measurement o	of coefficie	ent of Pito	t Tube and	point v	elocity at				
	different poir	its across the flow									
	Experiment 8	: Determination of	Stefan – B	oltzman Co	onstant	.1					
	Experiment 9	: Measurement of	thermal Co	onductivity	ot ivietal Ro	a					
Toyt Books		u. study the molec		on or vapo	15 d [
and/or	, <u>Suggested 10</u>	exi DUUKS: Intals of Momontu	m Hoat a	ad Mace Tr	ancfor by M	alty Mie					
reference		and Borrer	iii, neal, di			eity, wich	\ 3,				
material	2 Transnor	t Phenomena – P	Ryron Rird	Warron F	Stewart Fr	lwin N					
material		d Reference Books	·	, wanch L.	Siewari, Li	AVVIII IN.					
	1. An Intro	duction to Transpo	<u></u> ort Phenom	ena in Mat	erials Engin	eering – I	D. R.				
	Gaskell				5.1615 E115111						
	2. A Textbo	ok on Heat Transfe	er –S. P. Sul	khatme							
Mapping o	f CO (Course Outc	ome) and PO (Pro	gramme O	utcome)							

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
COs													
CO1	3	3	1	3	1	1	1	1	1	1	1	1	
CO2	3	3	3	3	1	1	1	1	1	1	1	1	
CO3	3	2	3	3	1	1	1	1	1	1	1	1	

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

	De	partment of Metall	urgical and	d Materials	5						
Course	Title of the course	Engine	ering	hor of con	tact hours		Cradit				
Code	The of the course				Dractical	Total	Credit				
couc		Electives(PEL)	(1)	(T)	(P)	Hours					
MMS45	Phase	PCR	0	0	6	6	1.5				
2	Transformation		Ū	•	U	U	2.0				
	and Phase										
	Equilibria										
	Lab										
Pre-requis	sites	Course Assessme	ent metho	ds (Contin	uous (CT) ar	nd end					
		assessment (EA))									
Nil		CT+EA									
Course	ourse I. To introspect phase equilibria and phase transformation in steels of varying										
Outco	carbon content through investigation of microstructure in correlation to iron-										
mes	carbon diagran	carbon diagram.									
	II. To investigate	e microstructures d	of different	cast irons	in correlation	on to asso	ociated				
		phase equilibria and phase transformation.									
	(i) Experiment1.	vestigationsofthe	microstruc	rtures of ni	ure metals(F	e (u 7n 4	AI)				
	(ii)Investigation	Themicrostructure	sofcarhon	steelscont;	aining~0.2%	c,ca,∠n,, c ~n 4%(-				
	~0.6%C.~0.8%C.~	1.0%C.incorrelatio	nwithphas	eequilibria	inFe-Csyste	em(Iron–	-,				
	Carbonphasediag	ram).									
	Experiment2(Part	:I):Microstructureo	f0.2wt.%C	steel		(4	hours)				
	Experiment3(Par	II):Microstructure	of 0.4wt.%	6Csteel		(4	hours)				
	Experiment4 (Par	tIII): Microstructur	e of0.6wt.	% Csteel		(4)	hours)				
	Experiment5(Part	IV):Microstructure	of0.8wt.%	6 Csteel		(4	hours)				
	Experiment6 (Par	tV):Microstructure	of1.0 wt.%	6 Csteel		(4	hours)				
- ·	(iii) With regard	to Fe-C-Si phase e	quilibria, i	investigati	on of the m	nicrostruc	ture of				
Topics	differenttypes o	r cast irons, viz.	White Ca	ist iron, (Frey Cast	iron, Spr	heroidal				
Covered	Exporimont 8 (Par	e castifonanuivialie	ofWhito C	ron. astiron		(1	hours)				
	Experiment9(Par	II). Microstructure	ofGrevCas	tiron		(4 (4	noursj				
	hours)Experimen	t10(PartIII):Microst	ructureof	Spheroidal	(Nodular)gr	aphitecas	stiron				
	(4hours)				(
	Experiment11(Pa	rtIV):Microstructur	e ofMallea	able castiro	on	(4	hours)				
	(iv) Experiment	12: Study of the p	recipitatio	n hardenir	ng process i	n Duraluı	min (Al-				
	4.5%Cualloy) (3 h	ours)									
	(v) Experiment 13	: ApplicationofLev	erRule.			(3	hours)				
	(vi)Experiment14	:ApplicationofPhas	eRuletodif	ferenttype	esofbinarypł	nasediagr	ams.(3				
	hours)										
·	Textbook:			A D-11							
lext Book	(S, 1. Phasetransfor	mationsinmetalsan	aalloys-D.	A. Potter a	NOK.E. Easte	eriing,CR(Press,				
and/or	1992.2. INTRODUC		allurgy– S. Rood Lille	N. AVNEr,	ata NICGra	MHIII, 199	11. t				
materia	c j S.FIIYSICAIIVIETAIII	argyrincipies, K.E.	леей-піпа		cilian,31000	и, r vv 5-ке	111				
materia	A ModernPhysic	Motalluray R F Sn	nallman Pi	ittorwarth	c 1963						
		invictailuigy,R.E.SII	iaiiiiaii,Bl	atter worth	3,1303.						

Ma	pping	of C	O (Cou	rse Out	come)	and PO	(Progr	amme	Outco	me)				
	POs	5	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO12
	CC)s										0	1	
	CO1	L	3	2	1	-	3	2	2	1	3	2	2	2
	CO2	2	3	2	1	-	3	2	2	1	3	2	2	2
	CO3	3	3	3	3	1	1	-	-	-	3	-	-	2
Cor	relatio	on le	evels 1,	2 or 3 a	s defin	ed belo	ow:	1	I					
		1	L: Slight	: (Low)		2: Mod	erate (N	Medium	1)		3: Sub	stanti	al (Higl	ו)
				Departn	nent of	Metallı	urgical a	and Ma	terials	Engine	ering			
Со	urse		Title	of the	Pi	rogram	Core	Тс	otal Nu	ımber o	f contac	t hou	rs	Credi
Co	ode		COL	ırse		(PCR)	/	Lectu	ır T	utori	Practio	cal	Total	t
					El	ectives	(PEL)	e (L)) ;	al (T)	(P)		Hour	
			S											
XEO	441	Bra Cre	ain to N eation	/lind		PER		3		0	0		3	3
Pre	-reauis	sites	5	Course Assessment methods (Continuous (CT) mid-term (MT)										MT)
	- 1		and end assessment (EA))											
BTC	01: Lif	e Sc	cience		СТ	+MT+E	A							
Сои	irse		• (:01: Und	derstan	ding Co	gnitive	Scienc	e and t	the Pro	cesses			
Out	comes	5	• (CO2: Un	derstan	ding th	e Physi	cs and l	Electro	chemic	al React	ions i	n Brain	
			• (03 : Un	derstar	nding th	, ne Beha	vioral F	atterr	n of a Hu	uman Be	eing		
Тор	ics		Braii	n to Min	d and	l how d	o we ki	now it	-(esse	ntially s	ingle ne	uron	o mult	iple).
Cov	reed		(4)											
			Braii	n and gr	oss spe	cializat	ion a	areas, r	ight-le	eft , asso	ociation	,conn	ectivity	/ and
			our	tools to	learn ir	ncluding	g EEG							
			(6)											
			Bein	g Consc	ious l	Dynami	cs h	ow do v	ve leai	rn abou [.]	t it from	i EEG		
			(8)											
			Cog	nition, N	/lemory	, Emot	ion N	Iormal a	and Pa	thology	'.			
			(6)											
			Slee	ep and r	neural r	network	ĸ							
			(4)											
			Brai	in and F	uture	with in	teractiv	/e sessi	on					
	(2)													
Tex	t Book	s,	Sugg	ested Te	ext Boo	<u>ks:</u>								
and	/or		1) Biological basis of Benavior- Prof. Braj Bhushan											
refe	erence		2) A	2) A Beautiful Mind - Dr. Alok Bajpai										
mat	terial		3) Co	gnition,	Brain,	and Co	nscious	sness: Ir	ntrodu	ction to	Cogniti	ve Ne	uroscie	ence,
			2nd	Edition I	by Bern	ard J. B	aars (A	uthor),						
			Sugg	ested R	eterenc	<u>e Book</u>	<u>S:</u>			D 17				
			Princ	ciples of	Neural	Science	e, Fifth	Edition	by Eri	c K. Kan	del and	Jame	s H. Sc	nwartz

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	, PO11	PO12
со												
CO1	3	3	3	3	1	1	1	1	1	1	1	1
CO2	3	3	3	3	1	1	1	1	1	1	1	1
CO3	3	3	3	3	2	1	1	1	1	1	1	1

Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

		<u> </u>	JLIVILJ							
	Departmo	ent of Metallurgica	al and Mate	erials Engi	neering					
Course	Title of the	Program Core	Total Nu	umber of c	ontact hours	S	Credit			
Code	course	(PCR) /	Lectur	Tutori	Practical	Total				
		Electives (PEL)	e (L)	al (T)	(P)	Hour				
						s				
MMC50	Manufacturing	PCR	3	1	0	4	4			
1	Processes	_								
Pre-requis	sites	Course Assessment methods (Continuous (CT) and end assessment (EA))								
MMC-301	: Metallurgical	CT+EA								
Thermody	namics and									
, Kinetics										
Course	 To understar 	d different Manuf	acturing P	rocesses						
Outcomes	 Ability to de 	sign casting techni	ques and t	he basics	of Welding N	Metallur	ξV			
	 To have abili 	ty to have a practi	cal concep	t of manuf	acturing obi	iects.	,			
Topics	Introduction to c	asting as a shapi	ng techniq	que: Chara	acteristic ar	nd effect	s of sand.			
Covered	binders and addi	tives: Different ty	pes of M	oulding ar	nd Machine	mouldi	ng: Special			
	casting technique	s (12)								
	Design of Gating a	nd Risering of cast	ting: Solidi	fication	(5)					
	Melting furnace-	cupola, rotary furn	ace. induc	tion furna	ce: Defects	in castin	g and their			
	remedy: Metallu	rgy of cast iro	n. Alumin	ium and	copper ba	ased all	ov. (12)			
		.87	, , , , , , , , , , , , , , , , , , , ,		coppe					
	Joining: Physics of	welding. Process	of differen	t welding.	common w	elding p	rocesses of			
	shielded metal a	rc welding, gas r	netal arc	welding.	as tungste	n arc w	elding and			
	submerged arc y	velding: Welding	metallurg	nrohlem	s associate	d with	welding of			
	steels and alumin	ium allovs defects	in welded	ioints	(1	<u>م</u> ۱۹۱۱ (1)	weiding of			
		ant anoys, acreets	in welaca	joints.	(1					
	Historical nerspec	tive of Powder Me	tallurav B	easons for		dar Mata	llurgy: The			
	Future of Powd	ar Matallurgy: D	wdor Fal	nrication.	Different r		fabrication			
	tochniquos: Power	lor Charactorizati	on: Evnori	montal m	othods for	moasuri	ng particlo			
	cizo chapo distri		on. Experi an Signific	anco of tr		t and ta	ng particle			
	of powdors, Elow	v rate of powder	ea, signinu		ue, apparen	ccibility	and groop			
	of powders, Flow	V rate or powder	S dilu ils	Signincan Aiving one	Le, compre	SSIDILLY	ith Dindors			
	strength, Powder	Dowdor Lubrico	Facking, I	viixiiig alic	Dhanaman	viixiiig w	f Dowdor			
	and Lubricants;	Powder Lubrica	tion; Con	npaction: domontolo	of Compo	ology d stient In	fluence of			
	Compaction; Con	ventional Compac	ction; Fun	uamentais	or Compa	ction; in				
	Iviaterial and Pov	vuer unaracteristi	us; sinterii	ng: Sinteri	ng rundame	entais; F	uli Density			
Taut	Toucessing. (14)									
Text	Text BOOKS:		. 4716 - 11				0014			
BOOKS,	1. U. P. Knanna: F	ounary technology	r, ⊥∕th Edit	ion, unan	Datkal Public	cations, 2	2011.			
and/or	2. Rajender Singh	introduction to Ba	asic Manuf	acturing P	rocesses &	worksho	р			
reterence	Technology, New	Age International (P) Limited, Publishers, 2006.								
material	3. R. A. Flinn: Fund	amentals of Meta	I Casting, I	Addison-W	esley; Unde	erlining e	dition,			
	4. Powder Metallu	irgy – AUpadhyaya	and GSL	Ipadhyaya	• • • •					
	5. Powder metallu	irgy: principles and	d applicatio	ons- Fritz V	. Lenel					
	Reference Books:									
	1. P. L. Jain: Princi	ples of Foundry Te	chnology,	5th Editio	n, Tata Mcgr	aw Hill E	ducation			
	Private, 2009.									

FIFTH SEMESTER

2. M. C. Flemings: Solidification processing, McGraw-Hill, 1974.

3. Metals Handbook, Casting, vol. 15, 10th Edition, ASM International, Materials Park, Ohio, USA, 1998.

MMC 501

10	C 501		Ma	apping	of CO (Course	Outcor	ne) and	d PO (P	rogram	me Ou	tcome)	
ſ	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
	COs										0	1	2
ſ	CO1	1	2	2	2	2	1	2	3	1	1	3	1
ſ	CO2	1	1	2	1	3	2	2	3	2	2	2	1
ſ	CO3	1	2	1	1	3	2	2	3	1	1	2	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

Department of Metallurgical and Materials Engineering												
Course	Title of the	Program Core	Total Nu	mber of co	ontact hours	5	Credi					
Code	course	(PCR) /	Lectur	Tutori	Practical	Total	t					
		Electives (PEL)	e (L)	al (T)	(P)	Hour						
						S						
MMC	Heat Treatment	PCR	3	1	0	4	4					
502	of Materials											
Pre-requi	sites	Course Assessm	ent metho	ds (Contin	uous (CT), m	nid-term	(MT)					
		and end assessment (EA))										
Phase Tra	nsformation and	CT+MT+EA										
Phase Equ	uilibria (MMC 402)											
Course	CO1: To lea	arn the theory of he	eat treatm	ent includi	ng the kinet	ic princip	oles of					
Outcome	s solid state	transformations.										
	CO2: To un	derstanding of the	role of hea	at treatme	nt on the de	evelopme	ent of					
	microstruc	ture and properties	re and properties of metallic materials.									
	• CO3: The c	ourse will highlight	urse will highlight a number of commercially-significant									
	application	s where heat treat	ment are i	mportant.								
Topics	Objectives	and Pri	nciples	of	heat	tre	atment.					
Covered	[1 hour]											
	Iron-Carbon P	hase Equilibrium	Diagram;	Austeniti	sation, Tra	insforma	tion of					
	austenite to p	earlite, bainite and	d martens	ite; Chara	cteristics of	transfo	rmation					
	products.	[6	hours]									
	I-I-I-and (L-C-I diagrams	; Facto	ors aff	ecting I	-1-1	curves.					
	[6 hours]											
	Heat treatme	nt processes:	Different	types of	annealing,	, spnerc	bidizing,					
	normaising, na	rdening, tempering	g, patentin	g, austem	pering, mar	temperir	ig, Sub-					
	Zero treatment	Inical tractment of	8 nours	Auctormin	- Icoformin	a Cruct	ormina					
		inical treatment o	n Sleens, /		g, isoloriili Sanifiannan	ig, Cryon	onning,					
	Heat removal i	nechanism, Harde		steels- S	ignificance (or nardei	nability,					
	Determination	or nardenability,	Jominy E	na quenc	n test, Fac	tors inn	uencing					
		at Dofacts Basid	ual strossy	o noursj oc. dovolo	nod unon	hoot tro	atmont					
	[2 hours]	it Defects, Residi	udi sliesso	es uevelo	peu upon	neat the	atment					
	Age Har	dening: Bas	sic r	equireme	nts a	nd	steps,					
	[1 hour]											
	Heat treatment	t of non-ferrous m	etal and al	loys -Alum	ninium alloy	s, Coppe	r alloys,					
	Magnesium	alloys	,	Tita	nium		alloys.					

