NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR

CURRICULUM

OF

INTEGRATED MSC IN CHEMISTRY

2017 ONWARD UNDERGRADUATE ADMISSION BATCH

V0:

Resolution of 50th Senate	18-05-2018	ltem no: 50.7
Resolution of 51st Senate	04-10-2018	ltem no: 51.2
Resolution of UGAC meeting	10-05-2019	
Final approval in 53rd Senate	13-05-2019	ltem no: 52.3
Publication date	30-05-2019	

V1:

Incorporation of new elective subjects	27-06-2019
incorporation of new elective subjects	27-00-2019

V2:

Rectification of minor errors	UGAC 31-08-2022
-------------------------------	-----------------

Final Approval in 67th Senate dated 20/09/2022 vide Item no: # 67.3

DEPARTMENT OF CHEMISTRY

Program Name: Int. M. Sc. in CHEMISTRY

DETAILED CURRICULUM

CURRICULUM OF 2021 ONWARD UNDERGRADUATE ADMISSION BATCH FOR Int. M. Sc. in CHEMISTRY.

L= Lecture hour/ week; T= Tutorial hour/ week; S= Sessional/ practical hour/ week C= Subject credit point; H= Subject contact hour/ week.

Sem	nester - I						
SI. No	Code	Subject	L	т	S	С	н
1	MAC01	Mathematics - I	3	1	0	4.0	4
2	PHC01	Engineering Physics	2	1	0	3.0	3
3	CYC01	Engineering Chemistry	2	1	0	3.0	3
4	XEC01	Engineering Mechanics	2	1	0	3.0	3
5	ESC01	Environmental Science	2	0	0	2.0	2
6	XES51	Engineering Graphics	1	0	3	2.5	4
7	HSS51	Professional Communication Laboratory	1	0	2	2.0	3
8	PHS51	Physics Laboratory	0	0	2	1.0	2
9	CYS51	Chemistry Laboratory	0	0	2	1.0	2
10	WSS51	Workshop Practice	0	0	3	1.5	3
11	XXS51	Co-curricular Activities - I	0	0	2	1.0	2
		TOTAL	13	4	14	24.0	31
Sem	ester - II				•		
SI. No	Code	Subject	L	т	S	С	н
1	MAC02	Mathematics - II	3	1	0	4.0	4
2	CSC01	Introduction to Computing	2	1	0	3.0	3
3	ECC01	Basic Electronics	2	1	0	3.0	3
4	EEC01	Electrical Technology	2	1	0	3.0	3
5	BTC01	Life Science	2	0	0	2.0	2
6	XXC01	Constitution of India and Civic Norms	1	0	0	1.0	1
7	XES52	Graphical Analysis using CAD	0	0	2	1.0	2
8	CSS51	Computing Laboratory	0	0	2	1.0	2
9	ECS51	Basic Electronics Laboratory	0	0	2	1.0	2
10	EES51	Electrical Technology Laboratory	0	0	2	1.0	2
11	XXS52	Co-curricular Activities - II	0	0	2	1.0	2
		TOTAL	12	4	10	21.0	26
Semest	ter - III						
SI.	Code	Subject	L	Т	S	С	Н
1	MAC331	Mathematics - III	3	1	0	4.0	4
2	CYC301	State of Matter and Chemical Thermodynamics	3	1	0	4.0	4
3	CYC302	Atomic Structure and Chemical Bonding	3	1	0	4.0	4
4	CYC303	Stereochemistry and Basic Principle of Organic Chemistry	3	1	0	4.0	4
5	PHC334	Physics - II	3	0	0	3.0	3
6	PHS384	Physics- II Laboratory	0	0	3	1.5	3
7	CYS351	Qualitative Analysis of Organic Samples Laboratory	0	0	3	1.5	3
8	XXS381	Co-curricular Activities - III (optional)	0	0	0	0.0	0
		TOTAL	15	4	6	22.0	25

Semester - IV							
SI.	Code	Subject	L	Т	S	С	Н
1	CYC401	Biochemistry: Structure and Function	3	0	0	3.0	3
2	CYC402	Phase-Equilibrium, Chemical Kinetics and Catalysis	3	1	0	4.0	4
3	CYC403	Chemistry of Elements and Radioactivity	3	1	0	4.0	4
4	CYC404	Organic Reaction Mechanism and Reactive Intermediates	3	1	0	4.0	4
5	YYO44*	Open Elective - 1	3	0	0	3.0	3
6	CYS451	Thermodynamic Properties of Solution and Mixture Laboratory	0	0	4	2.0	4
7	CYS452	Identification of Acidic and Basic Radicals Laboratory	0	0	4	2.0	4
8	CYS453	Biochemistry Laboratory	0	0	3	1.5	3
9	XXS481	Co-curricular Activities - IV (optional)	0	0	0	0.0	0
		TOTAL	15	3	11	23.5	29
Sen	nester - V				-		-
SI.	Code	Subject	L	Т	S	С	Н
1	CYC501	Fundamentals of Electrochemistry and Surface Chemistry	3	1	0	4.0	4
2	CYC502	Chemistry in Solution and Solid State Chemistry	3	1	0	4.0	4
3	CYC503	Chemistry of Heterocyclic Compounds and Natural Products	3	1	0	4.0	4
4	CYC504	Industrial Chemistry	3	0	0	3.0	3
5	YYO54*	Open Elective - 2	3	0	0	3.0	3
6	CYS551	Chemical Kinetics, Surface Chemistry and Conductometry	0	0	3	1.5	3
7	CYS552	Quantitative estimation of metal ions in mixture	0	0	4	2.0	4
8	CYS553	Quantitative Analysis of Organic Samples	0	0	3	1.5	3
9	XXS581	Co-curricular Activities- V (optional)	0	0	0	0.0	0
		TOTAL	15	3	10	23.0	28
Sem	ester - VI						
SI.	Code	Subject	L	Т	S	С	Н
1	CYC601	Basics of Photochemistry, Spectroscopy, Group Theory and Data Analysis	3	1	0	4.0	4
2	CYC602	Coordination Chemistry	3	1	0	4.0	4
3	CYC603	Reagents in Organic Synthesis	3	1	0	4.0	4
4	CYE611/2	Departmental Elective-1	3	0	0	3.0	3
5	XEC631	Economics and Management Accountancy	3	0	0	3.0	3
6	CYS651	Potentiometric and Colorimetric Analysis	0	0	3	1.5	3
7	CYS652	Analysis of Ores and Alloys	0	0	4	2.0	4
8	CYS653	Single Step Synthesis of Organic Compounds	0	0	4	2.0	4
9	CYS654	Comprehensive Viva Voce - I	0	0	0	1.0	0
10	XXS681	Co-curricular Activities - VI (Optional)	0	0	0	0.0	0
		TOTAL	15	3	10	24.5	28

Seme	Semester - VII						
SI. No	Code	Subject	L	т	S	С	н
1	MSC731	Principles of Management	3	0	0	3.0	3
2	CYC701	Quantum Chemistry and Spectroscopy	3	1	0	4.0	4
3	CYC702	Inorganic Reaction Mechanisms and Magnetochemistry	3	1	0	4.0	4
4	CYC703	Concept of Organic Synthesis and Asymmetric Synthesis	3	1	0	4.0	4
5	CYC704	Mathematical and Computational Chemistry	3	0	0	3.0	3
6	CYS751	Spectrophotochemical Analysis	0	0	3	1.5	3
7	CYS752	Spectrophotometric Estimation of Cations and Anions	0	0	3	1.5	3
8	CYS753	Separation and Identification of Organic Compounds from Binary Mixture	0	0	4	2.0	4
		TOTAL	15	3	10	23.0	28
Semester - VIII							
SI. No	Code	Subject	L	т	S	С	н
1	CYC801	Chemical, Statistical Thermodynamics and Electrochemistry	3	1	0	4.0	4
2	CYC802	Organometallic Compounds and Bioinorganic Chemistry	3	1	0	4.0	4
3	CYC803	Pericyclic Reactions and Organic Photochemistry	3	1	0	4.0	4
4	CYE811/2	Departmental Elective- 2	3	0	0	3.0	3
5	CYS851	Advanced Practical Physical Chemistry	0	0	4	2.0	4
6	CYS852	Synthesis and Characterisation of Complex Compounds	0	0	3	1.5	3
7	CYS853	Chromatographic Separation of Organic Compounds	0	0	3	1.5	3
		TOTAL	12	3	10	20.0	25

Ser	Semester - IX						
SI. No	Code	Subject	L	т	S	С	н
1	CYE9	Special subject -1	3	1	0	4.0	4
2	CYE9	Special subject -2	3	1	0	4.0	4
3	CYE9	Special subject -3	3	1	0	4.0	4
4	CYE9	Special subject -4	З	1	0	4.0	4
5	CYS9	Special subject Sessional	0	0	З	1.5	3
6	CYS954	Project- I	0	0	З	1.0	4
7	CYS955	Vocational training/ Summer internship/ Term Paper	0	0	0	1.0	0
8	CYS956	Comprehensive Viva Voce - II	0	0	0	1.5	0
		TOTAL	12	4	07	21.0	23
Se	mester - X						
SI. No	Code	Subject	L	т	S	С	н
1	CYS1051	Project – II/ Internship	0	0	30	10.0	30
2	CYS1052	Seminar & Viva voce	0	0	0	2.0	0
		TOTAL	0	0	30	12.0	30

CREDIT UNIT OF THE PROGRAM:

Semester	+	III	IV	V	VI	VII	VIII	IX	X	Total
Credit units	44.0	22.0	23.5	23.0	24.5	23.0	20.0	21.0	12.0	213.0

DEPTH ELECTIVE COURSE BASKETS

THE STUDENTS PRIMARILY WILL OPT FROM THE DEPTH ELECTIVE SUBJECT(S) THAT ARE OFFERED IN A PARTICULAR SEMESTER BY HIS/ HER OWN DEPARTMENT. HOWEVER, A STUDENT CAN OPT FOR DEPTH ELECTIVE SUBJECT(S) THAT ARE OFFERED BY OTHER DEPARTMENT IN A PARTICULAR SEMESTER, WITH THE PERMISSION/ CONSENT FROM HIS/ HER HEAD OF THE DEPARTMENT AND THE CONCERNED TEACHER OF THAT SUBJECT.

SIXTH SEMESTER					
CYE611	Analytical and Environmental Chemistry				
CYE612	Chromatographic Separation and Instrumental Methods of Analysis				

EIGHT SEMESTER				
CYE811	Advanced Natural Products and Medicinal Chemistry			
CYE812	Spectroscopic Methods of Chemical Analysis			

NINTH SEMESTER					
CYE911	Advanced Quantum Chemistry and Application of Group Theory				
CYE912	Non-Equilibrium Thermodynamics and Biophysical Chemistry				
CYE913	Material chemistry and advanced spectroscopy				
CYE914	Electrode kinetics and corrosion science				
CYS951	Advanced Physical Chemistry-II Laboratory				
CYE921	Advanced Green Chemistry and Analytical Chemistry				
CYE922	Synthetic Methodology for Metal Complexes and Coordination Aggregates				
CYE923	Small Molecule Activation, Nuclear Chemistry and Related Spectroscopy				
CYE924	Group theory, applied electrochemistry and X-ray structure analysis				
CYS952	Environmental Sample Analysis				
CYE931	Application of some important reactions in synthetic organic chemistry				
CYE932	Natural Products and Drug Design				
CYE933	Bioorganic Chemistry				
CYE934	Advanced Stereochemistry and structure activity Correlation				
CYS953	Multi Step Synthesis and characterization of Organic Compounds				

Sen	nester - I						
SI. No	Code	Subject	L	т	S	С	Н
1	MAC01	Mathematics - I	3	1	0	4.0	4
2	PHC01	Engineering Physics	2	1	0	3.0	3
3	CYC01	Engineering Chemistry	2	1	0	3.0	3
4	XEC01	Engineering Mechanics	2	1	0	3.0	3
5	ESC01	Environmental Science	2	0	0	2.0	2
6	XES51	Engineering Graphics	1	0	З	2.5	4
7	HSS51	Professional Communication Laboratory	1	0	2	2.0	3
8	PHS51	Physics Laboratory	0	0	2	1.0	2
9	CYS51	Chemistry Laboratory	0	0	2	1.0	2
10	WSS51	Workshop Practice	0	0	З	1.5	3
11	XXS51	Co-curricular Activities - I	0	0	2	1.0	2
		TOTAL	13	4	14	24.0	31

DETAILED SYLLABUS FIRST SEMESTER

	Department of Mathematics											
Course	Title of the course	Program	Tota	l Number c	of contact he	ours	Credit					
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P)	Hours						
		(PEL)										
MAC 01	MATHEMATICS - I	PCR	3	1	0	4	4					
P	re-requisites	Course Assess	ment meth	nods (Conti	nuous (CT),	mid-term	n (MT)					
		and end asses	sment (EA))								
Basic conc	epts of function, limit,	CT+MT+EA										
differentia	ation, and integration.	nd integration.										
Course	CO1: To introdu	• CO1: To introduce the fundamentals of differential calculus of single and severa										
Outcomes	s variables	variables										
	CO2: To devel	op the basic c	oncepts c	of integral	calculus in	cluding i	multiple					
	integrals and it	s application in	finding ar	rea, volum	e, centre of	mass, ce	entre of					
	gravity etc.											
	CO3: To introdu	ice the fundame	ental conce	epts of vect	or calculus							
	CO4: To develop	p the concept o	f converge	nce								
Topics	Functions of Single	• Variable: Rolle	s Theorer	n and Lagra	ange's Mea	n Value T	heorem					
Covered	(MVT), Cauchy's N	/IVT, Taylor's a	nd Maclau	urin's serie	s, Asympto	tes & Ci	urvature					
	(Cartesian, Polar fo	rm).	(8)									
	Functions of seve	ral variables: F	unction o	f two varia	ables, Limit	, Continu	ity and					
	Differentiability, F	Partial derivati	ves, Parti	al derivat	ives of in	nplicit fu	unction,					
	Homogeneous fur	nction, Euler's	theorem	and its c	onverse, Ex	kact diffe	erential,					
	Jacobian, Taylor's	& Maclaurin's	series, N	Maxima ar	id Minima,	Necessa	ary and					
	sufficient conditio	sufficient condition for maxima and minima (no proof), Stationary points,										

	Lagrange's method of multipliers. (10)
	Sequences and Series: Sequences, Limit of a Sequence and its properties, Series of
	positive terms, Necessary condition for convergence, Comparison test, D Alembert's
	ratio test, Cauchy's root test, Alternating series, Leibnitz's rule, Absolute and
	conditional convergence. (6)
	Integral Calculus: Mean value theorems of integral calculus, Improper integral and
	it classifications, Beta and Gamma functions, Area and length in Cartesian and polar
	co-ordinates, Volume and surface area of solids of revolution in Cartesian and polar
	forms. (12)
	Multiple Integrals: Double integrals, Evaluation of double integrals, Evaluation of
	triple integrals, change of order of integration, Change of variables, Area and
	volume by double integration, Volume as a triple integral. (10)
	Vector Calculus: Vector valued functions and its differentiability, Line integral,
	Surface integral, Volume integral, Gradient, Curl, Divergence, Green's theorem in the
	plane (including vector form), Stokes' theorem, Gauss's divergence theorem and
	their applications. (10)
Text Books,	Text Books:
and/or	1. E. Kreyszig, Advanced Engineering Mathematics: 10th ed., Wiley India Ed. (2010).
reference	2. Daniel A. Murray, Differential, and Integral Calculus, Fb & c Limited, 2018.
material	3. Marsden, J. E; Tromba, A. J.; Weinstein: Basic Multivariable Calculus, Springer,
	2014.
	Reference Books:
	1. Tom Apostal, Calculus-Vol-I & II, Wiley Student Edition, 2011.
	2. Thomas and Finny: Calculus and Analytic Geometry, 11th Ed., Addison Wesley.

