# NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR DEPARTMENT OF PHYSICS

# **Revised Curriculum and Syllabi**

Program Name Master of Technology in Advanced Materials Science and Technology Effective from the Academic Year: 2021-2022



| Recommended by DPAC    | : 31.07.2021 |
|------------------------|--------------|
| Recommended in PGAC    | : 16.08.2021 |
| Approved by the Senate | : 22.08.2021 |

# **TABLE OF CONTENTS**

|                         |                                                                         | Page<br>No. |
|-------------------------|-------------------------------------------------------------------------|-------------|
| PROGRAMM                | E OBJECTIVES                                                            | 4           |
| SUMMARY O<br>SEMESTER C | F FIRST, SECOND, THIRD & FOURTH<br>COURSES                              | 5           |
| LIST OF ELE             | CTIVE PAPERS                                                            | 6           |
| LIST OF COR             | E PAPERS WITH THEIR DEVELOPERS' NAMES                                   | 6           |
| LIST OF ELE             | CTIVE PAPERS WITH THEIR DEVELOPERS' NAMES                               | 6-7         |
| LIST OF LAB             | ORATORY & SESSIONAL PAPERS                                              | 7           |
| LIST OF PRO             | JECT/DISSERTATION/SEMINAR PAPERS                                        | 7           |
| DETAILED SY<br>MAPPING  | YLLABI FOR ALL THE PAPERS WITH CO-PO                                    | 8-43        |
| PAPER CODE              | PAPER NAME                                                              |             |
| PH1001                  | Fundamentals of Materials Science                                       | 8-9         |
| PH1002                  | Materials for Engineering Applications                                  | 10-11       |
| PH1003                  | Engineering Mathematics and Numerical Analysis for<br>Materials Science | 12-13       |
| PH1051                  | General Materials Science Lab                                           | 14          |
| PH1052                  | Materials Synthesis & Characterization Lab                              | 15          |
| PH2001                  | Techniques of Materials Characterization                                | 16-17       |
| PH2051                  | Computational Lab                                                       | 18-19       |
| PH2053                  | Minor Project with Seminar                                              | 20          |
| PH3051                  | Dissertation-I                                                          | 21          |
| PH3052                  | Seminar – Non Project / Evaluation of Summer Training                   | 22          |
| PH4051                  | Dissertation – II / Industrial Project                                  | 23          |
| PH4052                  | Project Seminar                                                         | 24          |

| PH9030 | X-ray Diffraction & Structure of Materials                                  | 25-26 |
|--------|-----------------------------------------------------------------------------|-------|
| PH9031 | Optoelectronic Materials and Devices                                        | 27-28 |
| PH9032 | Nano materials – Science & Technology                                       | 29-30 |
| PH9033 | Mechanical Behavior of Materials                                            | 31-32 |
| PH9034 | Semiconductor Materials and Device Technology                               | 33-34 |
| PH9035 | Materials for Energy Application                                            | 35    |
| PH9036 | Nuclear Reactor Materials                                                   | 36-37 |
| PH9037 | Thin-film Materials Technology                                              | 38-39 |
| PH9038 | Biomaterials                                                                | 40-41 |
| PH9039 | Non-Destructive Testing                                                     | 42-43 |
| NPTEL  | Fundamentals and Applications of Dielectric Ceramics                        |       |
| NPTEL  | Scanning Electron / Ion / Probe Microscopy in Materials<br>Characterization |       |

# **PROGRAM OBJECTIVES\***

- **PO1**: Ability to independently carry out research/investigation and development work to solve practical problems.
- **PO2**: Ability to communicate effectively, i.e., write and present a substantial technical report/document.
- **PO3:** Ability to demonstrate a degree of mastery in the field of advanced materials science and technology at a level higher than that for a bachelor program.
- **PO4**: Ability to solve scientific (experimental and theoretical) tasks both as a member of a team and as a leader of the team.
- **PO5 :** Ability to identify and use the appropriate modern techniques, skills, and tools to offer technical solutions to engineering problems.

\*The POs have been prepared in accordance with the Self-Assessment Report (SAR) format of the National Board of Accreditation (NBA)

# DEPARTMENT OF PHYSICS M. Tech in Advanced Materials Science and Technology

## CURRICULUM

#### **SEMESTER-I**

| Sl. No. | Subject Code | Subject                                          | L - T - P | Credit |
|---------|--------------|--------------------------------------------------|-----------|--------|
| 1       | PH1001       | Fundamentals of Materials Science                | 3 - 0 - 0 | 3      |
| 2       | PH1002       | Materials for Engineering Applications           | 3 - 1 - 0 | 4      |
| 3       | PH1003       | Engineering Mathematics & Numerical Analysis for | 3 - 1 - 0 | 4      |
|         |              | Material Science                                 |           |        |
| 4       | PH903X       | Elective - I                                     | 3 - 0 - 0 | 3      |
| 5       | PH903X       | Elective - II                                    | 3 - 0 - 0 | 3      |
| 6       | PH1051       | General Materials Science Lab                    | 0 - 0 - 4 | 2      |
| 7       | PH1052       | Materials Synthesis & Characterization Lab       | 0 - 0 - 4 | 2      |
|         | TOTAL        |                                                  |           | 21     |

#### **SEMESTER-II**

| Sl. No. | Subject Code | Name of the Subject                      | L - T - P | Credit |
|---------|--------------|------------------------------------------|-----------|--------|
| 1       | PH2001       | Techniques of Materials Characterization | 3 - 1 - 0 | 4      |
| 2       | PH903X       | Elective - III                           | 3 - 0 - 0 | 3      |
| 3       | PH903X       | Elective - IV                            | 3 - 0 - 0 | 3      |
| 4       | PH903X       | Elective - V                             | 3 - 0 - 0 | 3      |
| 5       | PH903X       | Elective - VI                            | 3 - 0 - 0 | 3      |
| 6       | PH2051       | Computational Lab                        | 0 - 0 - 4 | 2      |
| 8       | PH2053       | Minor Project with Seminar               | 0 - 0 - 6 | 3      |
| TOTAL   |              |                                          | 21        |        |

#### **SEMESTER-III**

| Sl. No. | Subject Code | Name of the Subject                                   |    | Name of the Subject Cr |  |
|---------|--------------|-------------------------------------------------------|----|------------------------|--|
| 1       | PH9071       | Audit Lectures/Workshop                               | 0  |                        |  |
| 2       | PH3051       | Dissertation - I                                      | 12 |                        |  |
| 3       | PH3052       | Seminar – Non-Project / Evaluation of Summer Training | 2  |                        |  |
|         | TOTAL        |                                                       |    |                        |  |

#### **SEMESTER-IV**

| Sl. No. | Subject Code | Name of the Subject                    | Credit |
|---------|--------------|----------------------------------------|--------|
| 1       | PH4051       | Dissertation – II / Industrial Project | 12     |
| 2       | PH4052       | Project Seminar                        | 02     |
|         |              |                                        | 14     |
|         |              | TOTAL                                  | 69-71  |

#### **LIST OF ELECTIVE PAPERS**

| Sl. No. | Subject Code | Name of the Subject                                                      |  |
|---------|--------------|--------------------------------------------------------------------------|--|
| 1       | PH9030       | X-ray Diffraction & Structure of Materials                               |  |
| 2       | PH9031       | Optoelectronic Materials and Devices                                     |  |
| 3       | PH9032       | Nanomaterials – Science & Technology                                     |  |
| 4       | PH9033       | Mechanical Behavior of Materials                                         |  |
| 5       | PH9034       | Semiconductor Materials and Device Technology                            |  |
| 6       | PH9035       | Materials for Energy Applications                                        |  |
| 7       | PH9036       | Nuclear Reactor Materials                                                |  |
| 8       | PH9037       | Thin-film Materials Technology                                           |  |
| 9       | PH9038       | Biomaterials                                                             |  |
| 10      | PH9039       | Non-Destructive Testing                                                  |  |
| 11      | NPTEL        | Fundamentals and Applications of Dielectric Ceramics                     |  |
| 12      | NPTEL        | Scanning Electron / Ion / Probe Microscopy in Materials Characterization |  |

#### LIST OF CORE PAPERS WITH THEIR DEVELOPERS' NAMES

| Subject | Name of the Subject       | L - T - P | Credit | Name of the developer   |
|---------|---------------------------|-----------|--------|-------------------------|
| code    |                           |           |        |                         |
| PH1001  | Fundamentals of Materials | 3 - 0 - 0 | 3      | Prof. A. K. Meikap &    |
|         | Science                   |           |        | Dr S. Sahoo             |
| PH1002  | Materials for Engineering | 3 - 1 - 0 | 4      | Prof. A. K. Chakraborty |
|         | Applications              |           |        |                         |
| PH1003  | Engineering Mathematics   | 3 - 1 - 0 | 4      | Dr. M. K. Mandal        |
|         | & Numerical Analysis for  |           |        | Dr. S. Ghosh            |
|         | Material Science          |           |        | Dr. H. Subramanian      |
| PH2001  | Techniques of Materials   | 3 - 1 - 0 | 4      | Prof. A. K. Chakraborty |
|         | Characterization          |           |        | Dr. Abhijit Ghosh       |

#### LIST OF ELECTIVE PAPERS WITH THEIR DEVELOPERS' NAMES

| Subject<br>Code | Name of the Subject                              | L-T-P     | Credit | Name of the<br>developer                      |
|-----------------|--------------------------------------------------|-----------|--------|-----------------------------------------------|
| PH9030          | X-ray Diffraction & Structure of<br>Materials    | 3 - 0 - 0 | 3      | Dr. H. Chaudhuri<br>Dr. H.<br>Subramanian     |
| PH9031          | Optoelectronic Materials and<br>Devices          | 3 - 0 - 0 | 3      | Prof. P.<br>Kumbhakar &<br>Dr. H. Chaudhuri   |
| PH9032          | Nano materials – Science &<br>Technology         | 3 - 0 - 0 | 3      | Prof. A. K.<br>Chakraborty<br>Dr. A. Mondal   |
| PH9033          | Mechanical Behavior of Materials                 | 3 - 0- 0  | 3      | Dr. S. Basu &<br>Dr. A. Ghosh                 |
| PH9034          | Semiconductor Materials and<br>Device Technology | 3 - 0 - 0 | 3      | Dr. A. Mondal &<br>Prof. A. K.<br>Meikap      |
| PH9035          | Materials for Energy Applications                | 3 - 0 - 0 | 3      | Prof. A. K.<br>Chakraborty &<br>Dr. A. Mondal |

Page **6** of **41** 

| PH9036 | Nuclear Reactor Materials      | 3 - 0 - 0 | 3 | Prof. A. K.<br>Chakraborty &<br>Dr. S. Das |
|--------|--------------------------------|-----------|---|--------------------------------------------|
| PH9037 | Thin-film Materials Technology | 3 - 0 - 0 | 3 | Prof. A. K.<br>Meikap &<br>Dr. A. Mondal   |
| PH9038 | Biomaterials                   | 3 - 0 - 0 | 3 | Dr. S. Ghosh<br>Dr. H.<br>Subramanian      |
| PH9039 | Non-Destructive Testing        | 3 - 0 - 0 | 3 | Dr. A. Ghosh<br>Dr. S. Basu                |

#### LIST OF LABORATORY & SESSIONAL PAPERS

| SUBJECT CODE | SUBJECT                                    | L-T-P     | CREDIT |
|--------------|--------------------------------------------|-----------|--------|
| PH1051       | General Materials Science Lab              | 0 - 0 - 4 | 2      |
| PH1052       | Materials Synthesis & Characterization Lab | 0 - 0 - 4 | 2      |
| PH2051       | Computational Lab                          | 0 - 0 - 4 | 2      |

#### LIST OF PROJECT/DISSERTATION/SEMINAR PAPERS

| SUBJECT CODE | SUBJECT                                                | L-T-P      | CREDIT |
|--------------|--------------------------------------------------------|------------|--------|
| PH2053       | Minor Project with Seminar                             | 0 - 0 - 6  | 3      |
| PH9071       | Audit Lectures / Workshops                             | 0 - 00     | 0      |
| PH3051       | Dissertation - I                                       | 0 - 0 - 24 | 12     |
| PH3052       | Seminar-Non-Project / Evaluation of Summer<br>Training | 0 - 0 - 4  | 2      |
| PH4051       | Dissertation – II / Industrial Project                 | 0 - 0 - 24 | 12     |
| PH4052       | Project Seminar                                        | 0 - 0 - 4  | 2      |