	[6 hours]											
	Practical considerations in heat treatment: Accessories, Cooling media, Types of											
	furnace and Furnace atmosphere.											
	[1 hour]											
	Surface heat treatment – Carburizing of steels, Cyniding and Carbonitriding,											
	Nitriding, Flame hardening, Induction hardening, Laser hardening etc.											
	[6 hours]											
Text Books,	Suggested Text Books:											
and/or	An Introduction to Physical Metallurgy – S. N. Avner, McGraw-Hill Book Company.											
reference	ASM Metals Hand Book – Vol. IX, ASM International Materials Society.											
material	Principles of the Heat Treatment of Plain Carbon and Low Alloy Steels, Charlie R.											
	Brooks, ASM international, 1996.											
	Suggested Reference Books:											
	Principles of Heat Treatment – R. C. Sharma, New Age International (P) Ltd.											
	Heat Treatment of Metals – V. Singh (Standard Publication Distributors) New Delhi											
Mapping of C	CO (Course Outcome) and PO (Programme Outcome)											
POs P	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1							2	3	3
CO2	3	3	3							2	3	3
CO3	3	3	3							3	3	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

2. Moderate (Medium

3: Substantial (High)

-

	Department of	f Metallurgical a	and Materi	ials Engine	ering					
Course	Title of the course	Program	Total Nu	mber of co	ontact hours	5	Credi			
Code		Core (PCR)	Lectur	Tutoria	Practical	Total	t			
		/ Electives	e (L)	l (T)	(P)	Hour				
		(PEL)				S				
MMC50	Fundamentals of	PCR	3	1	0	4	4			
3	Plastic Deformation									
	& Strengthening of									
	Materials									
Pre-requis	ites	Course Assessment methods (Continuous (CT) and end								
		assessment (EA))								
Nil		CT+EA								
Course	CO1: To understand th	ne fundamental	concepts	of plastic d	leformation	of mater	ials			
Outcomes	CO2: To know about	various lattice	defects an	d the roles	s played by	these de	fects in			
	plastic deformation ar	nd strengthenin	g of mater	ials						
	CO3: To correlate the fundamentals ideas of deformation and strengthening									
	observations in mater	ials testing and	mechanica	al processi	ng					

Topics Covered	Introduction and various types of plastic deformation: Concept of stresses and strains, ongineering stress and strain, true stress and strain, different types of leading
Covereu	strains, engineering stress and strain, true stress and strain, different types of loading
	for bulk deformation, slow strain rate deformation, evaluation of mechanical
	properties of materials by tensile and compression testing, stress-strain response of
	different materials - elastic region, yield point, plastic deformation, necking and
	fracture, effects of strain rate and temperature on stress-strain response of materials,
	superplastic behavior, evaluation of shear stress - shear strain curve from torsion
	testing, deformation and fracture of materials under impact loading, ductile to brittle
	transition, elementary concept of fatigue deformation and fracture, elementary
	concept of creep deformation and fracture, localized deformation at surface and
	indentation hardness, different methods of hardness measurement.
	[26 h]
	Mechanisms of plastic deformation and strengthening: Plastic deformation by slip,
	alter en elle liter alte brend activation and ad above atoms (CDCC) of a contracted

slip system, slip line, slip band, critical resolved shear stress (CRSS) of a material, theoretical shear strength, defects/imperfections in crystals, classification of defects, thermodynamics of defects, geometry of dislocations, Burgers vector, Burgers circuit, various types of dislocations, dislocation glide, Peierls stress, partial dislocations and stacking faults, cross slip, dislocation climb, intersection of dislocations, jogs and kinks in dislocation, force on a dislocation, line tension of a dislocation, dislocation generation - Frank-Read and grain boundary sources, stress and strain field around dislocations, strain energy of a dislocation, dislocation interactions, forces between dislocations, polygonization, dislocation movement and strain rate, deformation behavior of single crystals - flow curve and strain hardening/work hardening mechanisms of single crystals, deformation behavior of polycrystalline aggregates, plastic deformation by twinning, interaction between dislocations and interstitial atoms - yield point phenomena and strain ageing, dislocation phenomena involved in fatigue and fracture, Hall-Petch and other hardening mechanisms of polycrystalline aggregates, grain size effect, Hall-Petch breakdown, strengthening due to fine particles, fiber strengthening, solid solution strengthening, strengthening due to point defects, plastic deformation of two-phase aggregates, cold-worked structure of polycrystalline materials, annealing of cold-worked polycrystalline materials, Bauschinger effect, preferred orientation.[30 h]

- Text
 Mechanical Metallurgy, SI Metric Edition, George E. Dieter, McGraw-Hill (UK) Limited, 1988
 Mechanical Behavior of Materials, William F. Hosford, Cambridge University Press, New York, 2005
 Mechanical Behavior of Materials, Second Edition, Marc A. Meyers and Krishan K. Chawla, Cambridge University Press, New York, 2009
 Mechanical Behavior of Materials, 2nd Ed., Thomas H. Courtney, Waveland Press, Inc., Illinois, 2005
 - The Plastic Deformation of Metals, *R.W.K. Honeycombe*, Edward Arnold, 1968
 - Dislocations and Plastic Flow in Crystals, A.H. Cottrell, Clarendon Press, 1965

CO-PO Mapping

POs	1	2	3	4	5	6	7	8	9	10	11	12
COs												
1	3	3	3	2	2	2			1			
2	3	2	3	3	3	1			1			
3	3	2	3	2	3	1			1			2

Correlation levels 1, 2 or 3 as defined belo	W
--	---

1: Slight (Low)

2: Moderate (Medium)

	Departmei	nt of Metallurgical	and Mater	ials Engine	ering							
Course	Title of the	Program Core	Tota	Number o	of contact h	ours	Credi					
Code	course	(PCR) /	Lectur	Tutori	Practical	Total	t					
		Electives (PEL)	e (L)	al (T)	(P)	Hour						
						s						
MMC50	Iron Making	PCR	3	1	0	4	4					
4												
Pre-requi	sites	Course Assessment methods (Continuous (CT), mid-term (MT)										
		and end assessment (EA))										
MMC-301	.: Metallurgical	CT+MT+EA										
Thermody	namics and											
Kinetics												
Course	CO1: Unde	rstand fundamenta	als of physi	co-chemic	al principles	of blast	furnace					
Outcome	s iron making	<u>z</u> .										
	CO2: Unde	rstand the design &	& operation	nal aspects	s of blast fur	nace						
	technology											
	CO3: Unde	rstand the develop	ment in all	ternative i	ron making	processe	s.					
Topics	History of Iron	Making Pig Iron pr	oduction i	n India.			(2)					
Covered	Raw Materials	 Valuation and pr 	reparation	of raw ma	terials	(6)						
	Methods of Ag	glomeration: sinte	ring, pellet	tizing.			(6)					
	Testing of raw	materials.				(2)					
	Design and cor	nstruction of the bl	ast furnace	е.			(2)					
	Theory and pra	actice of pig iron m	aking – ch	arge distri	bution, burd	len calcul	ation.					
	mass balance	(4)										
	Physico-chemi	cal aspects of blast	turnace re	eactions, B	last furnace	slags.						
	Operating line	(6)					(•)					
	Developments	in blast furnace pr	actice. Bla	st furnace	irregularitie	es.	(4)					
	Blast furnace a	iccessories: blower	s, stoves, g	gas cleanin	ig plants.		(4)					
	Alternative me	ethous of Iron maki	ng.				(4) (2)					
	Environmontal	on reno anoys.	iron makin	a			(Z) (1)					
Toxt Pool				g.			(1)					
and/or	1 A Text Book	<u>on Modern Iron M</u>	aking - R k	- Tunkany	(now aditio	n)						
reference	2 Principles of	Iron Making - A K	Riswas	ι. ταρκαιγ								
material	2. Finicipies of 3. Ghosh A an	d Chatteriee A. R.	. Diswas. rincinles ar	nd Practice	s in Iron and	d Staal m	aking					
material	Prentice Hall of	f India New Delhi	2008		.5 11 11 011 011		uning,					
		Prence Books	2000									
1 Manufacture of Iron & Steel Vol L-G B Bashforth												

	Mapping of CO (Course Outcome) and PO (Programme Outcome)														
PO	PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO															
CO1	3	3	2	3	1	1	1	1	1	1	1	2			
CO2	3	3	2	3	1	1	2	1	3	3	1	2			
CO3	3	3	3	3	1	1	1	1	1	1	1	2			

Correlation levels 1, 2 or 3 as defined below:

Department of Metallurgical and Materials Engineering											
Course	Title of the	Program Core	Total Nu	mber of c	ontact hour	S	Credi				
Code	course	(PCR) /	Lectur	Tutori	Practica	Total	t				
		Electives (PEL)	e (L)	al (T)	l (P)	Hour					
						S					
MMS55	Manufacturing	PCR	0	0	3	3	1.5				
1	Processes Lab - I										
Pre-requis	sites	Course Assessm	ent metho	ds (Contin	uous (CT) ar	nd end					
		assessment (EA))								
Nil		CT+EA									
Course	To und	rstand the basic of metal Casting and the techniques of welding.									
Outcomes	5 • To und	erstand casting and	l welding d	lefects and	l methods o	f elimina	tion.				
	 To und 	erstand the microst	tructures o	f three dif	ferent zone	s of a we	lded				
	portion	۱.									
Topics	Experiment-1:	Determination of v	various pro	perties of	sand -clay -	water m	ixture				
Covered	Experiment-2	Design and preparation of green sand mould with various gating									
	system										
	Experiment-3	Melting and Casting of Aluminum in green sand mould									
	Experiment-4	: Welding of Butt -Joint by MMAW									
	Experiment-5	: Determination of various defects by NDT of weld Joint									
	Experiment-6	6 : Observation of Microstructure of welded joint									
	Experiment-7	Welding of Butt -Jo	pint by TIG	ì							
	Experiment -8	: Comparison weld	by 2 differ	ent Route	S.						
Text Book	s, Text Books:										
and/or	1. O. P. Khanna	: Foundry technology, 17th Edition, Dhanpat Rai Publications,2011									
reference	2. P. L. Jain: Pr	nciples of Foundry Technology, 5th Edition, Tata Mcgraw Hill									
material	Education Priv	ate, 2009.									

MMS 55	51		Map	Mapping of CO (Course Outcome) and PO (Programme Outcome)										
POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2		
CO1	1	2	2	2	2	1	2	3	1	1	3	1		
CO2	1	1	2	1	3	2	3	3	2	2	2	2		
CO3	1	2	1	1	3	2	2	3	1	3	3	1		

Correlation levels 1, 2 or 3 as defined below:

Department of Metallurgical and Materials Engineering											
Course	Title of the	Program Core	Total Nu	5	Credi						
Code	course	(PCR) /	Lectur	Tutori	Practical	Total	t				
		Electives (PEL)	e (L) al (T)		(P)	Hour					
						S					
MMS	Heat treatment	PCR	0	0	3	3	2				
552	of Materials										

	Laboratory								
Pre-requis	sites	Course Assessm	ent metho	ds (Contin	uous (CT), n	nid-term	(MT)		
		and end assessm	nent (EA))						
Phase Tra	nsformation and	CT+MT+EA							
Phase Equ	iilibria (MMC 402)								
Course	CO1: To learn f	undamental of cha	nge in mic	rostructur	e, hardness	and me	chanical		
Outcomes	properties with	different cooling rate, cooling medium and temperature							
	CO2: To unders	tand the change i	n surface	structure	and propert	ty with c	hemical		
	treatment								
	CO3: To get an	overall idea on a	microstruc	ture and a	assessment	of hardn	ess and		
	mechanical pro	perty of steel unde	r various i	ndustrial c	ooling cond	ition.			
Topics	Acquaintance w	ith Furnaces and t	heir Opera	tion		[3 hc	urs]		
Covered	Annealing, norr	nalizing, hardening	, and temp	pering trea	tments of p	lain carb	on		
	steels				[1	2 hours]			
	Influence of une	derheating and ove	erheating o	n microsti	ructure and	propertie	es		
					[[3 hours]			
	Jominy End Que	ench Test	[3 hours	5]					
	Determination	of critical diameter	of Steel by	y trial hard	lening meth	od. [6		
	hours]								
	Pack Carburizin	g of steels, Post-ca	rburizing h	eat treatn	nent, Measu	irement o	of		
	case depth.					[6 hours			
Text Book	s, Suggested Text	<u>Books:</u>							
and/or	1. Principle	es of the Heat Trea	tment of P	lain Carbo	n and Low A	Alloy Stee	ls,		
reference	Charlie I	R. Brooks, ASM inte	ernational,	1996.					
material	2. ASM Me	tals Hand Book – \	/ol. IX, ASI	M Internat	ional Mater	ials Socie	ty.		
	Suggested Refe	erence Books:							
	1. Principle	es of Heat Treatme	nt – R. C. S	harma, Ne	ew Age Inter	rnational	(P) Ltd.		
	2. Heat Tre	eatment of Metals – V. Singh (Standard Publication Distributors)							
	New De	hi							

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1								3	3
CO2	3	3	1	1							3	3
CO3	3	3	1	2							3	3

Correlation levels 1, 2 or 3 as defined below:

		Departmen	t of Metallurgical a	Metallurgical and Materials Engineering							
Course	Titl	e of the course	Program Core	Total Nu	mber of co	ontact hours	;	Credi			
Code			(PCR) /	Lectur	Tutoria	Practical	Total	t			
			Electives (PEL)	e (L)	I (T)	(P)	Hour				
							S				
MMS55	Pla	stic	PCR	0	0	3	3	1.5			
3	De	formation &									
	Str	engthening of									
	Ma	iterials Lab									
Pre-requis	ites		Course Assessment methods (Continuous (CT) and end								
			assessment (EA))								
Nil			EA								
Course		CO1: To know	about the meth	nod of te	nsion, cor	npression,	torsion,	impact,			
Outcomes		hardness testin	g								
		CO2: To analyz	e the results of different mechanical testing and interpret the								
		mechanical beh	aviour of the mate	erials							
		CO3: To corre	late structure wi	th the m	echanical	properties	under c	lifferent			
		conditions of de	eformation								
Topics		1) Tensile and c	.) Tensile and compression testing of ductile (metallic) materials and evaluation of								
Covered		strength and	ductility propertie	es [6 h]							
		2) Evaluation of	f shear stress - sh	ear strain	plot of du	ctile metals	and allo	ys from			
		torsion testin	ig and determinat	ion of usef	ul mechan	ical propert	ies [6]				
		3) Studying loc	alized deformatio	on at surfa	ace of me	etallic mate	rials by	various			
		hardness tes	ting methods [3]					1.1.1.01			
		4) Studying mat	erials behavior un	ider impac	t loading b	y Charpy V-	notch tes	ting [3]			
		5) Studying the	effects of cold	working a	and annea	aiing on th	e nardne	ess and			
Tayt Deck	<u> </u>	microstructu	re of auctile metal	is and alloy		C Diatar N					
iext BOOK	5,		vietallurgy, SI IVIE	LIC EDITION	i, George	E. Dieter, N	icGraw-H	IIII BOOK			
		Company (U	C) LIMITEU, 1988	riale M/illi	am E Lla	ford Camb	vidao Ur	ivorcity.			
matorial			ork 2005	iiidis, VVIIII	ин г. поз	<i>yoru,</i> Carfit	nuge Of	iversity			
material		Mechanical E	uir, 2003 Rehavior of Matori	ials Socon	d Edition	Marc A Ma	vers and	Krichan			
			mhridge Universi	ty Drace N	ow Vork 2	0001 C A. 1012	yers unu	NISHUH			
				LY FIESS, IN	\mathbf{C} \mathbf{V} \mathbf{U} \mathbf{K} , \mathbf{Z}						

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO 1	PO 2	PO 3	PO4	PO5	PO 6	PO 7	PO 8	РО 9	PO10	PO1 1	PO1 2
	CO 1	3	3	2	2	2	2	1	1	1	-	1	1
MMS55 3	CO 2	3	3	1	1	2	3	1	1	1	-	-	-
	CO 3	3	2	1	3	3	2	1	1	1	1	-	2

Correlation levels 1, 2 or 3 as defined below:

	Department of Humanities and Social Sciences															
		Dep	<u>partment of Hum</u>	nanities and	Social Scient	ces										
Course	Title of the	e l	Program	Total Nun	nber of conta	act hou	irs				Cred	lit				
Code	course		Core (PCR) /	Lecture	Tutorial	Pract	ical	Т	ota	I						
			Electives	(L)	(T)	(P)		F	lour	s						
			(PEL)		. ,	()										
HSC631	Economics	and	PCR	3	0	0		3	}		3					
	Manageme	ent														
	Accountan	cy														
Pre-requi	sites	-	Course Assessr	nent metho	ds (Continuc	us (CT), mic	d-te	rm ((MT)	and					
			end assessmer	it (EA))		•				. ,						
NIL	VIL CT+MT+EA															
Course	Learners will be able to review basic economic principles.															
Outcom	• Lea	 Learners will be introduced to the basic capital appraisal methods used for 														
es	car	carrying out economic analysis of different alternatives of engineering projec														
	or works.															
	• Lea	• Learners will gain a good knowledge of financial accounting, enablir										em				
	prepare, analyse and interpret financial statements for taking in											ed				
	deo	cisions.														
Topics	PART 1: Economics															
Covered																
	SI. No.			т	F	כ	Cr	н								
	Unit 1:	it 1: Economics: Basic Concepts 2								2	2					
	Unit 2:	The	ory of Consume	r Behaviour		3	0	()	3	3					
	Unit 3:	The	eory of Production, Cost and Firms					()	3	3					
	Linit 4.	Ana	alyses of Market Structures: Perfect					(h	z	2					
	01111 4.	Con	npetition			J	0	,	,	5	5					
	Unit 5:	Mo	nopoly Market			2	0	()	2	2					
	Unit 6:	Ger	neral Equilibrium	& Welfare	Economics	2	0	()	2	2					
			τοτι	1	0	(n	15	1							
		IOTAL								13	5					
	SI. No.			Name		L	т	F	2	Cr	Н					
	Unit 1:	: Intr	oduction to Mac	roeconomic	c Theory	2	0	()	2	2					
	Unit 2:	: Nat	ional Income Ac	counting		3	0	()	3	3					
	Unit 3:	: Det	ermination of Ec	luilibrium Le	evel of Incom	ne 4	0	()	4	4					
	Unit 4:	: Mo	ney, Interest and	Income		2	0	()	2	2					
	Unit 5:	: Infla	ation and Unem	oloyment		2	0	()	2	2					
	Unit 6:	: Out	put, Price and Ei	nployment		2	0	()	2	2					
			τοτ	NL		1	0	()	15	1					
						5					5					
			Gr	oup B: Mac	roeconomics	5										
			PART 2	: Managem	ient Account	ancy					1	1				
	SI.			Name			L	т	Р	Cr	н					
	NO.		reduction to Accounting.						-	2	-	-				
	Unit	Introd	troduction to Accounting:				3	υ	0	3	5					
	1:	ACCOL	counting Environment of Business; Objectives of													
		ACCOL	inting; Accountir	ig Equation	s for Financia	31 I.a.a.:-										
		State	ments. BOOKS Of	Accounting	: Journal, Leo	iger,										
		Lash	DOOK.					1	1	1	1	1				

SIXTH SEMESTER

				r									
	Unit	Financial Statement Preparation and Analysis:	5	0	0	5	5						
	2:	Preparation of Trial Balance, Trading, Profit & Loss											
		account and Balance Sheet. Case study discussion.											
	Unit	Financial Ratio Analysis:	4	0	0	4	4						
	3:	Common Size Statements; Computation of											
		Financial Ratios; Interpretation and analysis of											
		Financial Ratios with the help of case studies.											
		ΤΟΤΑΙ	1	0	0	1	12						
		IOTAL	2	U	υ	2	12						
Text		PART 1: Economics											
Books,	Group A:	roup A: Microeconomics											
and/or	1. Koutso	. Koutsoyiannis: Modern Microeconomics											
referenc	2. Madda	2. Maddala and Miller: Microeconomics											
е	3. Anindya	3. AnindyaSen: Microeconomics: Theory and Applications											
material	4. Pindyck	4. Pindyck&Rubenfeld: Microeconomics											
	Group B:	Microeconomics											
	1. W. H. B	ranson: Macroeconomics – Theory and Policy (2nd ed)										
	2. N. G. N	lankiw: Macroeconomics, Worth Publishers											
	3. Dornbu	sh and Fisher: Macroeconomic Theory											
	4. Soumy	en Sikder: Principles of Macroeconomics											
		PART 2: Management Accountancy											
	1. Gupta,	. Gupta, R. L. and Radhaswamy, M: Financial Accounting; S. Chand & Sons											
	2. Ashoke	2. Ashoke Banerjee: Financial Accounting; Excel Books											
	3. Mahesł	nwari: Introduction to Accounting; Vikas Publishing											
	4. Shukla,	MC, Grewal TS and Gupta, SC: Advanced Accounts; S.	Chan	d &	Co.								