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MAC01	C01	2	3	2	3	1	1	-	-	1	1	1	2
	CO2	2	3	2	3	-	1	-	-	1	1	2	2
	CO3	2	3	2	3	-	1	1	-	-	2	2	2
	CO4	3	3	2	3	1	1	-	1	-	2	1	2

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Total Nur	nber of con	tact hours		Credit			
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total				
		Electives	(L)	(T)	(P)	Hour				
		(PEL)				S				
PHC01	Engineering	PCR	2	1	0	3	3			
	Physics									
Pre-requ	isites:	Course Assessi	ment metho	ds: (Contin	uous (CT), m	id-term	(MT) and			
		end assessmer	end assessment (EA))							
NIL		CT+MT+EA								

Course	CO1: To realize and apply the fundamental concepts of physics such as superposition
Outcomes	principle, simple harmonic motion to real world problems.
	CO2: Learn about the quantum phenomenon of subatomic particles and its applications
	CO3: Gain an integrative overview and applications of fundamental optical phenomena
	such as interference, diffraction and polarization
	CO4: Acquire basic knowledge related to the working mechanism of lasers and signal
	propagation through optical fibers.
Topics	Harmonic Oscillations - Linear superposition principle, Superposition of two
Covered	perpendicular oscillations having same and different frequencies and phases, Free,
	Damped and forced vibrations, Equation of motion, Amplitude resonance, Velocity
	resonance, Quality factor, sharpness of resonance, etc. [8]
	Wave Motion - Wave equation, Longitudinal waves, Transverse waves, Electro-magnetic
	waves. [3]
	Introductory Quantum Mechanics - Inadequacy of classical mechanics, Blackbody
	radiation, Planck's quantum hypothesis, de Broglie's hypothesis, Heisenberg's
	uncertainty principle and applications, Schrödinger's wave equation and applications to
	simple problems: Particle in a one-dimensional box, Simple narmonic oscillator,
	Interference 8 Diffraction - Huygons' principle Young's experiment Superposition of
	waves Conditions of sustained Interference Concents of coherent sources. Interference
	by division of wavefront. Interference by division of amplitude with examples. The
	Michelson interferometer and some problems: Fraunhofer diffraction. Single slit.
	Multiple slits. Resolving power of grating. [13]
	Polarisation - Polarisation, Qualitative discussion on Plane, Circularly and elliptically
	polarized light, Malus law, Brewster's law, Double refraction (birefringence) - Ordinary
	and extra-ordinary rays, Optic axis etc.; Polaroid, Nicol prism, Retardation plates and
	analysis of polarized lights. [5]
	Laser and Optical Fiber - Spontaneous and stimulated emission of radiation, Population
	inversion, Einstein's A & B co-efficient, Optical resonator and pumping methods, He-Ne
	laser. Optical Fibre– Core and cladding, Total internal reflection, Calculation of numerical
	aperture and acceptance angle, Applications. [5]
Text	TEXT BOOKS:
BOOKS,	1. The Physics of Vibrations and Waves, H. John Pain, Willy and Sons
	2. A Text Book of Oscillations and Waves, W. Goswami and S. Sanoo, Scitech
material	3 Engineering Physics H K Malik and A K Singh McGraw-Hill
material	REFERENCE BOOKS:
	1. Vibrations and Waves in Physics, Jain G. Main, Cambridge University Press
	2. Quantum Physics, R. Eisberg and R. Resnick, John Wiley and Sons
	3. Fundamental of Optics, Jankins and White, McGraw-Hill
	4. Optics, A. K. Ghatak, Tata McGraw-Hill
	5. Waves and Oscillations, N. K. Bajaj, Tata McGraw-Hill
	6. Lasers and Non-linear Optics, B. B. Laud, New Age International Pvt Lt

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
PHC01	CO1	3	2	1	1	1	-	-	1	-	-	-	1
	CO2	3	2	-	2	-	-	-	-	-	-	-	1
	CO3	3	2	2	2	1	1	1	1	1	-	1	1
	CO4	3	2	2	2	1	1	1	-	1	-	1	1

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program Core	Total	Number of	of contact he	ours	Credit						
Code	course	(PCR) /	Lecture	Tutori	Practical	Total							
		Electives (PEL)	(L)	al (T)	(P)	Hours							
CYC 01	Engineering	PCR	2	1	0	3	3						
	Chemistry												
Pr	e-requisites	Course Assessm	nent metho	ds (Contin	uous (CT), m	id-term (MT) and						
			end	assessme	nt (EA))								
	None	CT+MT+EA											
Course	CO1: Intro	duced to chemi	luced to chemical thermodynamics, kinetics, electrochemistry,										
Outcome	absorption,	and catalytic proce	sses for eng	ineering a	pplications								
	CO2: To lear	rn fundamentals of	polymer che	emistry an	id petroleum	n enginee	ring.						
	CO3: Introd	uced to basic spect	roscopic tec	hniques f	or structure	determir	ation and						
	characteriza	ition.											
	CO4: To stu	dy few inorganic an	d bioinorga	nic compo	unds of indu	ustrial imp	oortance.						
Topics	ORGANIC CHEN	RGANIC CHEMISTRY											
Covered	i. Fundame	i. Fundamentals of organic reaction mechanisms; Few important reactions and											
	their m	echanism along	with thei	r applica	itions; Rob	inson a	nnulation,						
	Hydrobo	/droboration reaction, Organometallic reagents (Gilman reagents), Metathesis											
	using Gru	g Grubb's catalyst and Wittig reaction. (3)											
	ii. Fundame	undamental concept on stereochemistry and application: Conformation and											
	configura	ation of organic of	compounds,	, Diastere	eo-selective,	enantio	-selective,						
	regio-sel	ective, stereo-speci	fic, and ster	eo-selecti	ve reactions	. (3)							
	iii. Polymer	chemistry and poly	mer engine	ering: Fur	ndamental c	oncept oi	n polymer						
	chemistr	y; synthesis and ap	plication of	importan	t polymers,	Rubber, a	nd plastic						
	materials	5. Conducting polym	ner. (2)		. .								
	iv. Petroleu	m Engineering and	d oil refine	ery: origii	n of miner	al oils, s	eparation						
	principle	and techniques of	distillation	of crude	oil, Uses of	different	fractions,						
	octane n	umber, cetane num	iber, Knocki	ng, anti-k	nock compo	unds, and	Bio-Fuel.						
	(2)	alusidation of our											
	v. Structure	$\frac{1}{2}$											
		On OF OV-VISIBLE and	u FI-IK Spec	croscopy.	(3)								
		iviisiki	nuctal Field	Thoony	of actabade	al and +	trabodral						
	i. Coordina	colour and mag	nysiai rielu	tios John	-Tollor dicto	ai allu le							
	Tollor die	tortion Isomorism	and stores	chomistry		ruon, pse							
	Teller dis	itorition, isomerism,	and stereo	unernistry.	. (5)								

	ii. Bioinorganic Chemistry: Heme and non-heme O ₂ transport protein
	(Haemoglobin, Myoglobin), Chlorophyll and photosynthesis. (3)
	iii. Inorganic Materials: Introduction towards industrially important inorganic
	materials like cementing material, refractory material, fertiliser, inorganic
	polymer. (2)
	iv. Organometallic Chemistry: π -acid ligands, stabilization of metal low oxidation
	state and 18 electron rules, metal carbonyls and nitrosyls, metal-alkene
	complexes. (4)
	PHYSICAL CHEMISTRY
	i. Thermodynamics: 2nd law of thermodynamics, entropy, free energy, Gibbs
	Helmholtz equation, change of phase. Cryogenics: joule Thomson experiment.
	(4)
	ii. Chemical Kinetics: 2nd and 3rd order rate expression, Reversible reaction, Chain
	reaction, Consecutive reaction, Temp effect on reaction rate. (4)
	iii. Electrochemistry: Electrochemical cell, Effect of pH, precipitation, and complex
	formation on EMF of oxidation/reduction processes. (2)
	iv. Absorption: Physical and Chemical absorption, Absorption isotherms. (1)
	v. Catalysis: Types of catalysis, Rate expression for Catalysed reaction, Acid-base
	and Enzyme catalysis. (2)
Text	Suggested Text Books:
Books,	(i) Physical Chemistry by P. Atkins, Oxford
and/or	(ii) A guidebook to mechanism in Organic chemistry: Peter Sykes; Pearson Edu.
reference	(iii) Inorganic Chemistry Part-I & II, R. L. Dutta, The new book stall
material	Suggested Reference Books:
	Organic Chemistry:
	(i) Basic stereochemistry of organic molecules: S. Sengupta; Oxford University press
	(ii) Engineering Chemistry: Wiley
	(iii) Elementary Organic Spectroscopy: William Kemp, ELBS with Macmillan
	Inorganic Chemistry:
	(I) Inorganic Chemistry: Principle structure and reactivity, J. E. Huheey, E. A. Keiter and
	R. L. Keiter, Pearson Education
	(II) Bioinorganic Chemistry Inorganic Elements in the Chemistry of Life: An
	Introductionand Guide, 2nd Edition, Wolfgang Kaim, Brigitte Schwederski, Axei Kieln.
	(iii) morganic Chemistry Fourth Edition, Shriver & Atkins, Oxford
	(i) Deviced Chemistry by C. W. Castellan
	(i) Physical Chemistry by G.VV Castellan (ii) Physical Chemistry by D. C. Palabit
	i (ii) Physical Chemistry by P. C. Rakshit

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CYC 01	CO1	1	2	-	-	-	-	-	-	-	-	-	-
	CO2	1	-	-	-	-	-	2	-	-	-	-	-
	CO3	1	2	1	1	1	-	-	-	-	-	-	-
	CO4	-	1	-	-	2	-	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tota	l Number o	of contact ho	ours	Credit					
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P) [#]	Hours						
		(PEL)										
XEC01	ENGINEERING	PCR	2	1	0	3	3					
	MECHANICS						(2, 2)					
Pr	re-requisites	Course Asse	essment me	ethods (Cor	ntinuous (Cl	r), mid-te	rm (MT)					
			and	end assess	ment (EA))							
Course	• CO1: Acqu	ire knowledge o	f mechanic	s and abilit	y to draw fr	ee body	diagrams.					
Outcom	• CO2: Apply	knowledge of r	mechanics	for solving	special prot	olems like	e truss and					
	frame anal	ysis. to coloulate ee	ممر امن مرجم		antia fan	vie ve eke						
	• CO3: Abilit	y to calculate ce	entrola, mo	ments of Ir	iertia for va	nous sna	pes.					
	CO4: Learn CO5: Know	CO4: Learn momentum and energy principles. CO5: Knowledge on virtual Work Principle and its application										
Topics	COS: KNOW Engineering Ma	CO5: Knowledge on virtual Work Principle and its application										
Covoro	d Voctors and fo	Ingineering Mechanics; measurement and Si units. [1]										
Covered	body diagram	pody diagram and conditions of equilibrium of a particle: problems on particles:										
	equilibrium of	equilibrium of particles in space [2]										
	Resultant of a	system of fo	rces and i	rounles or	h a rigid h	odv: con	ditions of					
	equilibrium of	a rigid body:	free body	diagrams	of rigid b	ody, con odies sub	piected to					
	different types	f constraints: simple space problems of rigid bodies. [4]										
	Coefficients of	static and kine	inetic friction; problems involving friction; theories of									
	friction on squa	are threaded po	wer screw	and flat be	lt. [5]	,						
	Simple trusses;	analysis of trus	ses by met	hod of joint	ts and meth	od of sec	tions. [5]					
	Centre of grav	ity and centre	of mass; c	entroids o	f lines, curv	ves and a	areas; first					
	moment of ar	ea; second mo	ment of a	rea; polar	moment o	f inertia;	radius of					
	gyration of an a	area; parallel axi	s theorem;	; mass mon	nent of iner	tia. [4]						
	Path, velocity, a	acceleration; red	ctilinear an	d curvilinea	ar motion; n	notion of	system of					
	particles; intro	duction to the co	oncept of p	lane kinem	natics of rigi	d bodies.	[6]					
	Newton's seco	nd law of motic	on; dynami	c equilibriu	im and D'Al	lembert's	principle;					
	linear momen	tum; angular	momentu	m; rectilin	ear and c	urvilinea	r motion;					
	principles of w	principles of work-energy and impulse-momentum; impact of system of particles;										
	introduction to	the concept of	plane kinet	tics of rigid	bodies. [12]]						
	Principle of Vi	tual Work, Solu	ution of Pr	oblems on	Mechanics	s using P	rinciple of					
	Virtual Work [3	<u>]</u>										
Text Boo	ks, 1) S P Timosher	hko and D H You	ing, Engine	ering Mech	hanics, 5^{th} Eq	dition						
and/or	2) J L Meriam a	nd L G Kraige, E	ngineering	Mechanics	5. 5" Edition	, Wiley In	idia					
reterend	ce 3) F P Beer and	E R Johnston, V	ector Mecl	nanics for E	ngineers							
materia	4) I H Shames,	4) I H Shames, Engineering Mechanics										

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
VEC01	CO1	1	-	-	-	-	-	-	-	-	-	-	1
XECOI	CO2	1	1	1	1	-	-	-	-	-	-	-	1

CO3	1	1	-	-	-	-	-	-	-	-	-	1
CO4	1	2	-	-	-	-	-	-	-	-	-	1
CO5	-	2	2	2	2	1	-	-	-	1	-	1

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	of contact ho	ours	Credit									
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total							
		Electives	(L)	(T)	(P) [#]	Hours							
		(PEL)											
ESC01	Environmental	PCR	2	0	0	2	2						
	Science												
Pr	re-requisites	Course Asse	essment m	ethods (Coi	ntinuous (C1	Г), mid-te	rm (MT)						
			and	end assess	ment (EA))								
				CT+MT-	+EA								
Course	• CO1: Unde	rstand the impo	rtance of e	nvironmer	it and ecosy	stem.							
Outcome	es 🔹 CO2: Und	erstand the fu	ndamenta	l aspect o	of pollutant	t trackin	g and its						
	implement	implementation in natural and anthropogenic pollution of air and v											
	system.	system.											
	CO3: Unde	 CO3: Understand the scientific basis of local and as well as global issues. CO4: Annual of local and a superior basis of local and as well as global issues. 											
	CO4: Apply	CO4: Apply of knowledge to develop sustainable solution.											
Topics	Introduction:	Introduction: Multidisciplinary nature of Environmental Studies; Basic issues in											
Covere	d Environmental	Studies. [2]											
	Human popula	tion and the Env	vironment.	[1]									
	Social issues ar	nd the Environm	ent.	[1]									
	Constituents	of our Environr	ment & th	ne Natural	Resources	: Atmos	phere– its						
	layers, their ch	aracters; Global	warming, (Ozone depl	etion, Acid	rain, etc.	[5]						
	Hydrosphere -	Its constituents,	Oceans, G	roundwate	er, Surface w	/aters; Η _γ	/drological						
	cycle. [4]												
	Lithosphere -	constituents of	t lithosphe	ere; Rock	and Minera	al resour	ces; Plate						
	Tectonic Conce	ept and its impor	tance.	[5]	<u>.</u>		(-1						
	Biosphere– its	components; Ec	osystems a	ind Ecology	; Biodiversi	ty; Biome	s. [5]						
	Natural disasi	er and their	manageme	ent – Earl	inquakes, i	-100ds, I	andslides,						
	Cyclones. [3]			and water	ممالينامه	[2]							
Taut Dee	Pollution: Poll	Pollution: Pollutants and their role in air and water pollution. [2]											
iext BOO	KS, 1. Environmen	al Studios – Ben	iny Joseph	- Tata MCg	on Educatio	15 10 2006							
anu/or		ai stuules – DI. L Environmontal S	P_{1} D.L. Manjunatil, reason Education-2000.										
matoria	Le S.Philicipies Of	Environmental S		Moonal	ig – P. V. Ka ichi Drontio	0, 211. . Uall Ind	ia						
materia	4. EIIVII OIIIMEN		ngineering		ublication	2005 2005	Id.						
	6 Toyt book of	Environmental		$rology = M \wedge Reddy = PS Pub$									
	0. Text DOOK 01	Environmental	science &	rechnology	[,] – IVI. A. Ke	лах – вз I	Sub.						

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	-	-	-	-	-	2	-	-	-	-	-
ESC01	CO2	1	-	-	-	-	-	2	-	-	-	-	-
	CO3	2	-	-	-	-	-	2	-	-	-	-	-
	CO4	1	-	3	-	-	2	1	-	-	-	-	-

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Tota	l Number c	of contact ho	ours	Credit						
Code		(PCR) /	Lecture	Tutorial	Practical	Total							
		Electives (PEL)	(L)	(T)	(P)	Hours							
XES51	ENGINEERING GRAPHICS	PCR	1	0	3	4	2.5						
Pr	re-requisites	Course Assessm	ent method	ls (Continu (EA))	ous (CT) an	d end ass	essment						
	NIL	CT+EA											
Course Outcome	 CO1: Ability of CO2: Theoremone/two/three CO3: Able to people 	of mental visualizat tical knowledge c ee dimensional obj read/interpret ind	f mental visualization of different objects ical knowledge of orthographic projection to solve problems on e dimensional objects read/interpret industrial drawing and to communicate with relevant										
Topics Covered	Graphics as lang types of lines; co Construction ar such as curves points; use of ec Descriptive geo horizontal and projection of po quadrants; trace views from top with planes of p auxiliary plan ar Projection of si tetrahedrons, sp Section of solid sections. [6] Dimensional teo Freehand graph	guage of communi onstruction of geo of use of scales; of of conic section; quations for drawi ometry: necessity vertical reference oints and lines situates of lines. First and front and left (of projections; prima and auxiliary elevati mple regular solic oheres, hemi-sphe s; section by perp chniques; internati ics. [3]	cation; tec metrical fig constructio spirals, cy ng some cu v and imp ce planes; ated in diff ngle and th or right); tr ry auxiliary on. [9] ls, viz. pris res etc. [6] pendicular onal and n	hnical drav gures; lette n of curves vcloids, inv urves. [9] portance of coordina erent quad ird angle pu ue length v projection ms, cubes, planes; sec ational star	ving tools and ring and din s of enginee olutes and of orthogra te of poin rants, viz. 1 rojection of and true in a of points, cylinders, stional views	nd their unensioning ering imp different phic pro ts; ortho st, 2 nd , 3 ^{rc} lines and clination lines and pyramids s; true sh and BIS).	p-keep; g. [6] ortance loci of jection; ographic and 4 th planes; of lines planes; , cones, apes of [3]						
Text and/	or 1) Engineering	Drawing and Gra	ohics – K V	enugopal									
reterenc	2) Engineering	g Drawing - N D Bh	lat	obics M/	hhatt								
materia	ii 3) Practical Ge	eometry and Engin	eering Gra	pnics – W A	JJOUUA								

Course	COs	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
	CO1	1	-	-	-	-	-	-	-	-	-	-	-
XES51	CO2	1	1	-	-	-	-	-	-	-	-	-	-
	CO3	1	-	1	-	-	-	-	-	-	-	-	-

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

Course		Title of the Program Total Number of contact hours													
Code		course	Core (PCR) /	Lecture	Tutorial	Practical	Total								
			Electives	(L)	(T)	(P)	Hours								
	_		(PEL)												
HSS51	F	Professional	PCR	1	0	2	3	2							
	Со	mmunication													
			Course Access	mont motho	de (Centin		ad and acc	accomant							
Pr	e-re	quisites	Course Assess	ment metho	us (Comm (FA))	1000 (C1) al	iu enu ass	essment							
	No	one			(L/I)) (T+FA										
Courso			overant in lingu	istic proficio	oncy of the	loarnors									
Outcome		• CO1: Impr	overnent in ingu	nunicativo (bility of the	y of the learners									
Outcom	23	 CO2: Impr CO3: Impr 	overnent in com	l connoctivi	tv ckill	eleaniers									
Tonics		COS. IIIpi Professi	onal Communica	tion: Introd	uction (1)										
Covered	A	2 Technic	 Professional communication. Infoduction (1) Technical Writing: Basic Concepts (2) 												
covered	ŭ	3 Style in	 Technical Writing: Basic Concepts (2) Style in Technical Writing (3) 												
		4. Technica	 Style in Technical Writing (3) Technical Report (2) 												
		5. Recomn	nendation Report	t (2)											
		6. Progress	s Report (1)												
		7. Technica	al Proposal (3)												
		8. Busines	s Letters (3)												
		9. Letters	of Job Applicatior	า (2)											
		10. Writing	Scientific and Eng	gineering Pa	apers (3)										
		11. Effective	e Use of Graphic	Aids (2)											
		12. Present	ation Techniques	(6)											
		13. Group D	viscussion (6)												
		14. Intervie	w Techniques (6)												
Text		Text Book:													
Books,	,	1. English for	Engineers –Sudh	arshana& S	avitha (Can	nbridge UP)									
and/or	r	Reference Books:													
reterend	ce	1. English for	Engineers -Sudha	arshana & S	avitha (Can	nbridge UP)									
materia	I	2. Effective le	echnical Commun		A KIZVI (IVIC)	Jraw Hill Ed	ucation)								
		3. References	to relevant NPT	EL, WOOC, S		ourses be gi	ven by the								
		Instructor													

mapping of co (course outcome) and to (trogramme outcome)													
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	1	_	_	1	_	1	_	1	2	3	1	_
пэээт	CO2	1	_	_	1	_	2	_	2	2	3	2	_
	CO3	_	_	_	1	_	3	_	3	3	3	2	_