|                                                                               |                      | Department of              |              |                 |                |                |           |
|-------------------------------------------------------------------------------|----------------------|----------------------------|--------------|-----------------|----------------|----------------|-----------|
| Course                                                                        | Title of the course  | Program Core               | Total Nu     | mber of cor     | ntact hours    | -              | Credit    |
| Code                                                                          |                      | (PCR) /<br>Electives (PEL) | Lecture (L)  | Tutorial<br>(T) | Practical (P)  | Total<br>Hours |           |
| PH1001                                                                        | Fundamentals of      | PCR                        | 3            | 0               | 0              | 3              | 3         |
|                                                                               | Materials<br>Science |                            |              |                 |                |                |           |
| Pre-requisites Course Assessment methods (Continuous (CT) and end asses (EA)) |                      |                            |              |                 |                | nd assessm     | nent      |
| NIL                                                                           |                      | CT+EA                      |              |                 |                |                |           |
| Course                                                                        | On completion        | of the course the le       | arner shall  | be able to      | :              |                |           |
| Outcomes                                                                      | • CO1: Desc          | ribe fundamentals          | of material  | s science.      |                |                |           |
|                                                                               | • CO2: Ana           | lyze the basic co          | oncepts of   | thermody        | namic fun      | ctions ar      | nd their  |
|                                                                               |                      | s for crystalline and      | -            | -               |                |                |           |
|                                                                               | • CO3: Expla         | ain various structur       | al, therma   | l, electroni    | c and magn     | etic prop      | erties of |
|                                                                               | materials.           |                            |              |                 |                |                |           |
| Topics                                                                        | Lattice vibrati      | on: Theory of lat          | tice vibrat  | ion, Born       | Karman co      | ondition,      | phonon    |
| Covered                                                                       | frequency distri     | bution and dispers         | ion relatio  | ons, interac    | tion of X-r    | ays and r      | neutrons  |
|                                                                               | with phonons.        |                            |              |                 |                |                | [8]       |
|                                                                               | Mossbauer eff        | ect: Mossbauer e           | ffect, Res   | onance A        | bsorption,     | Study of       | atomic    |
|                                                                               | motion in solids     | , Debye Waller fac         | tor and ap   | plication o     | f Mossbaue     | r effect.      | [4]       |
|                                                                               |                      |                            |              |                 |                |                |           |
|                                                                               | -                    | ics & Phase tra            |              |                 | -              |                |           |
|                                                                               | •                    | cs, Thermodynam            | •            |                 |                | •              |           |
|                                                                               | -                    | nperature, Differer        |              |                 |                |                |           |
|                                                                               | -                    | f entropy, enthalpy        |              | •               |                | d relation     |           |
|                                                                               | =                    | ansformations & m          | -            | -               |                |                | [10]      |
|                                                                               |                      | gy band theory: 1          |              | -               |                |                | -         |
|                                                                               |                      | nerfeld quantum fro        |              | -               |                |                |           |
|                                                                               |                      | otential, Kronig Pe        | •            |                 |                |                | 0.        |
|                                                                               | Fermi surfaces,      | effective mass of a        | in electron, | , Brillouin     | zones & rec    | ciprocal la    |           |
|                                                                               |                      |                            |              |                 |                | 2              | [10]      |
|                                                                               |                      | perties of Solids: '       | -            | -               | -              | -              |           |
|                                                                               | -                    | ance, energy level         |              | -               | _              |                | -         |
|                                                                               |                      | diamagnetism, sp           | -            | -               | de-Haas va     | n-Alphen       |           |
|                                                                               |                      | ice, classical and qu      | uantum Ha    | ll effect.      |                |                | [10]      |
| Text Book                                                                     |                      |                            |              |                 |                |                |           |
| and/or<br>reference                                                           |                      | & Mermin – Solid           | -            |                 | <b>C</b>       |                |           |
| material                                                                      | •                    | van - Materials Sci        | ence and E   | ngineering      | g: a first cou | rse            |           |
|                                                                               | Reference Boo        |                            |              | 1 Ctata Dia     |                |                |           |
|                                                                               |                      | ogadski& S. B. Pali        |              | •               | 'SICS          |                |           |
|                                                                               |                      | – Thermodynamic            | •            |                 |                |                |           |
|                                                                               |                      | aha and B. N. Sriva        |              |                 |                | 1.             |           |
|                                                                               | 4. Animalu -         | - Intermediate Qua         | ntum Theo    | ory of Crys     | talline Solic  | 18             |           |

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 2   | 2   | 2   | 2   | 2   |
| CO2        | 2   | 2   | 2   | 1   | 2   |
| CO3        | 2   | 2   | 1   | 2   | 2   |

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

#### **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low) 2: Moderate (Medium)

|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Department of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of Physics                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                                         |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course             | Title of the course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Program Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total Nu                                                                                                                                                                                                                                                                                                                                      | mber of con                                                                                                                                                                                                                                                                      | tact hours                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                   | Credit                                                                                                                                                                                                  |
| Code               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (PCR) /<br>Electives (PEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lecture (L)                                                                                                                                                                                                                                                                                                                                   | Tutorial<br>(T)                                                                                                                                                                                                                                                                  | Practical (P)                                                                                                                                                                                                                                                                       | Total<br>Hours                                                                                                                                                                                                    |                                                                                                                                                                                                         |
| PH1002             | Materials for<br>Engineering<br>Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                 | 4                                                                                                                                                                                                       |
| Pre-requisi        | (EA))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                                         |
| NIL                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CT+EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                                         |
| Course<br>Outcomes | <ul> <li>CO1: I engineer</li> <li>CO2: E composition</li> <li>CO3: Id problem</li> <li>Introduction to metals, ceramical and selection.</li> <li>Structural Ma phase diagrams</li> <li>Peritectic diagrams</li> <li>Peritectic diagrams</li> <li>Peritectic diagrams</li> <li>Peritectic diagrams</li> <li>Polymers: Type addition polymers, common ceramics &amp; gla properties of commethods.</li> <li>Composites: Transisostrain loading structural comp</li> <li>Electrical Mate semiconductors</li> <li>Optical Mate</li> </ul> | of the course the le<br>Discuss different<br>ring materials.<br>xplain different mo<br>ite, glassy, electrica<br>dentify appropriate<br>is.<br><b>o Materials:</b> The r<br>es, polymers, comp<br><b>terials</b> : Metals and<br>of Fe-C system and<br>ams, TTT diagram,<br>es of polymers, pol<br>ierization, degrada<br>non polymers, their<br><b>asses:</b> Types of cera<br>mmon ceramics & g<br>Fypes of composi-<br>nocomposites, prop-<br>ng, Interfacial str<br>osites, their process<br><b>terials</b> : Conductors<br>, Superconductors.<br><b>erials</b> : Optical p<br>pacity, etc., optica<br>ystal displays, phot | techniques<br>odern techn<br>al and optic<br>material m<br>naterial wo<br>osites, sen<br>al alloys, Fe<br>d common<br>the Liver<br>symerization<br>the Liver<br>cymerization<br>tion and m<br>r synthesis<br>amics, pha<br>glasses, the<br>tes, conve-<br>perty avera-<br>ength, me<br>sing and ap<br>s, Conduct<br>properties,<br>al systems | a for prep<br>niques for<br>cal material<br>types for s<br>orld, types<br>niconducto<br>errous alloy<br>non-ferrou<br>rule.<br>ons process<br>stabilizatio<br>, properties<br>se diagram<br>eir commor<br>entional co<br>aging by R<br>echanism o<br>pplications.<br>ivity and i | earation and<br>characteriza<br>ls.<br>solving real<br>of materials<br>rs, their phy<br>ys, Steel, the<br>s alloys, Eu<br>[1]<br>es, step pol<br>n of polyres<br>and applic<br>s of common<br>application<br>omposites,<br>tule of Mix<br>of reinforc<br>its temperat<br>luminescen | ation of p<br>life engi<br>s, Introdu<br>ysical pro<br>a Phase n<br>ttectic, Eu<br>2]<br>ymerizati<br>ners, con<br>ations.<br>on ceramic<br>ns and pro<br>[7]<br>fiber rei<br>ture, isos<br>ement, c<br>ture depe | olymer,<br>neering<br>ction to<br>operties,<br>[5]<br>rule and<br>itectoid,<br>ons and<br>ducting<br>[11]<br>c alloys,<br>ocessing<br>nforced<br>tress &<br>ommon<br>[8]<br>ndency,<br>[5]<br>ectivity, |

| Text Books, | Text Books:                                                                    |
|-------------|--------------------------------------------------------------------------------|
| and/or      | 1. J. F. Shackelford, M. K. Muralidhara, Introduction to Materials Science for |
| reference   | Engineers                                                                      |
| material    | 2. R. Balasubramaniam, Callister's Materials Science & Engineering             |
|             | Reference Books:                                                               |
|             | 1. V. Raghavan - Materials Science and Engineering: a first course             |
|             | 2. W.F. Smith, J. Hashemi, R. Prakash, Materials Science & Engineering         |
|             | 3. Rolf E. Hummel, Understanding Materials Science : History, Properties,      |
|             | Applications                                                                   |
|             | 4. John Martin, Materials for Engineering                                      |
|             | 5. J. Simmons, K Potter, Optical Materials                                     |
|             | 6. Fuxi Gan, Laser Materials                                                   |
|             | 7. A. K. Bhargava, Engineering Materials                                       |
|             |                                                                                |

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 3   | 1   | 2   | 1   | 3   |
| CO2        | 3   | 1   | 1   | 2   | 3   |
| CO3        | 3   | 1   | 2   | 2   | 3   |

#### **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low) 2: Moderate (Medium)

|                                              |                                                                                                                                                                                                                                                       | Departme                                                                                                                                                                                                                                                                                                                            | ent of Physic                                                                                                                                                                                | cs                                                                                                                                                               |                                                                                                                                                                                           |                                                                                                                                              |                                                                                                                   |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Course                                       | Title of the course                                                                                                                                                                                                                                   | Program Core                                                                                                                                                                                                                                                                                                                        | Total Nur                                                                                                                                                                                    | nber of conta                                                                                                                                                    | act hours                                                                                                                                                                                 |                                                                                                                                              | Credit                                                                                                            |
| Code                                         |                                                                                                                                                                                                                                                       | (PCR) /<br>Electives<br>(PEL)                                                                                                                                                                                                                                                                                                       | Lecture (L)                                                                                                                                                                                  | Tutorial<br>(T)                                                                                                                                                  | Practical (P)                                                                                                                                                                             | Total<br>Hours                                                                                                                               |                                                                                                                   |
| PH1003                                       | Engineering<br>Mathematics<br>and Numerical<br>Analysis for<br>Materials<br>Science                                                                                                                                                                   | PEL                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                            | 1                                                                                                                                                                | 0                                                                                                                                                                                         | 4                                                                                                                                            | 4                                                                                                                 |
| Pre-requisi                                  | ites                                                                                                                                                                                                                                                  | Course Assessm<br>(EA))                                                                                                                                                                                                                                                                                                             | nent method                                                                                                                                                                                  | s (Continuou                                                                                                                                                     | is (CT) and er                                                                                                                                                                            | nd assessme                                                                                                                                  | nt                                                                                                                |
| NIL                                          |                                                                                                                                                                                                                                                       | CT+EA                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                              |                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                              |                                                                                                                   |
| Outcomes                                     | <ul><li>enginee</li><li>CO2: I using not</li></ul>                                                                                                                                                                                                    | Learn advance<br>ring problems.<br>Devise algorithm<br>umerical techniq<br>nterpret and solv<br>tions.                                                                                                                                                                                                                              | s for writinues and sci                                                                                                                                                                      | ng compute<br>entific softv                                                                                                                                      | er programs<br>ware like Sci                                                                                                                                                              | to solve p<br>lab, Pythor                                                                                                                    | roblems<br>n, etc.                                                                                                |
| Topics<br>Covered                            | decomposition.<br>Differential eq<br>applications. D<br>Convolution th<br><b>Programming</b><br>programming,<br>conditional and<br>oriented progra<br><b>Numerical Te</b><br>following prob<br>iteration, Finite<br>Numerical solut<br>equations, Met | Preliminaries:<br>Probability, In<br>Juations (applied<br>iscrete Fourier T<br>eorem. Nonlinea<br><b>Methodology:</b> If<br>flow charts h<br>d unconditional j<br>mming.<br><b>Schniques:</b> Appl<br>blems: Errors in<br>differences, Inte<br>tion of first and s<br>hods of least squ<br><b>Applications:</b><br>n of mathematica | troduction<br>I to heat to<br>Transform, T<br>r methods of<br>Problem soli<br>igher leve<br>umps, iteration<br>ication of<br>numerical<br>erpolation,<br>second order<br>ares.<br>Simulation | to random<br>flow and c<br>Integral tran<br>(Logistic m<br>ving algorite<br>l language<br>tion, loops,<br>Programm<br>computatio<br>Numerical<br>er differention | n variables<br>liffusion). For<br>asforms (For<br>ap).<br>thm, analysis<br>es. Basics<br>functions, s<br>ing (in Scilla<br>on, Solution<br>integration a<br>al equations,<br>es, nonlinea | with appli<br>ourier Ser<br>rier and L<br>of algorith<br>of progra<br>tructure &<br>ab/Python)<br>s of equat<br>nd different<br>, Systems of | cations.<br>ies and<br>aplace),<br>[15]<br>nms and<br>mming,<br>object-<br>[15]<br>to the<br>ions by<br>ntiation, |
| Text Book<br>and/or<br>reference<br>material | s, Text Books:<br>(1) Arfken a<br>(2) J H Ma<br>Reference Boo                                                                                                                                                                                         | and Weber, Mathe<br>thews & K D Fir                                                                                                                                                                                                                                                                                                 | matical Met<br>lk, Numerio                                                                                                                                                                   | hods for Phy<br>cal Methods                                                                                                                                      | vsicists, Elsevi<br>s Using Matl                                                                                                                                                          | ab.                                                                                                                                          | [**]                                                                                                              |

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 1   | 1   | 1   | 1   | 2   |
| CO2        | 1   | 1   | 2   | 2   | 2   |
| CO3        | 2   | 1   | 2   | 2   | 2   |

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

**Correlation levels 1, 2 or 3 as defined below :** 

1: Slight (Low)

2: Moderate (Medium)

|                       |                                           | Department of                                                          | of Physics     |                 |               |                |           |  |
|-----------------------|-------------------------------------------|------------------------------------------------------------------------|----------------|-----------------|---------------|----------------|-----------|--|
| Course                | Title of the course                       | Program Core                                                           | Total Nu       | mber of cor     | ntact hours   |                | Credit    |  |
| Code                  |                                           | (PCR) /<br>Electives (PEL)                                             | Lecture<br>(L) | Tutorial<br>(T) | Practical (P) | Total<br>Hours |           |  |
| PH1051                | General                                   |                                                                        |                |                 |               |                |           |  |
|                       | Materials<br>Science Lab                  |                                                                        |                |                 |               |                |           |  |
| Pre-requisi           | tes                                       | Course Assessmen<br>(EA))                                              | nt methods     | (Continuous     | s (CT) and er | nd assessm     | nent      |  |
| NIL                   |                                           | CT+EA                                                                  |                |                 |               |                |           |  |
| Course                | On completion of                          | of the course the le                                                   | arner shall    | be able to      | •             |                |           |  |
| Outcomes              | • <b>CO1:</b> M                           | easure materials p                                                     | roperties u    | sing experi     | imental tech  | niques.        |           |  |
|                       |                                           | emonstrate the ope                                                     | -              | 0 1             |               | 1              |           |  |
|                       |                                           | elate the concepts l                                                   | 0              | 0               |               | veryday d      | evices.   |  |
| Topics                | 1. Band Ga                                | p Measurement of                                                       | semicond       | uctor           |               |                |           |  |
| Covered               | 2. Determin<br>samples                    | nation of Refractiv                                                    | e index by     | Abbe refr       | actometer o   | of differer    | nt liquid |  |
|                       | 3. Determin                               | nation of Gaussian                                                     | beam dist      | ribution of     | He-Ne Lase    | er beam        |           |  |
|                       | 4. To study                               | the Hall effect of                                                     | a given sei    | niconducto      | or materials  |                |           |  |
|                       | •                                         | mine the Hysteresi                                                     | -              |                 |               |                |           |  |
|                       |                                           | mine magneto resi                                                      | -              | U               |               |                |           |  |
|                       |                                           | the Electrolytic co                                                    |                |                 |               | nateriais      |           |  |
|                       | •                                         | nation of efficiency                                                   |                | •               | stais         |                |           |  |
|                       | 0. Determin                               |                                                                        | y of a solar   | cen             |               |                |           |  |
| Text Book<br>and/or   | 1. An advanced c                          | 1. An advanced course in practical physics, Chattapadhyay and Rakshit. |                |                 |               |                |           |  |
| reference<br>material |                                           | tical Physics, K. G.                                                   | Mazumdar.      |                 |               |                |           |  |
|                       | <b>Reference Book</b><br>1. A Textbook of | Advanced Practical                                                     | Physics, S.    | K. Ghosh.       |               |                |           |  |