CO-PO MAPPING of Economics and Management Accountancy (HSC631)

СО	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
CO1	3	3	3	3	2	3	2	3	2	3	3	3
CO2	3	3	3	3	3	3	2	2	3	3	3	3
CO3	-	-	-	1	-	-	-	-	-	2	3	-

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)	1: Slight (Low) 2: Moderate (Medium)	3: Substantial (High)
--	--------------------------------------	-----------------------

	Departmer	nt of Metallurgical	and Mater	ials Engine	ering						
Course	Title of the	Program Core	Tota	l Number o	of contact h	ours	Credi				
Code	course	(PCR) /	Lectur	Tutori	Practical	Total	t				
		Electives (PEL)	e (L)	al (T)	(P)	Hour					
						S					
MMC60	Steel Making	PCR	3	1	0	4	4				
1											
Pre-requis	sites	Course Asse	Course Assessment methods (Continuous (CT), mid-term								
		(MT) and en	vIT) and end assessment (EA))								
MMC-301	.: Metallurgical	CT+MT+EA									
Thermodynamics and Kinetics											
Course	CO1: Under	stand fundament	als of phys	icochemic	al principles	of steel	making				
Outcomes	• CO2: Under	stand the design	& operation	onal aspect	ts of steel m	aking					

	technology.
	 CO3 :Understand the design & operational aspects of Continuous Casting
Topics	Historical Perspective, An Overview of Modern Steel making. (2)
Covered	Steelmaking Fundamentals - Chemical Reactions Equilibria, Steel Making Slag
	(6)
	LD Steelmaking process - Design aspects of Converter and Lance ; LD Shop
	Layout, Charge Calculations ;Raw Materials ; Blowing Curve and theories of LD
	Steelmaking. (6)
	Bottom Blown Steelmaking - Distinctive Features and combined blow (4)
	Steelmaking in Electric Arc Furnaces (EAF) - Construction of an Arc Furnace ;
	Operation ; Developments in EAF steelmaking Technology. Alloy Steelmaking
	and stainless steel making 6)
	Refractory in steelmaking - Requirements and various types of refractory
	Material (2)
	Secondary Steelmaking: Types of Deoxidation and Deoxidation Kinetics and
	Products. Vacuum Degassing - Principles - Degassing Techniques (4)
	Ladle Metallurgy : V.A.D ; V.O.D ; R H (4)
	Ingot Casting and its Defects (2)
	Continuous Casting - Process description - Continuous Casting Products (5)
	Near net shape Casting (1)
Text Books,	Suggested Text Books:
and/or	1. Ghosh, A. and Chatterjee, A., Principles and Practices in Iron and Steel making,
reference	Prentice Hall of India, New Delhi, 2008.
material	2. Steel Making - By R.H. Tupkary
	3. Steel Making - By A Chakroborty.
	Suggested Reference Books:
	1. Turkdogan, E.T., A Text Book of Steelmaking, Academic Press, London, 1997.
	2. Ghosh, A., Secondary Steelmaking, CRC Press, Boca Raton, 2000.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

PO	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
0												
CO1	3	3	3	3	1	1	1	1	3	1	1	3
CO2	3	3	3	3	1	1	1	1	2	1	1	3
CO3	3	3	3	3	2	1	1	1	3	1	1	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (I	Low) 2: Modera	ate (Medium)	3: Substantial (High)				
Department of Metallurgical and Materials Engineering							
Course	Title of the course	Program Core	Total Nu	Credi			
Code		(PCR) /	Lectur	Tutoria	Practical	Total	t
		Electives (PEL)	e (L)	l (T)	(P)	Hour	
						S	
MMC60	Mechanical	PCR	3	0	0	3	3
2	Working of						
	Materials						

Pre-requisi	tes	Course Assessment	methods (Conti	nuous (CT) and end	d		
	undomontols of	assessment (EA))					
Plastic Defe	region &						
Strengthen	ing of Materials						
Courso	CO1: To understan	l d the mechanics of me	tal forming pro				
Outcomes	CO2: To know about	it tools and techniques	of different me	-esses stal forming proce	<u>ددم</u> د		
outcomes	CO3: To understan	d the narameters whic	h are needed to	o he controlled for	r increasing		
	quality and produc	tivity of different meta	l forming opera	tions			
Topics	1) Introduction:	Overview, objectives o	f mechanical w	orking or plastic d	eformation		
Covered	of materials.	classification of plas	tic deformatio	n processes, me	chanics of		
	mechanical w	orking of materials,	influence of	friction and lub	rication in		
	mechanical	working	proces	sses,	workability.		
	[6h]	6h]					
	2) Theory of Elas	Theory of Elasticity: Description of stress and strain at a point within a load					
	body, stress te	nsor, principal stresses	s under 3D state	e of stress, concep	t of Mohr's		
	circle construc	tion and its implicatio	ns under 3D sta	ate of stress, hydr	ostatic and		
	deviator comp	oonents of stress, ela	stic stress - sti	rain relations, stra	ain energy.		
	[10h]						
	3) Theory of Plas	ticity: Yielding criteria	for ductile met	als, yield locus, yie	eld surface,		
	plastic stress	- strain relations, pla	ne strain condi	tion of plastic de	eformation,		
	field theory [10b]						
	1) Bolling: Classification of rolling processes forces and geometrical relationships in						
	rolling angle	of hite neutral point	t theories of	cold rolling and	hot rolling		
	calculation of	rolling load, torque a	nd horse powe	er. maximum allo	wable back		
	tension in colo	d rolling, variables cor	trolling rolling	process, common	defects in		
	rolled	products	and	their	remedies.		
	[8h]						
	5) Forging: Classi	fication of forging pro	cesses, open-di	e forging, closed-	die forging,		
	stress distribu	tion in open-die forg	ging, calculatio	n of forging load	l, common		
	forging defects	5. [6h]		_			
	6) Extrusion: Clas	sification of extrusion	processes, anal	ysis of extrusion p	process, hot		
	extrusion, col	d extrusion, deforma	tion, lubricatio	n and defects in	n extrusion		
	processes, I	nydrostatic extrusio	n, extrusion	for producin	ig tubes.		
	[5n]	want town of during the					
	7) Drawing: Diffe	it of drawability	processes, analy	ysis of wire drawin	ig and tube		
	[2h]	it of urawability,	residual stres	ses in urawn	products.		
	8) Sheet - Metal	Forming: Various shee	et-metal formin	a nrocesses stret	ch forming		
	deep drawing.	limiting draw ratio. fo	rming limit crit	eria, defects in sh	eet-formed		
	products. [8h]						
Text	Mechanical M	etallurgy, SI Metric E	dition, <i>George</i>	E. Dieter, McGrav	w-Hill Book		
Books,	Company, Lon	don, 1988	, 5	,			
and/or	Principles of I	ndustrial Metal Worki	ng Processes, G	G.W. Rowe, CBS P	ublishers &		
reference	Distributors, N	ew Delhi, 2005					
material	Metal Forming	g: Mechanics and Met	allurgy, 3rd Edi	tion, William F. H	losford and		
	Robert M. Cad	<i>dell,</i> Cambridge Univer	sity Press, New	York, 2007			
	The Rolling of	Strip, Sheet and Plate	, 2nd Edition, <i>E</i>	.C. Larke, Chapma	an and Hall,		
	Ltd., London, 1	.963					

• The Extrusion of Metals, 2nd Edition, C.E. Pearson and R.N. Parkins, John Wiley &
Sons, Inc., New York, 1960
• Wire Technology, 1st Edition, <i>Roger Wright</i> , Butterworth-Heinemann, 2010
• Metal Forming: Processes and Analysis, <i>B. Avitzur</i> , McGraw-Hill Book Company,
New York, 1968
• Mechanical Working of Metals: Theory and Practice, J.N. Harris, Pergamon Press,
1983
• Principles of Metal Working, <i>Surender Kumar</i> , Oxford & IBH Publishing Company,
1985
• An Introduction to Plasticity, G.C. Spencer, Chapman & Hall, London, 1968

CO-PO Mapping

POs COs	1	2	3	4	5	6	7	8	9	10	11	12
1	3	3	1	3	3		1		2	1		1
2	3	2	3	3	3	1	1		3	2		2
3	2	3	1	3	2	2	1		3	3	1	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

		Departmer	nt of Metallurgical	and Mater	ials Engine	ering		
Course	Ti	tle of the	Program Core	Total Nu	mber of co	ontact hours	5	Credi
Code	СС	ourse	(PCR) /	Lectur	Tutori	Practical	Total	t
			Electives (PEL)	e (L)	al (T)	(P)	Hour	
							S	
MME	Er	ngineering	PCL	3	0	0	3	3
610	Μ	aterials						
Pre-requi	sites	5	Course Assessme	ent metho	ds (Contini	uous (CT), m	nid-term	(MT)
			and end assessm	nent (EA))				
Introduction to Metallurgy			CT+MT+EA					
and Materials (MMC 302)								
Course		CO1: To lea	rn the basic funda	mental of i	internal str	ructure and	propertie	es of
Outcome	S	different m	etals					
		CO2: To un	derstand the micro	structure-	property r	elationship	for vario	JS
		engineering	g applications in different conditions					
		 CO3: To lea 	rn technology aspect on application of engineering materials					
Topics		Introduction to	various Classes	of Engi	neering N	laterials: F	actors a	ffecting
Covered		selection of Eng	ineering Materials	-Service re	equiremen	ts, fabricatio	on requir	ements
		and economic r	equirements.		[2 hou	rsj		
		Study of the i	industrially import	tant of st	eels, thei	r mechanic	al and t	thermal
		treatment and	uses: Plain carl	bon steel	s. Conven	itional low	carbon	steels.
		[5 hours]						
		Mild Steel, Dua	I Phase Steels and	High Strei	ngth Low a	alloys (HSLA) Steels.	[4
		nours]						[2
		Effect of Alloyin	g Liements in Stee	21.				[2
		nours]						[2
		Alloy Steels: Ma	inganese Steels, Ha	adfield ma	nganese St	teel,		[2
		nours						

	Heat Resistant and Stainless Steels.	8							
	hours								
	Tool and Die Steels, High speed tool steel (HSTS), Maraging Steels.	4							
	hours								
	Study of Nonferrous Alloys, their mechanical and thermal treatment: Brasse	s,							
	Bronzes, Bearing Metals, Light alloys based on Aluminium and Magneiun	n,							
	Titanium Base alloys [10 hours]	,							
	Alloy cast irons, Special purpose materials, such as, Cryogenic and Hig	ŗh							
	temperature Materials, Materials for Aerospace, Nuclear Reactors et	c.							
	[4 hours]								
	Electrical and Magnetic Materials.	2							
	hours]	hours]							
Text Books,	Suggested Text Books:								
and/or	1. An Introduction to Physical Metallurgy – S. N. Avner, McGraw-Hill Boc	эk							
reference	Company.								
material	2. Structure and properties of materials – J Wulff and other. Vols. I–IV. Wile	зy							
	Eastern pub Ltd. New Delhi								
	3. Metallurgy for Engineers – E C Rollason								
	 Physical Metallurgy – Vijendra Singh. 								
	5. Engineering Materials : H. J. Sharp Haywood, London (1961)								
	6. Engineering Materials : M. F. Ashby and D. R. N. jones, Pergamon pres	S S							
	Oxford (1980).								
	Suggested Reference Books:								
	Materials Science and Engineering by Raghavan - PHI								
	8. Physical Metallurgy of Engineering Materials, N. R. petty, Allen Unwi (1968)	in							
	9. Light Alloys: Metallurgy of the light Metals, I.J. Polmser-Edwaraed annorg	ł.							
	10. The Super alloys by C. T. Sims and W. C. Hegel – Wily-Interscience.								

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3								2	2
CO2	3	3	2								2	3
CO3	3	3	3								3	3

Correlation levels 1, 2 or 3 as defined below:

Department of Metallurgical and Materials Engineering								
Course	Title of the	Program Core	Total Nu		Credit			
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
MME611	Electronic and Thermal Properties of Materials	PEL	3	0	0	3	3	
Pre-requisit	es	Course Assessment methods (Continuous (CT) and end assessment (EA))						
MMC302: li	ntroduction to	CT+EA						

Metallurgy and	Materials							
Course	CO1: To get fu	ndamental understanding about the quantum mechanics theory						
Outcomes	related with th	e electronic structure of solid state materials						
	CO2: To know	about fundamentals of electron transport and electrical						
	conductivity of	conducting, semiconducting and insulating materials						
	CO3: To know	about fundamentals of conductive heat transfer and thermal						
	conductivity of	solid materials						
Topics	1. Introducti	 Introduction: Overview; wave - particle duality. [4 h] 						
Covered	2. Fundamer	Itals of Electron Theory: Schrodinger equation; solution of						
	Schrodinger equation; energy bands in crystals; Brillouin zones; free electron							
	bands; bar	nd structure of metals and semiconductors; electrons in crystals;						
	Fermi ene	gy; Fermi distribution function; density of states. [18 h]						
	3. Electrical	3. Electrical Properties of Materials: Electrical conduction - classical electron						
	theory,	quantum mechanical consideration; superconductivity;						
	thermoele	ctric phenomena; galvano-electric phenomena; semiconductor -						
	intrinsic a	nd extrinsic; band structure; Hall effect; semiconductor devices;						
	electrical	properties of polymers, ceramics, dielectrics, and amorphous						
	materials.	[18 h]						
	4. Thermal	Properties of Materials: Heat capacity; thermal conductivity;						
	classical a	ind quantum mechanical consideration for heat capacity and						
	thermal co	inductivity; phonon spectrum; thermal expansion. [6 h]						
Text Books,	Electronic	: Properties of Materials, Rolf E. Hummel, Springer-Verlag, New						
and/or	York, 201	1						
reference	Electronic	: Properties of Engineering Materials, James D. Livingston, John						
material	Wiley & S	ons, 1999						
	Electronic	;, Magnetic, and Thermal Properties of Solid Materials, Klaus						
	Schroder,	Marcel Dekker Inc, 1978						
	Thermopl	hysical Properties of Materials, Göran Grimvall, Elsevier, B.V., 1999						

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO12
COs										0	1	
CO1	3	3	2	2	1	-	-	-	1	1	-	3
CO2	3	3	3	2	1	-	-	-	1	1	-	3
CO3	3	3	3	2	1	_	-	-	1	1	-	3

Correlation levels 1, 2 or 3 as defined below:

	Department of Metallurgical & Materials Engineering								
Course	Title of the	Program Core	Total Nu	Total Number of contact hours					
Code	course	(PCR) /	Lectur	Tutori	Practical	Total			
		Electives (PEL)	e (L)	al (T)	(P)	Hour			
						S			
MME61	Alternative	PCR	3	0	0	3	3		
2	Routes of Iron								
	Making								
Pre-requi	sites	Course Assessment methods (Continuous (CT), mid-term (MT) and							
		end assessment	(EA))						

MMC-504: Irc	on Making, CT+EA						
VIVIC-301.11							
Matarials	ingineering						
Course	CO1: Apply the thermodynamic knowledge to understand the fundamentals of						
Outcomos	 COT. Apply the thermodynamic knowledge to understand the fundamentals of direct reduction and smolting reduction of iron oxides. 						
Outcomes	CO2: Acquire the knowledge of reaction mechanism and the process technology						
	• CO2. Acquire the knowledge of reaction mechanism and the process technology of alternative routes of iron making						
	• CO2: Loarn to analyze raw materials requirements for different processes						
Topics	COS. Learn to analyze faw materials requirements for unreferit processes						
Covered	ducent of the alternative methods of production (2)						
Covereu	Consideration of local resources and other conditions with particular emphasis on						
	Indianconditions (5)						
	Classification of various DR processes (3)						
	Raw materials and relevant considerations for various DR and SR processes (4)						
	Techno-economic and environmental evaluation of DR and SR processes (4)						
	Physico-chemical principles of reduction and smelting (8)						
	Technology of production through solid reductant and gaseous reductants (7)						
	Technological developments at various places worldwide (4)						
Text Books,	Suggested Text Books:						
and/or	1. B. F. Ironmaking Principles -A.K Biswas						
reference	2. Direct Reduced Iron – Stephansion & Smailer						
material	3. Modern Iron Making – R. H. Tupkery						
	4. Physical Chemistry of Iron & Steel manufacture – C. Bodsworth.						
	Suggested Reference Books:						
	1.Beyond the Blast Furnace – Amit Chatterjee, CRC Press, USA.						
	2.Production of Liquid Iron Using Coal-Proc. of the Workshop, RRL,						
	Bhubaneshwar,1964.						