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Title of the	Program	Total Nur	nber of cont	tact hours		Credit											
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total												
		/ Electives	(L)	(T)	(P)	Hours												
		(PEL)																
PHS51	Physics	PCR	0	0	2	2	1											
	Laboratory																	
Pre-requ	isites	Course Asse	ssment met	hods: (Cont	inuous evalua	ation (CE)	and end											
		assessment	(EA))															
NIL		CE+EA																
Course	CO1: To rea	lize and apply	different teo	chniques for	measuring re	efractive ir	ndices of											
Outcome	es different m	aterials.																
	CO2: To rea	CO2: To realize different types of waveforms in electrical signals using CRO.											To realize different types of waveforms in electrical signals using CRO.					
	CO3: To un	CO3: To understand charging and discharging mechanism of a capacitor.																
	CO4: To un	derstand interf	erence, diffi	raction and p	polarization r	elated opt	ical											
	phenomena	Э.																
	CO5: To acc	uire basic knowledge of light propagation through fibers.																
Topics	1. Find the	refractive index	x of a liquid	by a travelli	y a travelling microscope.													
Covered	2. Determir	ne the refractiv	e index of th	ne material o	of prism using	g spectrom	neter.											
	3. Determir	nation of ampli	tude and fre	equency of e	lectrical signa	als by oscil	loscope.											
	4. To study	the characteris	tics of RC ci	rcuits.														
	5. To study	Brewster's law	/Malus' law	using laser	light.													
	6. To study	the diffraction	of light by a	grating.														
	7. To study	the interference	ce of light by	/ Newton's r	ing apparatu	S.												
	8. To deter	8. To determine numerical aperture of optical fiber.																
	9. Determin	nation of Planck	constant.															
Text and	/or SUGGESTED	BOOKS:																
reference	e 1) A lext Bo	DOK ON Practica	I Physics – K	. G. Mazum	dar and B. Gh	IOSh												
material	2) Practical	Physics – Wors	snop and Fli	nt														

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	2	1	-	-	-	-	-	2	1	-	1
	CO2	3	2	1	-	-	1	-	-	2	1	-	1
PHS51	CO3	3	1	-	-	-	-	-	-	2	1	-	1
	CO4	3	2	-	1	-	1	1	-	2	1	-	1
	CO5	3	2	1	-	1	1	1	-	2	1	-	1

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course		Title of	fthe	Pr	ogram	Core	T	otal Nu	umber	of cont	act hou	rs	Credit		
Code		cour	se		(PCR)	/	Lectu	re T	utorial	Prac	ctical	Total			
				Ele	ectives	(PEL)	(L)		(T)	(P)	Hours			
CYS51		CHEMI	STRY		PCR		0		0		2	2	1		
	L	ABORA	TORY												
F	re-re	quisites			Cou	rse As	sessmei	nt meth	nods (C	ontinu	ous (CT	T) and er	nd		
								assess	sment (EA))					
	No	one							CT+EA						
Cours	e	• CC	01: To l	earn b	asic an	alytical	techni	ques u	seful fo	or enge	g applica	ations.			
Outcom	nes	• CC)2: Syn	thesis	and cl	haracte	erizatio	n metl	nethods of few organic, inorganic and						
		рс	olymer	compo	ounds o	findus	trial im	portar	ice.						
		• CC	03: Lea	rn chr	omatog	graphic	separa	ition m	ethod	5.					
		• CC	04: Ap	olicatio	ons of s	pectro	scopic r	neasu	rement	.s.					
Торіс	S .	i. E	xperim	ents b	ased o	n pH m	etry: D	eterm	ination	of diss	sociatio	n consta	int of we		
Covere	ed	a	cids by	pH m	eter.										
		II. E	xperim	ents I	based (on cor	Iductivi	ty me	asuren	nent: l	Jetermi	nation	of amou		
			THCID	y cond	notol i	etric tit	ration		aUH. + hu na	r 100 o 10 o		F 101 /			
			Estimation of metal ion: Determ. of total hardness of water by EDTA titration.												
		iv. Estimation of metal ion: Determ. of total hardness of water by EDTA titration.													
		v. 3	is_his/a	is anu Ivcinat	to)copr	or (II)	monot	ovdrate	n com	hoir c	e.g. IVI haracte	rization	by m n		
		F	TIR etc	iycina	ισγεσρμ		monor	iyulate			liaracte	112411011	by III. p		
		vi. S	vnthes	is and	charact	t. of or	ganic co	ompou	nds: e.	g.Dibe	nzvlider	neaceto	ne.		
		vii. S	vnthes	is of p	olvmer	: polvm	nethvlm	ethacr	vlate	0.2.100	,				
		viii. V	, /erificat	tion of	, Beer-L	amber	, ts law a	nd det	, termina	ation o	f amoui	nt of iro	n prese		
		ir	n a sup	plied s	olution								•		
		ix. C	hroma	tograp	hy: Se	paratic	on of tw	o amir	no acid	s by pa	per chr	omatog	raphy		
		x. C	Determi	inatior	n of sap	onifica	tion val	lue of f	fat/ veg	getable	oil				
		Sugge	sted Te	ext Boo	oks:										
		1. Vog	gel's Qu	antita	tive Ch	emical	Analysi	s (6th	Edition) Prent	ice Hall				
		2. Adv	vanced	Physic	al Chen	nistry E	Experim	ents: I	By Gurt	u&Gur	tu				
		3. Con	nprehe	nsive l	Practica	al Orga	nic Che	mistry	: Qualit	ative A	Analysis	By V. K.			
		Ahluw	valia an	d S. Dł	ningra										
		Sugge	sted Re	eteren	<u>ce Book</u>	<u>(S:</u>									
		1. Pra	ctical C	hemis [.]	try By I	R.C. Bh	attacha	irya	.						
		2. Sele	ected e	xperin	nents in	Physic	cal Cher	mistry	BY N. C	. IVIUKI	nerjee				
0			ing of (ourse ou		e) and F		bgramr	ne Out	come)	DOLL	DOCO		
Course	COS	P01	P02	PO3	P04	P05	P06	104	804	P09	PO10	P011	P012		
	<u>CO1</u>	2	1	-	1	-	-	-	-	-	-	-	-		
CYS51	CO2	-		-			2	-	-	-	-	-	-		
	ECO3	1 2	- 1	-	1 1	1 1		- 1	- 1	- 1	-	-			

Correlation levels 1, 2 or 3 as defined below:

-

-

-

-

-

-

_

1

CO4

-

1

-

1

Course	Title of the	of theProgramTotal Number of contact hoursCrediturseCore (PCR)LectureTutorialPracticalTotal											
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total							
		/ Electives	(L)	(T)	(P) [#]	Hours							
		(PEL)											
WSS51	WORKSHOP	PCR	0	0	3	3	1.5						
	PRACTICE												
Pre	e-requisites	Course Asse	essment met	hods (Contin	nuous (CT) ai	nd end ass	essment						
				(EA)))								
•	NIL			CI+E/	4								
Course	• 001:5	Study and pract	lice on macr	nine tools an	id their opera	ations							
Outcom	es • CO2:	Practice on m	ianufacturin	g of compo	onents using	worksho	p trades						
	Includ	ing fitting, carp	entry, foun	ary and well	aing								
	• CO3:	identify and a	ppiy suitabi	e tools for	machining p	rocesses	incluaing						
		g, lacing, threa	u cutting ar	iu tapping		for hours							
	• CO4:	Develop basic	electrical	engineering	knowledge	for nous	e winng						
Tonics	M/c shop & C	Corportry shop		2X2- 9hr	c								
Covere	d Introd	uction on mad	hining proce	373 – 3113									
covere	 Introd Introd 	duction to machine tools- Lathe, Shaper, Milling and Drill machine.											
	 Introd 	Introduction to woods- Types, structure, disease and defect of wood.											
	 Introd 	 Introduction to woods- Types, structure, disease and defect of wood. Introduction to wood working machines and tools 											
	 Makin 	a of dovetail ic	int and brid	le inint	10013.								
	Welding Shor	n & Sheet meta		3)	(3= 9hrs								
		uction to weld	ing Safety a	nd nrecautic	ns in welding	τ							
	Forma	tion of weld be	ad by SMA	N on mild st	teel flat	٥.							
	Forma	tion of weld be	ead by orvef	uel welding	on mild steel	lflat							
	 Introd 	uction to sheet	t Metal worl	(5	on mid steel	indt.							
	Tools	and Machines	used in shee	t metal wor	ks								
	Conce	nt of developm	nent markir	g out of me	tal sheets								
	Cuttin	g and joining o	f metal shee	νtς									
	 Safety 	nrecautions 6	General war	ning needed	in the shon f	loor							
	Black smithy	& Foundry		3	(3= 9hrs.	10011							
	 Introd 	uction Smithi	ng and For	ging- Tools	. Machines.	Furnaces	and its						
	access	sories, fuels.	0	00	,,								
	Safety	and precautio	ns in blacksi	nithy.									
	• Makin	g of bars of dif	ferent cross	-sections.									
	Makin	g of hexagonal	headed bol	ts.									
	Forge	welding.											
	Introd	uction to Foun	dry Technol	ogy.									
	Prepa	ration of sand i	mould using	Solid/Split F	Pattern.								
	Fitting & Elec	trical shop	0	3	X3= 9hrs.								
	Introd	uction to hand	l metal cutt	ing tools wit	th specification	ons, nome	enclature						
	and th	ieir use.		-	•	-							
	Marki	ng tools, measi	uring tools a	nd their use									
	•												

	 Fitting of joints of mild steel flats. Introduction to electrical hazards and safety precaution. Wire jointing and soldering.
	 PVC Conduit Wiring controlled by separate single way switches.
	 PVC Cashing Capping Wiring for two-way switches.
	 Conduit wiring for the connection of a Calling Bell with In& Out Indicators.
	 Batten Wiring and Cleat Wiring.
	Tube Light Connection.
	 Insulation Resistance Testing of 1ph / 3ph Motor and House Wiring.
	Earth Resistance Testing.
	DOL Starter Connection.
	Viva voce 1X3= 3hrs.
Text Books,	1. Workshop Technology Part I and Part II by W. A. J. Chapman
and/or	2. Elements of Workshop Technology S. K. Hazra Chowdhury, A. K. Hazra
reference	Chowdhury and Nirjhar Roy
material	3. Mechanical Workshop Practice by K. C. John

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
	CO1	2	-	-	-	-	1	-	-	-	1	-	-
	CO2	1	-	1	-	-	1	-	-	-	1	-	-
VV2221	CO3	1	-	2	-	-	1	-	-	-	1	-	-
	CO4	1	-	-	-	-	2	-	-	-	1	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the		Program Core	Total	Number o	f contact ho	ours				
Code	nue c		(PCR) /	Lecture	Tutorial	Practical	Total	Credit			
coue	course		Electives (PEL)	(L)	(T)	(P)	Hours				
XXS-51	Co-cur Activ	ricular ities	PCR	0	0	2	2	1			
Pre-requi	isites	Cour	Course Assessment methods (Continuous (CT) and end assessment (EA))								
NIL					CT+EA						
Course	•	CO1: So	cial Interaction:	Through t	he medium	of sports					
Outcomes	•	CO2: E	thics: Recogniz	e differer	nt value s	systems ind	cluding y	our own,			
		underst	nderstand the moral dimensions of your decisions, and accep								
		respons	sibility for them								
	•	CO3: Se	elf-directed and	Life-long l	_earning: A	cquire the	ability to	engage in			
		indeper	ndent and life	-long lear	rning in t	the broade	est cont	ext socio-			
		technol	ogical changes.								
	•	CO4: Pe	ersonality develo	pment thr	ough comn	nunity enga	gement				
	•	CO5: Ex	posure to social	service							
Topics	YOGA										
Covered	•	Introdu	ction of Yoga.								
	•	Sitting F	Posture/Asanas-	- Padmasana, Vajrasana, Ardhakurmasana, Ustrasana,							

Bakrasana, Sasankasana, Janusirshasana, Suryanamaskar.
Mudra- Gyana mudra, Chin mudra, Shuni mudra, Prana mudra, Adi mudra,
Anjali mudra.
• Laying Posture/Asanas- PavanaMuktasana, UttanaPadasana, Sarpasana,
Bhujangasana (Cobra Pose). Eka Pada Śalabhāsana. Dhanurasana.
Chakrasana, Vinaritkarani,
 Meditation, Vognidra, Om chant, Pray chant
• Medication Toginara, on chant, Tray chant.
 Standing Posture/Asanas-<u>Iduasana (Nountain Pose)</u>, Virksnasana (Tree Dago), Ambaghangkang Tribanggang, Utbuttagang, Dadabastagang
Pose), Ardnachandrasana, Trikonasana, Utkatasana, Padanastasana.
 Pranayama- Deep breathing, AnulomVilom, Suryabhedi, Chandrabhedi.
 Kriya- Kapalbhati, Trataka.
ATHLETICS
Introduction of Athletic.
• Starting Technique for Track events- Standing start, Crouch & Block start.
 Finishing Techniques.
 Relay Race- 4x100m 4x400m & Baton Exchange Technique & Rules
 Track Marking with Eundamontals 200m 400m and Diagonal Distance
Track Marking with Fundamentals- 20011, 40011 and Diagonal Distance
Radius, Straight Distance, Staggers of Different Lanes & Curve Distance.
BASKETBALL
 Introduction and Players stance and ball handling.
 Passing- Two hand chest pass, two hand bounce pass, One hand baseball
pass, Side arm pass, Overhead pass, Hook pass.
• Receiving- Two hand receiving, one hand receiving, receiving in stationary
position, Receiving while jumping and Receiving while running.
• Dribbling- Dribble, High dribble, Low dribble, Reverse dribble, Rolling
dribble.
Rules of Baskethall
Basketball game
Introduction of volleyball
• Service- Underarm service, Sidearm service, Tennis service, Floating service,
Jump service.
Pass: Underarm pass- Ready position, Teaching stage of underarm pass and
Upper hand pass- Volley pass, Back pass, Short set, Jump set & Underarm
set.
Rules and their interpretation.
FOOTBALL
Introduction of Football
Push nass- Insten inside Insten outer side
 Kicking Cnot kick Instan kick Laftad kick
Kicking- Spot Kick, Histep Kick, Loneu Kick. Dribbling. One leg. Beth legg. Juster.
• Dribbilng- One leg, Both legs, Instep.
• Trapping- Rolling ball sole trapping, High ball sole trapping, High ball chest
trapping, High ball thigh trapping.
 Throwing- Standing throw, Running throw, Seating throw.
 Goal Keeping- Griping the ball, Full volley, Half volley, Drop Kick.

	Pulse and their interpretation
CDICK	
CRICK	El
•	Introduction of Chicket
•	Batting gripping & Stance, Bowling gripping technique.
•	Batting front foot defense& Drive.
•	Batting Back foot defense& Drive.
•	Batting Square cut.
•	Bowling medium pace, Bowling off break.
•	Fielding drill, Catching (Short & High).
•	Rules & Regulation.
BADIV	
•	Basic introduction about Badminton and Badminton court.
•	Racket parts, Racket Grip, Shuttle Grip.
•	Basic stance, Basic Footwork, Shadow practice (Full court movement).
•	Strokes services: Forehand- Overhead & Underarm, Backhand- Overhead &
	Underarm.
•	Match practice (Single & Double).
•	Rules & Regulation.
IABLE	
•	Introduction of Table Tennis.
•	Basic Stance and Grip (Snake hand & Pen hold).
•	Service Basic.
•	Stroke: Backhand- Push, Deep Push, Chop, Raily, Drive, Drop Shot, Flick,
	Block, Smasn. Strake, Fereband, Bush, Deen Bush, Chen, Bally, Drive, Dren Shot, Flick
•	Stroke: Forenand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick,
•	DIUCK, SILIdsli.
•	Table Tennis Match (Singles & Doubles)
	Table Terrins Match (Singles & Doubles).
NCC	ED-1 General Introduction and words of command
•	ED-2 Attention Stand at ease and Stand easy Turning and inclining at the
·	halt
•	ED-3 Sizing Forming up in three Banks Numbering Open and Close order
•	March and Dressing
•	FD-4 Saluting at the balt. Getting on narade. Dismissing and falling out
•	ED-5 Marching Length of pace and Time of Marching in quick time and Halt
·	Slow March and Halt
•	ED-7 Turning on the March and Wheeling
•	ED-12 Parade practice
ΤΔΓΚΙ	NONDO
	Introduction about Taekwondo- Meaning of Taekwondo, Korean language
•	of dress Fighting area Punch Block Kicks etc
•	Stance- Ready stance, Walking stance Fighting stance Front stance Back
•	stance. Cat stance etc.
•	Punch Technique- Front fist punch. Rear fist punch. Double fist punch. With

 stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. Foot Technique (Balgisul)- Standing kick (Saseochagi), Front kick (Abchagi), Doliyo (Chagi), Abdalchagi (Butterfly kick), Back kick etc.
INSS
Swachha Bharat Mission
Free Medical Camp
Sanitation drive in and around the campus.
Unnat Bharat Abhiyaan
MatribhashaSaptah celebration

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	-	-	-	-	-	2	-	-	3	-	-	-
	CO2	-	-	-	-	-	-	-	2	-	-	-	-
XXS51	CO3	-	-	-	-	-	-	1	-	-	-	-	3
	CO4	-	-	-	-	-	-	-	-	2	2	-	-
	CO5	-	-	-	-	-	3	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

SI.	Code	Subject	L	т	S	С	н
NO							
1	MAC02	Mathematics - II	3	1	0	4.0	4
2	CSC01	Introduction to Computing	2	1	0	3.0	3
3	ECC01	Basic Electronics	2	1	0	3.0	3
4	EEC01	Electrical Technology	2	1	0	3.0	3
5	BTC01	Life Science	2	0	0	2.0	2
6	XXC01	The Constitution of India and Civic Norms	1	0	0	1.0	1
7	XES52	Graphical Analysis using CAD	0	0	2	1.0	2
8	CSS51	Computing Laboratory	0	0	2	1.0	2
9	ECS51	Basic Electronics Laboratory	0	0	2	1.0	2
10	EES51	Electrical Technology Laboratory	0	0	2	1.0	2
11	XXS52	Co-curricular Activities - II	0	0	2	1.0	2
		TOTAL	12	4	10	21.0	26

SECOND SEMESTER

Department of Mathematics												
Course	Title of the course	Program	Tota	l Number o	of contact ho	ours	Credit					
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P)	Hours						
		(PEL)										
MAC 02	MATHEMATICS - II	PCR	3	1	0	4	4					
P	re-requisites	Course Assess	ment meth	nods (Conti	nuous (CT),	mid-tern	n (MT)					
		and end asses	and end assessment (EA))									
Basic con	cepts of set theory,	CT+MT+EA										
differen	tial equations, and											
	probability.											
Course	CO1: Develop t	the concept of I	basic linea	r algebra ai	nd matrix e	quations	so as to					
Outcomes	apply mathema	atical methods	involving a	arithmetic,	algebra, ge	eometry	to solve					
	problems.											
	CO2: To acqui	re the basic co	ncepts red	quired to u	inderstand,	construc	t, solve:					
	and interpret d	ifferential equat	tions.									
	CO3: Develop 1	he concepts of	Laplace tra	ansformati	on & Fourie	er transfo	rmation					
	with its property to solve ordinary differential equations with given boundary											
	conditions whic	h are helpful in	all enginee	ering & res	earch work.							
	CO4: To grasp t	the basic conce	ots of prob	ability theo	ory.							