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 2   | 3   | 1   | 3   | 2   |
| CO2        | 2   | 3   | 1   | 3   | 2   |
| CO3        | 2   | 3   | 1   | 3   | 2   |

## **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low)

2: Moderate (Medium)

|                                              |                                                                                                                                           | Department                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                 |               |                |        |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|---------------|----------------|--------|
| Course                                       | Title of the course                                                                                                                       | Program Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total Nu    | mber of cor     | ntact hours   |                | Credit |
| Code                                         |                                                                                                                                           | (PCR) /<br>Electives (PEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lecture (L) | Tutorial<br>(T) | Practical (P) | Total<br>Hours |        |
| PH1052                                       | Materials<br>Synthesis &<br>Characterization<br>Lab                                                                                       | PCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0           | 0               | 4             | 4              | 2      |
| Pre-requisi                                  | tes                                                                                                                                       | Course Assessmen<br>(EA))<br>CT+EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt methods  | (Continuous     | s (CT) and er | nd assessm     | nent   |
| Course                                       |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 11        | 1 11 .          |               |                |        |
| Outcomes                                     | <ul> <li>CO1: M<br/>nanopart</li> <li>CO2: D</li> <li>CO3: R</li> </ul>                                                                   | • CO3: Relate the concepts learned with the functioning of devices u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                 |               |                |        |
| Topics<br>Covered                            | <ol> <li>Synthesi</li> <li>Preparat</li> <li>Determi</li> <li>Electrica</li> <li>Electrica</li> <li>Determi</li> <li>Structura</li> </ol> | <ul> <li>daily life.</li> <li>1. Synthesis of a polymer composite</li> <li>2. Synthesis of a semiconductor nanoparticles by chemical method</li> <li>3. Preparation of metal oxide semiconductor thin film</li> <li>4. Determination of optical absorption characteristics</li> <li>5. Electrical transport properties of polymer composite</li> <li>6. Electrical transport properties of thin film</li> <li>7. Determination of thermal stability of polymer composite</li> <li>8. Structural characterization of nanomaterials by XRD technique</li> </ul> |             |                 |               |                |        |
| Text Book<br>and/or<br>reference<br>material | <ol> <li>An advanced of</li> <li>Advanced prace</li> <li>Reference Book</li> </ol>                                                        | course in practical pl<br>ctical Physics, K. G.<br><b>S:</b><br>Advanced Practical                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mazumdar.   |                 | and Rakshit.  |                |        |

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 2   | 3   | 1   | 3   | 2   |
| CO2        | 2   | 3   | 1   | 3   | 2   |
| CO3        | 2   | 3   | 1   | 3   | 2   |

#### **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low)

2: Moderate (Medium)

|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Department                                                                                                                                                                                             | of Physics                                                                                                                                    |                                                                                                                     |                                                                                |                                                  |                                                                |  |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|--|
| Course                                            | Title of the course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Program Core                                                                                                                                                                                           | Total Nu                                                                                                                                      | mber of cor                                                                                                         | ntact hours                                                                    |                                                  | Credit                                                         |  |
| Code                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (PCR) /                                                                                                                                                                                                | Lecture                                                                                                                                       | Tutorial                                                                                                            | Practical                                                                      | Total                                            |                                                                |  |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Electives (PEL)                                                                                                                                                                                        | (L)                                                                                                                                           | (T)                                                                                                                 | (P)                                                                            | Hours                                            |                                                                |  |
| PH2001                                            | Techniques of<br>Materials<br>Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PEL                                                                                                                                                                                                    | 3                                                                                                                                             | 1                                                                                                                   | 0                                                                              | 4                                                | 4                                                              |  |
| Pre-requisi                                       | ites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Course Assessmen<br>(EA))                                                                                                                                                                              | nt methods                                                                                                                                    | (Continuou                                                                                                          | s (CT) and en                                                                  | nd assessn                                       | nent                                                           |  |
| NIL                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CT+EA                                                                                                                                                                                                  |                                                                                                                                               |                                                                                                                     |                                                                                |                                                  |                                                                |  |
| Course<br>Outcomes                                | • CO2: Demon techniques (TE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | different tools, tec<br>strate knowledge<br>EM, SEM, SPM) for<br>different thermal<br>n of materials.                                                                                                  | of different                                                                                                                                  | ent optical rization of                                                                                             | l and elect different m                                                        | ron mici<br>aterials.                            | roscopic                                                       |  |
| Topics<br>Covered                                 | Mechanical meth<br>creep, fracture tou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | structural and defe<br>iques - X-ray, electron (T<br>and electron microp<br>scanning probe me<br>copies - UV, visibl<br>scopies - Auger an<br>coscopies - NMR,<br>s - DTA, TGA, DS<br>nods: measuremen | ect character<br>ctron and m<br>TEM & SE<br>probe analy<br>thods (STI<br>e, IR and F<br>d photoele<br>ESR, Optio<br>SC, TMA a<br>at of tensil | erization.<br>eeutron diff<br>EM) includ<br>sis<br>M, AFM, E<br>Raman spec<br>ctron spect<br>cal and Mc<br>and DMA. | Fraction<br>ing image<br>EFM, MFM<br>ctroscopies<br>croscopies<br>ossbauer spe | [ <b>3</b> ]<br>analysis,<br>etc.)<br>ectroscopi | [4]<br>fracture<br>[14]<br>[8]<br>[8]<br>[8]<br>ies [7]<br>[8] |  |
| Text<br>Books,<br>and/or<br>reference<br>material | <ul> <li>Text Books: <ol> <li>Materials Characterization-Yang Lang</li> <li>Dieter K. Schroder - Semiconductor material and device characterization</li> </ol> </li> <li>Reference Books: <ol> <li>Materials Characterization Techniques- Sam Zhang, Lin Li, Ashok Kumar</li> <li>Auger and X-ray photoelectron spectroscopy- D. Briggs and M. P. Seah</li> <li>An Introduction to Material Characterization- P. R. Khangaonkar</li> <li>Characterization of Materials, (2 Volume Set), E. N. Kauffmann (Editor)</li> <li>Physical Principles of Electron Microscopy- R. F. Egerton</li> </ol> </li> </ul> |                                                                                                                                                                                                        |                                                                                                                                               |                                                                                                                     |                                                                                |                                                  |                                                                |  |

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 2   | 1   | 2   | 2   | 3   |
| CO2        | 2   | 1   | 2   | 2   | 3   |
| CO3        | 2   | 1   | 2   | 2   | 2   |

**Correlation levels 1, 2 or 3 as defined below:** 

1: Slight (Low)

2: Moderate (Medium)

|                                              |                                                                                                                                                                                   | Department                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of Physics                |                   |             |         |          |  |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|-------------|---------|----------|--|--|
| Course                                       | Title of the course                                                                                                                                                               | Program Core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | mber of cor       | ntact hours |         | Credit   |  |  |
| Code                                         |                                                                                                                                                                                   | (PCR) /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lecture                   | Tutorial          | Practical   | Total   |          |  |  |
|                                              |                                                                                                                                                                                   | Electives (PEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (L)                       | (T)               | (P)         | Hours   |          |  |  |
| PH2051                                       | Computational                                                                                                                                                                     | PCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                         | 0                 | 4           | 4       | 2        |  |  |
|                                              | Lab                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                   |             |         |          |  |  |
| Pre-requisi                                  | tes                                                                                                                                                                               | (EA))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                   |             |         |          |  |  |
| NIL                                          |                                                                                                                                                                                   | CT+EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                   |             |         |          |  |  |
| Course<br>Outcomes                           | <ul> <li>computa</li> <li>CO2: E algorithm</li> <li>CO3: D Science</li> </ul>                                                                                                     | <ul> <li>CO1: Demonstrate can definely to recently appropriate algorithms to computationally solving various physics and engineering models.</li> <li>CO2: Express the concepts of computer programs and to implement variou algorithms for modeling simple physical systems.</li> <li>CO3: Develop a deeper understanding of fundamental concepts in Materia Science and Technology through computational simulations.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                   |             |         |          |  |  |
| Topics                                       | 1. Introduc                                                                                                                                                                       | ction to Scilab, Pyth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | non and M.                | ATLAB             |             |         |          |  |  |
| Covered                                      | an in<br>Scilab/P<br>3. To Plot a<br>n-type s<br>4. To Plot a<br>p-type s<br>5. To plot a<br>semicon<br>6. Plotting<br>system<br>7. Estimate<br>a dynam<br>8. Numeric<br>Scilab/P | <ol> <li>Introduction to Scilab, Python and MATLAB</li> <li>To Plot the Fermi- Dirac Probability distribution vs Energy Characteristics of<br/>an intrinsic semiconductor at room temperature using<br/>Scilab/Python/MATLAB.</li> <li>To Plot the Fermi- Dirac Probability distribution vs Energy Characteristics of<br/>n-type semiconductor at room temperature using Scilab/Python/MATLAB.</li> <li>To Plot the Fermi- Dirac Probability distribution vs Energy Characteristics of<br/>p-type semiconductor at room temperature using Scilab/Python/MATLAB.</li> <li>To plot the Fermi- Dirac Probability distribution vs Energy Characteristics of<br/>p-type semiconductor at room temperature using Scilab/Python/MATLAB.</li> <li>To plot the carrier concentration vs temperature characteristics for an intrinsic<br/>semiconductor</li> <li>Plotting of state variables (Phase space &amp; state space) of a given dynamical</li> </ol> |                           |                   |             |         |          |  |  |
| Text Book<br>and/or<br>reference<br>material | Javier E. Hasb<br>(2) Computation                                                                                                                                                 | A First Course in C<br>un, ISBN: 978-0-76<br>onal Materials Scien<br>(1) Computationa<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 537-7314-4<br>nce: An Int | l.<br>troduction, | June Gunn   | Lee, CR | C Press. |  |  |

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 2   | 2   | 1   | 2   | 2   |
| CO2        | 2   | 2   | 2   | 3   | 2   |
| CO3        | 3   | 2   | 2   | 3   | 2   |

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

|           |                                                                    |                                                           | Departmen                                                         | t of Physic | s            |                         |            |     |  |
|-----------|--------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|-------------|--------------|-------------------------|------------|-----|--|
| Course    | Titl                                                               | e of the course                                           | Program                                                           | Total Nu    | mber of co   | ntact hours             |            | Cr  |  |
| Code      |                                                                    |                                                           | Core                                                              | Lecture     | Tutorial     | Practical               | Total      | edi |  |
|           |                                                                    |                                                           | (PCR) /                                                           | (L)         | ( <b>T</b> ) | <b>(P)</b> <sup>#</sup> | Hours      | t   |  |
|           |                                                                    |                                                           | Electives                                                         |             |              |                         |            |     |  |
|           |                                                                    |                                                           | (PEL)                                                             |             |              |                         |            |     |  |
| PH2053    | Mir                                                                | or Project With                                           | PCR                                                               | 0           | 0            | 6                       | 6          | 3   |  |
|           | Sen                                                                | linar                                                     |                                                                   |             |              |                         |            |     |  |
| Pre-requ  | Pre-requisites Course Assessment methods: (Continuous evaluation ( |                                                           |                                                                   |             |              |                         | luation (C | E)  |  |
| _         | and end assessment (EA))                                           |                                                           |                                                                   |             |              |                         |            |     |  |
| NIL       |                                                                    |                                                           | CE+EA                                                             |             |              |                         |            |     |  |
| Course    |                                                                    | On completion of the course the learner shall be able to: |                                                                   |             |              |                         |            |     |  |
| Outcome   | S                                                                  | <b>CO1:</b> Effective                                     | ctively present the knowledge gain on a specific scientific topic |             |              |                         |            |     |  |
|           |                                                                    | through critical                                          |                                                                   |             |              |                         |            |     |  |
|           |                                                                    | 0                                                         | o oral skill for scientific communication and presentation        |             |              |                         |            |     |  |
|           |                                                                    | CO3: Develop                                              |                                                                   |             |              | Ĩ                       |            |     |  |
| Topics    |                                                                    | Topics will be prov                                       | vided                                                             |             |              |                         |            |     |  |
| Covered   |                                                                    | 1 I                                                       |                                                                   |             |              |                         |            |     |  |
| Text Boo  | ks,                                                                | To be notified sepa                                       | rately.                                                           |             |              |                         |            |     |  |
| and/or    |                                                                    | -                                                         | -                                                                 |             |              |                         |            |     |  |
| reference | •                                                                  |                                                           |                                                                   |             |              |                         |            |     |  |
| material  |                                                                    |                                                           |                                                                   |             |              |                         |            |     |  |

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 2   | 3   | 2   | 2   | 3   |
| CO2        | 2   | 3   | 2   | 2   | 3   |
| CO3        | 3   | 3   | 2   | 3   | 3   |