Mapping of CO (Course Outcome) and PO (Programme Outcome)												
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	2	1	1	1	1	1	1	1	1	1	1
CO2	3	3	1	1	1	1	3	1	1	1	1	1
CO3	3	1	1	1	1	1	3	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

Department of Metallurgical & Materials Engineering									
Course	Title of the	Program Core	Total Number of contact hours						
Code	course	(PCR) /	Lectur	Tutori	Practical	Total	t		
		Electives (PEL)	e (L)	al (T)	(P)	Hour			
						S			
MME61	Production of	PCR	3	0	0	3	3		
3	Ferroalloys								
Pre-requisites		Course Assessment methods (Continuous (CT), mid-term (MT)							
		and end assessment (EA))							
MMC-301: Thermodynamics		CT+EA							
&									
Kinetics of Eng	gineering								
-----------------	---								
Materials									
Course	 CO1: Apply thermodynamic knowledge to understand the fundamentals of 								
Outcomes	Ferro alloys production and their use								
	 CO2: Acquire the knowledge of reaction mechanism and the process 								
	technology of production of different ferro alloys								
	 CO3: Learn to analyze the different design aspects of submerged arc furnace 								
Topics	Background for ferroalloy development and it's need for steel industry. [5]								
Covered	Trend of growth, as commensurate with steel growth. [5]								
	Popular categories and reactions/mechanisms involved. [6]								
	Processing Technologies for Ferrochrome/Ferromanganese/Ferrosilicon, etc. [6]								
	Furnace details in terms of design/operation. [6]								
	Processing of raw materials /reduction/melting/refining/casting, etc. [6]								
	Case studies. [6]								
Text Books,	Suggested Text Books:								
and/or	1. The Complete Book on Ferroalloys by B.P Bhardwaj, NIIR PROJECT								
reference	CONSULTANCY SERVICES Publisher, 2014.								
material	2. Production of ferroalloys: electrometallury, V. P. Eli u tin, State Scientific and								
	Technical								
	Pub. House for Literature on Ferrous and Nonferrous Metallurgy, 1957.								
	Suggested Reference Books:								
	1. Production of ferroalloys, by M. Riss, Y. Khodorovsky, Mir Publishers, 1967.								
	2. Production of ferroalloys: electrometallurgy, by V.P. Elyutin, Israel Program for								
	Scientific Translation, 1961.								

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	1	1	1	1	1	1	1	1
CO2	3	3	1	1	1	1	2	1	1	1	1	1
CO3	3	1	3	1	1	1	1	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (I	Low) 2: Mode	rate (Medium) 3: Substantial (High)								
	Departme	ent of Metallurgica	l & Materia	als Enginee	ering					
Course	Title of the	Program Core	Total Nu	imber of co	ontact hours	5	Credi			
Code	course	(PCR) /	Lectur	Tutori	Practica	Total	t			
		Electives (PEL)	e (L)	al (T)	l (P)	Hour				
						S				
MME61	Ceramic	PEL	3	0	0	3	3			
5	Technology									
Pre-requis	sites	Course Assessment methods (Continuous (CT), mid-term (MT)								
		and end assessment (EA))								
MMC302		CT+EA								
Course	CO1: Describes	generic classifica	tion of ce	ramics an	d their spea	cific engi	neering			
Outcomes	applications. Er	nphasis is put on s	such engineering ceramics, which are traditionally							
	and commercia	Ily important as we	ell as new a	advanced	ceramics.					
CO3: Learn various techno-economic aspects of ceramics										

	CO4: Le high per	CO4: Learn structure-property relationships, and solve problems of fabrication of high performance ceramic parts												
Topics	Introdu	ction: K	nowled	dge of d	differen	t ceram	nic mat	erials]	4 hours]				
Covered	Structu	res of	cerami	ics: At	omic s [.]	tructure	e, crys	tal stru	ictures, d	oxide st	ructure,			
	silicate s	structur	e, othe	er struc	tures a	nd poly	morph	ism.			[6			
	hours]													
	Structu	al imp	erfectio	ons: Fra	ankel d	efects,	schottk	ky defe	cts, nonst	oichiom	etry etc			
	[4 hours	5]												
	Microst	ructure	of c	eramic	s: Mic	rostruc	ture o	f diffe	rent cera	amic m	aterials:			
	Oxides,	Carbide	es, Nitri	des, Sil	icides,	Borides	, etc. G	ilass an	d Glass-ce	eramics	[6			
	hours]													
	Propert	roperties of ceramics: Physical, Mechanical, Electrical, Thermal and Magnetic												
	propert	properties of ceramics [6 hours]												
	Applica	tions ar	nd proc	essing	of cera	mics: (Slasses	and gla	iss ceram	ics, refra	actoties,			
	and abr	asives								[6 ho	ours]			
	Advance	ed and	nanost	tructur	ed cera	mics: S	structur	re, prop	peries and	d applica	tions [4			
	hours]									[6]	,			
	Biocera	mics: Fi	undame	entals o	of bloce	ramics	and the	eir appl	ications	[6 h	ours			
Text Books,	Text Bo	oks:	L											
and/or	1. Yet-i	viing C	niang,	Dunba	ir P.B	irnie, N	N. Dav		gery: Phy	ysical Ce	eramics:			
reference	Principle	es for C	eramic	Science	e and E	ngineer	ing, , Jo	onn wii	ey and S	ons., 19	96.			
material		Ce BOOI	(S: on: Mo	dorn C	oramic	Engino	oring		occ Thir	d Edition	2005			
Manning of C	2.0.00		$\frac{1}{100}$		Program		utcomo		255, 11110		, 2005.			
					DOG				PO10	DO11	PO12			
	FU2	103	r 04	r UJ	100	107	100	103	LOID	FUI	r 012			
CO1 3	2	1	3	2	1	1	1	1	3	1	1			
CO2 3	3	1	3	1	2	3	1	1	1	1	1			
		3 1 3 1 2 3 1 1 1 1 1 2 3 1 2 3 1												

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	Department of Metallurgical and Materials Engineering												
Course	Title of the	Program Core	Total	Number o	of contact he	ours	Credi						
Code	course	(PCR) /	Lectur	Tutori	Practical	Total	t						
		Electives (PEL)	e (L)	al (T)	(P)	Hour							
						S							
MME616	Solidification	PER	3	0	0	3	3						
	Phenomena												
Pre-requis	sites	Course Assessment methods (Continuous (CT), mid-term (MT)											
		and end assessment (EA))											
MMC501:	Manufacturing	CT+MT+EA											
Processes													
Course	CO1: Under	stand solidification	n theories t	to industri	al processes	;							
Outcomes	• CO2: Predic	t microstructures	as a functio	on of proce	ess paramet	ers.							
	 CO3: Under 	stand solidification	n of alloys i	in differen	t industrial o	condition	IS						
Topics	Properties of n	Properties of metals and alloys before and during solidification. Surface											
Covered	phenomena.	phenomena. (2)											
	Basic terms: surface energy, surface tension, Wetting angle. Wetting speed.												

	Classification and influence of wetting.
	(4) Demid eelidifientien uneeneen (DCD). Cleasifientien of high eegling untee
	Rapid solidification processes (RSP). Classification of high cooling rates.
	Conventional and unconventional effects.
	(2) Uuden eestina end meetersenen Annenskeur state. Class skilitu
	Under cooling and recalescence. Amorphous state. Glaze-ability.
	(1) Dressering of allows in the comil colid state. Dhealagy, Newton's law of viscosity
	Processing of alloys in the semi-solid state. Rheology, Newton's law of viscosity.
	(2)
	(3) Distribution of non-Nowtonian materials, physical models of materials and their
	rhoograms. The apparent viscosity. Thivetrony. Submersible retational
	viscometry (3)
	High-speed mixing. The intensity of the flow and its significance for the primary
	crystallization. The materials in the semi-solid state - SSM (Semi-Solid Metals).
	(2)
	Theories of solid solution morphology spheroidization. Types of alloys suitable
	for SSM. Case studies of selected castings.
	(4)
	Pressure solidification processes (PSP). Effect of pressure on the primary
	crystallization, change the thermo-physical properties, cooling rate and the force
	induced solidification flow.
	Alloys used in PSP.
	(3)
	Practical use of the rheological behavior of the alloys in the solidification
	processes and its importance. Case studies of selected castings.
	(4)
Text Books,	Suggested Text Books:
and/or	1. Principles of Solidification by Laurens Kagerman
reference	2. Modelling the Flow and Solidification of Metals by T. A Smith
material	3. Physical Metallurgy- Principles and Practise by A Raghavan
	Suggested Reference Books:
	Kirkwood, D.H. – Suéry, M. – Kapranos, P. – Atkinson, H.V. – Young,K.P. Semi-solid
	processing of Alloys. Springer.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
<u> </u>												
CO												
CO1	3	3	3	3	1	1	1	1	1	1	1	1
CO2	3	3	3	3	1	1	1	1	1	1	1	1
CO3	3	3	3	3	2	1	1	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)2: Moderate (Medium)3: Substantial (High)

	Department of Metallurgical and Materials Engineering												
Course	Ti	tle of the	Prog	am Core	Total Nu	mber of co	ontact hours	5	Credi				
Code	СС	ourse	(PCR)	/	Lectur	Tutoria	Practical	Total	t				
			Elect	ives (PEL)	e (L)	I (T)	(P)	Hour					
								S					
MME617	Μ	etal Joining	PEL		3	0	0	3	3				
	Pr	ocesses											
Pre-requisi	tes			Course A	ssessment	methods	(Continuous	(CT) and	end				
				assessme	ent (EA))								
MMC501: I	Man	ufacturing Proce	sses	CT + EA									
Course		CO1: Indicate w	hich ty	pes of joini	ng process	es are suit	ed for produ	uction.					
Outcomes		CO2: Determin	e vario	us gas, arc,	solid state	, thermo c	hemical wel	Iding pro	cesses				
		with their proce	ess para	meters.									
		CO3: Identify th	e vario	us Weld Jo	ints & Met	allurgy							
Topics		Principles and	l theo	ry, mecha	nism and	key var	iables of o	different	joining				
Covered		processes. (5)											
		Soldering, braz	ing an	d welding	processes	types of	tooling and	equipm	ent and				
		consumables in welding. (6)											
		Microstructure	es of fu	sion and H	AZ: Carbor	n and alloy	steels, cori	rosion re	sistance				
		materials: sta	inless :	steels, alui	minium al	loys. Weld	ling stresse	s. Heat	tlow in				
		welding, chem	ical rea	actions in w	velding. Pro	e and post	treatments	advanta	ges and				
		disadvantages	. (8)	• • • • • • • • • •				- \					
		Weld joint con	siderat	ion testing	and inspection		ela joints. (e))					
		Welding stand	aru anu	i specificat	ION. Sf the wold	(5) ling wirte	and wolding	hmai	and are				
		welding good			ding chie	ling w.r.to	gas weiding	ing Diag	geu arc				
		weiding, gas-	ungste	n arc wei	aing, shie Jactron ba	am woldin	arc weid g gloctro d	ing, Pias Ing woldi	ma arc				
		welding, hux c	ore arc	weiding, e	wolding (am weium 10)	ig, electro-si	lag welui	ng, spot				
Toxt Pooks		Toxt Books:	weiuin	g, un usion	weiuling. (10)							
and/or	,	1 Eabrication \	Nolding	. & Motal I	oining Pro		ovthook for	Technici	ans and				
reference		Craftsmen C R	Flood	Butterword	the 1981	LE33E3. A 1		rechinci	ans anu				
material		2 An introduct	ion to V	Velding -	R S Parmar								
material		3 Principles of	weldin	g technolo	orv – IM (Sourd Edv	vard Arnold	/ FLBS	ondon				
		1980.	Weidin	6 (cerimolo	6) LIII (Soura, La		, 2200, 1	London,				
		Reference Book	s:										
		1. Welding for	Enginee	ers – H. Udi	n. E. R. Fur	nk and J W	ulff. John W	ilev. New	/ York.				
		2. Welding Eng	ineerin	g, B, E. Ros	si. McGraw	/ Hill New `	York	,,					
		3. Welding Me	allurgv	, Sindo Ko	u, A John V	Viley and S	Sons Incorpo	oration					
		Publication.	07	,	,		1	-					

MME 61	L 7	Mapping of CO (Course Outcome) and PO (Programme Outcom										me)
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
COs										0	1	2
CO1	1	2	1	2	1	2	1	3	2	1	1	1
CO2	2	1	1	2	1	1	1	3	1	2	2	1
CO3	1	1	2	2	2	3	1	3	1	2	2	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

		Dep	partmer	nt of M	etallur	gical an	d Matei	ials En	gineeri	ing			
Course		Title of t	he	Prog	gram Co	ore	Tota	l Numb	per of c	ontact ho	ours	Credi	
Code		course	5	((PCR) /		Lectur	Tute	ori F	Practical	Total	t	
				Elec	tives (P	'EL)	e (L)	al (T)	(P)	Hour		
											S		
MMS651		Minera	1		PCR		0	0		3	3	1.5	
	E	Beneficiat	ion										
		Laborato	ory										
Pre-requi	sites	tes Course Assessment methods (Continuous (CT), mid-term (M										(MT)	
				and	end ass	essmei	nt (EA))						
MMC303	: Non	- Ferrous	;	СТ									
Process	Meta	llurgy											
Course		• CO1	CO1: Correlate crushing of a material with different crushers										
Outcome	S	• CO2	: Sepai	ration d	of fine	s from	differen	t fracti	on and	l measuri	ng efficie	ncy	
		• CO3	CO3 : Separation of sulphide ores by froth floatation unit										
Topics		Experin	nent -1:	Crushi	ing of n	nateria	in Jaw	crushe	r follov	ved by Ro	ll Crushe	r	
Covered		Experir	ment-2	: Crush	ing the	produ	ct of Ro	l Crush	ner in b	all Mill			
		Experin	nent-3 :	Sieve	shaking	g of the	e fines g	enerat	ed fron	n Ball Mill			
		Experin	nent-4 :	Separ	ation o	of Micro	o fines i	n a Cyc	lone Se	eparator			
		Experin	nent-5 :	Froth	Floatat	ion							
		Experin	nent-6 :	Jigging	3								
		Experin	nent-7 :	Magn	etic sep	paration	n of met	allic fir	nes				
		Experir	ment-8	: Separ	ation o	of Mate	rial in a	double	-decke	er screen.			
Text Boo	ks,	<u>Suggest</u>	ed Text	: Books	<u>:</u>								
and/or		1. Extra	ction of	⁻ nonfe	rrous n	netals, I	H.S. Ray	, R.Srid	lhar an	d K.P. Abı	raham Af	filiated	
reference	2	East We	est Pres	s Pvt Lt	d., Nev	v Delhi	(2007).						
material		2. W.H.	Dennis	, Extrac	tive M	etallur	gy <i>,</i> Philo	sophic	al Libra	ry, New ۱	/ork (196	5)	
		<u>Suggest</u>	ed Refe	erence	Books:								
		1. F. Ha	bashi, P	rinciple	es of Ex	tractiv	e Metall	urgy, \	/ol.1, G	iordon an	d Breach	, New	
		York											
Mapping	of CC) (Course	Outco	me) an	d PO (I	Program	nme Ou	tcome)				
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	

PO	POI	POZ	PU3	P04	P05	P06	P07	P08	P09	PO10	POIL	POIZ
СО												
CO1	3	3	1	3	1	1	1	1	1	1	1	2
CO2	3	3	2	3	1	1	1	1	1	1	1	2
CO3	3	3	2	3	1	1	1	1	1	1	1	2

Correlation levels 1, 2 or 3 as defined below:1: Slight (Low)2: Moderate (Medium)

Department of Metallurgical and Materials Engineering												
Course	Title of the course	Program	Total Nu	mber of co	ontact hours		Credi					
Code		Core (PCR) /	Lectur	Tutoria	Practical	Total	t					
		Electives	e (L)	I (T)	(P)	Hour						
		(PEL)				S						
MMS65	Mechanical	PCR	0	0	3	3	1.5					
2	Working of											
	Materials Lab											
Pre-requis	Pre-requisites		Course Assessment methods (Continuous (CT) and end									
		assessment (EA))										

Nil	EA
Course	CO1: To know about the methods of rolling, forging under different conditions
Outcomes	CO2: To learn the parameters needed to be controlled in rolling, forging processes
	CO3: To assess and understand the factors affecting the quality of the products
Topics	1. Hot rolling to produce round bars (merchant product) from square stock using
Covered	grooved rolls and evaluating changes in microstructure and hardness
	2. Cold rolling to produce sheet from plate using plain barreled rolls and
	evaluating changes in microstructure and hardness. Estimation of angle of
	contact, no-slip angle, forward slip, interfacial frictional coefficient, rolling load,
	rolling torque and horse power based on the process data
	3. Open-die forging operation by hydraulic press and analysis of process data.
	Evaluation of hardness and microstructural changes of the forged product
	4. Closed-die forging operation by hydraulic press and analysis of process data.
	Evaluation of hardness and microstructural changes of the forged product
	5. Hot forging and cold forging of a given ductile (metallic) material and evaluation
	of hardness and microstructural variations
	6. To study the effect of friction and lubrication in open-die cold forging operation
Text and/or	• Mechanical Metallurgy, SI Metric Edition, George E. Dieter, McGraw-Hill Book
reference	Company (UK) Limited, 1988
material	• The Rolling of Strip, Sheet and Plate, 2nd Edition, E.C. Larke, Chapman and Hall,
	Ltd., 1963

CO-PO	CO-PO Mapping											
POs	1	2	3	4	5	6	7	8	9	10	11	12
COs												
1	3	2	1	2	3		1		2	1	1	1
2	3	3	3	3	2	1	1		3	2	1	2
3	2	3	1	2	2	2	1	1	3	3	1	2

Correlation levels 1, 2 or 3 as defined below:

conclution										
1: Slight (Lo	ow)	2: Modera	ate (Medium)	3	: Substant	ial (High)				
		Departmen	t of Metallurgical a	and Mater	ials Engine	ering				
Course	Tit	le of the	Program Core	Program Core Total Number of contact hours						
Code	со	urse	(PCR) /	Lectur	Tutoria	Practical	Total	t		
			Electives (PEL)	e (L)	I (T)	(P)	Hour			
							S			
MMS653	Ma	terials	PCR	0	0	3	3	1.5		
	Cha	aracterization								
	Lab)-								
Pre-requisi	tes		Course Assessment methods (Continuous (CT) and end							
			assessment (EA))							
MMC-403:	Mat	erials	CT+EA							
Characteriz	zatio	n								
Course		I. Learn funda	mentals and ope	erational a	spects of	X-ray diffr	action, e	electron		
Outcomes	comes microscopy and other characterization techniques.									
II. In-hand identification of the crystal structure and indexing of diffra							fraction			
		patterns of diffe	erent phases to me	eet conterr	nporary ne	eds.				
		III. Data analysis	and report writin	ig of variou	is experim	ents.				