Topics	Elementary algebraic structures: Group, subgroup, ring, subring, integral domain,
Covered	and field. (5)
	Linear Algebra: Vector space, Subspaces, Linear dependence and independence of vectors, Linear span, Basis and dimension of a vector space. Rank of a matrix, Elementary transformations, Matrix inversion, Solution of system of Linear equations, Eigen values and Eigen vectors, Cayley-Hamilton Theorem, Diagonalization of matrices. (15) Ordinary Differential Equations: Existence and uniqueness of solutions of ODE (Statement Only), Equations of first order but higher degree, Clairaut's equation, Second order differential equations, Linear dependence of solutions, Wronskian determinant, Method of variation of parameters, Solution of simultaneous equations. (12) Fourier series: Basic properties, Dirichlet conditions, Sine series, Cosine series,
	Convergence. (4)
	 Laplace and Fourier Transforms: Laplace transforms, Inverse Laplace transforms, Convolution theorem, Applications to Ordinary differential equations. Fourier transforms, Inverse Fourier transform, Fourier sine and cosine transforms and their inversion, Properties of Fourier transforms, Convolution. (10) Probability: Historical development of the subject and basic concepts, Axiomatic definition of probability, Examples to calculate probability, Random numbers. Random variables and probability distributions, Binomial distribution, Normal distribution. (10)
Text Books, and/or reference material	 Text Books: E. Kreyszig, Advanced Engineering Mathematics: 10thed, Wiley India Ed. (2010). Gilbert Strang, Linear algebra and its applications (4th Ed), Thomson (2006). Shepley L. Ross, Differential Equations, 3rd Edition, Wiley Student Ed (2017). Reference Books: S. Kumaresan, Linear algebra - A Geometric approach, PHI (2000). Grinstead LL Snell Introduction to Probability American Math. Society

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
MAC02	CO1	3	3	2	1	2	-	2	-	-	-	1	2
	CO2	3	3	2	2	2	-	2	-	-	1	-	2
	CO3	3	3	2	2	3	1	1	-	1	1	1	2
	CO4	3	2	1	3	2	1	1	1	1	-	-	2

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	e Program Core Total Number of contact hours C									
Code		(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives	(L)	(T)	(P)	Hours					
		(PEL)									
CSC01		PCR	2	1	0	3	3				
P	re-requisites	Course Assessm	ent metho	ds (Continu	l Ious (CT) mi	id-term (N	MT) and				
		end assessment (EA))									
Basic know	wledge of computer.	CT+MT+EA									
Course	e CO1: Recognize	the changes in h	ardware an	d software	technologie	es with re	spect to				
Outcom	es the evolution	of computers and describe the function of system software's									
	(operating Syst	ems) and applica	ition softw	are's, lang	uages, num	ber syste	m, logic				
	gates.										
	CO2: Illustrate	the flowchart and	inscribe ar	n algorithm	i for a given	problem	Inscribe				
	C programs usir	ng operators.									
	CO3: Develop c	onditional and ite	rative state	ements to v	vrite C progr	ams.					
	CO4: Exercise u	ser defined functi	ons to solv	e real time	problems						
	CO5: Inscribe C	programs that us	e Pointers t	o access ar	rrays, strings	and fund	tions.				
	CO6: Exercise	user defined dat	a types ind	cluding stru	uctures and	unions	to solve				
	problems.										
Topics	Fundamentals	of Computer:	History of	Computer	r, Generatio	on of Co	mputer,				
Covere	d Classification o	Computers 2L Basic Anatomy of Computer System, Primary &									
	Secondary Men	ory, Processing Unit, Input & Output devices. [2]									
	Languages: Ass concepts) [1]	embly language, high level language, compiler, and assembler (basic									
	Binary & Allied	number systems representation of signed and unsigned numbers.									
	BCD. ASII. Binar	v Arithmetic & logic gates. [2]									
	Basic concepts	of operating system	ems like MS	5 DOS. MS '	WINDOW. U	NIX. Algo	rithm &				
	flow chart. [1]			, -	- , -	, 0-					
	C Fundamental	s: The C character set identifiers and keywords, data type & sizes									
	variable names	declaration. statements. [2]									
	Operators & E	pressions: Arithr	netic oper	ators, relat	tional and I	ogical op	erators,				
	type, conversi	on, increment a	and decrei	ment oper	rators, bit	wise op	erators,				
	assignment ope	erators and expre	ssions, pre	cedence, a	nd order of	evaluatio	n. Input				
	and Output: Sta	indard input and	output, for	matted out	put printf	, formatt	ed input				
	scanf. [8	3]									
	Flow of Control	I: Statement and blocks, if - else, switch, loops - while, for do while,									
	break and conti	inue, go to and labels. [5]									
	Fundamentals a	and Program Structures: Basic of functions, function types, functions									
	returning value	s, functions not returning values, auto, external, static and register									
	Variables, scop	e rules, recursion, function prototypes, C pre-processor, command									
	line arguments.	. [5]									
	Arrays and Po	ointers: One-dimensional, two-dimensional arrays, pointers and									
	functions, mult	-dimensional arra	iys. [10]								
	Structures Unio	on and File: Stru	cture, unic	on, structu	res and fun	ctions, a	rrays of				
	structures, file i	ead, file write.[5]									

Text Books,	Text Books:								
and/or	1. Let us C by Kanetkar								
reference	2. C Programming by Gottfried								
material	3. Introduction to Computing by Balaguruswamy								
	The C-programming language by Dennis Ritchie								
	Reference Books:								
	1. Computer fundamental and programming in C by P Dey and M. Ghosh								
	2. Computer fundamental and programming in C by Reema Thareja								
	3. programming with C by Schaum Series								

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
66601	CO1	3	1	2	1	-	-	-	-	-	-	-	-
	CO2	-	2	1	2	1	-	-	-	-	-	-	-
	CO3	1	2	-	-	3	-	-	-	-	-	-	-
CSCOI	CO4	1	3	1	2	3	-	-	-	-	-	-	1
	CO5	2	1	-	-	3	-	-	-	-	-	-	-
	CO6	2	-	3	-	1	-	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Tit	le of the	Program Core	To	tal Numbe	r of contact	hours	Credit				
Code		course	(PCR) /	Lectur	Tutoria	Practical	Total					
			Electives (PEL)	e (L)	I (T)	(P)	Hours					
ECC01		Basic	PCR	2	1	0	3	3				
	Ele	ectronics										
		Pre-requisi	tes	Course Assessment methods (Continuous (CT), mid-								
				term (MT) and end assessment (EA))								
(10+2)	level	mathemat	ics and physics			CT+MT+	EA					
Cours	e	• CO1:	Knowledge of Sem	niconduct	or physics	and devices						
Outcom	nes	• CO2:	Have an in depth	understa	nding of ba	asic electror	nic circuit, c	onstruction,				
		operation.										
		• CO3:	Ability to make pr	oper des	igns using	these circui	t elements t	for different				
		appli	cations.									
		• CO4:	Learn to analyze t	he circuit	s and to fi	nd out relat	tion betwee	en input and				
		outpu	ut.									
Topic	s	1. Se	miconductors									
Covere	ed	1.1. Co	ncept of band fo	ormation	in solids;	Fermi-Dira	c distributio	on function,				
		concept of	oncept of Fermi level, invariance of Fermi level in a system under thermal									
		equilibriu	equilibrium									
		1.2. Defir	1.2. Definitions of insulator, conductor and semiconductor using band diagram									
		1.3. Cryst	.3. Crystalline structure of semiconductor									
		1.3.1. Cov	valent bond									

1.3.2. Generation of holes and electrons 1.3.3. Effect of temperature on semiconductor 1.4 Intrinsic semiconductor 1.5 Doping and Extrinsic semiconductor 1.5.1 n-Type semiconductor and band diagram 1.5.2 p-Type semiconductor and band diagram 1.5.3 Mass-action law of semiconductor 1.6. Conductivity of semiconductor (including mathematical expression) 1.7 Carrier transport phenomenon. (03 hrs.) Diodes 2. 2.1. Construction 2.2. Unbiased diode; Depletion layer and Barrier potential; junction capacitance (expression only) 2.3. Principle of operation with forward biasing and reverse biasing 2.4. Characteristics 2.5 Diode's three models/equivalent circuits.(02 hrs.) 3. Diode Circuits 3.1 Diode rectifier 3.1.1 Half wave rectifier 3.1.2 Full wave rectifier:centre tap and bridge rectifier 3.1.3 Capacitive filter and DC power supply (Numerical problems) 3.2 Special Diodes 3.2.1 Zenerdiode: Avalanche breakdown and Zener breakdown and characteristics. 3.2.2 Zener diode as a voltage regulator 3.2.3 Displaydevices: LED and LCD. (03 hrs.) 4. Bipolar Junction Transistor (BJT) 4.1 n-p-n and p-n-p transistor and their constructions 4.2 Principle of operation Transistor configuration: common base, common emitter, and common 4.3 collector Transistor characteristics: input and output characteristics of CB and CE 4.4 configurations 4.5 DC load line: quiescent (Q) point; cut-off, active, and saturation region 4.6 Amplifier: Principle of operation 4.7 Transistor as a switch. (04 hrs.) 5. Transistor Biasing 5.1 Need of biasing Methods of biasing: base resistor or fixed bias, emitter feedback, voltage 5.2 divider biasing 5.3 Stability of Q-point (qualitative discussions) 5.4 (Numerical problems). (02 hrs.) 6.Single Stage Amplifier: classification of amplifiers (voltage amplifier, current amplifier, power amplifier etc.) Class-A CE Amplifier with coupling and bypass capacitors, Qualitative discussions of magnitude characteristics of frequency response (graph only) (02 hrs.)

	7.Feedback Amplifier
	7.1 Positive and negative feedback
	7.2 Deduction of gain with negative feedback, explanation of stability of gain
	with negative feedback, other effects of negative feedback (no deduction),
	numerical problems. (03 hrs.)
	8. Other Semiconductor Devices
	8.1 JFET: Construction, principle of operation, characteristics
	8.2 MOSFET: Construction, principle of operation, characteristics
	8.3 Power Electronic Device-SCR: Brief discussions. (02 hrs.)
	9. Operational Amplifier
	9.1 Characteristics of ideal operational amplifier
	9.2 Pin Configuration of IC 741,
	9.3 Analysis of simple operational amplifier circuits: concept of virtual ground;
	0.4 Applications: voltage follower summer differentiator, integrator, and
	9.4 Applications. Voltage follower, summer, unterentiator, integrator, and
	10.1 Desitive feedback and condition of escillation
	10.1 Positive recuback and condition of oscillator (02 brs.)
	10.2 R-C phase-shift oscillator, wien bridge oscillator.(02 hrs.)
	11. Boolean algebra. Do Morgan's theorem simplification of Boolean
	expressions
	11.2 Number system range extension of numbers overflow
	11.3 Different codes: gray code ASCII code and BCD codes and them
	Applications (01 hrs.)
	12 Logic Gates
	12.1 NOT OR AND NOR NAND FX-OR FX-NOR gates
	12.2 Simplification of logic functions
	12.3 Realizations of logic expressions using logic gates. (01 hrs.)
	13. CRO and its applications and other test and measurement instruments. (01
	hrs.)
Text Books.	Text Books:
and/or	1. Introduction Electronic Devices & Circuit Theory.11/e. 2012. Pearson:
reference	Boylestad & Nashelsky
material	2. Electronic Principles, by Albert Paul MalvinoDr. and David J. Bates. 7/e.
-	Reference Books:
	1. Integrated Electronics by Millman, Halkias and Parikh, 2/e, McGrawHill.
	2. ELECTRONICS Fundamentals and Applications by Chattopadhyay and
	Rakshit,15/e, New Age Publishers.
	3. The Art of Electronics by Paul Horowitz, Winfield Hill, 2/e, Cambridge
	University.
	4. Electronics - Circuits and Systems by Owen Bishop, 4/e, Elsevier.
	5. Electronics Fundamentals: Circuits, Devices & Applications by Thomas L. Floyd
	& David M. Buchla, 8/e, Pearson Education.

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	2	3	2	2	-	1	-	-	-	-	-	1
ECC01	CO2	3	2	1	2	2	1	-	2	2	-	-	1
	CO3	3	2	2	2	3	-	-	-	2	-	-	1
	CO4	3	3	2	2	-	-	-	-	2	-	-	1

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

	De	partment of Electric	cal Enginee	ering						
Course	Title of the	Program Coro	Tota	l Number	of contact h	ours	Credit			
Code	course	(PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours				
EEC01	ELECTRICAL TECHNOLOGY	PCR	3	0	0	3	3			
Pre	-requisites	ites Course Assessment methods (Continuous (CT), Mid Term (MT and end assessment (EA))								
	NIL	CT+MT+ EA								
Course	Upon su	ccessful completion	n of this co	urse, the st	udent shou	ld be able	e to			
Outcomes	 CO1: lea analysis CO2: de 	arn the fundamenta of electrical networ velop an idea on N	ls of Electr k based or lagnetic ci	ric Circuits these con ircuits, Ele	s and Netw cepts. ectromagnet	ork theoretism and	rems and learning			
	 the working principles of some fundamental electrical equipment's CO3: learn about single phase and poly-phase AC circuits and analysis of such circuits based on these concepts. CO4: introduce the basic concept of single-phase transformer. CO5: analyze the transient phenomena in electrical circuits with DC excitation 									

Topics Covered	 Introduction: Overview of Electrical power generation systems (2) Fundamentals of Electric Circuits: Ohm's laws, Kirchhoff's laws, Independent and Dependent sources, Analysis of simple circuits. (4) Network theorems: Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem (4) Magnetic circuits: Review of fundamental laws of electromagnetic induction, transformer and rotational emfs, Solution of magnetic circuits. Analysis of coupled circuits (self-inductance, mutual inductance, and dot convention)(8) Transients with D.C. excitation for R-L and R-C circuits. (3) Generation of alternating voltage and current, E.M.F. equation, Average and R.M.S. value, Phase and phase difference, Phasor representation of alternating quantity, Behavior of A.C. circuits, Resonance in series and parallel R-L-C circuits. AC Network: Superposition theorem, Thevenin's theorem, Norton's theorem, maximum power transfer theorem, solution of networks with AC sources. (10) Single-Phase Transformer, equivalent circuits, open circuit and short circuit tests (6) Poly-phase system, Advantages of 3-phase system, Generation of 3-phase voltages, Voltage, current and power in a star and delta connected systems, 3-phase balanced and unbalanced circuits, Power measurement in 3-phase circuits. (5)
Textbooks/Referen	Textbooks:
ce material	1. Electrical & Electronic Technology by Hughes, Pearson Education India
	Reference Books:
	1. Advanced Electrical Technology by H. Cotton, Reem Publication Pvt. Ltd
	2. Electrical Engineering fundamentals by Vincent Deltoro, Pearson Edu

India

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	3	3	3	1	1	1	1	1	1	1
CO2	3	3	3	3	2	1	2	1	1	1	1	1
CO3	3	3	3	3	3	2	2	1	1	1	1	1
CO4	3	3	3	3	3	2	2	1	1	1	1	1
CO5	3	3	2	2	2	1	1	1	1	1	1	1

Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Course	Title of the	Program Core	Tota	l Number o	of contact ho	ours	Credit					
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives (PEL)	(L)	(T)	(P)	Hours						
BTC01	LIFE SCIENCE	PCR	2	0	0	2	2					
Pr	e-requisites	Course Assess	ment meth	nods (Conti	nuous (CT),	mid-term	n (MT)					
			and er	id assessme	ent (EA))							
				CT+MT+E	Ą							
Course	CO1: Basic und	derstanding of bas	ic cellular	organizatio	on of organ	isms and	cellular					
Outcome	es communication	ns, structure and	function:	s of the	macromole	cules an	d their					
	biosynthesis ar	nd catabolism.										
	CO2: To give	an understanding	; of the k	ey feature	s of the st	ructure,	growth,					
	physiology and	behavior of bacte	ria, viruses	, fungi and	protozoa							
	CO3: To Introd	uce molecular bio	logy to und	ierstand bi	ological pro	cesses in	various					
		le a foundation in	immunolo	gical proce	scos and ar		w of the					
	interaction bet	ween the immune	system an	d nathoger	15. 15.		v or the					
	CO5: To prov	ide knowledge al	pout biolog	gical and	biochemica	l process	es that					
	require engine	ering expertise to	solve them	-		·						
	CO6: To prov	CO6: To provide knowledge about biological and biochemical processes that										
	require engine	require engineering expertise to solve them										
Topics	1. Cell Biology	1. Cell Biology (4)										
Covered	d a) Introdu	ction to life scienc	e: prokaryo	otes & euka	ryotes							
	Definiti	on; Difference	:مم ممال ما:4	foresttures	a of coll							
	c) Collular	ction to cells - Der	me cell, dif	d function	s of cell							
	d) Cellular	communications	ganenes ai									
	Introdu	ction to basic sign	aling: end	ocrine, para	acrine signa	ling: con	cepts of					
	recepto	or, ligand, on-off sv	vitch by ph	osphorylati	ion/dephos	phorylati	on					
	2. Biochemistr	y (4)	, ,	. ,								
	a) Biologio	cal function of car	bohydrate	and lipid -	Introductio	on, struct	ure and					
	functio	n										
	b) Biologie	cal function of nuc	leic acids a	nd protein	- structure a	and funct	ion					
	c) Catabo	lic pathways of	Macromol	ecules - I	ntroduction	to cata	abolism,					
	hydroly	sis and condensation	tion reaction	ons; Catabo	olism of glu	ICOSE- GI	ycolysis,					
	d) Biosynt	hesis of Macromo		and lipids								
	Genera	tion of ATP (FTS)	Generation	of Glucose	(Photosynt	hesis)						
	3. Microbiolog	3. Microbiology (5)										
	a) Types o	a) Types of microorganisms and their general features - Bacteria, Yeast, Fungi,										
	Virus,	Protozoa- genera	l introduc	tion with	practical	significan	ce and					
	disease	S										
	b) Microb	ial cell organizatio	n - Internal	and Exter	nal features	of cell- k	oacterial					
	cell wa	I, viral capsule, pil	us etc,	I								
	c) Microb	c) Microbial nutritional requirements and growth - Different Sources of										
	d) Rasic m	icrohial metabolic	m - Fermer	ntation Reg	spiration Su	llfur Na c	vcle					
	uj Dasic II		in - renner		spiration, St	mur, N ₂ C	yue					

	4. Immunology (5)
	a) Basic concept of innate and adaptive immunity - Immunity-innate and
	adaptive, differences, components of the immune system
	b) Antigen and antibody interaction - Antigen and antibody, immunogen,
	factors affecting immunogenicity, basic antigen-antibody mediated assays,
	introduction to monoclonal antibody
	c) Functions of B cell - B cell, antibody production, memory generation and
	principle of vaccination
	d) Role of T cell in cell-mediated immunity - Th and Tc, functions of the T cell
	with respect to different pathogen and cancer cell
	5. Molecular Biology (5)
	a) Prokaryotic Genomes (Genome organization & structure) - Nucleoid,
	circular or linear
	b) Eukaryotic Genomes (Genome organization & structure) - Intron, exon,
	packaging, chromatin
	c) Central Dogma (Replication, Transcription and Translation)
	d) Applications of Molecular Biology (Diagnostics, DNA-fingerprinting,
	Recombinant products etc.) - Introduction to Recombinant DNA,
	fingerprinting, cloning
	6. Bioprocess Development (5)
	a) Microbial growth kinetics - Batch, fed-batch and continuous systems,
	Monod Equation
	b) Enzyme kinetics, kinetics of enzyme inhibition and deactivation
	Definition of enzymes, activation energy, Concepts of Km, Vmax, Ki
	c) Microbial sterilization techniques and kinetics
	Introduction to sterilization, dry and moist sterilization
	d) Thermodynamics of biological system - Concepts of Enthalpy, Entropy,
	favorable reactions, exergonic and endergonic reactions
	e) Material and energy balance for biological reactions - Stoichiometry
Text Books,	1. Biotechnology 01 Edition, authored by U. Satyanarayana, BOOKS & ALLIED (P)
and/or	LID. 2. Disebergista bulobaiasea McMillea publishers
matarial	2. Biochemistry by Lenninger. Microman publishers
material	5. WILCIDDIDIOSY DY PEILZAL, CHAILAND KITES, TATA WILCIDIAW HIII 4. Brown T.A. Constics a Molecular Approach. 4th Ed. Chanman and Hall 1002
	4. Drown, T.A., Genetics a Wolecular Approach, 4th Ed. Chapinan and Hall, 1992
	5. Kuby J, momas J. Kinut, barbara, A. OSborne immunology, oth Euition, Ereeman 2002
	6 Bioprocess Engineering: Basic Concents (2nd Ed) Shular and Kargi DU
	o. Bioprocess Engineering, basic concepts (2nd Ed), shuler and Kargi, PHI.

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
	CO1	2	1	1	-	1	-	-	-	-	-	-	-
	CO2	2	1	1	-	1	-	1	-	-	-	-	-
BTC01	CO3	2	1	1	-	1	-	-	-	-	-	-	-
	CO4	2	1	1	-	1	-	-	1	-	-	-	1
	CO5	2	1	1	-	1	1	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	l Number c	of contact ho	ours	Credit				
Code		(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
	The Constitution									
XXC01	of India and Civic	PCR	1	0	0	1	1			
	Norms									
Pr	re-requisites	Course Assess	ment meth	nods (Conti	nuous (CT),	mid-term	n (MT)			
			and er	nd assessm	ent (EA))					
	NIL	CT+MT+EA								
Course	e CO1: Elementa	ry understanding of the evolution of historical events that led to								
Outcome	es the making o	of the Indian const	itution, the	philosoph	ical values, l	basic stru	cture			
	and fundame	ental concerns ens	ntal concerns enshrined in the Constitution of India.							
	CO2: Aware of	he fundamental rights and duties as a citizen of the country.								
	CO3: Enable t	o know the civic	norms to	be follow	ed accordir	ng to the	e Indian			
	constitution									
Topics	1. Historica	al background of th	ne Making	of Indian Co	onstitution (1 Hour)				
Covered	d 2. Preambl	e and the Philosop	phical Value	es of the Co	onstitution (1 Hour)				
	3. Brief Ov	3. Brief Overview of Salient Features of Indian Constitution (1 Hour								
	4. Parts I 8	II: Territoriality ar	nd Citizensl	nip (1 Hour)					
	5. Part III:	5. Part III: Fundamental Rights (2 Hours)								
	6. Part IV:	6. Part IV: Directive Principles of State Policy (1 Hour)								
	7. Part IVA	Part IVA: Fundamental Duties (1 Hour)								
	8. Union G	overnment: President, Prime Minister and Council of Ministers (2								
	9 Parliano	ant: Council of Stat	os and Hou	ise of the D	Deonle (1 Ho	ur)				
	10 State Go	vernment: Govern	ouncil of States and House of the People (1 Hour)							
	11 State Le	gislature: Legislati	lor, chier h νe Δssemhl	ies and Leo	vislative Cou	ncils (1 H	our)			
	12. Judian II	idiciary: Supreme	Court and I	High Courts	s (1 Hour)		oury			
	13 Centre-9	State Relations (1 F	Hour)		(1 Hour)					
	14. Reserva	tion Policy. Langua	ige Policy a	nd Constitu	ution Ameno	dment (1	Hour)			
Text Boo	ks. Primary Reading	2S:	<u>.80 : 0.107 c.</u>				,			
and/or	1) P. M. Ba	kshi. The Constitut	tion of India	7. 18 th ed. (2022)					
referenc	ce 2) Durga D	rga Das Basu Introduction to the Constitution of India 25 th ed (2021)								
materia	al 3) J.C. Joha	ari, Indian Government and Politics, Vol. II. (2012)								
	Secondary Read	lings:		,	, (,	,				
	Granville Austin	, The Indian Const	titution: Co	rnerstone d	of a Nation ((1966: pa	perback			
	ed. 1999); Gra	anville Austin, W	/orking a	Democrat	ic Constitut	ion: The	Indian			
	Experience (199	9; paperback ed. 2	2003).	-		-				

Course	Title of the course	Program Core	Tota	l Number c	of contact ho	ours	Credit			
Code		(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
VECED	GRAPHICAL									
AE332	ANALYSIS USING	PCR	0	0	2	2	1			
	CAD									
Pr	e-requisites	Course Assessm	ent method	ds (Continu	ous (CT) an	d end ass	essment			
		(EA))								
	NIL			CT+EA						
Course	• CO1: Introdu	ction to graphical s	on to graphical solution of mechanics problems							
Outcome	es •CO2: Knowle	edge on graphical solution methods for solving equilibrium in								
	coplanar forc	e system								
	•CO3: Introdu	ducing Maxwell diagram and solution of plane trusses by graphica								
	method	bd								
	• CO4: Determ	ination of centroid	of plane f	igures by gi	raphical met	thod				
	CO5: Exposur	e to AutoCAD soft	ware for co	omputer ai	ded graphic	al solutio	n			
Topics	Graphical a	nalysis of problems	s on statics	. [14]						
Covered	d • Graphical so	olution of engineer	ing proble	ms using C	AD (with the	e help of				
	"AutoCAD")	[14]								
Text and/	or 1) Engineering	Engineering Drawing and Graphics – K Venugopal								
referenc	e 2) AutoCAD —	- George Omura								
materia	l 3) Practical Ge	eometry and Engin	eering Gra	phics – W A	Abbott					

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	-	-	-	-	-	-	-	-	-	-	-
	CO2	1	2	-	-	-	-	-	-	-	-	-	-
XES52	CO3	2	1	-	-	-	-	-	-	-	-	-	-
	CO4	2	1	-	-	-	-	-	-	-	-	-	-
	CO5	1	-	-	-	2	-	-	-	-	-	_	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program Core	Tota	l Number c	of contact ho	ours	Credit		
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
CSS51	COMPUTING LABORATORY	PCR	0	0	2	2	1		
Pr	re-requisites	Course Assessment methods (Continuous (CT) and end assessment							
				(EA))					
	NIL CT+EA								
Course	•CO1: To und	•CO1: To understand the principle of operators, loops, branching statem							
Outcome	es function, rec	function, recursion, arrays, pointer, parameter passing techniques							

	 CO2: To detail out the operations of strings
	 CO3: To understand structure, union
	 CO4: Application of C-programming to solve various real time problems
Topics	List of Experiments:
Covered	1. Assignments on expression evaluation
	2. Assignments on conditional branching, iterations, pattern matching
	3. Assignments on function, recursion
	4. Assignments on arrays, pointers, parameter passing
	5. Assignments on string using array and pointers
	6. Assignments on structures, union
Text Books,	Text Books:
and/or	1. Let us C by Kanetkar
reference	2. C Programming by Gottfried
material	3. Introduction to Computing by Balaguruswamy
	4. The C-programming language by Dennis Ritchie
	Reference Books:
	1. Computer fundamental and programming in C by P Dey and M. Ghosh
	2. Computer fundamental and programming in C by Reema Thareja
	3. programming with C by Schaum Series

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
	CO1	3	-	1	-	-	-	-	-	-	-	-	-
	CO2	-	2	1	3	-	-	-	-	-	-	-	-
CSS51	CO3	-	1	-	2	1	-	-	-	-	-	-	-
	CO4	-	-	3	2	-	-	1	-	-	-	2	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program Core	Program Core Total Number of contact hours					
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
ECS 51	Basic electronics	PCR	0	0	2	2	1	
	Lab							
Pr	e-requisites	Course As	sessment n as	nethods (Co sessment (I	ontinuous (C EA))	CT) and e	nd	
	NIL CT+EA							
Course Outcome	 CO1: Acques CO2: To de application CO3: Learn signals. 	ire idea about k etermine IV chara s. n to analyze the o	oasic electi acteristics o circuits and	ronic comp of these Ci I observe a	oonents, id rcuit eleme and relate i	entification ents for contraction nput and	on, and lifferent output	

Labs	1. To know your laboratory: To identify and understand the use of different
Conducted.	electronic and electrical instruments.
	2. To identify and understand name and related terms of various electronics
	components used in electronic circuits.: Identify different terminals of
	components fid their values and observe numbering associate with it
	2 Use of escillescene and function generatory Use of escillescene to measure
	3. Use of oscilloscope and function generator. Use of oscilloscope to measure
	voltage, frequency/time and Lissajous figures of displayed waveforms.
	4. Study of half wave and Full-wave (Bridge) rectifier with and without capacitor
	filter circuit.
	5. Realization of basic logic gates: Truth table verification of OR, AND, NOT, NOT
	and NAND logic gates from TTL ICs
	6 Regulated nower supply: study I M78XX and I M79XX voltage regulator ICs
	7. Transistor as a Switch: study and perform transistor as a switch through NOT
	7. Transistor as a switch. Study and perform transistor as a switch through NOT
	gate
	8. Zenner diode as voltage regulator
	9. To study clipping and Clamping circuits
	10. To study different biasing cirtis.
	11. Study of CE amplifier and observe its frequency response.
Text Books,	Text Books:
and/or	1. Experiments Manual for use with Electronic Principles (Engineering
reference	Technologies & the Trades) by Albert Paul MalvinoDr David L Bates et al
material	Reference Books:
material	1. The Art of Electronice 2c, by Devil Hencewitz, Münfield Hill
	1. The Art of Electronics 3e, by Paul Horowitz, Winfield Hill
	2. Electronic Principles, by Albert Paul MalvinoDr. and David J. Bates

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ECS51	CO1	3	2	1	2	2	1	-	-	2	-	-	-
	CO2	3	2	2	2	3	-	-	-	2	-	-	-
	CO3	3	3	2	2	-	-	-	-	2	-	-	-

Correlation levels 1, 2 or 3 as defined below:

	Department of Electrical Engineering										
Course	Tit	le of the course	Program	Program Total Number of contact hours							
Code			Core (PCR) /	Lecture	Tutorial	Practical	Total				
			Electives	(L)	(T)	(P)	Hours				
			(PEL)								
EES51	EL	ECTRICAL									
	TEC	CHNOLOGY	PCR	0	0	2	2	1			
	LA	BORATORY									
P	re-re	quisites	Course As	ssessment	methods (C	Continuous (CT) and	end			
				a	ssessment ((EA))					
	None			CT+EA							
Course	Course Upon successful completion of this course, the student should be at						ould be ab	ole to			
Outcom	es	•CO1: understan	nd the principle	of superpos	sition.						

on lamp.
insformer.
e
nected load
Tarnekar,
Chand

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	3	3	3	1	1	1	2	2	2	3
CO2	3	3	3	3	3	1	1	1	2	2	2	3
CO3	3	3	3	3	3	1	1	1	2	2	2	3
CO4	3	3	3	3	3	1	1	1	2	2	2	3
CO5	3	3	3	3	3	1	1	1	2	2	2	3
CO6	3	3	3	3	3	1	1	1	2	2	2	3
CO7	3	3	3	3	3	1	1	1	2	2	2	3
CO8	3	3	3	3	3	1	1	1	2	2	2	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

	Title of the	Program Core	Tota	l Number o	f contact ho	urs	
Course Code	course	(PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P) [#]	Total Hours	Credit
XXS-52	Co-curricular Activities	PCR	0	0	2	2	1
Pre- requisites	Course assessment methods: (Continuous evaluation((CE) and end assessment (EA)						
--------------------	--						
NIL	CE + EA						
Course	CO1: Social Interaction: Through the medium of sports						
Outcomes	CO2: Ethics: Recognize different value systems including your own, understand						
	the moral dimensions of your decisions, and accept responsibility for them						
	CO3: Self-directed and Life-long Learning: Acquire the ability to engage in						
	independent and life-long learning in the broadest context socio-technological						
	changes.						
	CO4: Personality development through community engagement						
.	CO5: Exposure to social service						
lopics	YUGA						
Covered	Sitting Posture/Asanas- Gomuknasana, Swastikasana, Siddhasana, <u>Ustrasana</u> ,						
	Deschimottenesene Sheshenkesene Bhadresene						
	Mudra- Vayu Shunya Prithyi Varuna Anana Hridaya Phairay mudra						
	 Indura- Vayu, Shuriya, Philiwi, Varuna, Apana, Anduaya, Bhanav muura. Laving Posture/Asanas, Shalabhasana (Locust Posture), Dhanurasana (Bow) 						
	Posture) ArdhaHalasana (Half Plough Pose) Sarvangasana (Shoulder Stand)						
	Halasana (Plough Pose), Matsyasana, SuptaVairasana, Chakrasana (Wheel						
	Posture), Naukasana (Boat Posture), Shavasana (Relaxing Pose), Makaraasana.						
	Meditation- 'Om'meditation, Kundalini or Chakra Meditation,						
	Mantrameditation.						
	• Standing Posture/Asanas- ArdhaChakrsana (Half Wheel Posture), Trikonasana						
	(Triangle Posture), ParshwaKonasana (Side Angle Posture), Padahastasana,						
	Vrikshasana (Tree Pose), Garudasana (Eagle Pose).						
	Pranayama- Nadisodha, Shitali, Ujjayi, Bhastrika, Bhramari.						
	Bandha- Uddiyana Bandha, Mula Bandha, Jalandhara Bandha, Maha Bandha.						
	Kriya- Kapalabhati, Trataka, Nauli.						
	ATHLETICS						
	• Long Jump- Hitch kick, Paddling, Approach run, Take off, Velocity, Techniques,						
	Flight & Landing						
	• Discus throw, Javelin throw and Shot-put- Basic skill & Technique, Grip, Stance,						
	Release & Follow through.						
	Field events marking.						
	General Rules of Track & Field Events.						
	BASKETBALL						
	• Shooting- Layup shot, Set shot, Hook shot, Jump shot. Free throw.						
	Rebounding- Defensive rebound, Offensive rebound.						
	Individual Defensive- Guarding the man without ball and with ball.						
	Proting. Dulas of Poskethall						
	Rules Of Dasketball. Paskotball game						
	Snike-Straight snike Body turn snike Tin snike Back attack Slide snike Wine						
	out snike						
	Block-Single block Double block Triple block Group block						
L							