## **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low)

2: Moderate (Medium)

|           |                                                                           |                     | Departmen                                                         | t of Physic              | s           |                         |       |     |  |
|-----------|---------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------|--------------------------|-------------|-------------------------|-------|-----|--|
| Course    | Titl                                                                      | e of the course     | Program                                                           | Total Nu                 | mber of co  | ntact hours             |       | Cr  |  |
| Code      |                                                                           |                     | Core                                                              | Lecture                  | Tutorial    | Practical               | Total | edi |  |
|           |                                                                           |                     | (PCR) /                                                           | (L)                      | <b>(T</b> ) | <b>(P)</b> <sup>#</sup> | Hours | t   |  |
|           |                                                                           |                     | Electives                                                         |                          |             |                         |       |     |  |
|           |                                                                           |                     | (PEL)                                                             |                          |             |                         |       |     |  |
| PH3051    | Diss                                                                      | sertation-I         | PCR                                                               | 0                        | 0           | 24                      | 24    | 12  |  |
|           |                                                                           |                     |                                                                   |                          |             |                         |       |     |  |
| Pre-requi | isites                                                                    |                     |                                                                   |                          |             |                         | E)    |     |  |
|           | a                                                                         |                     |                                                                   | and end assessment (EA)) |             |                         |       |     |  |
| NIL       | NIL                                                                       |                     |                                                                   |                          |             |                         |       |     |  |
| Course    |                                                                           | On completion of t  | On completion of the course the learner shall be able to:         |                          |             |                         |       |     |  |
| Outcome   | • CO1: Identify, summarize and critically evaluate relevant literature an |                     |                                                                   |                          |             | re and                  |       |     |  |
|           |                                                                           | write a             |                                                                   |                          |             |                         |       |     |  |
|           |                                                                           | • CO2: U            | Undertake problem identification and formulation.                 |                          |             |                         |       |     |  |
|           |                                                                           |                     | Effectively write scientific findings in a systematic and logical |                          |             |                         |       |     |  |
|           |                                                                           | sequenc             | •                                                                 |                          | 0           | 5                       |       | 0   |  |
| Topics    |                                                                           | Topics will be prov |                                                                   |                          |             |                         |       |     |  |
| Covered   |                                                                           | I I                 |                                                                   |                          |             |                         |       |     |  |
| Text Boo  | ks,                                                                       | To be notified sepa | rately.                                                           |                          |             |                         |       |     |  |
| and/or    | ,                                                                         | 1                   | ÷                                                                 |                          |             |                         |       |     |  |
| reference | •                                                                         |                     |                                                                   |                          |             |                         |       |     |  |
| material  |                                                                           |                     |                                                                   |                          |             |                         |       |     |  |

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 2   | 2   | 2   | 2   | 2   |
| CO2        | 2   | 2   | 2   | 2   | 2   |
| CO3        | 3   | 3   | 3   | 3   | 3   |

## **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low)

2: Moderate (Medium)

|           |                      |                   | Departm                                          | ent of Phy                                       | vsics           |                                |                |      |  |  |  |
|-----------|----------------------|-------------------|--------------------------------------------------|--------------------------------------------------|-----------------|--------------------------------|----------------|------|--|--|--|
| Course    | Titl                 | e of the course   | Program                                          | Total N                                          | umber of co     | ntact hours                    |                | Cred |  |  |  |
| Code      |                      |                   | Core<br>(PCR) /<br>Electives                     | Lectur<br>e (L)                                  | Tutorial<br>(T) | Practic<br>al (P) <sup>#</sup> | Total<br>Hours | it   |  |  |  |
|           |                      |                   | (PEL)                                            |                                                  |                 |                                |                |      |  |  |  |
| PH3052    | Sem                  | inar – Non        | PCR                                              | 0                                                | 0               | 4                              | 4              | 2    |  |  |  |
|           | Pro                  | ject /            |                                                  |                                                  |                 |                                |                |      |  |  |  |
|           | <b>Evaluation</b> of |                   |                                                  |                                                  |                 |                                |                |      |  |  |  |
|           | Summer Training      |                   |                                                  |                                                  |                 |                                |                |      |  |  |  |
| Pre-requi | isites               |                   | Course As                                        | Course Assessment methods (As per PG regulation) |                 |                                |                |      |  |  |  |
| NIL       |                      |                   | AS PER P                                         | AS PER PG REGULATION                             |                 |                                |                |      |  |  |  |
| Course    |                      | On completion of  | of the course the learner shall be able to:      |                                                  |                 |                                |                |      |  |  |  |
| Outcome   | S                    | • CO1             | : Defend their knowledge to an expert committee. |                                                  |                 |                                |                |      |  |  |  |
|           |                      |                   | : Develop con                                    |                                                  |                 |                                |                |      |  |  |  |
|           |                      |                   | : Create good                                    |                                                  |                 | oft skills.                    |                |      |  |  |  |
| Topics    |                      | Topics will be p  |                                                  | 1                                                |                 |                                |                |      |  |  |  |
| Covered   |                      | -r r              |                                                  |                                                  |                 |                                |                |      |  |  |  |
| Text Boo  | ks,                  | To be notified se | eparately.                                       |                                                  |                 |                                |                |      |  |  |  |
| and/or    | ,                    |                   |                                                  |                                                  |                 |                                |                |      |  |  |  |
| reference |                      |                   |                                                  |                                                  |                 |                                |                |      |  |  |  |
| material  |                      |                   |                                                  |                                                  |                 |                                |                |      |  |  |  |

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 2   | 3   | 3   | 2   | 2   |
| CO2        | 2   | 3   | 3   | 3   | 3   |
| CO3        | 2   | 3   | 3   | 2   | 2   |

## **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low)

2: Moderate (Medium)

|                                             |                   |                                                                                                                                                                                                                                                                                                                         | Departr      | nent of Phy  | ysics         |                         |         |        |
|---------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|---------------|-------------------------|---------|--------|
| Course                                      | Titl              | e of the                                                                                                                                                                                                                                                                                                                | Program      | Total Nu     | mber of co    | ntact hours             |         | Credit |
| Code                                        | cou               | rse                                                                                                                                                                                                                                                                                                                     | Core         | Lecture      | Tutorial      | Practical               | Total   |        |
|                                             |                   |                                                                                                                                                                                                                                                                                                                         | (PCR) /      | (L)          | <b>(T)</b>    | <b>(P)</b> <sup>#</sup> | Hours   |        |
|                                             |                   |                                                                                                                                                                                                                                                                                                                         | Electives    |              |               |                         |         |        |
|                                             |                   |                                                                                                                                                                                                                                                                                                                         | (PEL)        |              |               |                         |         |        |
| PH4051                                      | Dissertation – II |                                                                                                                                                                                                                                                                                                                         | PCR          | 0            | 0             | 24                      | 24      | 12     |
|                                             | / In              | dustrial                                                                                                                                                                                                                                                                                                                |              |              |               |                         |         |        |
|                                             | Pro               | ject                                                                                                                                                                                                                                                                                                                    |              |              |               |                         |         |        |
| Pre-requi                                   | isites            |                                                                                                                                                                                                                                                                                                                         | Course As    | ssessment n  | nethods (As   | per PG regu             | lation) |        |
| NIL                                         |                   |                                                                                                                                                                                                                                                                                                                         | AS PER P     | G REGUL      | ATION         |                         |         |        |
| Course                                      |                   | On completion                                                                                                                                                                                                                                                                                                           | of the cours | e the learne | r shall be at | ole to:                 |         |        |
| Outcome                                     | S                 | <ul> <li>CO1: Undertake problem identification, formulation and solution thr scientific observation.</li> <li>CO2: Analyze and synthesize research findings and demonstrate capar of independent research.</li> <li>CO3: Effectively write and present scientific findings in a systematic logical sequence.</li> </ul> |              |              |               |                         |         |        |
| Topics<br>Covered                           |                   | Topics will be                                                                                                                                                                                                                                                                                                          | provided     |              |               |                         |         |        |
| Text Boo<br>and/or<br>reference<br>material | ,                 | To be notified                                                                                                                                                                                                                                                                                                          | separately.  |              |               |                         |         |        |

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 2   | 3   | 3   | 2   | 2   |
| CO2        | 3   | 3   | 3   | 3   | 2   |
| CO3        | 3   | 3   | 3   | 3   | 3   |

## **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low)

2: Moderate (Medium)

|           | Department of Physics |                              |                      |               |               |                         |         |         |  |  |
|-----------|-----------------------|------------------------------|----------------------|---------------|---------------|-------------------------|---------|---------|--|--|
| Course    | Title                 | e of the                     | Program              | Total Nu      | mber of con   | ntact hours             |         | Credit  |  |  |
| Code      | cour                  | rse                          | Core                 | Lecture       | Tutorial      | Practical               | Total   |         |  |  |
|           |                       |                              | (PCR) /              | (L)           | <b>(T</b> )   | <b>(P)</b> <sup>#</sup> | Hours   |         |  |  |
|           |                       |                              | Electives            |               |               |                         |         |         |  |  |
|           |                       |                              | (PEL)                |               |               |                         |         |         |  |  |
| PH4052    | Proj                  | ject                         | PCR                  | 0             | 0             | 4                       | 4       | 2       |  |  |
|           | Sem                   | inar                         |                      |               |               |                         |         |         |  |  |
| Pre-requi | isites                |                              | Course As            | ssessment n   | nethods (As   | per PG regul            | lation) |         |  |  |
| NIL       |                       | AS PER PG REGULATION         |                      |               |               |                         |         |         |  |  |
| Course    |                       | On completion                | n of the cour        | se the learn  | er shall be a | ble to:                 |         |         |  |  |
| Outcome   | s                     | • CC                         | <b>D1:</b> Defend t  | heir knowle   | dge to an ex  | xpert commit            | tee.    |         |  |  |
|           |                       |                              |                      |               | U             | of overall sci          |         | owledge |  |  |
|           |                       |                              | ned in the co        | -             |               |                         |         |         |  |  |
|           |                       | U                            | <b>)3:</b> Create cr |               | •             |                         |         |         |  |  |
| Topics    |                       | Topics will be               |                      | in the mining |               |                         |         |         |  |  |
| Covered   |                       |                              | Provided             |               |               |                         |         |         |  |  |
| Text Boo  | ks                    | To be notified separately    |                      |               |               |                         |         |         |  |  |
| and/or    | 11.09                 | s, 10 be notified separately |                      |               |               |                         |         |         |  |  |
| reference |                       |                              |                      |               |               |                         |         |         |  |  |
| material  |                       |                              |                      |               |               |                         |         |         |  |  |
| material  |                       |                              |                      |               |               |                         |         |         |  |  |

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 2   | 3   | 3   | 2   | 2   |
| CO2        | 2   | 3   | 3   | 3   | 3   |
| CO3        | 2   | 3   | 3   | 2   | 2   |

## **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low)

2: Moderate (Medium)