Topics	List of Experiments
Covered	1.Indexing the X-ray diffraction (XRD) pattern of different phases.
	(a). Indexing the XRD pattern of BCC structure.
	(b) Indexing the XRD pattern of FCC structure.
	(c) Indexing the XRD pattern of HCP structure.
	(d) Indexing the XRD pattern containing a mixture of BCC and FCC phase.
	2. Precise lattice parameter determination.
	3.X-ray diffraction of powders to show the effect of powder size on peak
	broadening.
	4. Microstructural and Fractographic study by SEM.
	5.Indexing of SADP
	6.Precipitation kinetics study of age hardenable Al alloy
	7.Characterization through atomic force microscope
Text Books,	Text Books:
and/or	1. "Elements of X-Ray Diffraction", by B.D. Cullity, Addision Wesley Publishing Co.,
reference	Massachusetts, 1968.
material	2. "X-ray diffraction-a practical approach", by <u>C. Suryanarayana</u> and <u>M. Grant</u>
	Norton, Springer, 1998.
	3. "X-ray Diffraction: Its Theory and Applications", by S. K. Chatterjee , PHI.
	Limited,2004.
	4. "Electron Microscopy in the Study of Materials", by P.J. Grundy and G.A.
	Jones, Arnold, London, 1976.
	5. "Transmission Electron Microscopy: A Textbook for Materials Science (4 Vol
	set)", by David B. Williams and C. Barry Carter, 2nd ed., Springer, 2009.
	6. "Electron Microscopy and Analysis", by Peter J. Goodhew, John Humphreys and
	Richard Beanland, Third Edition, CRC Press, 2000.

Mappi	Mapping of CO (Course Outcome) and PO (Programme Outcome)											
co	PO											
↓	1	2	3	4	5	6	7	8	9	10	11	12
I	3	1	1	1			1	1	2	1		1
II	3	3	3	3	1	2	1	2	3	2	2	2
111	2	3	1	2	2		1	2	3	3	1	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

SEVENTH SEMESTER

DEPARTMENT OF MANAGEMENT STUDIES									
Title of the	Program Core	Total Nu	mber of co	ontact hours	5	Credi			
course	(PCR) /	Lectur	Tutori	Practical	Total	t			
	Electives (PEL)	e (L)	al (T)	(P)	Hour				
					S				
PRINCIPLES OF MANAGEMENT	PCR	PCR 3 0 0 3							
ites- NIL	Course Assessment methods (Continuous (CT) and end assessment (EA))								
			<u> </u>						
 CO1:To marequired for required for CO2:To im executives CO3:To marequired help CO3:To marequired help CO4:To im strategic b CO5: To im Marketing decision so 	ake budding engine or any organization part knowledge on of an organization ake potential engin o for their profession part knowledge on oth in nature part knowledge on , Finance, Behavior cience	eers aware various to eers aware onal career organizati each func ral Science	of various ools and te e of manag ional activi tional area and Quan	manageme chniques ap gerial functio ities operati a of manage titative Tech	nt function oplied by on so that onal and ement like oniques a	ons the t it e nd			
UNIT I: Manage	ment Functions an	d Business	Environm	ent: Busine	ss enviro	nment-			
 UNIT I: Management Functions and Business Environment: Business environment overed UNIT I: Management Functions and Business Environment: Business environment macro, Business environment -micro; Porter's five forces, Management function –overview, Different levels and roles of management, Planning- Steps, Planning and environmental analysis with SWOT, Application of BCG matrix in organization (8) UNIT II: Quantitative tools and techniques used in management: Forecasting techniques, Decision analysis, PERT & CPM as controlling technique (7) UNIT III: Creating and delivering superior customer value: Basic understanding marketing, Consumer behavior-fundamentals, Segmentation, Targeting & Positioning, Product Life cycle. (8) UNIT IV: Behavioral management of individual: Motivation, Leadership, Perception, Learning. (8) UNIT V: Finance and Accounting: Basics of Financial management of an organization, Preparation of Financial accounting, Analysis of Financial stateme 									
s, Text Books:									
 Financial Management, 11th Edition, I M Pandey, Vikas Publishing Here Marketing Management 15th Edition, Philip Kotler and Kelvin Pearson India Management Principles, Processes and practice, first edition, Anil Bl Arya Kumar, Oxford Higher education Organizational Behavior,13 th edition, Stephen P Robbins, Pearson P hall India Operations Management, 7th edition (Quality control, Forecasting), 									
	Title of the course PRINCIPLES OF MANAGEMENT sites- NIL	Title of the courseProgram Core (PCR) / Electives (PEL)PRINCIPLES OF MANAGEMENTPCRsites- NILCourse Assessment assessment (EA)CO1:To make budding engine required for any organizationCO2:To impart knowledge on executives of an organizationCO3:To make potential engin would help for their professionCO4:To impart knowledge on strategic both in natureCO5: To impart knowledge on strategic both in natureCO5: To impart knowledge on strategic both in natureCO5: To impart knowledge on marketing, Finance, Behavior decision scienceUNIT I: Management Functions an macro, Business environment -mid -overview, Different levels and rol and environmental analysis with S (8)UNIT II: Quantitative tools and tect techniques, Decision analysis, PER UNIT III: Creating and delivering su marketing, Consumer behavior-fun Positioning, Product Life cycle. (8) UNIT V: Finance and Accounting: E organization, Preparation of Finan CVP Analysis, An overview of finans,Text Books: 1. Financial Management Pearson India 3. Management Principles, Pr Arya Kumar, Oxford Higher 4. Organizational Behavior, 13 hall IndiaSarin, Willev	Title of the courseProgram Core (PCR) / Electives (PEL)Total Nu Lectur e (L)PRINCIPLES OF MANAGEMENTPCR3Sites- NILCourse Assessment method assessment (EA))CT+EA•C01:To make budding engineers aware required for any organization••C02:To impart knowledge on various to executives of an organization•C03:To make potential engineers aware would help for their professional career•C04:To impart knowledge on organizati strategic both in nature•C05:To impart knowledge on each fund Marketing, Finance, Behavioral ScienceUNIT I: Management Functions and Business macro, Business environment -micro; Porter -overview, Different levels and roles of mana and environmental analysis with SWOT, App (8)UNIT II: Quantitative tools and techniques us techniques, Decision analysis, PERT & CPM a UNIT II: Behavioral management of individu Perception, Learning. (8) UNIT IV: Binance and Accounting: Basics of Fi organization, Preparation of Financial accour CVP Analysis, An overview of financial market s, Text Books:1.Finance and Accounting: Basics of Fi organization, Preparation of Financial accour CVP Analysis, An overview of financial market arka Kumar, Oxford Higher education 4. Organizational Behavior,13 th edition hall India3.Management Principles, Processes an Arya Kumar, Oxford Higher education 4. Organizational Behavior,13 th edition hall India	Title of the courseProgram Core (PCR) / Electives (PEL)Total Number of co Lectur e (L)PRINCIPLES OF MANAGEMENTPCR30PRINCIPLES OF MANAGEMENTPCR30ctressCourse Assessment methods (Continu assessment (EA))CT+EActressCO1:To make budding engineers aware of various required for any organizationcC02:To impart knowledge on various tools and te executives of an organizationcC03:To make potential engineers aware of manag would help for their professional careercC04:To impart knowledge on each functional are: Marketing, Finance, Behavioral Science and Quan decision scienceUNIT I: Management Functions and Business Environm macro, Business environment -micro; Porter's five forc -overview, Different levels and roles of management, f and environmental analysis with SWOT, Application of (8)UNIT II: Quantitative tools and techniques used in man techniques, Decision analysis, PERT & CPM as controlli UNIT IV: Behavioral management of individual: Motiva Perception, Learning. (8)UNIT V: Finance and Accounting: Basics of Financial ma organization, Preparation of Financial accounting, Anal CVP Analysis, An overview of financial market with spes, Text Books: 1. Financial Management, 11th Edition, I M Pande 2. Marketing Management, 15th Edition, Philip Pearson India3. Management Principles, Processes and practice Arya Kumar, Oxford Higher education 4. Organizational Behavior,13 th edition, Stephen hall India3. Operations Management, 7th edition (Quality or & Sarin. Willey	Title of the course Program Core (PCR) / Electives (PEL) Total Number of contact hours PRINCIPLES OF MANAGEMENT PCR 3 0 0 PRINCIPLES OF MANAGEMENT PCR 3 0 0 ittes- NIL Course Assessment methods (Continuous (CT) are assessment (EA)) CT+EA • CO1:To make budding engineers aware of various managemeter equired for any organization • • CO2:To impart knowledge on various tools and techniques ap executives of an organization • • CO3:To make potential engineers aware of managerial function would help for their professional career • • CO5:To impart knowledge on each functional area of manage marketing, Finance, Behavioral Science and Quantitative Tech decision science • UNIT I: Management Functions and Business Environment: Businemacro, Business environment -micro; Porter's five forces, Manageroverview, Different levels and roles of management, Planning-St and environmental analysis with SWOT, Application of BCG matrix (8) UNIT II: Quantitative tools and techniques used in management of recenting, Consumer behavior-fundamentals, Segmentation, Targ Positioning, Product Life cycle. (8) UNIT IV: Behavioral management of individual: Motivation, Leader Perception, Learning. (8) UNIT IV: Behavioral management 15th Edition, Pinalysis of Finar CVP Analysis, An overview of financial market with special reference organization of vorganizat	Title of the course Program Core (PCR) / Electives (PEL) Total Number of contact hours PRINCIPLES OF MANAGEMENT PCR 3 0 0 3 PRINCIPLES OF MANAGEMENT PCR 3 0 0 3 sites- NIL Course Assessment methods (Continuous (CT) and end assessment (EA)) CT+EA CO1:To make budding engineers aware of various management function required for any organization • CO1:To make budding engineers aware of various management function required for any organization • CO2:To impart knowledge on various tools and techniques applied by the executives of an organization • CO3:To make potential engineers aware of managerial function so that would help for their professional career • CO4:To impart knowledge on organizational activities operational and strategic both in nature • CO5: To impart knowledge on each functional area of management like Marketing, Finance, Behavioral Science and Quantitative Techniques a decision science UNIT I: Management Functions and Business Environment: Business environ macro, Business environment -micro; Porter's five forces, Management fun- -overview, Different levels and roles of management, Planning-Steps, Plann and environmental analysis with SWOT, Application of BCG matrix in organ (8) UNIT II: Quantitative tools and techniques used in management: Forecastin techniques, Decision analysis, PERT & CPM as controlling technique (7)			

	Depa	artment of Metallu	urgical and	Materials						
Course	Title of the course	Program	Total Num	ber of con	tact hours		Credit			
Code		Core(PCR) / Electives(PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	oredit			
MME710	Function alMateria	PEL	3	0	0	3	3			
	ls									
Pre-requisite	25	Course Assessment methods (Continuous (CT) and end assessment (EA))								
MMC-302:In	itroductionto	CT+MT+EA								
Metallurgya	ndMaterials									
Developer		Dr.S. Bera								
CourseOut	CO1: Learn thefu	undamentals ofdif	ferent kind	s of functio	onal materia	als				
comes	CO2: Types and CO3: Tutorials, p	applications of dif problemsand solut	ferentfunct ionsetc.	ional mate	erials					
TopicsCo vered	Fundamentals correlation;clas hours] Opto-electronic emissionproces Sensor Materi electrolytesens nsors,Thermist hours] Shape memory aspects andm martensitic Albasedalloysat hours] Biomaterials:Co lications:Ti-allo hours] Nanomaterials, dride,Hybrid na hours]	of atomic structu sificationofdiffere c Materials: Optic sses,Electronic ma- als: Metal oxide ors,Oxygensensor orsand relatedsen y and Superelasti icromechanism c ndtheirapplication onceptandassessm ys,stainlesssteelet Smartmaterials,Manocomposites,Na	ire- chemic ntfunction al properti- terials such based se s,OpticalSe sors. c alloys: sl of martens transfo s. hentofbioco c. letalfoams, noporous n	cal bondin almaterials es of semi asGaAsano nsors, Prin nsors, Ther hape mem sitic trans ormationar ompatibility Nanofluids naterials, N	g-crystal st conductors dGaN. nciples of malSensors nory effect, formation, ndsuperelas y,materialsf c,Carbonnan anocoating	ructure-p [/ , absorpt [/ operation andMagr [/ thermod Stress ticity,Ni-1 [3 orbiomed [4 orbiomed [4 orbiomed [4 orbiomed [4 orbiomed [4	oroperty 6 ion and 6hours] n, Solid neticSe 6 dynamic induced FiandNi- 8 dicalapp 8 Alicalapp 8 AletalHy 8			
Text Books, and/or reference material	Text Books: 1.MaterialsScie Wiley&Sons,Ind 2.Materials;Eng Shercliffand Da	nceandEngineerin c., 2007 gineering,Science,I vidCebon	gAnIntrodu Processinga	uction–Wil andDesign- ullity and C	liamD.Callis -MichaelAsh D. Graham	ter,Jr.,Joł 1by,Hugh	n			

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12
CO1	3	2	2	1	3		2	2	1	2	2	

CO2	3	1	1	2	3		2	2	2	3	2	
CO3	3	3	3	2	3	2	3	3	2	3	3	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	Departmen	t of Metallurgical	and Mater	ials Engine	ering					
Course	Title of the	Program Core	Total Nu	mber of co	ontact hours	;	Credi			
Code	course	(PCR) /	Lectur	Tutoria	Practical	Total	t			
		Electives (PEL)	e (L)	I (T)	(P)	Hour				
						S				
MME711	Fatigue, Creep	PEL	3	0	0	3	3			
	and Fracture				()		()			
Pre-requisi	ites	and end assessment (EA))								
MMC-302:	Introduction to	CT+MT+EA	())							
Metallurgy	and Materials									
Course	I. Learn fundame	ental and detailed	understand	ding of fati	gue, creep a	nd fractu	ure			
Outcomes	(including fractu	re mechanics).								
	II. Solve problem	s on fracture, fatig	gue life, cre	eep and dif	ferent desig	n proble	ms to			
	meet contempor	meet contemporary needs (including tutorials).								
	III. Learn differer	nt applications and	developm	nents in fat	igue, creep	and fract	ure.			
Topics	Fatigue: Types of	of stress cycles, S-	-N diagram	n and end	urance limit	, Various	s failure			
Covered	relations, viz., Go	relations, viz., Goodman, Soderberg, Gerber parabola; Fatigue crack nucleation and								
	propagation; application of fracture mechanics for fatigue cracking cyclic stress									
	strain curve; low	v cycle fatigue; effe	ect of stres	s concentr	ation on fat	igue; size	e effect;			
	surface effects;	effect of metallur	gical varia	bles on fa	tigue; Incre	ased fati	igue life			
	due to surface p	rotection cumulat	ive fatigue	e damage i	rule; concep	ot reverse	e plastic			
	zone; corros	ion fatigue;	fretting;	high	tempera	ture	fatigue.			
	14h									
	Creep: Material	ls problem at hi	gh tempe	erature; ti	me depend	lant me	chanical			
	behavior; Creep	curves, Stress r	rupture te	st; Creep	mechanisn	ns; Defo	rmation			
	mechanism ma	p; Super plastic	ity; Cree	p resistan	it alloys;	Presenta	tion of			
	engineering cre	ep data; Predic	tion of I	ong time	properties	; Creep	-fatigue			
	interaction.			-	7 h Fract	ure: Exar	nples of			
	fracture in real c	omponents; Differ	ent design	n philosoph	ies; atomic	view of f	racture;			
	stress concentra	tion effects of flav	ws;				2 h			
	Linear elastic pla	astic fracture mech	nanics (LEF	M): Griffit	h's theory o	f brittle f	racture;			
	The energy rele	ase rate; R-curve;	: Different	modes of	, f loading; S	tress and	alvsis of			
	cracks. crack	tip plasticity: co	oncepts c	of plane	stress and	l plane	, strain.			
	10 h	- F F F	Ela	astic plasti	c fracture m	echanics	S: CTOD.			
	J integral. HRR s	ingularity:	4 k)	Tvr	es of fra	cture in			
	metals: microstr	uctural aspects of	fracture	Different 1	toughening	mechani	sms: 2h			
	Fracture toughn	ess testing of met	als: K _{1C} . CT	OD and J ₁₀			3h			
Text Books	5. Text Books:									
and/or	1. "Elements of	X-Rav Diffraction"	. bv B.D. C	Cullity. Add	ision Wesle	v Publish	ing Co.			
reference	Massachusetts	1968.	, .,	- , ,		,	0)			
material	2. "X-ray diffra	ction-a practical a	approach"	. by C. Si	Irvanaravan	a and M	I. Grant			
	Norton, Springer	, 1998.	- 1-12	, <u> </u>						

3. "X-ray Diffraction: Its Theory and Applications", by **S. K. Chatterjee**, Prentice-Hall of India Pvt. Limited,2004.