	Field Defense- Dig pass, Double pass, Roll pass.
	Rules and their interpretation.
	FOOTBALL
	 Dribbling- Square pass, Parallel pass, Forward pass.
	Heading (Standing & Running)- Fore head, Side fore head, Drop heading, Body
	covering during heading.
	• Kicking- Full volley, Half volley, Drop kick, Back volley, Side volley, Chiping
	(lobe).
	• Tackling: Covering the angle, Chessing time sliding chese, Heading time
	shoulder tackle etc.
	• Feinting- Body movement to misbalance the opponent and find space to go
	with ball.
	Rules of Football.
	CRICKET
	Batting straight drive.
	Batting pull shot.
	Batting hook shot.
	Bowling good length, in swing.
	Bowling out swing, Leg break, Goggle.
	• Fielding drill.
	• Catching (Long & Slip).
	Wicket keeping technique.
	Kules & Regulation.
	 INET PIAY- I UMBIING NET SNOT, NET KIII, and NET LIFT. Smaching
	Smasning. Defausive kick closer (Lek
	Detensive nign clear/Lop.
	Hair court toss practice, Cross court toss drop practice, Full court Game practice
	practice.
	 Player Positioning, Placements. Bulas & Degulation
	 Kules & Kegulation. Doubles & Mixed doubles match practice
	Doubles & Ivitxed doubles match practice. TABLE TENNIS
	Stroke: Backhand, Tonsnin against nuch hall. Tonsnin against doon hall. Tonsnin
	 Scroke, backhanu- ropspin against push ball, ropspin against deep ball, ropspin against rally ball. Topspin against topspin
	against rany bail, ropspin against topspin.
	- Science, Forenand- Topspin against push ball, Topspin against deep ball, Topspin against rally ball. Topspin against topspin
	 Stroke- Backhand Job with rally Backhand Job with sidesnin. Foreband Job with
	rally Forehand lob with sidesnin
	 Service: Backhand/Forehand- Push service. Deep push service. Rally service.
	 Service: Backhand sidespin (Left to right & Right to left)
	 Service: Forehand- High toss backsnin service. High toss sidesnin service. High
	toss reverse spin service.
	Rules and their interpretations.
	Table Tennis Match (Singles & Doubles).
l	

NCC
• FD-6 Side pace, Pace Forward and to the Rear.
 FD-7 Turning on the March and Wheeling.
• FD-8 Saluting on the March.
• FD-9 Marking time, Forward March and Halt in Quick Time.
• FD-10 Changing step.
FD-11 Formation of Squad and Squad Drill.
FD-12 Parade practice.
TAEKWONDO
 Poomsae (Forms)- Jang, Yi Jang.
 Self Defense Technique- Self defense from arms, Fist and Punch.
 Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).
 Combination Technique- Combined kick and punch.
 Board Breaking (Kyokpa)- Sheet breaking.
 Interpretation Rules above Technique of Taekwondo.
NSS
No Smoking Campaign
Anti- Terrorism Day Celebration
 Any other observation/celebration proposed by Ministry/institute
Public Speaking
Discussion on Current Affairs
Viva voce

Mapping of CO (Course outcome) and PO (Programme Outcome)

									<u> </u>				
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	-	-	-	-	-	2	-	-	3	-	-	-
	CO2	-	-	-	-	-	-	-	2	-	-	-	-
XXS52	CO3	-	-	-	-	-	-	1	-	-	-	-	3
	CO4	-	-	-	-	-	-	-	-	2	2	-	-
	CO5	-	-	-	-	-	3	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

			Department	of Mathem	atics					
Course	Tit	le of the course	Program	Total Nu	mber of co	ntact hours		Credit		
Code			Core	Lecture	Tutorial	Practical	Total			
			(PCR) /	(L)	(T)	(P)	Hours			
			Electives							
			(PEL)							
MAC331	MA	THEMATICS-III	PCR	3	1	0	4	4		
Pre-requisites	S		Course Asse	essment m	ethods (Co	ntinuous (C ⁻	T) <i>,</i> mid-te	rm		
			(MT) and er	nd assessm	ent (EA))					
Basic knowled	dge c	of topics	CT+MT+EA							
included in M	IACO:	1 & MAC02.								
Course		CO1: Acquir	re the idea at	bout mathe	ematical fo	rmulations of	of phenoi	mena in		
Outcomes		physics and	engineering.							
		• CO2: To u	nderstand th	ne commo	n numerio	al method	s to obt	ain the		
		approximat	e solutions fo	or the intra	ctable matl	nematical pr	oblems.			
		• CO3: To un	derstand the basics of complex analysis and its role in modern							
		mathematio	cs and applied contexts.							
		• CO4: To un	iderstand the optimization methods and algorithms developed							
		for solving v	various types of optimization problems.							
Topics Covere	ed	Partial Differer	ntial Equations (PDE): Formation of PDEs; Lagrange method for							
		solution of fir	rst order quasilinear PDE; Charpit method for first order							
		nonlinear PDE;	; Homogenous and Nonhomogeneous linear PDE with constant							
		coefficients: Co	omplimentary	y Function	, Particula	r integral;	Classifica	ition of		
		second order	linear PDE a	and canon	ical forms	; Initial &	Boundar	y Value		
		Problems invol	lving one dimensional wave equation, one dimensional heat							
		equation and ty	wo dimensional Laplace equation. [14]							
		Numerical Met	hods: Signific	ant digits,	Errors; Dif	ference ope	rators; N	ewton's		
		Forward, Back	kward and Lagrange's interpolation formulae; Numerical							
		solutions of no	onlinear algel	braic/trans	cendental	equations I	by Bisect	ion and		
		Newton-Raphso	on methods;	Trapezoida	al and Simp	oson's 1/3 ru	ule for nu	imerical		
		integration; Eu	ler's method	and mod	ified Eular	's methods	for solvi	ing first		
		order differenti	tial equations. [14]							
		Complex Anal	lysis: Functions of complex variable, Limit, Continuity and							
		Derivative; Ana	alytic function; Harmonic function; Conformal transformation							
		and Bilinear tra	insformation;	Complex i	integration	; Cauchy's i	ntegral th	neorem;		
		Cauchy's integ	ral tormula;	Taylor's th	eorem, La	urent's theo	orem (Sta	tement		

THIRD SEMESTER

	only); Singular points and residues; Cauchy's residue theorem. [17]										
	Optimization:										
	Mathematical Preliminaries: Hyperplanes and Linear Varieties; Convex Sets,										
	Polytopes and Polyhedra. [2]										
	Linear Programming Problem (LPP): Introduction; Formulation of linear										
	programming problem (LPP); Graphical method for its solution; Standard form										
	of LPP; Basic feasible solutions; Simplex Method for solving LPP. [9]										
Text Books,	Suggested Text Books:										
and/or	1. An Elementary Course in Partial Differential Equations-T. Amarnath										
reference	2. Numerical Methods for scientific & Engineering Computation- M.K.Jain,										
material	S.R.K. Iyengar&R.K.Jain.										
	3. Foundations of Complex Analysis- S. Ponnuswami										
	4. Operations Research Principles and Practices- Ravindran, Phillips, Solberg										
	5. Advanced Engineering Mathematics- E. Kreyszig										
	Suggested Reference Books:										
	1. Complex Analysis-L. V. Ahfors										
	2. Elements of partial differential equations- I. N. Sneddon										
	3. Operations Research- H. A. Taha										

POs	РО	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO12
	1									0	1	
CO1	3	2			2		2			2	2	3
CO2	1	2	1	1			3		2	1		3
CO3	3			2		1	2		2			3
CO4	3	3	3	2			1	2	1		2	3

	Department of Chemistry										
Course	Title of the course	Program	Program Total Number of contact hours								
Code		Core (PCR) /	Lectur	Tutoria	Practica	Total	t				
		Electives	e (L)	I (T)	l (P)	Hour					
		(PEL)				S					
CYC301	State of mater	PCR	3	1	0	4	4				
	and chemical										
	thermodynamic										
	S										
Pre-requi	sites	Course Asses	sment met	hods (Cont	inuous (CT)	and end					
		assessment)									
		(EA))									

NIL	CT+EA					
Course	CO1: Foundation in chemical thermodynamics.					
Outcomes	CO2: Understand the fundamental properties of different states	of matter.				
	 CO3: Analyzing effect of various experimental parameters towar 	ds				
	equilibrium condition of a chemical reaction/process.					
	• CO4: Numerical analysis on various thermodynamics properties.					
Topics	Kinetic Theory of Gases and Real gases					
Covered	 a. Concept of pressure and temperature; Collision of gas molecules; Collision diameter; Collision number and mean free path; Frequency of binary collisions (similar and different molecules); Rate of effusion. b. Nature of distribution of velocities. Maxwell's distribution of 	4L				
	 speed and kinetic energy; Average velocity, root mean square velocity and most probable velocity; Principle of equipartition of energy and its application to calculate the classical limit of molar heat capacity of gases c. Deviation of gases from ideal behavior; compressibility 	6L				
	c. Deviation of gases from ideal behavior; compressibility factor; Boyle temperature; Andrew's and Amagat's plots; van der Waals equation and its features; its derivation and application in explaining real gas behaviour; Existence of critical state, Critical constants in terms of van der Waals constants; Law of corresponding states					
	d. Viscosity of gases and effect of temperature and pressure on coefficient of viscosity (qualitative treatment only)	2L				
	Liquids					
	Definition of Surface tension, its dimension and principle of its determination using stalagmometer; Viscosity of a liquid and principle of determination of coefficient of viscosity using Ostwald viscometer; Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only)					
	Solids					
	Forms of solids, crystal systems, unit cells, Bravis lattice types, Symmetry elements; Law of constancy of interfacial angles, Law of rational indices; Miller indices of different planes and interplanar distance, Bragg's law; Structures of NaCl, KCl and CsCl (qualitative treatment only); Defects in crystals; Glasses and liquid crystals	6L				

	Chemical Thermodynamics	14L
	Second law and its elementary interpretation, Carnot's cycle and	
	theorems, Refrigeration, Concept of entropy, Clausius inequality	
	Gibbs and Helmholtz functions, Criteria of spontaneity,	
	Thermodynamic probability, Thermodynamics equation of states;	
	Thermodynamic relations; Thermodynamics of ideal mixing,	
	Clausius-Clayperoneqn and phase diagram of single component	
	systems, Joule-Thomson cooling effect.	
	Chemical Equilibrium	4L
	Conditions of spontaneity and equilibrium, degree of advancement	
	and Le Chatelier principle; Van't Hoff isotherm, isobar and isochore	
	systems. Various factors affecting the equilibrium condition.	
Text Books,	1. Physical chemistry by P. Atkins and J.de Paula	
and/or	2. Physical chemistry by Laidler and Meiser	
reference	3. A text book of physical chemistry by K.L.Kapoor (Vol 1 and 2)	
material	4. Physical chemistry by P.C.Rakshit	
	5. Physical Chemistry by Barrow, G.M. Tata McGraw-Hill (2007)	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	2	1	1	3	2	1	1	2
CO2	3	1	1	3	2	1	1	3	2	1	1	2
CO3	3	1	1	3	2	1	1	2	2	1	1	2
CO4	3	1	1	3	1	1	1	1	1	1	1	1

	Department of Chemistry										
Course	Title of the	Program Core	Program Core Total Number of contact hours								
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives (PEL)	(L)	(T)	(P)	Hours					
CYC302	Atomic structure	PCR	3	1	0	4	4				
	and Chemical										
	bonding										
Pre-requi	sites	Course Assessment methods (Continuous (CT), mid-term (MT) and									
		end assessment (EA))									
None		CT+MT+EA									

Course	CO1: know the history of development of the subject with the contr	ribution of
Outcomes	the scientist.	
	• CO2: to be exposed with quantization of energy, momentum and sp	bace.
	CO3: understand the behavior of electron in an atom in term of ene momentum, position etc.	ergy,
	 CO4: knowledge about the hydrogen spectrum in absence and press 	ence of
	magnetic field.	
	 CO5: know about Schrodinger equation and different quantum nur 	nber.
	CO6: spin of electrons and spin quantum number	
	 CO7: orientation and shape of the atomic orbitals 	
	CO8: quantum mechanical treatment of VB and MOT	
	• CO9: understand the concept of hybridization of atomic orbital, the	shape of
Tanias	the molecules, VB and MOI	04
Topics	offect. De Breglie were perticle duelity, Heisenberg uncertainty	04
Covered	effect, De Broglie wave particle duality, Heisenberg uncertainty	
	principle, wave function, Born interpretation	04
	Schrödinger wave equation of hydrogen atom, separation of variables,	04
	quantum numbers, Principal quantum number, orbital quantum	
	numbers, magnetic quantum numbers, shape and size of orbital,	
	uncertainty principal and quantisation of space	04
	Electron probability density, radial part, radial distribution curve and	
	its interpretation, node and angular part of wave s (imaginary and real	02
	form) and orbitals shape, electron cloud density representation of	
	hydrogen orbitals	
	Electron in magnetic field, Zeeman effect, spectrum of hydrogen atom	02
	and electron spin	
	Many electron atoms and ions:	04
	Antisymmetric principle, Pauli's exclusion principle, Hund's rule,	
	exchange energy, Autoau principle	04
	Electronic energy level diagrams and electronic configurations of	01
	hydrogen-like and poly electronic atoms and ions, screening effect,	02
	Slater rule, approximate method, variation principle, spin orbit	
	coupling, term symbol	05
	Covalent bond:	02
	Covalence bond: Lewis structure and octet rule, violation of octet rule	
	Variation principle, one electron wave function, valence bond theory	
	Hybridication sigma band ni band dalta band band distance band	
	opergies bend angle	
	Directional property, shape VSEPP	
	Directional property, shape, VSEPK	

	Bond moment and dipole moments, hydrogen bond, inter molecular	02						
	forces	05						
	Molecular orbital theory, H_2^+ , binuclear(AB), tri nuclearAB ₂ (linear and							
	angular), Cyclic planar, Penta nuclearAB ₄ (tetrahedral, square planer)							
	, hepta nuclear AB ₆ (octahedral) etc.							
Text Books,	1. Inorganic Chemistry, Part I , R. L. Dutta New Book Stall							
and/or	2. Fundamental concept of Inorganic Chemistry, vol I and II, Asim	K. Das, CBS						
reference	publishers & distributors							
material	3. Inorganic Chemistry, Huheey, Keiter, Keiter, Medhi, Pearson educatio	n						
	4. Inorganic chemistry, Shriver & Atkins, Oxford							
	5. Concept and models of inorganic Chemistry, Douglas, Mcdeniel, Alex	ander, Wiley						
	india Pvt. Ltd.							

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	2	3	3	1	1	1	2	1	2	2	1
CO2	3	2	3	3		1	1	2	1	2	2	1
CO3	3	2	3	3		1		2	1	2	2	1
CO4	3	2	3	3		1	1	2	1	2	2	1
CO5	3	2	3	3		1	1	2	1	2	2	1
CO6	3	2	3	3		1	1	2	1	1	2	1
CO7	3	2	3	3		1		2	1	2	2	1
CO8	3	2	3	3		1	1	2	1	2	2	1
CO9	3	2	3	3		1	1	2	1	1	2	1

		Department of	of Chemist	ry						
Course	Title of the	Program Core	Total Nu		Credi					
Code	course	(PCR) /	Lectur	Tutoria	Practica	Total	t			
		Electives (PEL)	e (L)	I (T)	l (P)	Hour				
						S				
CYC 303	Stereochemistry and Basic principle of organic chemistry	PCR	3	1	0	4	4			
Pre-requi	sites	Course Assessment methods (Continuous (CT), mid-term (MT)								
		and end assessment (EA))								
None		CT+MT+EA								

Course	CO1: To Learn Basic Concept of stereochemistry	
Outcomes	CO2: To Learn Molecular symmetry, Designation of chiral centre	e, axis and
	helices	
	CO3: To Learn Selectivity issues in organic reactions	
	CO4: To Learn Nomenclature of bicyclic and Spiro compounds a	nd reactivity
	based on stereochemistry	
	CO5: To Learn Conformational analysis	
	CO6: To Learn Chemistry of Functional Groups	
Topics	1. Basic concept of stereochemistry : Isomerism;	
Covered	asymmetric and dissymmetric centres	
	/molecules, Conformation and configurational	
	nomenclature	
	2. Molecular symmetry: chirality, chiral axis,	
	helicity,	
	3. Regio-, chemo- and stereoselective reactions	
	4. Nomenclature of spiro and bicyclic compounds.	
	reactivit6v based on stereochemistry 25 lecs	
	5. conformational analysis of acyclic and cyclic	
	compounds 15Locs	
	6. Chemistry of functional groups:	
	Preparation, properties, reactions, separation	
	and identification of compounds containing	
	various functional groups	
Text Books.	1. Basic stereochemistry of organic molecules: S. Sengupta	
and/or	2. Stereochemistry: Conformation and Mechanism; P.S. Kalsi	
roforonco	3. Organic Chemistry : Morrison and Boyd	
meterial	4. Organic stereochemistry: D. Nasipuri	
materiai	5. Stereochemistry of Carbon Compounds: Ernest L. Eliel.	
	6 Organic Chemistry : S H Pine	

						-						
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	2	3	3	1	2	2	3	3	1	3	2
CO2	3	3	3	3	1	2	3	3	3	1	3	2
CO3	3	3	3	3	3	3	2	3	3	3	3	3
CO4	3	3	3	3	1	1	2	3	3	1	3	2
CO5	3	3	3	3	2	3	3	3	3	3	3	3
CO6	3	3	3	3	3	3	3	3	3	3	3	3

	Department of Chemistry												
Course	Title of the course	Program Core	Total Nu	mber of co	ntact hours		Credit						
Code		(PCR) /	Lecture	Tutorial	Practical	Total							
		Electives (PEL)	(L)	(T)	(P)	Hours							
CYS351	Qualitative	PCR	0	0	3	3	1.5						
	analysis of												
	organic samples												
Pre-requis	sites	Course Assessme	ent methoo	ds: Continue	ous assessm	ent and V	'iva-						
		Voce at the end	of the sem	ester.									
None													
Course	• CO1: A bas	sic idea about the	physical m	nethods lik	e; M.P., B.P	P., distillat	ion and						
Outcomes	; crystallizati	on for analysis of c	organic com	pounds.									
	• CO2: An ic	lea about the use:	s of reager	nts and sol	vents for a	nalysis of	organic						
	 COmpound CO3: Deter 	s ction and identifica	ation of spe	ecial eleme	ents and fun	ctional g	roups of						
	 CO3: Detection and identification of special elements and functional groups of organic samples. 												
Topics	1. Mixed N	1. Mixed Melting Point Determination:											
Covered	Urea – Cir	Urea – Cinnamic acid mixture of various compositions (1:4, 1:1, 4:1)											
	2. Distillat	ion : Simple disti	llation of	ethanol-w	vater mixtu	ire using	g water						
	condens	ser											
	Distillatio	n of nitrobenzene a	and aniline	using air co	ondenser								
	Purificatio	on of common org	anic solver	nts by disti	llation; met	hanol, pe	troleum						
	ether, TH	F, chloroform etc.											
	3. Crystalli	zation: Concept o	of induced	crystallizat	tion, Phthal	ic acid fr	om hot						
	water (ι	ising fluted filter pa	aper and st	em less fun	nel), Acetar	nilide from	n boiling						
	water, N	laphthalene from e	ethanol, Bei	nzoic acid f	rom water.								
	4. Decolou	rization and Cr	ystallizatio	n: Decolo	urization o	of browr	n sugar						
	(sucrose	e) with animal cha	arcoal usin	g gravity f	filtration. C	rystallizat	ion and						
	decolou	rization of impure	naphthaler	ne (100 g of	f naphthaler	ne mixed	with 0.3						
	g of cor	ngo red using 1 g de	ecolourizing	g carbon) fr	om ethanol								
	5. Sublima	tion (Simple and V	/acuum): Ca	ampnor, Na	aphthalene,	phthalic	acid and						
	Succinic	acid.				atha a al	ath a sal						
		auon or some o	nitrobona	rganic mo	l alcohol fo		ernanoi,						
		, giverui, annine,	e, nurobenzene, benzyi alconol, formic acid, acetic										
	7 Identifi	ation of unknown	organic co	mound	CUSE, SUCIUS								
	Identifica	tion of an organic	compound	through +	he function	al group	analysis						
	determin	ation of melting no	int and nre	naration of	[:] suitable de	rivatives							
	acternina	action of menting po		Paration Of	suitable de	uurves.							