| <ul> <li>ction &amp; irre of als</li> <li>CO1: Decharacterizananomater</li> <li>CO2: List material st</li> <li>CO3: Dev</li> </ul>                                                                                                                                                                                                                                       | Program Core<br>(PCR) /<br>Electives (PEL)<br>PCR<br>Course Assessmen<br>(EA))<br>CT+EA<br>emonstrate know<br>zing materials (cr<br>rials).<br>t different technic<br>tructures by x-ray                                              | Lecture<br>(L)<br>3<br>nt methods of<br>wledge of<br>rystalline, a<br>ques for ex                                                                                                                                                                                                                                                                                                                                                                        | n X-ray<br>amorphous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Practical<br>(P)<br>0<br>s (CT) and en<br>diffraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | techniqu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>ction &amp; ure of als</li> <li>CO1: Decharacterizananomater</li> <li>CO2: List material st</li> <li>CO3: Dev</li> </ul>                                                                                                                                                                                                                                        | Electives (PEL)<br>PCR<br>Course Assessmer<br>(EA))<br>CT+EA<br>emonstrate know<br>zing materials (cr<br>rials).<br>t different technic                                                                                               | (L)<br>3<br>nt methods<br>wledge or<br>rystalline, a<br>ques for ex                                                                                                                                                                                                                                                                                                                                                                                      | (T)<br>0<br>(Continuous<br>n X-ray<br>amorphous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (P)<br>0<br>s (CT) and en<br>diffraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hours<br>3<br>nd assessm<br>techniqu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>tion &amp; ire of als</li> <li>CO1: Decharacterizananomater</li> <li>CO2: List material st</li> <li>CO3: Dev</li> </ul>                                                                                                                                                                                                                                         | PCR<br>Course Assessmer<br>(EA))<br>CT+EA<br>emonstrate know<br>zing materials (cr<br>rials).<br>t different technic                                                                                                                  | 3<br>nt methods<br>wledge or<br>rystalline, a<br>ques for ex                                                                                                                                                                                                                                                                                                                                                                                             | 0<br>(Continuous<br>n X-ray<br>amorphous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>s (CT) and en<br>diffraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3<br>nd assessm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>tion &amp; ure of als</li> <li>CO1: Decharacterizananomater</li> <li>CO2: List material st</li> <li>CO3: Dev</li> </ul>                                                                                                                                                                                                                                         | Course Assessmer<br>(EA))<br>CT+EA<br>emonstrate know<br>zing materials (cr<br>rials).<br>t different technic                                                                                                                         | nt methods of wledge or rystalline, a ques for ex                                                                                                                                                                                                                                                                                                                                                                                                        | (Continuous<br>n X-ray<br>amorphous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (CT) and en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nd assessm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>CO1: Decharacterizananomater</li> <li>CO2: Listanaterial st</li> <li>CO3: Devaluation</li> </ul>                                                                                                                                                                                                                                                                | (EA))<br>CT+EA<br>emonstrate know<br>zing materials (cr<br>rials).<br>t different technic                                                                                                                                             | wledge or<br>rystalline, a<br>ques for ex                                                                                                                                                                                                                                                                                                                                                                                                                | n X-ray<br>amorphous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | diffraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | techniqu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>CO1: Decharacterizananomater</li> <li>CO2: Listanaterial st</li> <li>CO3: Devaluation</li> </ul>                                                                                                                                                                                                                                                                | emonstrate know<br>zing materials (cr<br>rials).<br>t different technic                                                                                                                                                               | rystalline, a                                                                                                                                                                                                                                                                                                                                                                                                                                            | amorphous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ues for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>characteriz<br/>nanomater</li> <li>CO2: List<br/>material st</li> <li>CO3: Dev</li> </ul>                                                                                                                                                                                                                                                                       | zing materials (cr<br>rials).<br>t different technic                                                                                                                                                                                  | rystalline, a                                                                                                                                                                                                                                                                                                                                                                                                                                            | amorphous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ues for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                          | velop an understa<br>to study novel ma                                                                                                                                                                                                | anding of                                                                                                                                                                                                                                                                                                                                                                                                                                                | n.<br>the theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nformatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on about                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| es, mass abso<br>rations, Macr<br>metry, Space<br>ice. Short-rang<br>ter.<br>ematical the<br>tering by a cor<br>cture factor, I<br>ce vectors. Ev<br>ences from dif<br>intitative estim<br>ay Scattering<br>tering by amor<br>namical Theor<br>raction, X-ray<br>fraction from p<br>mation of defe<br>operature Eff<br>treatment. D<br>ortant alloys.<br>ycrystalline: C | g: Scattering b<br>rphous materials<br>ry: Scattering by<br>microscopy, Lan<br>oolycrystalline ma<br>ect parameters fro<br>fect: Effect of ten<br>Diffusion mechan                                                                    | tts. Filterin<br>htry, Point<br>nn-Maugui<br>e order, Si<br>by an ele-<br>ms in regu<br>e, relations<br>aue condit<br>tems. Phas<br>t paphases<br>y conglom<br>and liquid<br>large perfo<br>g Camera,<br>aterials. Fo<br>om Four lin<br>mperature<br>ism. Time                                                                                                                                                                                           | ng of chara<br>t Group of<br>in symbols<br>ngle crysta<br>ctron, ator<br>lar order, s<br>between<br>tions, Brag<br>se identifica<br>, some imp<br>nerate of<br>s. Radial D<br>ect crystals<br>direct obse<br>urier analy<br>ne shape ar<br>on diffract<br>e-temperatu                                                                                                                                                                                                                                                                                                                     | acteristic sp<br>of symmet<br>s of Space<br>l and polyce<br>n, atomic s<br>cattering by<br>reciprocal l<br>g's Law, I<br>ation by Ha<br>ortant appli<br>atoms arran<br>distribution<br>, Dynamical<br>ervation of d<br>sis of the dis<br>nalysis.<br>ion, Change<br>rechanical                                                                                                                                                                                                                                                                                                                                                                                                                                | bectra. Sy<br>ry, Micr<br>Group.<br>rystalline<br>scattering<br>a crystal<br>lattice and<br>Lattice and<br>Laws of s<br>nawalt's r<br>ications.<br>nged irre<br>analysis.<br>al theory of<br>lefect para<br>ffraction p<br>[6]<br>e of phase<br>mations of<br>processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mmetry<br>roscopic<br>Bravais<br>state of<br>[8]<br>factor,<br>crystal<br>d direct<br>ystemic<br>method.<br>[8]<br>gularly,<br>[6]<br>of X-ray<br>ameters.<br>profiles.<br>e due to<br>of some<br>[5]<br>, rolling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                          | intitative estin<br>ay Scattering<br>tering by amo<br>namical Theo<br>raction, X-ray<br>fraction from p<br>mation of defo<br>nperature Eff<br>t treatment. E<br>ortant alloys.<br>ycrystalline: (<br>ture, The imp-<br>asi crystallin | antitative estimation of differen<br>ay Scattering: Scattering b<br>tering by amorphous materials<br><b>namical Theory:</b> Scattering by<br>raction, X-ray microscopy, Lan<br>fraction from polycrystalline ma<br>mation of defect parameters from<br><b>nperature Effect:</b> Effect of ter<br>treatment. Diffusion mechan<br>ortant alloys.<br>ycrystalline: Change of perfect<br>ture, The importance of its stuc-<br>asi crystalline: Quasi crystal | antitative estimation of different paphases<br>ay Scattering: Scattering by conglour<br>tering by amorphous materials and liquid<br><b>namical Theory:</b> Scattering by large perfor<br>raction, X-ray microscopy, Lang Camera,<br>Fraction from polycrystalline materials. For<br>mation of defect parameters from Four line<br><b>nperature Effect:</b> Effect of temperature<br>to treatment. Diffusion mechanism. Time<br>ortant alloys.<br>ycrystalline: Change of perfect polycrystat<br>ture, The importance of its study, Poly fig-<br>asi crystalline: Quasi crystalline states | antitative estimation of different paphases, some imp<br>ay Scattering: Scattering by conglomerate of<br>tering by amorphous materials and liquids. Radial D<br>namical Theory: Scattering by large perfect crystals<br>raction, X-ray microscopy, Lang Camera, direct obse<br>fraction from polycrystalline materials. Fourier analy<br>mation of defect parameters from Four line shape ar<br><b>nperature Effect:</b> Effect of temperature on diffract<br>t treatment. Diffusion mechanism. Time-temperature<br>ortant alloys.<br>ycrystalline: Change of perfect polycrystallinity by r<br>ture, The importance of its study, Poly figure and its<br>asi crystalline: Quasi crystalline states of matter | antitative estimation of different paphases, some important appli-<br>ay Scattering: Scattering by conglomerate of atoms array<br>tering by amorphous materials and liquids. Radial Distribution<br><b>namical Theory:</b> Scattering by large perfect crystals, Dynamical<br>raction, X-ray microscopy, Lang Camera, direct observation of defect parameters from Four line shape analysis of the di-<br>mation of defect parameters from Four line shape analysis.<br><b>mperature Effect:</b> Effect of temperature on diffraction, Chang<br>treatment. Diffusion mechanism. Time-temperature transfor<br>ortant alloys.<br><b>ycrystalline:</b> Change of perfect polycrystallinity by mechanical<br>ture, The importance of its study, Poly figure and its determinant | antitative estimation of different paphases, some important applications.<br>ay Scattering: Scattering by conglomerate of atoms arranged irre-<br>tering by amorphous materials and liquids. Radial Distribution analysis.<br><b>namical Theory:</b> Scattering by large perfect crystals, Dynamical theory of<br>raction, X-ray microscopy, Lang Camera, direct observation of defect para-<br>fraction from polycrystalline materials. Fourier analysis of the diffraction p<br>mation of defect parameters from Four line shape analysis. [6]<br><b>nperature Effect:</b> Effect of temperature on diffraction, Change of phase<br>treatment. Diffusion mechanism. Time-temperature transformations of<br>ortant alloys.<br>ycrystalline: Change of perfect polycrystallinity by mechanical processes<br>ture, The importance of its study, Poly figure and its determination. [5]<br><b>asi crystalline:</b> Quasi crystalline states of matter and their analysis |

| Text Books,<br>and/or<br>reference<br>material | <ul> <li>Text Books:</li> <li>1. S. K. Chatterjee, X-ray diffraction its theory and applications</li> <li>2. B. D. Cullity, X-ray diffraction</li> </ul>                                                           |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                | <ul> <li>Reference Books:</li> <li>1. M. M. Woolfson, An introduction to X-ray crystallography</li> <li>2. L. V. Azaroff, Elements of X-ray crystallography</li> <li>3. B. E. Warren, X-ray diffraction</li> </ul> |

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 3   | 2   | 1   | 1   | 3   |
| CO2        | 3   | 1   | 2   | 2   | 3   |
| CO3        | 3   | 1   | 3   | 1   | 3   |

#### **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

|                       |                                                                                                                  | Department                                                                                                  | of Physics                               |                 |                              |                       |          |  |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------|------------------------------|-----------------------|----------|--|--|--|--|
| Course                | Title of the course                                                                                              |                                                                                                             |                                          |                 |                              |                       |          |  |  |  |  |
| Code                  |                                                                                                                  | (PCR) /<br>Electives (PEL)                                                                                  | Lecture (L)                              | Tutorial<br>(T) | Practical<br>(P)             | Total<br>Hours        |          |  |  |  |  |
| PH9031                | Optoelectronic<br>Materials and<br>Devices                                                                       | PCR                                                                                                         | 3                                        | 0               | 0                            | 3                     | 3        |  |  |  |  |
| Pre-requisi           |                                                                                                                  | Course Assessment<br>(EA))                                                                                  | nt methods                               | (Continuous     | s (CT) and er                | nd assessm            | ent      |  |  |  |  |
| NIL                   |                                                                                                                  | CT+EA                                                                                                       |                                          |                 |                              |                       |          |  |  |  |  |
| Course<br>Outcomes    | • CO2: Illu<br>radiation a                                                                                       | monstrate the work<br>cation of light in op-<br>strate the mechan<br>and techniques of govelop optic modula | otical fiber.<br>isms of abgeneration of | sorption, a     | mplificatio<br>lsed laser ra | n, broade<br>diation. |          |  |  |  |  |
| Topics                | Basic principles                                                                                                 | of Laser: Broaden                                                                                           | ing of ener                              | gy levels, A    | Absorption a                 | and ampli             | fication |  |  |  |  |
| Covered               | of light in a med                                                                                                | of light in a medium, population inversion and threshold condition for a laser, gair                        |                                          |                 |                              |                       |          |  |  |  |  |
|                       | coefficient; Laser Rate Equations, 2-level, 3-level and 4-level Lasers, expression of                            |                                                                                                             |                                          |                 |                              |                       |          |  |  |  |  |
|                       | Gain/Loss coefficient, Threshold population, Saturation Intensity etc. [9]                                       |                                                                                                             |                                          |                 |                              |                       |          |  |  |  |  |
|                       | Line broadening Mechanisms: Spontaneous transition, Collision Broadening and                                     |                                                                                                             |                                          |                 |                              |                       |          |  |  |  |  |
|                       | Doppler Broadening. [3]                                                                                          |                                                                                                             |                                          |                 |                              |                       |          |  |  |  |  |
|                       | <b>Resonators:</b> Stability of resonators, g parameters, various types of resonators, Modes                     |                                                                                                             |                                          |                 |                              |                       |          |  |  |  |  |
|                       | of Laser Radiation                                                                                               | on, Longitudinal a                                                                                          | nd transver                              | se modes,       | Mode sele                    | ction tech            | niques,  |  |  |  |  |
|                       |                                                                                                                  | roperties and Gauss                                                                                         |                                          |                 |                              | 7]                    | •        |  |  |  |  |
|                       | -                                                                                                                | of lasers: Princip                                                                                          |                                          | e               | Ruby Las                     | er, He-N              | e laser, |  |  |  |  |
|                       |                                                                                                                  | i:Sa laser, CO <sub>2</sub> lase                                                                            |                                          |                 |                              |                       |          |  |  |  |  |
|                       |                                                                                                                  | pulsed laser gener                                                                                          |                                          | witching &      | & mode-loc                   | king, met             |          |  |  |  |  |
|                       |                                                                                                                  | hanisms and their                                                                                           |                                          | _               |                              | -                     |          |  |  |  |  |
|                       | Electro-optic effect and acousto-optic effect: Electro and acousto-optic effects                                 |                                                                                                             |                                          |                 |                              |                       |          |  |  |  |  |
|                       | electro-optic retardation, amplitude modulation, phase-modulation of light. [6]                                  |                                                                                                             |                                          |                 |                              |                       |          |  |  |  |  |
|                       | -                                                                                                                | <b>Optical fibre waveguide:</b> Optical fibre waveguide, step index and graded index                        |                                          |                 |                              |                       |          |  |  |  |  |
|                       | -                                                                                                                | and single mode fil                                                                                         | -                                        | -               | -                            |                       |          |  |  |  |  |
| Text                  | Text Books:                                                                                                      | 0                                                                                                           | ,                                        |                 |                              |                       |          |  |  |  |  |
| Books,                |                                                                                                                  | Principles of Lase                                                                                          | rs                                       |                 |                              |                       |          |  |  |  |  |
| and/or                |                                                                                                                  | k and K. Thyagar                                                                                            |                                          | cal Electro     | nics, Camb                   | ridge Un              | iversity |  |  |  |  |
| reference<br>material | Press (200                                                                                                       | )3)                                                                                                         | • •                                      |                 |                              | -                     | -        |  |  |  |  |
| material              | <b>Reference Books</b>                                                                                           | :                                                                                                           |                                          |                 |                              |                       |          |  |  |  |  |
|                       | 1. W. Koech                                                                                                      | ner, Solid State La                                                                                         | ser Engine                               | ering           |                              |                       |          |  |  |  |  |
|                       | 2. A. Yariv,                                                                                                     | Quantum Electron                                                                                            | ics                                      |                 |                              |                       |          |  |  |  |  |
|                       | <ol> <li>J. Wilson and J. F. B. Hawkes, Optoelectronics: An introduction, Prentice Hall</li> </ol>               |                                                                                                             |                                          |                 |                              |                       |          |  |  |  |  |
|                       | 3. J. Wilson and J. F. B. Hawkes, Optoelectronics: An introduction, Prentice Hall of India Pvt. Ltd., 2nd ed2004 |                                                                                                             |                                          |                 |                              |                       |          |  |  |  |  |
|                       |                                                                                                                  |                                                                                                             | -                                        | cuonics. A      | in introducti                | ion, i tent           | ice Hall |  |  |  |  |

Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 1   | 1   | 1   |     |     |
| CO2        | 1   |     | 2   | 2   | 1   |
| CO3        | 3   | 1   | 3   |     | 2   |