4. "Electron Microscopy in the Study of Materials", by *P.J. Grundy and G.A. Jones*, Arnold, London, 1976.

5. "Transmission Electron Microscopy: A Textbook for Materials Science (4 Vol set)", by David B. **Williams** and C. Barry **Carter**, 2nd ed., Springer, 2009.

6. "Electron Microscopy and Analysis", by **Peter J. Goodhew**, **John Humphreys** and **Richard Beanland**, Third Edition, CRC Press, 2000.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

CO						Р	0					
₩	1	2	3	4	5	6	7	8	9	10	11	12
Ι	3	1	1	1			1	1	2	1		1
II	3	3	3	3	1	2	1	2	3	2	2	2
	1		1	2	2		2	1	1	1	1	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

Department of Metallurgical & Materials Engineering											
Course	Т	itle of the course	Program	Total Nu	mber of co	ontact hours	5	Credit			
Code			Core (PCR) /	Lectur	Tutoria	Practical	Total				
			Electives	e (L)	I (T)	(P)	Hour				
			(PEL)				S				
MME712	Сс	omputational	PEL	3	0	0	3	3			
	Μ	aterials									
	En	ngineering									
Pre-requis	ites		Course Assessment methods (Continuous (CT) and end								
			assessment (EA))								
Nil			CT+EA								
Course	CO	CO1: To understand the different methodologies of materials modelling and simulation									
Outcom	CO	: To explore materials structure, properties, and behaviour under externally imposed									
es	var	ariables									
	CO	3: To design materi	als for different	application	IS						
Topics	1.	1. Introduction: Overview of different modeling approaches; aims and scopes; concept									
Covered		of multiscale mo	odeling and sim	nulation; s	significance	e of mater	ials moo	leling and			
		simulation.									
								[2 h]			
	2.	DFT Modeling: Q	uantum Mechar	ics princip	les; Schro	dinger's wa	ve equat	ion; waves			
		and wave function	ons; solution of	f Schrodin	ger's wav	e equation	; electro	n density;			
		Hohenberg-Kohn	theorems; Kohn	-Sham app	proach; Ko	hn-Sham ec	quations;	exchange-			
		correlation func	tionals; local	density	approxim	ation; ger	neralized	gradient			
		approximation; so	lution of Kohn-S	ham equat	ions; treat	ing solids w	ith pseud	lopotential			
		approach; Bloch's	theorem; plane	wave expa	nsions.			[40]]			
	•							[12 h]			
	3.		ng: Classical New	/tonian me	ecnanics; o	verview of i	molecula	r dynamics			
	(MD) simulation and its field of applicability; statistical mechanics principles; N-body										
	problem; ensembles and ergodicity; interatomic potentials; initialization and thermal										
	equilibration; boundary conditions; force calculation; potential energy cut-off and										
		truncation schem	es; integration a	iigoritnms	with their	relative m	erits and	demerits;			
		thermostatting; b	arostatting; eval	uation of (airrerent p	inysical, me	chanical,	structural,			

		thermodynamic, and transport properties of materials using MD simulation technique; illustration of equilibrium MD and non-equilibrium MD techniques; MD exercises with LAMMPS; overview of probability theory based Monte Carlo (MC) simulation and its field of applicability; Metropolis algorithm; Kawasaki dynamics; kinetic Monte Carlo method; simulation of phase evolution and phase transformation using Monte Carlo method.
	4.	Stochastic Simulation: Overview; Brownian dynamics; modeling diffusion of a particle in a fluid medium.
	_	[4 h]
	5.	Continuum Modeling: Overview; types; outline of continuum modeling using FEM technique; illustration of solving structural mechanics and heat transfer problems using FEM simulation.
		[5 h]
	6.	Multiscale Approaches: Overview and examples; bridging the scale gaps between different simulation levels; simultaneous integration of models; sequential integration of models (hierarchical approach); illustration of coupled MD-MC model, coupled MD-FEM model, coupled MD-stochastic model. [5 h]
Text		• Understanding Molecular Simulation: D. Frenkel and B. Smit, Academic Press, 2002
Books, and/or		• The Art of Molecular Dynamics Simulation: <i>D.C. Rapaport</i> , Cambridge University Press, 2004
referenc		• Statistical mechanics: <i>Donald A. Mcguarrie</i> , Harper Row, 1976
е		Handbook of Materials Modeling: Ed.: Sydney Yip, Springer, 2005
material		• Monte Carlo Methods in Statistical Physics, <i>M.E.J. Newman and G.T. Barkema</i> , Clarendon Press, 1999
		• Density functional theory of atoms and molecules, <i>R. G. Parr and W. Yang</i> , Oxford University Press, 1989
		• Electronic Structure of Materials, A. P. Sutton, Clarendon Press, 1994
		• An Introduction to the Finite Element Method, J.N. Reddy, Mc-Graw Hill, 2006
		• Materials Modelling using Density Functional Theory: Properties and Predictions, <i>F. Giustino</i> , Oxford University Press, 2014

CO-PO Mapping

		<u> </u>										
POs	1	2	3	4	5	6	7	8	9	10	11	12
COs												
1	~	~	~	~	~				~			~
2	~	~	~	~	~	~	~		~			~
3	~	~	v	~	~	~	~	~	~	~	~	~

Department of Metallurgical and Materials Engineering									
Course	Title of the	Program Core	Tota	l Number o	of contact h	ours	Credi		
Code	course	(PCR) /	(PCR) / Lectur Tutori Practical Total						
		Electives (PEL)	e (L)	al (T)	(P)	Hour			
						S			
MME713	Fuel, Furnace and	PER	3	0	0	3	3		
	Refractories								
Pre-requi	sites	Course Assessment methods (Continuous (CT), mid-term (MT)							
		and end assessment (EA))							
MMC-301	L: Thermodynamics	CT+MT+EA							

& Kinetics o Materials	f Engir	eering										
Course Outcomes	•	CO1: Ui CO2: Ui	ndersta ndersta	Inding t Inding t	he Con: he pro:	ventior perty of	nal and FFuel a	Non- C nd Refr	onvent actorie	ional ene s.	rgy sour	ces
	•	CO3 : U Refract	ndersta ories	anding	the des	ign of f	urnace	with re	espect t	o usage o	of fuel ar	nd
Topics Covered	De cla (4)	efinition, assificati)	Compa on and	arative gradin	study c g of coa	of solid, al.	liquid a	and gas	eous fu	iels. Cons	titution,	
	Te ult (6)	ultimate analysis, Flash and Fire point, viscosity. (6)										
	N Bio (2)	Non-conventional Energy Resources like Nuclear fuel, Solar, Wind, Geo-thermal, Bio-mass, Hydrogen (2)										
	Ca (2)	Carbonization of coal: Coke making and by-products. (2)										
	Pr Of	Producer gas, Water gas, Natural gas, LPG, Industrial Gases, Gobar Gas. Storage of fuels. (2)										
	(2	ombusti)	on of fı	uels and	d proble	ems						
	De	efinition	and Cla	assificat	tion of I	Furnace	es, Batc	h furna	ices, Co	ntinuous	furnace	s.
	Cc et fo (2)	, onstructi c. rced, inc)	on and (4) Evo luced a	workir plution nd bala	ng of fui of heat anced d	rnaces and fla raft. Ch	Pit furr me ten imney	nace, Ro nperatu height,	otary fu ure. Ava	rnace, M ailable he	uffle fur at. Natu	nace ral,
	He	eat losse	s in fur	naces a	and min	imizati	on. Wa	ste hea	it recov	ery.		
	Re	/ ature an efractorio	d Type es esign:	and Pr (4)	opertie	s of Re	fractor	ies, Ma	inufacti	ure of Coi	mmon	
	(2))	esigii.	Lay Out	or Ken	actorie	5 11 4 10	inace.				
Text Books, and/or	<u>Su</u> 1.	Suggested Text Books: 1. Elements of Fuels, Furnaces and Refractories, O. P. Gupta, Khanna publication.										
reference	2.	Fuels, Fu	irnaces	and Re	efractor	ies, J. E). Gilchi	rist , , , , , , , , , , , , , , , , , , ,		naravana	рс	
material	Pu	blicatior	n aces	, Relfa	ctories	anu Pyr	ometry	/,-A.V.M	. Surya	narayana	, Б. Э.	
	<u>Su</u>	ggested	Refere	nce Bo	oks:							
		dustrial F	urnace	es - Vol.	& , \ \	N. Trinl	ks and I	<u>И. Н. М</u>	lawhin	ey, Wiley		
Mapping of	CO (C) PO1	ourse O	PO3	e) and F	PO5	gramm PO6	e Outco PO7	ome) PO8	PO9	PO10	PO11	PO12
			. 00					. 00				

СО												
CO1	3	3	3	3	1	1	1	1	1	1	1	1
CO2	3	3	3	3	1	1	1	1	1	1	1	1
CO3	3	3	3	3	2	1	1	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

	Depart	ment of Metallurgica	l & Materia	als Enginee	ering						
Course	Title of the	Program Core	Total Nu	imber of c	ontact hours	S	Credi				
Code	course	(PCR) /	Lectur	Tutori	Practica	Total	t				
		Electives (PEL)	e (L)	al (T)	l (P)	Hour					
						S					
MME71	Powder	PEL	3	0	0	3	3				
4	Metallurgy										
Pre-requis	sites	Course Assessm	Course Assessment methods (Continuous (CT), mid-term (MT)								
		and end assessn	and end assessment (EA))								
MMC302		CT+EA	CT+EA								
Course	CO1: Learn	science and techr	nological	aspects o	of the Pow	vder Me	tallurgy				
Outcomes	5 Techniques.										
	CO2: The co	ntemporary need car	n be met k	by the abil	ity to analy	ze the in	dustrial				
	processes.										
	CO3: Solve p	roblems of near net s	hape fabri	cation of p	owder meta	allurgy pa	arts and				
	explore pow	der-processing-prope	erty relation	nship							
Topics	Introduction	: Historical perspective	ve of Powo	der Metall	urgy; The Fu	iture of P	owder				
Covered	Metallurgy.				[4 ho	urs]					
	Fabrication	of Powders: Basics	methods,	Mechanio	cal fabricati	on tech	niques;				
	Electrolytic f	abrication technique	s, Chemica	l fabricatio	on techniqu	es, Atom	ization				
	techniques.	Production of Ferrous	powders	[8 hours	5]						
	Powder Cha	r Unaracterization: Experimental methods for measuring particle size,									
	shape, distri	oution, surface area;	ion, surface area; Significance of true, apparent and tap densities								
	of powders;	Flow rate; compress	w rate; compressibility and green strength; Characteristics of								
	common fer	ous powders [6 hours]									
	Wixing and I	Siending: Dry Mixing,	wet mixing	g; Powaer	Lubrication	[4 nours]				
	Compaction	Douder Characterist	Fundame	entais or	Compaction	i; influei [6 hours]	nce or				
	Sintering R	Powder Characterist	ndomonto	paction. Ice Cintoria	a Thaaru) ou dor				
	Sintering De	navior: Sintering Tu	Sintoring	Atmospho	ng meory;	TVIIXEU P					
	Donsity Proc	julu Plidse Siliterilig,	Sintering	Atmosphe	Ie, Sintering	g Fulliace	es, run				
	Einishing On	erations: Machining:	Heat Treat	monte Su	rface Treatr	nonts [1]	hoursl				
	Annlications	• Competitive Pro		Evamplas	of Dowd	or Mot	alluray				
	Applications	and Properties	<i>JCE33E3</i> ,	Lvampies	01 F0WU [// h		anurgy				
Text Rook					[+1	5015]					
and/or	1 Powder M	etallurgy – Δ Unadhy	ava and G	SUnadhya	iva						
reference	2. Powder M	etallurgy Science – R	allurgy Science – R. M. German 2nd Edition MPIF 1994								
material	REFERENCE	BOOKS:)OKS:								
material	1. Powder	netallurgy: principles	etallurgy: principles and applications. Fritz V. Lenel. Metal								
	Powder Indu	stries Federation. 198	80			,					
	2. Powder	Metallurgy Techno	Aetallurgy Technology, Cambridge International Science								
	Publishing, 2	002	0,,	5							

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				, <b>a</b> nter 1	• (	D		<u> </u>				
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	2	1	2	2	1	1	1		3	1	1
CO2	3	3	1	1	1	2	3		1	1	1	1
CO3	3	3	2	1	2	1	2	1	3	1	2	3

### Mapping of CO (Course Outcome) and PO (Programme Outcome)

## Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

Department of Metallurgical and Materials Engineering									
Course	Title of the	Program	n Core	Total Nu	mber of c	ontact hours	5	Credi	
Code	course	(PCR) /		Lectur	Tutori	Practical	Total	t	
		Electives	s (PEL)	e (L)	al (T)	(P)	Hour		
							S		
MME71	Secondary Steel	PEL		3	0	0	3	3	
5	Making								
Pre-requis	ites		Course Assessment methods (Continuous (CT), mid-						
			term (MT), and end assessment (EA))						
Metallurgi	cal Thermodynamics		CT+MT+EA						
and Kineti	cs, Transport								
Phenomer	na in Metallurgical Pr	ocess							
Course	CO1: Learn fu	ndamental	ls of pl	hysico-che	mical prii	nciples of S	Secondar	y steel	
Outcomes	making.	<b>6</b>							
	CO2: Apply laws	of thermo	odynami	cs and kine	etics for pi	roducing clea	an steel.		
<b>T</b> '	CO3: Design pro	cess route	e for eco	nomical pr	oduction	of steel.			
Topics	A brief review o	t tiula tiow	, thermo	odynamics	and prima	ary steel ma	King proc	esses,	
Covered	composition of	secondary steel making physico-chemical principles of Secondary steel mak							
	Secondary steel	Secondary steel making, physico-chemical principles of Secondary steel making,							
	preheating and	recycling c	ies, secu of ladlas	muary ste		equipinent	(8)	icesses,	
	Furnace tanning	oneratio	ns. Pher	nomena di	iring furn	ace tanning	o) · carry o	ver slag	
	and slag detect	ion device	ns, i nei s• slag r	naking in	ladles and	l de-oxidatio	n' com	non de-	
	oxidisers and r	equiremer	ent of de-oxidisers: addition methodology: melting and						
	dissolution of d	eoxidisers	rs: de-oxidation thermodynamics and kinetics: simple vs						
	complex de-o	xidation;	De-oxi	dation p	roducts;	Elementar	v de-ox	kidation	
	calculations.	(5)		·	,				
	Inert Gas Stirrin	in Ladle	s (objec	tives, Devi	ices, gas f	low regimes	, stirring	energy	
	and stirring inte	ensity); Te	emperati	ure and Co	ompositio	n Control ir	n Ladles	(arcing,	
	alloying addition	n, and alun	ninium v	vire feedin	g).		(3	)	
	Degassing and	Degassing and Decarburization in liquid steel: Introduction, Principles and							
	thermodynamic	thermodynamics of reactions in vacuum degassing, equipment's and degassing							
	Methods and the	neir relativ	ve merit	s and dem	nerits; slag	g eye area a	nd re-ox	idation,	
	fluid flow and	mixing in	n vacuur	m degassi	ng, rates	of vacuum	degassi	ng and	
	decarburization	, decarbu	irization	for Ultra	a-low car	bon (ULC),	stainles	s steel	
	making.						(8)		
	Desulfurization	in seconda	ary steel	eelmaking: Introduction, thermodynamics aspects,					
	desulfurization	desulfurization with only top slag, injection metallurgy for Desulfurization. (3)						(3)	

	Clean steel, Types of inclusions, Morphology, Properties of inclusions, Inclusion
	assessment, sources of inclusions, control of inclusions, Inclusion modification,
	Calcium Treatment (cored wire injection. objectives and devices reactions, calcium
	recovery and inclusion morphology and composition). (6)
	Teeming speed, Gas absorption during tapping and teeming form surrounding,
	Temperature changes of molten steel during secondary Steel making, phosphorus
	control in secondary steel making, Nitrogen control in steel making, application of
	Magnetohydrodynamics, Modeling of secondary steelmaking processes. (6)
Text Books,	Suggested Text Books:
and/or	9. Principles and Practices in Iron and Steelmaking – A. Ghosh, and A. Chatterjee.
reference	10. Secondary Steelmaking – A. Ghosh
material	Suggested Reference Books:
	10. Making, Shaping and Treating of Steel (Steelmaking and Refining), 10th
	Edition, 1985, AISE, Pittsburgh

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	1	1	1	1	1	1	1	1	1	1
CO2	3	3	1	1	1	1	1	1	1	1	1	1
CO3	3	2	3	3	1	1	1	1	1	1	1	1

## Correlation levels 1, 2 or 3 as defined below:

1: Slight (Lov	v) 2: Moderat	e (Medium)	3:	3: Substantial (High)				
	Departme	nt of Metallurgio	cal and Mat	erials Engi	neering			
Course Code	Title of the course	Program	Total Nur	Total Number of contact hours				
		Core(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives(PEL)	(L)	(T)	(P)	Hours		
MME716 Composite Materials		PEL	3	0	0	3	3	
Pre-requisite	2S	Course Assessment methods (Continuous (CT) and end assessment						
		(EA))						
MMC-302: Ir	ntroduction	CT+EA						
toMetallurgy	and Materials							
CourseOutco	ome Learn the fundar	mentals of compositematerials, classification, properties and						
s applications								
	Metalmatric con	mposites(MMCs)						
	Solidand liquidst	tate synthesisofMMCs, joining of MMCs						