Text Books,	Suggested Text Books: (i) Textbook of Practical Organic Chemistry by Vogel
and/or	(ii) A text-book of practical organic chemistry by Subhas C Das
reference	(iii) A text book on chemistry practical: Nad, Mahapatra and Ghosal
material	

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	2	2	2	3	2	2	3	3	2	3	2
CO2	2	3	3	3	2	2	3	2	3	3	2	2
CO3	3	3	3	2	1	3	2	3	2	2	1	2

Course	Tit	e of the	Program Core	Total Nu	mber of co	ontact hours	5	Credit				
Code	τοι	urse	(PCR) /	Lectur	Tutoria	Practica	Total					
			Electives (PEL)	e (L)	I (T)	I (P)	Hour					
DHC331	Dh		DCR	3	0	0	S	3				
FIIC334	FIL	ysics ii	FCN	5	0	U	5	5				
Pre-requisites Course Assessment methods: (Continuous (CT), r								VIT) and				
NIL	NIL CT+MT+EA											
Course	e CO1: Able to understand the principles of classical mechanics apply to sol											
Outcome	S	classical pro	blems related to	solving La	grange's a	nd Hamilto	n's equa	tions of				
		motion.										
		CO2: Able to	o apply fundament	al knowled	lge of diffe	rent co-ord	linate sys	stems to				
		describe the	e spatial variations of	of the phys	ical quanti	ties dealt in	electron	nagnetic				
		field theory.										
		CO3: Able t	o explain fundame	ental laws	governing	electroma	gnetic fie	lds and				
		evaluate the	e physical quantitie	es of elect	romagnetio	: fields (Fie	ld intens	ity, Flux				
		density etc.)										
		CO4: Gain an integrative overview of electromagnetic waves, its propagation in										
		different m	edia and different	phenome	ena relateo	d to electr	omagnet	ic wave				
		propagation	••									

Topics	Classical Mechanics:
Covered	D'Alembert's principle, Lagrange's equation of motion, Some applications of
	Lagrange's equation of motion, Hamilton's equation of motion, Some
	applications of Hamilton's equation of motion and its physical significance [6L]
	Vector Analysis:
	Vector field, Divergence and curl of a vector field and their physical significance,
	Gauss's divergence theorem, Stoke's theorem, Green's theorem, Different
	coordinate systems (Cartesian, spherical and cylindrical) [8L]
	Electrostatics:
	Divergence of electrostatic field, Gauss's Law of electrostatics and its
	applications, Laplace's equation, Poisson's equation, Continuity equation,
	Capacitor. [6L]
	Magnetostatics:
	Curl of magnetic field, Ampere's Circuital law and its applications, Curl of electric
	field and divergence of magnetic field, Concepts of scalar and vector potentials.
	[7L]
	Electromagnetic Induction and Maxwell's Equation:
	Faraday's law of electromagnetic induction, Concept of displacement current,
	Maxwell's equation in free space, Poynting Theorem. Some examples. [7L]
	Alternating Current:
	L-R, C-R, L-C-R series and parallel circuits, Q- factor, Resonance, Maximum power
	transfer theorem, Voltage magnification factor, Band width of circuit. [8L]
Text Books,	TEXT BOOK:
and/or	1. Vector Analysis: Murray Spiegel (Author), Seymour Lipschutz, Dennis Spellman
reference	2. Introduction to Electrodynamics: David J. Griffith
material	3. Introduction to Classical Mechanics: R. G. Takwale & P. S. Puranik
	REFERENCE BOOKS:
	1.Classical Mechanics: N. C. Rana & P. S. Joag
	2.Classical Mechanics: H. Goldstein
	3. Electricity and Magnetism: D. Chattopadhyay & P. C. Rakshit

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	2	1	2		1	1		1	1		1
PHC33	CO2	3	2		1	1				2	1		1
4	CO3	3	2	1	1		1			1	1		1
	CO4	3	2	1	1		1	1		2	1		1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Title of the	Program Core	Total Nu	mber of co	ntact hours	;	Credit					
Code	course	(PCR) /	Lectur	Tutorial	Practica	Total						
		Electives (PEL)	e (L)	(T)	l (P)	Hour						
						S						
PHS384	Physics II	PCR	0	0	3	3	1.5					
	Laboratory											
Pre-requi	sites	Course Assessment methods: (Continuous evaluation (CE) and end assessment (FA))										
PH\$51		CF+FA										
111351												
Course	CO1: To realize ar	nd apply different	and apply different techniques for measuring resonance. O-factor of									
Outcome	series L-C-R circui	t.			U	, -						
	CO2: To determin	fication o	f									
	Faraday's law.											
	CO3: To determin	CO3: To determine the thermoelectric power of a given thermocouple.										
	CO4: To apply the	e concepts to mea	sure the he	orizontal co	mponent o	f the eart	h's					
	magnetic field usi	ing a vibrational a	nd deflecti	on magnet	ometer							
	CO5: To calculate	the loss of a mag	netic speci	men by B-H	l loop meas	urement.						
Topics	1. Study of serie	es L-C-R Resonan	t Circuit: (i) To draw	the resona	nce curv	e (ii) To					
Covered	determine the Q	- Factor of the circuit (III) To study the variation of impedance with										
	frequency (iv) ve	rification of maximum power transfer theorem.										
	2. Verification of	Faraday siaw.	+) of two cos								
	3. To determine	ne Mutual-Muu	co of a coil) 01 two co	15.							
	5 To verify Fres	nel's equation for	reflection	of electrom	nagnetic wa							
	6 Draw the (The	ermo FMF) – Terr	nerature (urve of giv	en thermor	rounle an	d hence					
	find thermoelect	ric power at a giv	en tempera	ature.			u nenee					
	7. Determination	n of horizontal c	omponent	of the ea	rth's magne	etic field	using a					
	vibrational and d	eflection magnet	ometer.		U		U					
	8. To draw the B	8. To draw the B-H loop of a given specimen.										
Text	SUGGESTED BOOKS:											
Books,	1) A Text Book of	on Practical Physic	cs – K. G. N	lajumdar a	nd B. Ghosh							
and/or	2) Practical Phy	sics – Worsnop ar	nd Flint									
reference												
material												
	Manning of	f CO (Course outc	ome) and I	PO (Prograu	mme Outco	mo)						

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PHS38 2	CO1	3	2	1		2	1	1	2	3	2	1	1
	CO2	3	2	1		2	1	1	2	3	2	1	1
	CO3	3	2	1	1	2	1	1	2	3	2	1	1
	CO4	3	2	1		2	1	1	2	3	2	1	1
	CO5	3	2	1	1	1	1	1	1	2	1	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Department of Chemistry												
Course	Tit	le of the	Program Core	Total Nu	mber of co	ntact hours		Credi				
Code	со	urse	(PCR) /	Lectur	Tutoria	Practica	Total	t				
			Electives (PEL)	e (L)	I (T)	l (P)	Hour					
							S					
CYC401	Bio	ochemistry:	PCR	3	0	0	3	3				
	Sti	ructure and										
	Fu	nction										
Pre-requi	sites		Course Assessment methods (Continuous (CT), mid-term (MT)									
			and end assessr	nent (EA))								
None			CT+MT+EA									
Course		 CO1: Un 	derstanding the C	hemistry b	ehind biol	ogical proce	sses					
Outcome	s	• CO2: De	velopment of basi	ic knowled	ge of cell st	tructure and	l functio	n				
		 CO3: Lea 	arning of different	chemical a	aspects of I	biomolecule	s such as	S				
		Carbohy	drates, Lipids, Pro	teins, Nuc	leic acids							
		• CO4: Ge	neration of conce	pts on mol	ecular med	chanics amo	ngst					
		biomole	cules as a steppin	g-stone to	wards Biop	hysical Cher	nistry.					
Topics		1. Amino Acids	and Protein Chem	istry:			10					
Covered		Introduction, cl	assification accore	ding to the	eir compos	ition. Differ	ent					
		methods of pe	tide synthesis. Different methods to determine the									
		composition of	peptides and proteins (amino acid analysis). Primary									
		and secondary	structure of pr	roteins. Do	enaturatior	n of protei	ins.					
		Different metho	ds of molecular weight determination									
		2. Chemistry of	mono, di, oligo and poly-saccharides									
		Introduction, (Conformation of monosaccharides, structure and 6									
		functions of i	mportant monos	accharides	s like glyc	cosides, de	оху					
		sugars, myoino	sitol amino sugars. N-acetylmuramic acid, sialic acid,									
		disaccharides	and polysaccharides. Structural polysaccharides –									
		cellulose and ch	nitin. Storage poly	saccharide	s - starch a	nd glycogen						
		3. Lipid chemist	ry									
		Introduction, ,	Fatty acids, es	sential fat	ty acids,	structure a	and					
		function of ti	riacylglycerols, g	lycerophos	pholipids,	sphingolip	ids,					
		cholesterol,					5					
		Properties of I	ipid aggregates -	- micelles,	bilayers,	liposomes a	and					
		their possible	biological funct	ions. Biol	ogical me	mbrane. Fl	uid					
		mosaic model o	t membrane struc	ture, lodin	ne number		12					
		4. Structure and	function of DNA and RNA, nucleosides, nucleotides,									
		Introduction, P	Purine and pyrimidine bases of nucleic acids, base									
		pairing via H-bo	onding. Structure of RNA and DNA, double helix model									
		of DNA and for	ces responsible for holding it. Chemical and enzymatic									
		hydrolysis of i	nucleic acids. The chemical basis of heredity, an									
		overview of rep	lication of DNA, t	ranscriptio	n, translati	on and gene	etic					
		code.										

FOURTH SEMESTER

Text Books,	1. Principles of Biochemistry by Lehninger
and/or	2. Biochemistry byVoet&Voet.
reference	3. Principles of Physical Biochemistry by K. E. van Holde, C. Johnson and P. S. Ho
material	(Pearson).

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	2	3	3	1	2	2	3	3	1	3	2
CO2	3	3	3	3	1	2	3	3	3	1	3	2
CO3	3	3	3	3	3	3	2	3	3	3	3	2
CO4	3	3	3	3	1	1	2	3	3	1	3	2

Course	Title of the course	Program	Total Nu	mber of co	ntact hours		Credit			
Code		Core (PCR) Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours				
CYC402	Phase-equilibrium, chemical kinetics and catalysis	PCR	3	1	0	4	4			
Pre-requi	sites	Course Assessment methods (Continuous (CT) and end assessment) (EA)								
NIL		CT+EA								
Course Outcome	 CO1: Concept CO2: Understate theoretical tree CO3: Concept CO4: Numerick kinetics. 	 CO1: Concept of phase rule and phase diagram of multi-component system. CO2: Understand the fundamentals of chemical kinetics and corresponding theoretical treatment. CO3: Concept of catalysts towards reaction rate and its applications. CO4: Numerical analysis of the effect of various parameters on reaction kinetics 								
Topics Covered	Phase rule and pha Phase rule equation system, Two com completely miscible Colligative propert Raoult's law of va freezing point, elev molecular weights of behaviour of electro	 Phase rule and phase diagram: Phase rule equation (derivation excluded); phase diagram of water and sulphus system, Two component system, Miscibility (phenol-water) and distillation or completely miscible binary liquid mixtures; azeotropes, Steam distillation. 10L Colligative properties: Raoult's law of vapour pressure and colligative properties: osmosis, lowering or freezing point, elevation of boiling point, experimental methods of determination or molecular weights of substances in dilute solutions, van't Hoff 'i' factor and abnorma behaviour of electrolytic solutions. 10L 								

	Chemical Kinetics:												
	Rate process approach towards complex reactions including Opposing reaction,												
	parallel reaction, consecutive reactions chain reactions; Pseudo first order reactions;												
	Determination of order of a reaction by half-life and differential method. 8 L												
	Temperature dependence of rate constant; Arrhenius equation, energy of activation												
	Lindemann theory of unimolecular reaction. Collision theory; Transition State theory. Effect of ionic strength (primary and												
	secondary salt effect), dielectric constant and pressure on rate.												
	Kinetics of different composite reactions, including Auto-catalytic and Oscillating												
	reactions. 10L												
	Catalysis:												
	Rate expressions for Homogeneous and heterogeneous catalytic reactions including												
	acid-base catalyzed reaction, bimolecular surface catalyzed reaction, and enzyme												
	catalyzed reactions. Determination of turnover number of an enzyme. 6 L												
TextBooks,	1. Physical chemistry by P. Atkins and J.de Paula												
	2. Physical chemistry by Laidler and Meiser												
	3. A text book of physical chemistry by K.L. Kapoor												
	4. Physical chemistry by P.C.Rakshit												
	5. Physical Chemistry by Barrow, G.M. Tata McGraw-Hill (2007)												
	6. Physical Chemistry by Castellan, G.W. 4th Ed. Narosa (2004)												
	7. Chemical kinetics by K.J. Laidler												

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	2	1	1	3	2	1	1	2
CO2	3	1	1	3	2	1	1	3	2	1	1	2
CO3	3	1	1	3	2	1	1	3	2	1	1	2
CO4	3	1	1	3	2	1	1	2	2	1	1	2

Course	Title of	the	Program Core	Total Nu	mber of co	ntact hours		Credi	
Code	course		(PCR) /	Lectur	Tutorial	Practica	Total	t	
			Electives (PEL)	e (L)	(T)	l (P)	Hour		
							S		
	Chemistry	of	PCR	3	1	0	4	4	
CYC403	Elements	and							
	Radioactivity	1							
Pre-requi	sites		Course Assess	ment me	ethods (C	ontinuous	(CT) ar	nd end	
			assessment (EA)						
NIL			CT+EA						

Course	CO1: Knowledge of periodic properties and their variation in period and
Outcome	 group CO2: General trends of elements and their compounds for s, p, d and f block elements
	 CO3: knowledge the structure and function of s, p, d and f block elements.
	CO4 : Concept of radioactive nuclei and their properties
	CO5 : Measurement of radioactivity
Topics	CO6 : Various uses of radioactive elements Periodic property lonication on thalpy, electronegativity, electron gain on thalpy
Covered	atomic radius, ionic radius van der waals radii etc. and their variation in period and
	s block element: general trends of elements and their compounds: Hydrides.
	oxides halides and other salts 2 lec
	p block elements: general trends of elements and their compounds: Hydrides,
	oxides, oxyacids halides and other important compounds Structure and bonding of
	boranes, , carboranes, silicones, silicates, boron nitride, borazines and
	phosphazenes, allotropes of carbon phosphorous, sulphur, carbides, hitrides,
	d block and f block elements and their compounds: General characteristics of
	elements, size, oxidation states and their stabilisation, hydride, oxides and
	hydroxides, halides etc. 5 lec
	Radioactivity:
	Discovery of Radioelement, Nature of radiations, Characteristics of Alpha, Beta,
	Nuclear versus chemical reactions. Radioactive decay and recovery. Theory of
	radioactive disintegration, Cause of Radioactivity, Disintegration series and group
	displacement law. 3 lec
	Measurements of radioactivity, Rate of radioactive decay, Determination of decay constant and half-life, Determination of average life, Radioactive equilibrium,
	Artificial transmutation, cyclotron, Artificial radioactivity, Man-made element,
	Syntheses of Actinide elements 2 lec
	Isotopes, isobars, isobaric isotopes and isotones, Methods of isotope
	preparations: Diffusion method, Thermal diffusion method, Evaporation and
	distillation method, electrolytic method, Szilard-Chalmers method
	Uses of isotone: Medicinal uses uses in analytical chemistry (activation analysis
	isotope dilution analysis), Uses to study reaction mechanism. uses to age
	determination, Agricultural uses, Numerical problems 3 lec
	Nuclear Fission, Nuclear fusion, nuclear spallation, Nuclear binding energy and
	packing fraction, Nuclear binding forces, Nuclear shell model: Magic number 3
	lec
1	

Text Books,	1) Inorganic Chemistry, Part I/II, R.L. Dutta, New Book Stall
and/or	2) Inorganic chemistry, Shriver & Atkins, Oxford
reference	3) Concise inorganic chemistry, Lee, Wiley India Pvt. Ltd.
material	4) Advanced Inorganic Chemistry, Cotton & Wilkinson, John Wiley
	5) Essentials of Nuclear Chemistry, H. J. Arnikar, New Age International Publishers,
	2009

						-						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	2	2	2	3	3	2	1	1
CO2	2	2	3	2	2	2	2	3	3	1	1	1
CO3	2	3	3	2	2	2	2	3	3	3	1	1
CO4	2	2	3	2	2	2	2	3	3	2	1	1
CO5	3	2	3	2	2	2	2	3	3	3	1	1
CO6	3	2	3	2	2	2	2	3	3	3	1	1

	Department of Chemistry									
Course	Title of the	Program Core	Total Nu	mber of co	ontact hours		Credi			
Code	course	(PCR) /	Lectur	Tutoria	Practica	Total	t			
		Electives (PEL)	e (L)	I (T)	l (P)	Hour				
						S				
CYC 404	Organic Reaction	PCR	3	1	0	4	4			
	Mechanism and									
	Reactive									
	Intermediates									
Pre-requi	sites	Course Assessm	ent metho	ds (Contin	uous (CT), n	nid-term	(MT)			
		and end assessr	nent (EA))							
None		CT+MT+EA								
Course	CO1: To Lea	• CO1: To Learn methods for investigating of organic reaction mechansims								
Outcome	s • CO2: To Lea	arn various aspect	of Elimina	tion treact	ions					
	CO3: To Lea	arn various aspects of addition reactions to C-C multiple bonds								
	CO4: To Lea	To Learn synthetically useful addition reactions to C-hetero multiple								
	bonds									
	CO5: To Lea	arn the fundamen	tals of nuc	leophilic ar	nd electroph	nilic subst	itution			
	reactions									
	CO6: To lea	Irn basics of some	molecular	rearrange	ments and t	heir appl	ication			
	in synthesis	5								
	CO7: To lea	irn structure and r	eactivity o	f organic re	eactive inter	rmediate	S			
Topics	1. Method	s for investigation	of mechar	nism:						
Covered	Factors affectin	Factors affecting the rate of reactions, activation energy, transition state, reactive								
	intermediates,	rate determining	step, Ha	mmond's	postulate, p	product a	analysis,			
	detection, isola	tion and trapping	of interme	ediates, app	olication of i	isotope —	isotope			
	labelling, prima	ary kinetic isotope	e effect, s	econdary	kinetic isoto	ope effec	t, cross			
	over experimen	t				2	Lecs.			