#### **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

|                     |                       | Department of                                                                                                                    |                        |             |                                  |             |          |  |  |  |
|---------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|----------------------------------|-------------|----------|--|--|--|
| Course              | Title of the course   | Program Core                                                                                                                     | Total Nu               | Credit      |                                  |             |          |  |  |  |
| Code                |                       | (PCR) /                                                                                                                          | Lecture                | Tutorial    | Practical                        | Total       |          |  |  |  |
|                     |                       | Electives (PEL)                                                                                                                  | (L)                    | (T)         | (P)                              | Hours       |          |  |  |  |
| PH9032              | Nanomaterials –       | PCR                                                                                                                              | 3                      | 0           | 0                                | 3           | 3        |  |  |  |
|                     | Science &             |                                                                                                                                  |                        |             |                                  |             |          |  |  |  |
| Pre-requisi         | Technology            | Course Assessmen                                                                                                                 | nt methods             | Continuous  | $(\mathbf{CT})$ and $\mathbf{e}$ | nd assessm  | ont      |  |  |  |
| i ic-icquisi        | 1405                  | Course Assessment methods (Continuous (CT) and end asses<br>(EA))                                                                |                        |             |                                  |             |          |  |  |  |
| NIL                 |                       | CT+EA                                                                                                                            |                        |             |                                  |             |          |  |  |  |
| Course              | On completion         | of the course the le                                                                                                             | arner shall            | be able to: |                                  |             |          |  |  |  |
| Outcomes            | • CO1: In             | troduce the concep                                                                                                               | ot of nanom            | aterials an | d associated                     | d changes   | in their |  |  |  |
|                     |                       | es from bulk                                                                                                                     |                        |             |                                  | U           |          |  |  |  |
|                     | • <b>CO2:</b> Fa      | miliarize with vari                                                                                                              | ous top dov            | wn and bot  | om up meth                       | nods for s  | ynthesis |  |  |  |
|                     | of nanor              | naterials.                                                                                                                       |                        |             |                                  |             |          |  |  |  |
|                     | • <b>CO3:</b> E       | xplain the propert                                                                                                               | ies and ap             | plications  | of some re                       | cently de   | veloped  |  |  |  |
|                     | nanostru              |                                                                                                                                  |                        |             |                                  |             |          |  |  |  |
| Topics              |                       | Nanomaterials:                                                                                                                   |                        |             |                                  |             |          |  |  |  |
| Covered             |                       | and 3D nanostructure by solving the Schrodinger equation. Calculation of density of                                              |                        |             |                                  |             |          |  |  |  |
|                     | state function of     | state function of 1D, 2D and 3D nanostructures, properties nanomaterials. [4]                                                    |                        |             |                                  |             |          |  |  |  |
|                     | Bottom up met         | Bottom up methods for fabrication of nanomaterials:                                                                              |                        |             |                                  |             |          |  |  |  |
|                     |                       | deposition techni                                                                                                                | -                      | -           | -                                | -           |          |  |  |  |
|                     | -                     | er ablation techniqu                                                                                                             | -                      | -           | -                                | osition tec | chnique, |  |  |  |
|                     | Oblique Angle a       | and Glancing Angl                                                                                                                | e Depositio            | on (GLAD)   | ),                               |             |          |  |  |  |
|                     | Chemical Vapor        | r Deposition, Mole                                                                                                               | cular Bean             | n Epitaxy   |                                  |             | [10]     |  |  |  |
|                     | Chemical meth         |                                                                                                                                  |                        |             |                                  |             |          |  |  |  |
|                     | Sol-gel techniqu      | ie                                                                                                                               |                        |             |                                  |             | [2]      |  |  |  |
|                     | Langmuir–Blod         | gett method.                                                                                                                     |                        |             |                                  |             | [2]      |  |  |  |
|                     | Top down met          | nods:                                                                                                                            |                        |             |                                  |             |          |  |  |  |
|                     | Ball milling, C       | hemical and dry                                                                                                                  | etching te             | chniques,   | Optical an                       | d electro   | n beam   |  |  |  |
|                     | lithography, foc      | used ion beam met                                                                                                                | thod.                  |             |                                  |             | [8]      |  |  |  |
|                     | Inorganic and         | <b>Inorganic and semiconductor nanostructures:</b> From fabrication to application.                                              |                        |             |                                  |             |          |  |  |  |
|                     | Other Nanoted         | hnologies: Bio-                                                                                                                  | nanotechno             | ology, M    | licromachin                      | ning too    | ols for  |  |  |  |
|                     | nanosystems, M        | EMS                                                                                                                              |                        |             |                                  |             | [8]      |  |  |  |
|                     | Special Nanos         | tructures: Fullere                                                                                                               | ene, Carbo             | n nanotub   | e, graphen                       | e and of    | ther 2D  |  |  |  |
|                     |                       | their properties and                                                                                                             | d application          | ons         |                                  |             | [8]      |  |  |  |
| Text Book           |                       |                                                                                                                                  |                        |             |                                  |             |          |  |  |  |
| and/or<br>reference |                       | 1. Introduction to Nanoscience and Nanotechnology, K K Chattopadhyay, AN                                                         |                        |             |                                  |             |          |  |  |  |
| material            | 0                     | <ul><li>Banrejee, PHI Learning, 2009.</li><li>2. Robert W. Kelsall , Ian W. Tlamley, Mark Geoghegan; Nanoscale Science</li></ul> |                        |             |                                  |             |          |  |  |  |
|                     |                       | hnology                                                                                                                          | . Hanney,              |             | gilegaii, iv                     | anoscaic    | Science  |  |  |  |
|                     |                       |                                                                                                                                  |                        |             |                                  |             |          |  |  |  |
|                     | <b>Reference Book</b> |                                                                                                                                  | ••• <b>\ \ - \ ' \</b> | 1. El       |                                  |             |          |  |  |  |
|                     |                       | ong, Nanocrystalli                                                                                                               |                        |             |                                  | : NT        |          |  |  |  |
|                     | 2. Claire             | 1                                                                                                                                | •                      | , Marcel    | Lahman                           | i, Nano     | oscience |  |  |  |
|                     | Nanoteo               | chnology and Nano                                                                                                                | ophysics.              |             |                                  |             |          |  |  |  |

- 3. Hoshino & Mishima, Nanomaterials from Research to Applications, Elsevier
- 4. Graphene, Carbon Nanotubes, and Nanostructures: Techniques and Applications, James E. Morris, Krzysztof Iniewski , CRC Press, 2017.

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 3   | 2   | 3   | 3   | 2   |
| CO2        | 2   | 3   | 3   | 2   | 3   |
| CO3        | 2   | 3   | 3   | 2   | 2   |

#### **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low)

2: Moderate (Medium)

|                    |                                                                                                                      | Department                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                      |                        |                    |                    |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|------------------------|--------------------|--------------------|--|--|
| Course             |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | T                    | Credi                  |                    |                    |  |  |
| Code               |                                                                                                                      | (PCR) /<br>Electives (PEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lecture (L)             | Tutorial<br>(T)      | Practical<br>(P)       | Total<br>Hours     |                    |  |  |
| PH9033             | Mechanical<br>Behavior of<br>Materials                                                                               | PCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                       | 0                    | 0                      | 3                  | 3                  |  |  |
| Pre-requisi        | ites                                                                                                                 | Course Assessmen<br>(EA))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nt methods (            | (Continuous          | s (CT) and er          | nd assessm         | nent               |  |  |
| NIL                |                                                                                                                      | CT+EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                      |                        |                    |                    |  |  |
| Course<br>Outcomes | <ul> <li>CO1: U physics</li> <li>CO2: C mechanic</li> </ul>                                                          | <ul> <li>CO2: Classify different types of defects and infer their influence on mechanical properties of the materials.</li> <li>CO3: Formulate different failure of materials and suggest ways to streng</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                      |                        |                    |                    |  |  |
| Topics<br>Covered  | engineering str<br>encountered in<br>region, yield po<br>Behaviour, theo<br>Elasticity Theo                          | Introduction to deformation behaviour: Concept of stresses and strains<br>engineering stresses and strains, Different types of loading and temperature<br>encountered in applications, Tensile Test - stress - strain response for metal, elastic<br>region, yield point, plastic deformation, necking and fracture, Bonding and Material<br>Behaviour, theoretical estimates of strength of materials.[7]Elasticity Theory: The State of Stress and strain, stress and strain tensor, tensor<br>transformation, principal stress and strain, elastic stress-strain relation, anisotropy<br>elastic behaviour of metals, ceramics and polymers.[4]                                         |                         |                      |                        |                    |                    |  |  |
|                    | <b>Yielding and H</b><br>stress, yield cr<br>Limitation of e<br>effective stress                                     | <b>Plastic Deformation:</b> Hydrostatic and Deviatoric stress, Octahedre criteria and yield surface, texture and distortion of yield surface engineering strain at large deformation, true stress and true strates, effective strain, flow rules, strain hardening, Ramberg-Osgo s - strain relation in plasticity, plastic deformation of metals [8]                                                                                                                                                                                                                                                                                                                                      |                         |                      |                        |                    |                    |  |  |
|                    | defects, thermo<br>dislocation gene<br>field around dis<br>partial dislocati<br>behavior of sim<br>poly-crystals - H | <b>Microscopic view of plastic deformation:</b> crystals and defects, classification of defects, thermodynamics of defects, geometry of dislocations, slip and glide, dislocation generation - Frank Read and grain boundary sources, stress and strain field around dislocations, force on dislocation - self-stress, dislocation interactions, partial dislocations, twinning, dislocation movement and strain rate, deformation behavior of single crystal, critical resolved shear stress (CRSS), deformation of poly-crystals - Hall-Petch and other hardening mechanisms, grain size effect - source limited plasticity, Hall-Petch breakdown, dislocations in ceramics and glasses. |                         |                      |                        |                    |                    |  |  |
|                    | Different Heat<br>creation of                                                                                        | roduction, Theory<br>Treatment Techni<br>twins by<br>Cold-Worked Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iques, Fun<br>annealing | damentals<br>, dislo | and Proper<br>cation a | rties; An<br>nd an | nealing<br>nealing |  |  |

|                       | recrystallization and grain growth, texturing and its modification by annealing, strength and ductility in the cold-work-anneal cycle, hot-working processes and rapid cooling rate effects on grain size, commercial importance of annealing. [5]<br><b>Fracture:</b> fracture in ceramics, polymers and metals, different types of fractures in metals, fracture mechanics - Linear fracture mechanics -KIC, Elasto-plastic fracture mechanics - JIC, Measurement and ASTM standards, Design based on fracture mechanics, effect of environment, effect of microstructure on KIC and JIC, application of fracture mechanics in the design of metals, ceramics and polymers. |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | [6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | Fatigue: Deformation under cyclic load - Fatigue: S-N curves, Low and high cyclefatigue, Life cycle prediction, Fatigue in metals, ceramics and polymers.[4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       | <b>Creep:</b> Deformation at High temperature: Time dependent deformation - creep, different stages of creep, creep and stress rupture, creep mechanisms and creep mechanism maps, creep under multi-axial loading, microstructural aspects of creep and design of creep resistant alloys, high temperature deformation of ceramics and polymers. [6]                                                                                                                                                                                                                                                                                                                         |
| Text Books,<br>and/or | Text Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| reference<br>material | <ol> <li>Mechanical Metallurgy – George E. Dieter</li> <li>Principles of Heat Treatment of Steels- R.C. Sharma</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       | Reference Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | 1. Materials Science and Engineering – William D. Callister, Jr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | 2. Mechanical Behavior of materials – Thomas H. Courtney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | <ol> <li>Mechanics of composite materials – Autar K. Kaw</li> <li>Engineering Physical Metallurgy and Heat Treatment - Y. Lakhtein (Mir Publisher)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 2   | 1   | 2   | 1   | 2   |
| CO2        | 2   | 1   | 2   | 1   | 1   |
| CO3        | 2   | 1   | 2   | 1   | 2   |

#### **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low)

2: Moderate (Medium)

|                      |                      | Department of         | of Physics   |                                      |               |            |           |
|----------------------|----------------------|-----------------------|--------------|--------------------------------------|---------------|------------|-----------|
| Course               | Title of the course  | Program Core          |              | mber of cor                          | tact hours    |            | Credit    |
| Code                 |                      | (PCR) /               | Lecture      | Tutorial                             | Practical     | Total      |           |
|                      |                      | Electives (PEL)       | (L)          | (T)                                  | (P)           | Hours      |           |
| PH9034               | Semiconductor        | PEL                   | 3            | 0                                    | 0             | 3          | 3         |
|                      | Materials and        |                       |              |                                      |               |            |           |
|                      | Device               |                       |              |                                      |               |            |           |
|                      | Technology           |                       |              |                                      |               |            |           |
| Pre-requisi          | tes                  | Course Assessmer      | nt methods ( | Continuous                           | s (CT) and er | nd assessm | nent      |
|                      |                      | (EA))                 |              |                                      |               |            |           |
| NIL                  |                      | CT+EA                 |              |                                      |               |            |           |
| Course               | On completion        | of the course the lea | arner shall  | be able to                           | :             |            |           |
| Outcomes             |                      | Recall different pr   | eparation    | techniques                           | s of single   | crystal    | and IC    |
|                      | fabricati            | ion.                  |              |                                      |               |            |           |
|                      | • <b>CO2:</b> 0      | utline different adv  | anced prep   | paration teo                         | chniques su   | ch as etch | ing and   |
|                      | lithogra             | phy for high speed    | semicondu    | ctor device                          | es.           |            |           |
|                      | • CO3: A             | Apply the fundame     | ental know   | ledge of                             | semiconduc    | ctor mate  | rials to  |
|                      | model d              | opant profile create  | ed by ion ir | nplantation                          | n technique.  |            |           |
| Topics               | Wafer fabricat       | tion: Preparation of  | f electronic | e grade Si                           | from metal    | lurgical g | rade Si,  |
| Covered              | Czochralski (CZ      | Z) method, Float zo   | ne method    | , Silicon w                          | afer fabrica  | tion.      | [8]       |
|                      | <b>Oxidation</b> tec | hniques: Oxidatio     | n techniqu   | ues, Grow                            | th kinetics   | , Oxide    | growth    |
|                      | measurements t       | echniques, Defects    | in silicon,  | silicon dio                          | xide, Interfa | ace defect | ts, Point |
|                      | defect-based me      | odel for oxidation, l | Polysilicon  | , Si <sub>3</sub> N <sub>4</sub> and | d Silicide fo | ormation.  |           |
|                      |                      |                       |              |                                      |               |            | [8]       |
|                      | Lithography: (       | Optical lithography,  | , Deep UV    | lithograph                           | ny, Extreme   | UV litho   | graphy,   |
|                      | Electron beam        | lithography, plasma   | and x-ray    | lithograph                           | y technique   | es.        | [8]       |
|                      | Wet etching: V       | Vet etching of Si and | d GaAs. Is   | otropic and                          | l anisotropio | c etching. | Crystal   |
|                      | orientation depe     | -                     |              |                                      |               | [5]        |           |
|                      | Dry etching:         | Classification of p   | lasma etch   | ning techn                           | iques, react  | tive ion   | etching,  |
|                      | -                    | e plasma reactive io  | -            | -                                    |               |            | [5]       |
|                      |                      | l Ion implantatio     |              | -                                    |               |            |           |
|                      | -                    | chniques, Modellin    | -            | surement                             | of dopant pi  | ofiles, O  |           |
| T ( D 1              |                      | v for IC technology.  | •            |                                      |               |            | [8]       |
| Text Books<br>and/or | ·                    | VI SI Taahnalaar      | 7            |                                      |               |            |           |
| reference            |                      | e, VLSI Technology    |              | toto Electro                         | mia Darriss   | 0          |           |
| material             | 2. B G Stro          | eetman & S Banerje    | ee, Solia Si | late Electro                         | DIIC Device   | S          |           |
|                      | 1                    |                       |              |                                      |               |            |           |
|                      | Reference Bool       | KS:                   |              |                                      |               |            |           |