TopicsCovered	Course assessment methods: Mid semester examination and End semester
	examinationIntroduction:Classificationofcompositesonthebasisofmatrix, ex-situor in-
	situsynthesis, type of reinforcementetc.; Metalmatrix composite, polymermatrix compos
	ites,ceramicmatrix compositeand carbon-carboncomposite;
	applicationofdifferentcompositematerials. (8 hours)
	Differentroutesofcompositesynthesis:castingroute,powdermetallurgyrouteandother
	routes. (4hours)
	PowdermetallurgyprocessedComposite:highenergymilling,Mechanicalalloying:Funda
	mentals and parameters; Compaction and Sintering: material dependent routes
	andprocess parameters; Recent trends- Spark plasma sintering, Equal channel
	angular pressingetc.; process parameter-structure-property correlation. (12hours)
	Cast metal matrix composites: different synthesis routes: dispersion process (stir
	casting, compocasting and screw extrusion)-contact angle, wettability and particle-
	matrix bonding; Liquid metal impregnation/infiltration (pressure infiltration, squeeze
	casting and Lanxideprocess)- principle of molten metal infiltration-capillary flow
	ofmolten metal; Sprayprocess(Ospreyprocessandrapidsolidificationprocess);In-
	situproductionofdispersoids-XD process; evolved microstructure: structural defects
	in cast metal matrixcomposites-
	porosity.particlesegregation(macrosegregationandmicrosegregation).interfacialreact
	ionand particledegradation:structure-propertycorrelation. (12 hours)
	Joiningofmetalmatrixcomposites.limitationsofconventionalfusionwelding.Applicatio
	noftransientliquidphase (TLP) diffusion bonding, basic mechanismand different stages of
	TLPbondingprocessformonolithicandcompositesystem, processparameters of TLPbond
	ing, joint efficiency. (4hours)
Text Books,	Text Books:
and/or	1. MetalMatrix Composites-Chawla and Chawla, Springer, 2006.
reference	2. 'Joiningofaluminiumbasedmetalmatrixcomposites'-JoydeepMaity, in 'Engineered
material	MetalMatrix Composites: Forming Methods, Material Properties and Industrial
	Applications', Editor: Luca Magagnin, 2012, NOVAScience Publishers, Inc., New York,
	USA.pp 329-354.
	3. Materials Science and Engineering: An Introduction-William D. Callister. Jr. John
	Wiley&Sons.Inc., 2007.
	4. Fundamentals of Metal-Matrix Composites - Andreas Mortensen and Alan Needleman.
	Butterworth-Heinemann.1993.
	5.AnIntroductiontoCompositeMaterials—DerekHull.CambridgeUniversityPress.
	1981.
	6.CompositeMaterials–DeborahD.L.Chung.Springer. 2009.
	7. Metal-Matrixcomposite–P.K. Rohatgi, DefenceScienceJournal. Vol43. No4.
	October1993.pp 323-349.
	8.Y. B.Liu, S. C.Lim, L. Lu, M. O. Lai, Recentdevelopment inthe fabrication of metal
	matrix-particulatecomposites usingpowder metallurgy techniques Journalof
	MateralsScience29(1994)1999-2007.

I									-,				
	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO12
	COs										0	1	
	CO1	3	3	3	1	-	2	2	1	2	2	3	3
	CO2	3	-	2	2	-	3	2	-	-	-	3	3
	CO3	3	2	3	2	3	-	-	1	2	1	2	3

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

		Departme	nt of Metallurgical	al & Materials Engineering							
Course	Tit	tle of the	Program Core	Total Nu	mber of co	ontact hours		Credi			
Code	со	ourse	(PCR) /	Lectur	Tutoria	Practical	Total	t			
			Electives (PEL)	e (L)	I (T)	(P)	Hour				
							S				
MME717	Co	orrosion	PEL	3	0	0	3	3			
	Er	ngineering									
Pre-requisi	tes		Course Assessm	ent metho	ds (Contin	uous (CT) ar	id end				
			assessment (EA)	)							
CYC-01: En	gine	ering	CT+EA								
Chemistry											
Course		CO1: To learn F	undamentals of Co	prrosion En	gineering						
Outcomes		CO2: Technique	s to acquaint with	Actual Co	rrosion Tes	sting					
		CO3: To unders	tand the Principles	s, Mechani	sm and Pre	evention of	High				
		Temperature Co	orrosion	rrosion							
Topics	Introduction: Definition of corrosion, Cost of Corrosion, corrosion dam						lamage,				
Covered		environments, a	and classification c	of corrosio	n. (1)						
		Corrosion Princ	iples: Electrochem	ical reaction	ons, therm	odynamics	of corros	ion, cell			
		potential, emf a	and galvanic series	s, represer	ntation of o	cell / cell dia	igram, el	ectrode			
		kinetics, exchar	nge current densi	ty, polariz	ation - ac	tivation, co	ncentrati	ion and			
		combined, Pour	baix diagram, Evans diagram, Passivation. (11)								
		Forms of Corre	Sion: Uniform attack; galvanic or two-metal corrosion; crevice								
		corrosion; pitti	ng corrosion; int	ergranular	corrosion	n – sensitiz	ation an	id weld			
		decay; Selectiv	e leaching - dezi	ncification	; erosion	corrosion;	Stress co	orrosion			
		cracking (SCC)	and nydrogen dar	nage. Case	e studies d	or corrosion	in indus	stry e.g.			
		Corrosion Drov	option: Materials	coloction	altoration	a of anvira	nmonto	docian			
		inhibitors cath	dic and anodic pr	selection c	alleration	loctronlatin	(5)	uesign,			
		Corrosion Testi	ng: Purnose, stan	dard over	ession of	corrosion r	ig. (J) ata nala	rization			
		technique – T	afel extranolation	linear	nolarizatio	n method	$\Delta C$ imr	adance			
		method evalua	tion of nitting dar	nage Huer	v and stret	tcher test fo	r stainle	ss steel			
		slow strain rate	test (SSRT) Corro	sion failure	analysis	(5)	a stannes				
		High Temperat	ure Corrosion: Introduction oxidation Pilling - Redworth (PR)								
		ratio, electroch	emical and more	ohological	aspects	oxidation k	inetics.	internal			
		oxidation. corre	osion in mixed er	vironment	ts. salt de	posited hot	corrosic	on, case			
		studies for high	temperature corr	osion. (2)	,			,			
L		0.1		( )							

Text Books,	Text Books:					
and/or	1. Corrosion Engineering – Mars G. Fontana, McGraw- Hill Publication, 1987.					
reference	2. The Fundamentals of corrosion – J. C. Scully					
material	Reference books:					
	1. An Introduction of Metallic Corrosion – R. Evans, Eward Arnold (Publishers) Ltd,					
	London.					
	2. Introduction of High Temperature Corrosion – N. Birks and G. H. Meier					

Mapping of CO (Course Outcome) and PO (Programme Outcome)

MME	717		Марр	ing of (	CO (Cou	ırse Ou	tcome)	and PC	) (Prog	ramme	Outco	me)	
	POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
	CO1	1	1	3	1	2	2	1	3	2	2	2	1
	CO2	1	1	3	2	2	2	1	2	2	2	2	1
	CO3	1	1	3	1	1	2	2	2	3	2	1	2

### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

	Department of Metallurgical and Materials Engineering									
Course	Title of the	Program	Total Num	nber of conta	act hours		Credit			
Code	course	Core	Lecture	Tutorial	Practical	Total				
		(PCR) /	(L)	(T)	(P)	Hours				
		Electives								
		(PEL)								
MME-718	Energy and	PEL	3	0	0	3	3			
	environment in									
	metallurgical									
	industries									
Pre-requisit	es	Course As	sessment m	ethods (Con	tinuous (CT)	and end				
		assessme	assessment (EA))							
MMC-301:N	Ietallurgical	CT+EA								
Thermodyna	mics and Kinetics									
Course	CO1: To give concer	ot of effectiv	e utilization	of energy ir	n metallurgica	al processe	es.			
Outcomes	CO2: To provide kn	owledge reg	garding vario	ous pollutan	ts and their	methods o	of control			
	in metallurgical indu	ustries.								
	CO3: To learn the m	nethods of m	ninimization	of energy re	equirements	and preve	ntion of			
	energy loss									
	CO4: To learn about	t the applica	tion of recy	cling methoo	ds of wastes i	materials				
	generated in metall	urgical indu	stries							
Topics	UNIT I: Energy: (14	hrs)								
Covered	Energy resources:	non-renewa	ble and re	newable, In	dian energy	resources	s. Use of			
	energy in metal production, process fuel equivalent. Conservation of energy in									
	metallurgical industries with examples of aluminium, iron & steel making. Hydrogen									
	energy: characteristics, production, storage and utilization in metal industries.									
	Biomass: types of b	piomass, wo	od char as r	eductant in i	ron making.					

	UNIT II:(25 hrs)
	Environment: Sources and types of pollutants (wastes) from metal / minerals
	industries. Gaseous emissions: control of SPM, hazardous gases, viz. sulphur dioxide.
	fluorides nitrogen oxides Greenhouse gases: Greenhouse effect global warming
	notential Kyoto protocol carbon trading Emission and control from iron &
	steelmaking and aluminium smelting. Liquid effluents: treatment of waste water with
	examples from metal inductries. Solid wastes: types, dispesal and utilization of slime
	red mud and spont not lining, iron and stool slags. Impact of pollutants on human
	health management of radioactive wastes a waste noise pollution, thermal pollution
Tt	Text De else
Text	
Books,	1. R.C.Gupta: Energy and Environmental Management in Metallurgical Industries, PHI
and/or	Learning
reference	2. H.S.Ray. B.P.Singh, S.Bhattcharya, V.N.Misra, Energy in Mineral and Metallurgical
material	Industries, Allied Publisher
	3. C.S.Rao: Environmental Pollution Control Engineering, Wiley Eastern Ltd.
	4. J.A.Nathanson: Basic Environmental Technology, prentice-Hall India
	Reference Books:
	1. R.C. Gupta(ed.): Proc. Environmental Management in Metallurgical Industries(EMMI-
	2000),Allied Publishers
	2. R.C. Gupta(ed.): Proc. Environmental Management in Metallurgical Industries(EMMI-
	2010),Allied Publishers
	3. Fathi Habashi: Pollution Problems in Mineral and Metallurgical Industries,
	Metallurgie Extractive Quebec.
	4. H.S.Peavy et al.: Environmental Engineering, McGraw Hill
POs vs.	COs

	P O	РО 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2
CO1	1 3	1	1	1	1	2	2	1	1	1	1	1
CO2	3	1	1	1	1	2	3	1	1	1	1	1
CO3	3	3	2	2	2	3	3	1	1	3	3	3
CO4	3	3	3	3	3	3	3	3	2	3	3	3

Department of Metallurgical & Materials Engineering							
Title of the	Program Core	Program Core Total Number of contact hours					
course	(PCR) /	Lectur	Tutoria	Practical	Total	t	
	Electives (PEL)	e (L)	l (T)	(P)	Hour		
					S		
Manufacturing	PCR	0	0	1	4	1.5	
Processes Lab - II							
es	Course Assessment methods (Continuous (CT) and end						
	assessment (EA))						
d MMC501	CT+EA						
CO1: Learn scier	nce and technological aspects of the Powder production and						
characterization	l						
d	Fitle of the course Manufacturing Processes Lab - II MMC501 CO1: Learn scier characterization	Fitle of the course       Program Core (PCR) / Electives (PEL)         Manufacturing PCR         Processes Lab - II         S       Course Assessm assessment (EA)         MMC501       CT+EA         CO1: Learn science and technolog characterization	Title of the course     Program Core (PCR) / Lectur       Wanufacturing     PCR       Processes Lab - II     Course Assessment metho assessment (EA))       MMC501     CT+EA       CO1: Learn science and technological aspect characterization	Title of the courseProgram Core (PCR) / Electives (PEL)Total Number of co LecturManufacturing Processes Lab - IIPCR00Processes Lab - IICourse Assessment methods (Continu assessment (EA))Continu Contended aspects of the Po characterization	Title of the course       Program Core (PCR) / Lectur       Total Number of contact hours         Course       (PCR) / Lectur       Tutoria       Practical         Electives (PEL)       e (L)       I (T)       (P)         Manufacturing       PCR       0       0       1         Processes Lab - II       Course Assessment methods (Continuous (CT) ar assessment (EA))       MMC501       CT+EA         MMC501       CT+EA       CO1: Learn science and technological aspects of the Powder producharacterization	Title of the course       Program Core (PCR) / Lectur       Tutoria       Practical       Total Number of contact hours         Lectur       Tutoria       Practical       Total Number of contact hours         Lectur       Tutoria       Practical       Total Number of contact hours         Lectur       Tutoria       Practical       Total Hour         Electives (PEL)       e (L)       I (T)       (P)       Hour         Manufacturing       PCR       0       0       1       4         Processes Lab - II       Course Assessment methods (Continuous (CT) and end assessment (EA))       assessment (EA))         MMC501       CT+EA       CO1: Learn science and technological aspects of the Powder production and characterization	

	CO2: To study the effect of compaction pressure on dens	ification and learn						
	various sintering techniques to produce net shape product							
	CO3: Explore powder-processing-property relationship through	laboratory						
	assignment.							
Topics	Exp 1: Demonstration of ball milling, compaction unit, dynamic	light scattering						
Covered	technique and tube furnace	[3 hours]						
	Exp 2: Synthesis of nano powders by Chemical reduction	p 2: Synthesis of nano powders by Chemical reduction [3 hours]						
	p 3: Particle reduction by Ball milling [3 hours]							
	Exp 4: Characterization of nano and milled powders	[3						
	hours]							
	Exp 5: Particle size analysis by different techniques	[3 hours]						
	Exp 6: Conventional die compaction of powders	xp 6: Conventional die compaction of powders [3						
	hours]							
	Exp 7: Solid state sintering	[3 hours]						
	Exp 8: Liquid phase sintering	[3 hours]						
	Exp 9: Microstructural characterization and phase analysis o	f sintered products						
	[3 hours]							
	Exp 10: Hardness measurement of sintered products	[3 hours]						
Text Books,	TEXT BOOKS:							
and/or	1. Powder Metallurgy – A Upadhyaya and G S Upadhyaya.							
reference	2. Powder Metallurgy Science – R. M. German, 2nd Edition, MP	PIF, 1994						
material	REFERENCE BOOKS:							
	1. Powder metallurgy: principles and applications, Fritz V.	Lenel, Metal						
	Powder Industries Federation, 1980							
	2. Powder Metallurgy Technology, Cambridge Internation	onal Science						
	Publishing, 2002							

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

(	CO PO												
	♦	1	2	3	4	5	6	7	8	9	10	11	12
		3	1	1	1			1	1	2	1		1
I	I	3	3	3	3	1	2	1	2	3	2	2	2
I		2	3	1	2	2		1	2	3	3	1	2

### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Department of Metallurgical and Materials Engineering									
Course	Title of the	Program Core	Total Nu	mber of co	ontact hours	5	Credi		
Code	course	(PCR) /	Lectur	Tutoria	Practical	Total	t		
		Electives (PEL)	e (L)	I (T)	(P)	Hour			
						S			
MMS752	Materials	PCR	0	0	3	3	1.5		
	Characterization								
	Lab - II								
Pre-requis	ites	Course Assessm	Course Assessment methods (Continuous (CT) and end						
		assessment (EA))							

93 | Page

MMC-503: Fun	damentals of	CT+EA					
Plastic Deforma	ation and						
Strengthening	of materials						
Course	I. Learn fundam	entals and operational aspects of wear, non-destructive and other					
Outcomes	testing techniq	ues.					
	II. In-hand inter	etation of wear mechanisms and fractographs of different					
	materials to me	et contemporary needs.					
	III. Data analysi	s and report writing of various experiments.					
Topics	List of Experime	ents:					
Covered	1. Materi	als Characterization Using Non Destructive Testing (NDT)					
	Metho	ds:					
	(a)	Magnetic particle testing					
	(b)	Dye penetrant test.					
	(c)	Jltrasonic technique					
	2. Tribolo	gical study and worn surface characterisation of different					
	materia	als using:					
	(a)	Pin-on-disk wear testing machine.					
	(b)	High stress abrasive wear testing machine.					
	3. Effect of	of strain rate on tensile behaviour and fracture surface of different					
	materia	als					
	4 Determ	nination of fracture toughness by indentation technique					
Text Books,	Text Books:						
and/or	1. Mechanical I	Metallurgy by George Dieter					
reference							
material							

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

СО						Р	0					
₩	1	2	3	4	5	6	7	8	9	10	11	12
1	3	1	1	1			1	1	2	1		1
II	3	3	3	3	1	2	1	2	3	2	2	2
Ш	2	3	1	2	2		1	2	3	3	1	2

## Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

3: Substantial (High)

	Departmer	nt of Metallurgical	and Mater	ials Engine	ering				
Course	Title of the	Program Core	Program Core Total Number of contact hours						
Code	course	(PCR) /	Lectur	Tutori	Practical	Total	t		
		Electives (PEL)	e (L)	al (T)	(P)	Hour			
						S			
MMS753	Ferrous Process	PCR	0	0	3	3	1.5		
	Metallurgy								
	Laboratory								
Pre-requis	sites	Course Assessment methods (Continuous (CT), mid-term (MT)							
		and end assessment (EA))							
MMC303	Non- Ferrous	СТ							
Process	Metallurgy								