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 3   | 3   | 2   | 3   | 1   |
| CO2        | 2   | 3   | 2   | 3   | 2   |
| CO3        | 2   | 3   | 2   | 3   | 2   |

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

#### **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low)

2: Moderate (Medium)

|                     |                     | Department of             | of Physics   |              |                |                                       |                |
|---------------------|---------------------|---------------------------|--------------|--------------|----------------|---------------------------------------|----------------|
| Course              | Title of the course | Program Core              | Total Nu     | mber of cor  | tact hours     |                                       | Credit         |
| Code                |                     | (PCR) /                   | Lecture      | Tutorial     | Practical      | Total                                 |                |
|                     |                     | Electives (PEL)           | (L)          | (T)          | (P)            | Hours                                 |                |
| PH9035              | Materials for       | PEL                       | 3            | 0            | 0              | 3                                     | 3              |
|                     | Energy              |                           |              |              |                |                                       |                |
| Due ne evie         | Application         |                           |              | Continuou    |                |                                       |                |
| Pre-requisi         | lles                | Course Assessmen<br>(EA)) | nt methods   | (Continuous  | s(CT) and $ef$ | id assessii                           | ient           |
| NIL                 |                     | CT+EA                     |              |              |                |                                       |                |
| Course              | On completion       | of the course the le      | arner shall  | be able to   | •              |                                       |                |
| Outcomes            | -                   | Demonstrate differ        |              |              |                | ized for                              | energy         |
|                     | applicat            |                           | ent mater    | iuis tilut v | cuir de util   | 1200 101                              | energy         |
|                     |                     | xplain the operation      | n of differe | ent energy   | devices        |                                       |                |
|                     |                     | nable the students a      |              | 0.           |                | ing techn                             | ologies        |
| Topics              |                     | Overview of the e         |              |              |                | -                                     | -              |
| Covered             |                     | onomy, shale oil, ta      |              |              |                | , , , , , , , , , , , , , , , , , , , | [2]            |
|                     | -                   | c materials: Des          |              |              |                | ls thern                              |                |
|                     |                     | port properties; mo       | -            |              |                |                                       |                |
|                     | devices             | bort properties, inc      | del system   | iis, synthe  |                | naterials                             | and 112<br>[8] |
|                     |                     | tovoltaic materials       | Introduc     | tion and d   | osign of mo    | torials in                            |                |
|                     |                     | aterials Inorganic se     |              |              | -              |                                       | [6]            |
|                     | -                   | -                         |              |              |                |                                       |                |
|                     |                     | voltaic materials:        |              |              | polymer s      | ofar certs                            |                |
|                     |                     | and other organic e       |              |              | 4              |                                       | [6]            |
|                     |                     | ydrogen energy:           |              | production   | , transporta   | tion, stora                           | -              |
|                     |                     | or solar water splitt     | -            | •.           |                |                                       | [5]            |
|                     |                     | nergy storage: Ba         | · •          | 1            |                |                                       | [5]            |
|                     |                     | oduction, different       | • 1          |              |                |                                       | [5]            |
| T                   |                     | echnologies: nucle        | ar, geothei  | rmal, hydro  | o, wind        |                                       | [5]            |
| Text Book<br>and/or |                     | ls for Sustainable        | - Energy     | Applicati    | one Conv       | resion                                | Storage        |
| reference           |                     | ssion, and Consul         |              |              |                |                                       |                |
| material            |                     | ), CRC Press, 2016        | -            |              | 52 100jus u    | 14 21410                              | 1 1010ya       |
|                     | Reference Book      |                           | -            |              |                |                                       |                |
|                     | 1. Fundam           | entals of Material        |              | <b>U</b> .   |                |                                       | nability,      |
|                     | Ginley,             | David S. ; Cahen, I       | D. Cambrid   | lge Univer   | sity Press, 2  | 2011.                                 |                |

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 2   | 1   | 2   | 2   | 3   |
| CO2        | 2   | 1   | 1   | 2   | 3   |
| CO3        | 2   | 1   | 1   | 2   | 3   |

#### **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low)

2: Moderate (Medium)

|                       |                              | Department of                                                                                                                                                               |              |              |               |            | -        |  |  |  |
|-----------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|---------------|------------|----------|--|--|--|
| Course                | Title of the course          | Program Core                                                                                                                                                                | -            | mber of cor  |               |            | Credit   |  |  |  |
| Code                  |                              | (PCR) /                                                                                                                                                                     | Lecture      | Tutorial     | Practical     | Total      |          |  |  |  |
|                       |                              | Electives (PEL)                                                                                                                                                             | (L)          | (T)          | (P)           | Hours      |          |  |  |  |
| PH9036                | Nuclear Reactor<br>Materials | PEL                                                                                                                                                                         | 3            | 0            | 0             | 3          | 3        |  |  |  |
| Pre-requisi           | ites                         | Course Assessmen<br>(EA))                                                                                                                                                   | nt methods   | (Continuous  | s (CT) and en | nd assessn | nent     |  |  |  |
| NIL                   |                              | CT+EA                                                                                                                                                                       |              |              |               |            |          |  |  |  |
| Course                | On completion                | of the course the le                                                                                                                                                        | arner shall  | be able to   | :             |            |          |  |  |  |
| Outcomes              | • CO1: III                   | ustrate nuclear ene                                                                                                                                                         | ergy release | ed by nucle  | ear fission a | nd fusion  | l.       |  |  |  |
|                       |                              | emonstrate the kno                                                                                                                                                          | 0.           | •            |               |            |          |  |  |  |
|                       | compone                      |                                                                                                                                                                             | 8            |              | ,             |            |          |  |  |  |
|                       | -                            | xplain the safety pr                                                                                                                                                        | otocol of r  | uclear read  | ctor.         |            |          |  |  |  |
| Topics                | Nuclear Reac                 | tion Fundament                                                                                                                                                              | als: Nucl    | ear fissio   | n, separati   | on ener    | gy and   |  |  |  |
| Covered               | fissionability, f            | ission cross sectio                                                                                                                                                         | n for slow   | and fast     | neutrons, e   | energy re  | lease ir |  |  |  |
|                       | fission, fission f           | ragments and energy                                                                                                                                                         | gy distribu  | tion, nucle  | ar fusion an  | d thermo   | -nuclea  |  |  |  |
|                       | reaction.                    | C .                                                                                                                                                                         |              |              |               | [5]        |          |  |  |  |
|                       | Neutron Physi                | cs and Diffusion                                                                                                                                                            | Theory: F    | Properties ( | of neutron.   |            | -        |  |  |  |
|                       | Ũ                            |                                                                                                                                                                             | v            | -            | ,             |            |          |  |  |  |
|                       | e                            | slowing down of neutrons, diffusion of thermal neutrons, diffusion equation, slowing down and diffusion, Critical size of reactor slabs, cubical, spherical and cylindrical |              |              |               |            |          |  |  |  |
|                       |                              | reactors. [5]                                                                                                                                                               |              |              |               |            |          |  |  |  |
|                       |                              | n and Fuel Cycle                                                                                                                                                            | • Criticalit | v factor r   | noderating    |            | ur-facto |  |  |  |
|                       |                              | r kinetics, reactor                                                                                                                                                         |              | •            | -             |            |          |  |  |  |
|                       | back end of fuel             |                                                                                                                                                                             | poisons, n   | ucical fuci  | cycle, ului   |            | [4]      |  |  |  |
|                       |                              | or fundamentals                                                                                                                                                             | • Classific  | ention of a  | reactors by   | sic com    |          |  |  |  |
|                       |                              |                                                                                                                                                                             |              |              |               |            | -        |  |  |  |
|                       |                              | R, PWR and FBR                                                                                                                                                              |              |              |               |            |          |  |  |  |
|                       |                              | or Components: N                                                                                                                                                            |              |              |               |            |          |  |  |  |
|                       |                              | operties), moderate                                                                                                                                                         | ors & coo    | plants, con  |               |            | tructio  |  |  |  |
|                       | materials (cladd             | e,                                                                                                                                                                          |              |              | [6            | -          | _        |  |  |  |
|                       |                              | l Design: Material                                                                                                                                                          |              | -            |               | -          |          |  |  |  |
|                       |                              | diation with matter                                                                                                                                                         |              | ding, radia  | tion & corr   | osion dan  | -        |  |  |  |
|                       | pressure vessel,             | Fracture in reactor                                                                                                                                                         | ;, etc.      |              |               |            | [8]      |  |  |  |
|                       | Thermal Desi                 | ign Principles:                                                                                                                                                             | Thermal      | Hydraulic    | s Conside     | rations,   | Energ    |  |  |  |
|                       | Production and               | Transfer Parame                                                                                                                                                             | eters, Ther  | mal Desig    | gn Limits,    | Thermal    | Design   |  |  |  |
|                       | Margin, Figures              | of Merit for Core 7                                                                                                                                                         | Thermal Pe   | rformance    | , Energy Re   | lease Para | ameters  |  |  |  |
|                       | Power Profiles               | in Reactor Cores, H                                                                                                                                                         | Heat Gener   | ation with   | in the Fuel,  | Heat Ger   | neratio  |  |  |  |
|                       | in the Structure,            | Shutdown Heat G                                                                                                                                                             | eneration,   | thermal lin  | mits on reac  | tor perfo  | rmance   |  |  |  |
|                       |                              | in the Structure, Shutdown Heat Generation, thermal limits on reactor performance, thermal converters, fast breeders. [6]                                                   |              |              |               |            |          |  |  |  |
|                       |                              | : Safety design prin                                                                                                                                                        | nciples, Sa  | fety in ope  | -             | -          | nd voi   |  |  |  |
|                       | -                            | ergency cooling, h                                                                                                                                                          | -            |              | -             | -          |          |  |  |  |
|                       | ,                            |                                                                                                                                                                             |              |              | , ,           |            | [4       |  |  |  |
| Text Book             |                              |                                                                                                                                                                             |              |              |               |            |          |  |  |  |
| and/or                |                              | Nuclear Physics- S. N                                                                                                                                                       |              | Saconstra    |               |            |          |  |  |  |
| reference<br>material | 2. Nuclear R                 | eactor Engineering – C                                                                                                                                                      |              | JESUIISKE    |               |            |          |  |  |  |
| material              |                              |                                                                                                                                                                             |              |              |               |            |          |  |  |  |

#### **Reference Books:**

- 1. Nuclear Reactor Theory Lamarsh
- 2. Nuclear Energy David Bodansky
- 3. Thermal Hydraulics Fundamentals Todreas and Kazimi
- 4. Comprehensive Nuclear Materials I.-V. R. Konings
- 5. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments- W. Hoffelner

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 3   | 2   | 2   | 2   | 1   |
| CO2        | 3   | 2   | 1   | 2   | 1   |
| CO3        | 2   | 2   | 1   | 2   | 3   |

#### **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

|             |                     | Department                          | of Physics   |              |               |             |           |  |  |
|-------------|---------------------|-------------------------------------|--------------|--------------|---------------|-------------|-----------|--|--|
| Course      | Title of the course | Program Core                        | Total Nu     | mber of cor  | ntact hours   |             | Credit    |  |  |
| Code        |                     | (PCR) /                             | Lecture      | Tutorial     | Practical     | Total       |           |  |  |
|             |                     | Electives (PEL)                     | (L)          | (T)          | (P)           | Hours       |           |  |  |
| PH9037      | Thin-film           | PEL                                 | 3            | 0            | 0             | 3           | 3         |  |  |
|             | Materials           |                                     |              |              |               |             |           |  |  |
|             | Technology          | ~ .                                 |              |              |               |             |           |  |  |
| Pre-requisi | tes                 | Course Assessment<br>(EA))          | nt methods   | (Continuous  | s (CT) and er | nd assessm  | nent      |  |  |
| NIL         |                     | CT+EA                               |              |              |               |             |           |  |  |
| Course      | On completion       | of the course the le                | arner shall  | be able to   | :             |             |           |  |  |
| Outcomes    | -                   | ecall the technique                 |              |              |               | ilm mate    | rials     |  |  |
|             |                     | lustrate different n                |              |              |               |             |           |  |  |
|             |                     | owth technology.                    | leenamsmis   | o or vacuu   |               | Jgy and C   | phaniai   |  |  |
|             |                     | ompare the working                  | g principle  | s of PVD :   | and CVD de    | eposition   | systems   |  |  |
|             |                     | racterizations techn                | • • •        |              |               | position    | systems   |  |  |
| Topics      |                     | tructure of films:                  | -            |              | lucleation th | heories E   | ffect of  |  |  |
| Covered     | electron bomba      | rdment on film stru                 | cture. Post  | - nucleatio  | on growth E   | pitaxial fi | lms and   |  |  |
|             | growth. Structu     |                                     |              |              | 6             | [6]         |           |  |  |
|             | e                   | ethods: Electrolyt                  | ic depositi  | on, cathod   | ic and anod   | lic films,  | thermal   |  |  |
|             | evaporation, ca     | athodic sputtering,                 | chemical     | vapour d     | leposition.   | Molecula    | r beam    |  |  |
|             | epitaxy and lase    | axy and laser ablution methods. [6] |              |              |               |             |           |  |  |
|             | Vacuum science      | ce and techniques:                  | Vacuum p     | orinciples;  | Vacuum ge     | neration ·  | Rotary    |  |  |
|             |                     | ffusion Pump, Tur                   | -            | -            | -             |             | •         |  |  |
|             |                     | Thermal conductiv                   |              |              | · •           | -           |           |  |  |
|             |                     |                                     | 5            | 00,          |               | 0           | [6]       |  |  |
|             | Thickness me        | easurement and                      | monitori     | ng: Elect    | trical, mec   | hanical,    |           |  |  |
|             |                     | crobalance, quartz                  |              |              | ,             | ,           | 1         |  |  |
|             |                     | niques of charact                   | -            |              | le X-ray dif  | fraction,   | electron  |  |  |
|             |                     | gh and low energy of                |              | -            | -             |             |           |  |  |
|             | [6]                 |                                     |              |              | U             | 1           | 19        |  |  |
|             |                     | operties of films:                  | Elastic an   | d plastic l  | behavior. O   | ptical pro  | operties. |  |  |
|             | -                   | d transmittance spe                 |              | -            |               |             | -         |  |  |
|             |                     | ayer films, Anisotr                 |              | -            | -             |             | [6]       |  |  |
|             |                     | rties to films: Cor                 | 1 0          |              |               | or and in   |           |  |  |
|             |                     | uous films. Superc                  | •            |              |               |             | -         |  |  |
|             |                     | cular field theory.                 | -            |              |               |             | -         |  |  |
|             |                     | ns, Applications of                 |              | •            | 10            | 9]          | ,         |  |  |
|             |                     | ces: Fabrication and                | -            |              | Ľ             | -           | [3]       |  |  |
| Text Books  |                     |                                     | 11           |              |               |             |           |  |  |
| and/or      | 1. K.L. Ch          | opra, Thin Film Ph                  | enomena;     | McGraw-H     | Hill          |             |           |  |  |
| reference   | <b>2.</b> A. Goswa  | umi; Thin Film Fun                  | damentals;   | New Age      | Internation   | al Pvt. Lt  | d         |  |  |
| material    | Reference Bool      |                                     |              | ÷            |               |             |           |  |  |
|             | 1. Milton (         | Ohring, Materials s                 | cience of th | hin films; / | Academic P    | ress        |           |  |  |
|             |                     |                                     | D 111        | · • • •      | 0.01          |             |           |  |  |
|             | 2. Thin Fil         | ms; Heavens; Dov                    | er Publicati | ions Inc.; I | 991           |             |           |  |  |

Page **36** of **41** 

| 4. Handbook of Thin Film Technology; Maissel & Glang; McGraw-Hill; 1970 |
|-------------------------------------------------------------------------|
|                                                                         |

# Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 2   | 1   | 2   | 2   | 3   |
| CO2        | 2   | 1   | 1   | 2   | 3   |
| CO3        | 2   | 1   | 1   | 2   | 3   |

## **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low)

2: Moderate (Medium)

|                          |                                                                                                                                                                            | Department of                                                                                  | of Physics                                                            |                                                           |                                                                                        |                                                                    |                                 |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|
| Course                   |                                                                                                                                                                            | Program Core                                                                                   | Tot                                                                   | al Number o                                               | of contact ho                                                                          | urs                                                                |                                 |
| Code                     | Title of the course                                                                                                                                                        | (PCR) / Electives<br>(PCR)                                                                     | Lecture<br>(L)                                                        | Tutorial<br>(T)                                           | Practical (P)                                                                          | Total<br>Hours                                                     | Credi                           |
| PH9038                   | Biomaterials                                                                                                                                                               | PE                                                                                             | 3                                                                     | 0                                                         | 0                                                                                      | 3                                                                  | 3                               |
| Pı                       | re-requisites                                                                                                                                                              | Course Assessmer                                                                               |                                                                       | (Continuou<br>essment (E                                  | · · · ·                                                                                | Aidterm (1                                                         | MT) end                         |
| Core course              | es of M.Tech AMST                                                                                                                                                          |                                                                                                | CT, M                                                                 | T, EA Exan                                                | nination                                                                               |                                                                    |                                 |
| Course<br>Outcomes       | industrie<br>• CO2: Un<br>biomater                                                                                                                                         | escribe the various<br>s.<br>nderstand the struc<br>ials such as polymo<br>pply the understand | biomateri<br>ture and fuers, compo                                    | als and the<br>unction of<br>sites, nano                  | various nat<br>/bio interfa                                                            | ural and ces etc.                                                  | artificia                       |
| Topics<br>Covered        | BASIC BIOLOGY<br>Multifunctionality, Se<br>Basic building blocks<br>proteins, Polysacchar<br>locomotion, and adher<br>Structures<br>INTRODUCTION T<br>composites, Calcium- | : biopolymers – Nuc<br>ides and Lipids, Ce<br>sion, Biomineralizati                            | self-assemb<br>cleotides an<br>lls – Struct<br>ion – Nucle<br>MATERIA | ly, Adaptati<br>d nucleic ac<br>ure, Mecha<br>ation, Grow | on, Evolutio<br>cid, Amino a<br>unical proper<br>vth and morp<br>[11]<br>e and calcium | n and con-<br>acids, pept<br>ties, Cell<br>phology of<br>n-carbona | ides, an<br>motility<br>crystal |
|                          | composites, Biologica<br>NANOBIOTECHNC<br>Synthesis of nanomate<br>Lipid nanotechnology<br>aspects of nanomateri<br>nanomaterials.                                         | <b>DLOGY.</b> Nanostrue<br>erials by biological m<br>, Bio-nanomachines,                       | ctures and<br>nethods; Bio<br>, Carbon na                             | Nanotech<br>omimicry, D<br>notube and i                   | nology, Na<br>DNA nanotec<br>its bio-applic<br>Cellular upta                           | nno/Bio<br>hnology, l<br>ations; Bi                                | Protein<br>omedic               |
|                          | <b>BIOSENSORS AND</b><br>actuators, Block diag<br>biophysical sensing;<br>circuit models, body s<br>Brain-machine interfa<br>[11]                                          | ram of Biosensor for<br>The electrode-electrourface recording electron                         | or electrica<br>olyte interf<br>ctrodes; Bio                          | l and nonel<br>face, polariz<br>p-potential n             | lectrical sigr<br>zation, Elect<br>neasurement                                         | nals, elect<br>rode beha<br>s (EEG, E                              | rodes for<br>vior an<br>CG etc. |
| Text<br>Books,<br>and/or | Biomaterials,<br>ISBN-13: 978                                                                                                                                              | aterials Science – Bio<br>Marc André Meyers<br>3-1107010451<br>plogy of the Cell, B.           | and Po-Yu                                                             | Chen, Carr                                                | bridge Univ                                                                            |                                                                    | ss, 2014                        |

Page **38** of **41** 

| reference<br>materialReferences and Further readings:1)Biomaterials Science: An Introduction to Materials in Medicine, Ratner, Buddy D., et a<br>2nd ed. Burlington, MA: Academic Press, 2004. ISBN: 9780125824637.2)Introduction to Biomedical Engineering, J.D. Enderle and J. Bronzino, 2012, Elsevier<br>3)3)Introduction to Biomedical Equipment Technology, JJ Carr, JM Brown, Pearson, 4th Equipment Technology, JJ Carr, JM Brown, Pearson, 4th Equipment Bioelectronics, R. Pethig and S. Smith, ISBN 97811199708735)Implantable Medical Electronics, V. K. Khanna, ISBN 978-3-319-25446-3 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 2   | 2   | 1   | 2   | 2   |
| CO2        | 2   | 2   | 2   | 2   | 3   |
| CO3        | 2   | 2   | 2   | 2   | 3   |

#### **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low)

2: Moderate (Medium)

|                    |                                                                                                                                  | Department of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of Physics                    |                 |               |                |        |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|---------------|----------------|--------|--|--|--|--|
| Course             | Title of the course                                                                                                              | Program Core<br>(PCR) /<br>Electives (PEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total Number of contact hours |                 |               |                | Credit |  |  |  |  |
| Code               |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lecture (L)                   | Tutorial<br>(T) | Practical (P) | Total<br>Hours |        |  |  |  |  |
| PH9039             | Non-Destructive<br>Testing                                                                                                       | PCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                             | 0               | 0             | 3              | 3      |  |  |  |  |
| Pre-requisi        | tes                                                                                                                              | Course Assessment methods (Continuous (CT) and end assessment (EA))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                 |               |                |        |  |  |  |  |
| NIL                |                                                                                                                                  | CT+EA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |                 |               |                |        |  |  |  |  |
| Course<br>Outcomes | CO1: II     CO2: D     methods                                                                                                   | of the course the learner shall be able to:<br>lustrate the basic knowledge of non-destructive testing.<br>ifferentiate various defect/flaw types and select the appropriate NDT<br>for the specimen.<br>Assess practical understanding of the optical interpretation and<br>on.                                                                                                                                                                                                                                                                                |                               |                 |               |                |        |  |  |  |  |
| Topics<br>Covered  |                                                                                                                                  | Introduction:Non-Destructive Testing (NDT), Different NDT methods (Surface<br>and Volume), NDT in Industry and Everyday Life.[2]                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |               |                |        |  |  |  |  |
|                    | Speckle techniq<br>Pattern Interfero<br>Holographic M<br>Optic Sensors, I<br>Liquid penetr<br>penetrants, Dev<br>various methods | Optical Non-Destructive Testing: Visual Optical methods (Borescope), LaserSpeckle technique (Speckle Photography, Speckle Interferometry, Digital SpecklePattern Interferometry), Holographic technique (Holographic Interferometry, DigitalHolographic Microscopy), Shearography, Moire Technique, Photoelasticity, FiberOptic Sensors, Infrared Thermography, Laser-Ultrasonics.[12]Liquid penetrant Testing: Basic principle, Types and properties of liquidpenetrants, Developers, Methods of application, Advantages and limitations ofvarious methods.[3] |                               |                 |               |                |        |  |  |  |  |
|                    |                                                                                                                                  | Magnetic Particle Testing: Basic theory of magnetism, Characteristics of magneticfields, Magnetization methods, Field indicators, Particle application, Inspection.[4]                                                                                                                                                                                                                                                                                                                                                                                          |                               |                 |               |                |        |  |  |  |  |
|                    | Principle of edd<br>measurement,                                                                                                 | Eddy Current Testing: Generation of eddy currents, Properties of eddy currents,<br>Principle of eddy current testing, Applications (Crack detection, material thickness<br>measurement, Coating thickness measurement, Conductivity measurement),<br>Advantages and limitations.[4]                                                                                                                                                                                                                                                                             |                               |                 |               |                |        |  |  |  |  |
|                    | generation, Pie<br>techniques (pul<br>contact testing a                                                                          | Ultrasonic Testing: Basic principles of sound waves, Methods of ultrasonic wave<br>generation, Piezoelectric transducer, Principles of Ultrasonic Inspection, Test<br>techniques (pulse echo method, through transmission method, resonance method,<br>contact testing and immersion testing, Normal beam and Angle beam), Applications,<br>Advantages and limitations. [6]                                                                                                                                                                                     |                               |                 |               |                |        |  |  |  |  |
|                    | Acoustic emiss parameters.                                                                                                       | Acoustic emission Testing: Basic principle, Sources of acoustic emission, Source parameters. [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                 |               |                |        |  |  |  |  |
|                    | and properties, 2                                                                                                                | <b>Radiographic Testing:</b> Basic principles of Radiography, X-ray source generation and properties, X-ray absorption and atomic scattering (Photoelectric, Compton, Pair production, Rayleigh, Photo disintegration), Film Radiography (X-ray film,                                                                                                                                                                                                                                                                                                           |                               |                 |               |                |        |  |  |  |  |

|                                                | characteristic curves), Radiographic Image Quality and Radiographic Techniques,<br>Digital Radiography, Computed Tomography, Radiation Detectors and Radiation<br>Safety (Radiation shielding) [8]                                           |  |  |  |  |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Text Books,<br>and/or<br>reference<br>material | <ul> <li>Text Books:</li> <li>1. Rastogi, P.K. (ed.). Optical measurement techniques and applications. Boston:<br/>Artech House, 1997. ISBN 0890065160.</li> <li>2. Nondestructive Testing, Louis Cartz, ASM International, 1995.</li> </ul> |  |  |  |  |
|                                                | Reference Books:                                                                                                                                                                                                                             |  |  |  |  |
|                                                | <ol> <li>Edited by Sirohi R.S. Speckle Metrology Marcel Dekker 1993 ISBN 0-8247-<br/>8932-6.</li> </ol>                                                                                                                                      |  |  |  |  |
|                                                | <ol> <li>B.P.C. Rao, Practical Eddy Current Testing, Alpha Science International<br/>Limited (2006).</li> </ol>                                                                                                                              |  |  |  |  |
|                                                | 3. N. A. Tracy, P. O. Moore, Non-Destructive Testing Handbook: Liquid<br>Penetrant Testing, Vol.2, American Society for Nondestructive Testing, 3rd<br>edition (1999).                                                                       |  |  |  |  |
|                                                | 4. Gasvik, K.J. Optical metrology. 3rd ed. Chichester: John Wiley & Sons, 2002. ISBN 9780470843000.                                                                                                                                          |  |  |  |  |
|                                                | 5. L. Schmerr and J. Song, Fundamentals of Ultrasonic Nondestructive<br>Evaluation, Springer, 1998.                                                                                                                                          |  |  |  |  |
|                                                | 6. R. Halmshaw, Industrial Radiography: Theory and Practice, Springer, 2nd edition (1995).                                                                                                                                                   |  |  |  |  |

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

| POs<br>COs | PO1 | PO2 | PO3 | PO4 | PO5 |
|------------|-----|-----|-----|-----|-----|
| CO1        | 2   | 1   | 2   | 1   | 3   |
| CO2        | 2   | 2   | 2   | 2   | 2   |
| CO3        | 2   | 2   | 2   | 2   | 3   |

#### **Correlation levels 1, 2 or 3 as defined below :**

1: Slight (Low)

2: Moderate (Medium)