94 | Page

Course	CO1: Understand the method of agglomeration of iron ore fines by sintering
Outcomes	and pelletization
	<ul> <li>CO2: Study the fluid dynamics in a cold model of B.O.F</li> </ul>
	CO3: Evaluate the properties of agglomerates
Topics	Experiment -1: Sintering of iron ore fines in laboratory Sintering Machine
Covered	Experiment-2: Pelletization of iron ore fines in a disc pelletizer
	Experiment -3: Measure the properties of sinter produced
	Experiment-4: Measure the green and indurated properties of pellets
	Experiment -5: Briquetting of iron ore fines.
	Experiment-6: Study the effect of velocity and nozzle diameter and no of nozzles
	on the diameter and depth of Crater formed in a water model of LD Converter
Text Books,	Suggested Text Books:
and/or	1. Ghosh, A. and Chatterjee, A., Principles and Practices in Iron and Steel making,
reference	Prentice Hall of India, New Delhi, 2008.
material	2. F. Habashi, Principles of Extractive Metallurgy, Vol.1, Gordon and Breach, New
	York

### Mapping of CO (Course Outcome) and PO (Programme Outcome)

_						<u> </u>							
	PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO												
(	01	3	3	1	3	1	1	1	1	1	1	1	2
(	02	3	3	2	3	1	1	1	1	1	1	1	2
(	CO3	3	3	2	3	1	1	1	1	1	1	1	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

r					.11			
	•	Departme	nt of Metallurgica	l and Mate	erials Engin	eering		
Course	Tit	tle of the	Program Core	Total Nu	mber of co	ntact hours	-	Credit
Code	со	urse	(PCR) /	Lecture	Tutorial	Practical	Total	
			Electives (PEL)	(L)	(T)	(P)	Hours	
MME810	Na	no Science and	PEL	3	0	0	3	3
	Тес	chnology						
Pre-requisi	ites		Course Assessm	ent metho	ds (Continu	uous (CT) ar	nd end	
			assessment (EA)	)				
MMC302:	Intro	duction to	CT+EA					
Metallurgy	/ and	Materials						
Course	rse CO1: To gain fundamental knowledge about the nanomaterials and their							
Outcomes	Outcomes properties							
	CO2: To learn about various techniques of the synthesis and characterization of							
	nanomaterials							
	CO3: To explore the various applications of nanomaterials							
Topics		1. Introduction	on: Basics of na	no-scale,	History of	nano-tech	nology, I	Uses of
Covered		technolog	y (natural and	manufactu	ires) in na	ano-scale,	advantag	es and
		disadvanta	ages. [6 h]		r			
		2. Nano-mat	erails, Different	types o	t nano-ma	aterails. U	ses of	current
		technology	y. [4n] waabanisal alastri			tionl munnau	<b>1</b> :00 of m	ataviala
		3. Basics of r	nechanical, electri ainiaturization (na	ical, magne	etic and op	tical proper	ties of ma	ateriais.
		entical pro	ninaturization (na	lio-scale) (		ical, electric	.ai, magn	elic anu
		4 Synthosis	of nano-materia	ls (difforo	.z IIj nt. svntho	cic routoc:	ton do	wn and
		4. Synthesis	of filatio-filateria	is (unicie paractoriza	tion of n	ano-materi:	als by d	lifforont
		technique	s = [12 h]				uis by c	merene
		5 Applicatio	n of nanomaterial	s effect or	n daily life	environmer	ntal effect	s [6 h]
Text Books	5,	Text Books:						
and/or		1. Materials Sc	ience and Engine	ering: An	Introductio	on - William	n D. Callis	ster, Jr.,
reference		John Wiley & So	ons, Inc., 2007			<b>.</b>		
material		2. Nanomateria	ais Nanotechnolog	gies and D	esign – D.I	. Schodek,	P. Ferrei	ra, M.F.
		Ashby, Butterw	orth-Heinemann,	2009				
		3. Introduction	to Nanotechnolog	gy — С.Р. Рс	ole, F.J. Ov	vens, Wiley	Interscie	nce,
		2003						

# EIGHTH SEMESTER

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1	PO1	PO12
COs										0	1	
CO1	З	3	3	2	1	-	-	-	1	1	-	3
CO2	3	3	3	3	3	2	1	-	1	1	-	3
CO3	2	2	1	2	1	3	3	-	1	1	-	3

#### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

		Departme	nt of Metallurgic	al & Materia	als Enginee	ring						
Course	Tit	le of the	Program Core	Total Nu	mber of co	ontact hours	i	Credi				
Code	col	urse	(PCR) /	Lectur	Tutoria	Practical	Total	t				
			Electives (PEL)	e (L)	l (T)	(P)	Hour					
							S					
MME811	FEI	M Modelling	PEL	3	0	0	3	3				
	an	d Simulation										
	for	[•] Materials										
	De	sign										
Pre-requisi	tes			Course As	sessment r	nethods (Co	ontinuous	5 (CT)				
				and end as	ssessment	(EA))						
XEC01: Eng	ginee	ring Mechanics,		CT+EA								
MMC503: I	Fund	amentals of Plas	tic									
Deformatio	on an	id Strengthening	of Materials									
Course		CO1: To under	rstand the basi	cs and me	s and methodologies for FEIVI modelling and							
Outcomes		simulation										
		CO2: To explo	re materials m	echanical t	benaviour	under exte	ernally I	mposed				
		variables	matarials for diff	aront struct	ural applic	ations						
Topics		1 Introduc		of different (	ontinuum	modelling t	echnique	)C _				
Covered		finite ele	ment method (F	FM) modell	ing and sin	nulation - ar	luantage	s and				
covered		drawbac	ks of the methor	1. types and	annlicatio	ns of the ma	othod [4	hl				
		2. Basics	of FEM model	ing and s	imulation:	General	steps: c	lifferent				
		approac	hes for deriving	element pr	operties:	direct appro	bach, var	iational				
		approac	h, and Galerkin	s method;	types of	elements a	nd inter	olation				
		function	s and their a	pplicability;	condens	ation and	substru	cturing;				
		continui	ty requirements;	mesh refin	ing; Gauss	quadrature	; FEM m	odelling				
		for struc	tural and therma	al problems.	[32 h]			-				
		3. Applications: Structural design; stress mapping; heat transfer;										
		tempera	temperature mapping; FEM based design of composite materials; study of									
		deforma	tion of materials	under diffe	rent loadir	ng condition	s. [10 h]					
Text Books	,	The Finit	e Element Meth	od for Engin	ieers, 4th E	dition: Ken	neth H. H	luebner,				
and/or		Donald I	Dewhirst, Doug	las E. Smith	, and Ted (	G. Byrom, W	/iley, 200	1				
reference		<ul> <li>An Intro</li> </ul>	• An Introduction to the Finite Element Method, 3rd Edition: J. N. Reddy,									
material		Mcgraw	Hill Series in Me	chanical Eng	gineering, 2	2005						

	Departme	nt of Metallurgica	al and Mate	erials Engin	eering						
Course Code	Course CodeTitle of theProgram CoreTotal Number of contact hoursCredi										
	course	(PCR) /	Lectur	Tutorial	Practica	Total					
		Electives	e (L)	(T)	l (P)	Hour					
		(PEL)				S					
MME812	Mathematical	PEL	3	0	0	3	3				
	Modelling and										
	Simulation										
Pre-requisites		Course Assessn	nent meth	ods (Contin	uous (CT), n	nid-term	(MT) and				
	end assessment (EA))										

97 | Page

Transport Phe Motallurgical	enomena in Procoss	CT+MT+EA
Course	CO1. Loorn fundom	ontols of Modelling
Course	CO1: Learn Tunuar	ientais of Modelling.
Outcomes	CO2: Identify natur	e of engineering problems and solving by numerical methods
	CO3: Build physic	cal and mathematical models to describe the complex physical
	phenomena pertai	ning to real world.
Topics	Review of Fluid Fl	ow, heat transfer and Mass transfer, Type of Models, Advantages of
Covered		iei, Types of Mathematical model, Method of prediction, Modeling vs.
	experimentation, n	ature of coordinates. (3)
	Classification of pa	rtial differential equations, Elliptic, Parabolic, and Hyperbolic
	Equations, Initial a	nd Boundary Conditions, Initial Value and Boundary Value Problems,
	Substantial derivat	ive, Concept of grid points, cell and mesh, methods of discretization,
	Types of cells and r	nesh, Basic approach in solving a problem. (4)
	Central, Forward, a	nd Backward difference expressions for a uniform grid, Central
	difference express	ion for a nonuniform grid, Numerical errors, Accuracy of solution:
	optimum step size,	grid Independence test. (3)
	Application heat of	of conduction and diffusion, one dimensional steady state problem,
	Method of solution	n: Gaussian elimination, Tri-diagonal matrix algorithm (TDMA), Gauss-
	Seidel iterative m	ethod, the concept of Relaxation factor, optimization of Relaxation
	factor, Two-dime	nsional steady state problem, Block iterative methods, There-
	dimensional stead	y state problem, Transient one dimensional problem, Euler method,
	Crank-Nicolson me	thod, Pure Implicit method, Accuracy of Euler, Crank-Nicolson and Pure
	Implicit method, s	tability, Von Neumann stability analysis, Two-dimensional transient,
	Alternative Direction	on Implicit method, Problem in cylindrical and spherical geometry, Non-
	axissymmetric pro	blem. Transient conduction in composite media. Treatment of non-
	linierities in condu	iction and diffusion, irregular geometry. Diffusive- convective system
	with Flow. Met lab	codes. (22)
	Physical modeling:	Introduction, dimensional analysis, similarity criteria, modeling of steel
	making processes.	(4)
	Application related	to metallurgical processes (3)
Text Books,	Suggested Text Bo	oks:
and/or	11. Finite differen	ce Method in heat transfer- M. N. Ozisik
reference	12. Computationa	l Fluid dynamics and heat transfer – P.S. Ghoshdastidar
material	13. Modeling of St	eelmaking Processes – D. Mazumdar and James W. Evans
	Suggested Referen	ce Books:
	11. Getting Started	d with MATLAB 7: A Quick Introduction for Scientists and Engineers– R.
	Pratap.	
	12. Numerical Me	thods for Engineers - D. Vaughan Griffiths and I.M. Smith.

### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	1	1	1	1	1	1	1	1	1	1
CO2	3	3	2	2	2	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1	1	1

|--|

1: Slight (Low) 2: Moderate (Medium)

	Departm	ent of Metallurgical	and Mate	rials Engine	eering							
Course	Title of the	Program Core	Total Nu	mber of co	ontact hours	5	Credi					
Code	course	(PCR) / Electives	Lectur	Tutori	Practical	Total	t					
		(PEL)	e (L)	al (T)	(P)	Hours						
MME-813	Raw materials	PEL	3	0	0	3	3					
	preparation for											
	iron and steel											
	making											
Pre-requis	ites	Course Assessment methods (Continuous (CT) and end assessment										
		(EA))										
MMC-502:	Iron making	CT+EA										
Course	CO1: To acquire io	deas of preparing ray	w materials	s as burde	n for differe	nt iron an	d steel					
Outcom	making methods.											
es	CO2: To learn abo	out the different proc	cessing rou	ites for rav	v materials _l	oreparatic	n					
	CO3: To learn abo	out the application of	f different	testing me	ethods of rav	v material	s in					
	context to iron and steel making											
Topics	Introduction: Need of Raw Material Preparation. [1hr]											
Covered	<b>Ore Preparation:</b> Important minerals and their characteristics; Ore reserves in India											
	and World; Techno - economic appraisal of ore- breaking, crushing and grinding											
	techniques consid	lering sizing operation	ons. [8hrs]			11						
	Aggiomeration: P	urpose, technologica	ai appraisa	I of variou	s methods v	vith merits	sand					
	demerits, bonding	g mechanism. [3nrs]	c offooting	ciptor que	lity fluxed	intor cint						
	minoralogy sinto	s, mechanism, factor	s arrecting	Sinter qua	nity, nuxeu s .cl	sinter, sint	er					
	Pollotizing: Proco	ing machine design,	ion and gr	owth oddi	3] itiyos and th	oir offoct	nollot					
	drying and harder	ss, green ball format	ollotizing i	machine ty	inves distign	nollot firi	penet					
	systems [6hrs]		Jenetizing		pes, design	, penet mi	пg					
	Briguetting and I	Nodulizing: Process	additives	and harde	ning metho	ds Rotary	, hearth					
	furnace, its opera	tion, future prospec	tive. Techr	no- econor	nic evaluati	on of vari	ous iron					
	ore feed material	ls.					[4hrs]					
	Coal preparation	: Coal washing pure	oose and r	nethods. I	use of coal	in iron ar	nd steel					
	making			,		[6hrs]						
	Coke quality: Star	np charging, coke qu	uality affec	ted by pro	cess parame	eters, coke	5					
	testing, methods	for reactivity, streng	, th etc. [4h	irs]	•							
	Industry status: A	gglomeration scena	rio in India	and world	l, coking coa	l in India a	and					
	world, future pros	spects. [1hr]										
Text	Text books:											
Books,	1. O.P. Gupta: Ele	ments of Fuels, Furn	aces and R	efractorie	s, Khanna Pi	ublishers (	Delhi).					
and/or	2. J.D. Gilchrist: Fu	uels, Furnaces and R	efractories	, Pergamo	n.							
referenc	3. RC Gupta : The	ory and laboratory e	xperiment	s in ferrou	s metallurgy	,PHI, New	Delhi					
е	4. R.H. Tupkary: Ir	ntroduction to Mode	rn Iron Ma	iking, Khar	nna Publishe	ers.						
material	5.A. Ghosh, Amit	Chatterjee: Ironmak	king and St	eelmaking	: Theory and	d Practice,	PHI,					
	New Delhi											
	Reference books:											
	1. Efficient Use of	Fuel, HMSO (Londoi	n).									

	РО	PO1	PO1	PO1								
	1	2	3	4	5	6	7	8	9	0	1	2
CO1	3	1	1	1	1	2	2	1	1	1	1	1
CO2	3	3	2	2	2	3	3	1	1	3	3	3
CO3	3	3	3	3	3	3	3	3	2	3	3	3

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

3: Substantial (High)

Department of Metallurgical & Materials Engineering													
Course	Title of the	Program Core	Total Nu	Credi									
Code	course	(PCR) /	Lectur	Tutori	Practica	Total	t						
		Electives (PEL)	e (L)	al (T)	l (P)	Hour							
						S							
MME81 E	Experimental	PEL	3	0	0	3	3						
4 T	echniquesin												
1	Metallurgy												
Engineering	Physics (PH 01)	Course Assessment methods (Continuous (CT), mid-term (MT)											
		and end assessment (EA))											
Engineering	Physics	CT+MT+EA											
Course	CO1: To underst	tand the principle and theory of different experimental techniques											
Outcomes	CO2: To unders	stand the mechanisms used to measure the different properties of											
	materials using o	different techniques.											
	CO3: To learn s	CO3: To learn science and technological aspects of different experimental											
	techniques used	techniques used for materials											
Topics	OpticalMethods	s:Fundamentalofimageformation,Differentaberrationinoptical											
Covered	systems, Opti	systems, Opticalmicroscopy, characteristic of microscope, different conditions of											
	imageformation	imageformation suchas brightfield,darkfield, obliqueillumination. Special											
	TechniquesinMe	TechniquesinMetallography:Polarizedbeam,Phase Contrast,Differential											
	Interference Mi	Aicroscopy, Fluorescent's microscopy, Principles of above techniques											
	andtheirapplicat	cations.QuantitativeMetallurgy andImageanalysis,Applications											
	Developments f	forQuantitativeImage analysis in Metallurgy. [10 hrs]											
	Basicprincipleof	fScanningElectronMicroscopy (SEM),TransmissionElectron											
	Microscopy (TE	EM), secondary electron, backscatteredelectron, Diffraction pattern											
	analysis, energy	dispersiveX-ray spectroscopy(EDS),Wavelengthdispersive											
	spectrometeran	spectrometeranalysis(WDS),electron backscattereddiffraction(EBSD), electron											
	probe microa	probe microanalysis(EPMA).FundamentalofAtomic Force microscopy,Basic											
	theory, Imagefor	theory, Image formation and its applications. [8 hrs.]											
	Techniquesfor	Techniquesfor chemical analysis:Atomic absorption spectrometer,Emission											
	spectroscopy&d	spectroscopy&directreadingspectrometer, Mass spectrometer. Principle of											
	temperature me	temperature measurement by suing thermocouple and radiation pyrometers.											
	[4 nrs.]	[4 NrS.] Thermalanalysis febase transformations: Thermal Analysis techniques: Principle											
	Inermalanalysis	Inermalanalysisotphase transformations: Thermal Analysis techniques: Principle,											
	working andapp	Working and application of DTA, TGA, DSC and Thermo-Mechanical Analysis, Principles											
	Bringinla of the	and Applications. [2 IIIS.] Drinciple of magnetic characterization characterization of soft magnetized hard											
	Principle of ma	gneticcharacteriza	nion, char	acterizatio	on or sort r	nagnetar	iu nard						

100 | Page

	magnets.Application. [4 hrs.]								
	NDT:BasicprincipleofDye Penetranttesting,Typesofdyemethodsand								
	application, Developer application and Inspection, Magnetic particle testing, Basic								
	theory of magnetism, Magnetization methods, Field indicators, Particle application,								
	Inspection.Eddy currenttesting,Basicprinciple;Faraday'slaw,Inductance, Ultrasonic								
	testing:Basicsofultrasonicwaves,Pulseandbeamremarks,								
	Radiographictesting, Basics, different isotopes and different techniquest oidentify the								
	flaws. [10 hrs.]								
Text Books,	Suggested Text Books:								
and/or	1. ExperimentalTechniquesinPhysicalMetallurgy,V.T.Cherepin&A.K. Malik, I.I.T.,								
reference	Bombay.								
material	2. Thermal Analysis by Bernhard Wiindrelich Academic Press.								
	3. ImageAnalysis & Metallography. (Microstructural Science Vol 17) ASTM 1989.								
	4. 1.F.Weinberg,Editor,Tools&TechniquesinPhysicalMetallurgy,Vol.I& Vol.II,								
	Marcel Dekker, 1970.								
	Suggested Reference Books:								

### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3							2	2	3
CO2	3	3	3							2	2	3
CO3	3	3	2							2	2	2

### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)