	2. Elimination reactions: E1, E2, and E1 _{CB} mechanism, effect of stereochemistry, regioselectivity, isotope and stereo electronic effects effect 4 Lecs 3. Addition to C-C multiple bonds : Mechanistic and stereochemical aspects of addition reactions involving electrophiles, nucleophiles and free radicals, regio- and chemoselectivity, Hydrogenation of double, triple bonds and aromatic rings. Hydroboration reaction, Sharpless asymmetric epoxidation. 3 Lecs. 4. Addition to Carbon- Hetero Multiple Bonds: Mechanism of metal hydride reaction of substituted and unsubstituted carbonyl compounds, acids, esters and nitriles. Addition of Grignard reagents, organo-Zn and organo-Li and organo Si reagents to saturated and unsaturated carbonyl compounds. Wittig reaction. Mechanism of condensation involving enolates5 Lecs. 5. Reaction mechanism of electrophilic and nucleophilic substitution: Substitution on sp ³ system, Electrophilic attack on benzene, π - and σ -complexes, electronic effect of substituents, ortho/para ratio, partial rate factors and selectivity, kinetic and thermodynamic control, nitration, halogenations, sulphonation, alkylation and acylation, diazo coupling, ipso substitution, nucleophilic attack on benzene system: substitution of hydrogen and atoms other than hydrogen, reactions via aryne intermediate, reactions and reactivity pattern in condensed aromatic sysyems 10 Lecs 6. Reaction mechanism of some rearrangement reactions: Allylic rearrangement, neopentyl rearrangement, pinacol-pinacolone, Beckmann, Wolff, Hofmann, Curtius, lossen and Schmidt rearrangement, benzyl-benzilic acid rearrangement, Bayer-Villiger oxidation 6 Lecs. 7. Chemistry of reactive intermediates: Formation, structure, stability , detection and reactions of carbocations, radicals, carbenes, nitrenes, carbions, arynes10 Lecs
Text Books, and/or reference material	 A Guidebook to Mechanism in Organic Chemistry: Peter Sykes Organic Chemistry: Subrata Sengupta AdVanced General Organic Chemistry: A Molecular Approach: Sachin Kumar Ghosh Organic Chemistry: G. Marc Loudon March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure: Michael B. smith

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	2	3	3	2	1	3	3
CO2	3	3	3	3	2	2	3	3	2	1	3	3
CO3	3	3	3	3	2	3	3	3	3	2	3	3
CO4	3	3	3	3	2	3	3	3	3	2	3	3

CO5	3	3	3	3	1	3	3	3	3	1	3	3
CO6	3	3	3	3	1	3	3	3	3	1	3	3
CO7	3	3	3	3	1	3	3	3	3	1	3	3

CYS451	Thermodynamic Broportios of	PCR (Practical)	L	Т	Р	н	C	
	Solution and Mixture Laboratory	(Practical)	0	0	4	4	2	
Pre-requi	sites	Course Assessm assessment) (EA)and Viva-Vo	ent metho	ods (Continu	uous (CT) ar	nd end		
NIL		CT + Viva-voce						
Course Outcome Topics Covered	 CO1: Chara CO2: Evalution CO3: Inter CO3: Inter CO4: deverantlysis. 1. Determining 2. Determining 3. Determining 4. Determining 5. Experiment 6. Experiment 7. Determining 8. Determining Any other prace 	acterization of the nation of fundament preting molecular lopment of laboration nation of partition er nation of equilibrium nation of CST of pheterion nation of heat of so ent on viscosity meterion nation of solubility nation of specific re- tical as assigned b	rmodynam ntal proper interaction tory skill, d coefficient im constan enol-wate olution of E easuremen sion measu product of otation of o y the Instru	nic paramet rties of liqu lata handlin of a solute t of a react r system Benzoic acid t rement f PbI ₂ cane sugar uctor	ers. ids. ng and inter e between a ion KI+I₂ ←	pretation n organic → KI ₃	solvent	
Referenc e material	 Instruct Selecte Advanc 	ion manual provided by the Instructor d experiments in Physical Chemistry By N.G.Mukherjee ed Physical Chemistry Experiments: By Gurtu & Gurtu						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	1	1		2	1	1	2	1
CO2	3	1	1	3	1	1		2	1	1	2	1
CO3	3	1	1	3	1	1		2	1	1	3	1
CO4	1	1	1	3	1	1		2	2	1	2	1

Course	Titl	e (of	the	Program Core	Total Nu	mber of co	ntact hours		Credi		
Code	cou	irse			(PCR) /	Lectur	Tutorial	Practica	Total	t		
					Electives (PEL)	e (L)	(T)	l (P)	Hour			
									S			
CYS452	Ide	ntific	atio	n of	PCR	0	0	4	4	2		
	aci	dic a	nd	basic	(Practical)							
	rad	licals										
Pre-requi	Pre-requisites				Course Assess	ment me	ethods (C	ontinuous	(CT) ar	nd end		
					assessment (EA))						
NIL					CT+ Viva voce							
Course		(Cour	se out	come accounts of	:						
Outcome		• (:01	know	ledge of elementa	ary physica	l propertie	s of cations	and anio	าร		
(The		• (02.	know	ledge of dry react	ions of cat	ions and ar	nions				
students		• (:03	know	wledge of different wet chemical reactions of cations and anions.							
will mas	ster	• (:04	reacti	tions of interfering radicals and their removal process							
the		• (:05	group	separation of cat	ions.						
following)											
Topics			Qua	alitativ	e inorganic analy	sis of mixtu	ures		_			
Covered			Cat	ion Ra	dicals: Na ⁺ , K ⁺ , Ca	⁺² , Sr ⁺² , Ba ⁺	⁺² , Al ⁺³ , Cr ⁺³	, Mn ⁺² , Fe ⁺³	, Co ⁺³ , Ni	⁺³ , Cu ⁺² ,		
			Zn+	2.								
			Ani	on Rad	licals: F ⁻ , Cl ⁻ , Br ⁻ ,	BrO₃ [−] , I [−] , S	CN ⁻ , S ²⁻ , SC	$D_4^{2-}, S_2O_3^{2-},$	NO₃ [−] , NO	2,		
		PO ₄ ^{3–} , BO ₃ ^{3–} ,CrO ₄ ^{2–} /Cr ₂ O ₇ ^{2–} , [Fe(CN) ₆] ^{4–} , [Fe(CN) ₆] ^{3–} .										
			Insc	oluble	Materials: AI_2O_3 , I	e_2O_3 , Cr_2C	O_3 , SnO ₂ , Sr	SO_4 , $BaSO_4$.				
		•										
Text Boo	oks,		1.	Text	book of qualitativ	ve inorgani	ic analysis	by A.I Vogel				
and/or			2.	Prac	tical Inorganic Ch	emistry by	A.K.De and	A.K Sen				
reference	2											
material												

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	3	3	2	2	1	3	3	3	1	1
CO2	2	2	3	3	2	1	1	3	3	3	1	1
CO3	1	3	3	3	2	2	1	3	3	3	1	1
CO4	3	3	3	3	2	2	1	3	3	3	1	1
CO5	3	2	3	3	2	3	1	3	3	3	1	1

CYS453	Bioch	emistry	PCR	L	Т	Р	Н	С			
	Labor	atory	(Practical)	0	0	2	2	15			
				U	U	5	3	1.5			
Pre-requi	sites		Course Assessment methods (Continuous (CT) and end								
			(EA)and Viva-Vo	oce)							
NIL			CT + Viva-voce								
Course											
Outcome	(The	• CO1	L: development of	development of laboratory skill, data handling and interpretation,							
students	Will	erro	r analysis - Characterization of hierarcher such as mateins – its with here d								
well-acqu with)	ainteo	• CO2	2: Characterization		ecules suci	has protein	s, vitamin	Dased			
with j		• CO3	3: Estimation of ar	: Estimation of amino acid, vitamin from unknown sample							
		• CO4	I: Dealing and extraction of natural products								
Topics	1.	Estimation	of protein								
Covered	2.	Estimation	of carbohydrate								
	3.	Estimation	of iodine value o	f a given oi	l/fat						
	4.	Estimation	of ascorbic acid i	n fruit juice	2						
	5.	Separation	n of a mixture of amino acid								
	6.	Extraction	of natural product								
Referenc	1. I	nstruction ma	anual provided by the Instructor								
е	2. \	ogel's Textbo	ook of practical organic chemistry								
material 3. An Advanced C			Curse in Practical	Chemistry:	Nad, Mal	napatra and	Ghoshal				
L											

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	2	3	3	1	1		2	2	1	2	1
CO2	3	2	3	3	1	2		2	3	1	2	1
CO3	3	1	3	3	1	1		2	3	1	3	1
CO4	1	1	2	3	1	1		2	2	1	2	1

Course	Title of the course	Program Core	Total Nu	mber of co	ntact hours		Credit		
Code		(PCR) / Electives (PEL)	Lectur e(L)	Tutorial (T)	Practical (P)	Total Hours			
CYC501	Fundamentals of Electrochemistry and surface chemistry	PCR	PCR 3 1 0				4		
Pre-requisi	ites	Course Assessm assessment) (EA))	nent metho	ods (Contin	uous (CT) a	nd end			
NIL		CT+EA							
Outcome (The students will master the following)	 CO1: Applic CO2: Unde application CO3: Electric CO4: Unde CO5: Fundation 	 CO2: Understanding the dissociation of electrolytes in solution and its application CO3: Electro-chemcial cell: principle and application. CO4: Understanding the adsorption process. CO5: Fundamentals and application of micellar and colloid system. 							
Topics Covere d	Conductance: Electrolytic conduction, velocity of ions: specific, equivalent and metoductances, Kohlrausch's law, strong and weak electrolytes, transport numlits determination, abnormal transport number, conductometric titration Applications of conductance measuremetoductance 6L Ionic equilibrium: Concept of pH, pH of acids and bases, hydrolysis of salts, buffer solutions, metric titration, activity and solubility product: common ion and salt effect. 4L Electrochemical cells: Different types and evaluation of cell potential, various factors affecting potential, determination of thermodynamic parameters, potentiometric titration poten commercial cells including fuel cell, Li ion battery, dye sensitized solar in 12L Adsorption: Langmuir, RET, Gibbs adsorption isotherms, surface topsion, and surface prose								

FIFTH SEMESTER

	Micellar system:								
	Concept of micelle, reverse micelle and microemulsion, hydrophobic effect, factors								
	affecting CMC, determination of CMC, Thermodynamics of micellisation, micellar								
	regation number and fraction of counter ions bound to a micelle. 8L								
	lloidal system:								
	Theory of electrical double layer, zeta potential.								
	Colloids: classification of colloidal systems, stability of colloids, their properties and								
	oplications. 6L								
TextBooks,	1. Physical chemistry by P. Atkins and J.de Paula								
	2. Physical chemistry by Laidler and Meiser								
	3. A text book of physical chemistry by K.L.Kapoor								
	4. Physical chemistry by P.C.Rakshit								
	5. Introduction to applied colloid and surface chemistry by G. M.								
	Montogeorgis and S. Kill (Wiley)								
	6. Physical Chemistry of surfaces by A. W. Adamson and A. P. Gast (Wiley India)								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	1	1	1	2	1	1	1	1
CO2	3	1	1	3	1	1	1	2	1	2	1	1
CO3	3	1	3	3	2	3	1	3	3	3	2	2
CO4	3	1	1	1	1	1	1	2	2	1	1	2
CO5	3	1	3	2	2	2	1	3	3	3	2	2

			Department of	of Chemisti	ry						
Course	Title of the		Program Core	Total Nu	mber of co	ntact hours		Credi			
Code	course		(PCR) /	Lectur	Tutoria	Practica	Total	t			
			Electives (PEL)	e (L)	I (T)	l (P)	Hour				
							S				
CYC502	Chemistry	in	PCR	3	1	0	4	4			
	Solution	and									
	Solid	State									
	Chemistry	emistry									
Pre-requisites Course Assessment methods (Continuous (CT), mid-term							MT)				
and end assessment (EA))											
None			CT+MT+EA								

Course	CO1: understand different concepts of acids and bases	
Outcomes	CO2: know about the thermodynamic aspects of Lewis acid and bas	е
	interaction	
	CO3: understand the concept of redox reaction, standard redox pot	ential
	 CO4: have concept of effect of concentration and pH on redox react 	tion
	 CO5: know basic idea of Inorganic solid and crystal 	
	CO6: know the thermodynamics and energetics of stability of solid	
	 CO7: Born Lande equation and Kapustinskii equation, 	
	CO8: crystal system and different types of unit cells and crystals in i	norganic
	solid	
	 CO9: defect of crystal and the associated property 	
Topics	Concept of acids and bases: The Arrhenius concept, Concept of Kw,	
Covered	, concept of pH, Strength of aicds and bases(hydracids and	05
	oxyacids), levelling effect of water , solvent concepts, Bronsted	
	Lowry concept, Lewis concepts	
	Hard-Soft acid base concept, relation of hardness to ionisation	02
	potential and electronegativity and frontier orbital	
	Thermodynamic of Lewis acid and base interaction, the Drago-	01
	Wayland equation	
	Monoatomic ions and their acid –base properties, polyatomic ions	01
	and their acid-base properties	
	Redox Chemistry:	
	Redox reaction, ion electron balancing, standard reduction	03
	potential and their diagrammatic representation	
	Redox predominance diagrams of elements, disproportionation and	02
	metastable state	
	Redox chemistry and extraction of elements from ores. Ellingham	02
	diagrams	
	Effect of concentration and pH on redox reaction, uses of redox	03
	series in chemical reaction, Pourbaix diagrams	
	Ionic equilibrium and precipitation reactions:	01
	Ionic compounds: Factors effecting ionic radii, Fajans rule, lattice	
	energy, Born Haber cycle and its application	04
	Born Lande equation, modification of Born-Lande equation,	
	Solid State Chamistry	04
	Solid State Chemistry:	
	motallic band	04
	ionic crystals, structures of AV AV, AV, AV, type Structures of	04
	mixed metal evides: spinol and inverse spinol percyclite	04
	Crystal structure related to super conductivity for realectric and	04
	niezo electric property crystal defects steichiometric and	04
	nonstoichiometric defect. Schottkey and Eronkol defect atc	04
	Inorganic nanomaterial and polymers	
		1

Text Books, and/or	Suggested Text Books:
reference material	 Inorganic Chemistry, Part I, R.L. Dutta New Book Stall Fundamental concept of Inorganic Chemistry, vol 3, Asim K. Das, CBS publishers & distributors Inorganic Chemistry, Huheey, Keiter, Keiter, Medhi, Pearson education Inorganic chemistry, Shriver & Atkins, Oxford Concept and models of inorganic Chemistry, Douglas, Mcdeniel, Alexander, Wiley indiaPvt. Ltd. Concise inorganic chemistry, Lee, Wiley india Pvt. Ltd.

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	3	3		1	1	3	2	1	2	1
CO2	3	3	3	3		1	1	3	2	1	2	1
CO3	3	3	3	3		1	1	3	2	1	2	1
CO4	3	3	3	3		1	1	3	2	1	2	1
CO5	3	2	3	3		1	1	3	2	1	2	1
CO6	3	3	3	3		1	1	3	2	1	2	1
CO7	3	3	3	3		1	1	3	2	1	2	1
CO8	3	3	2	2		1	1	3	1	1	2	1
CO9	3	3	3	3		1	1	3	2	1	2	1

		Department of	of Chemist	ry					
Course	Title of the	Program Core	Total Nu	Credi					
Code	course	(PCR) /	Lectur	Tutoria	Practica	Total	t		
		Electives (PEL)	e (L)	I (T)	l (P)	Hour			
						S			
CYC 503	Chemistry of	PCR	3	1	0	4	4		
	Heterocyclic								
	Compounds and								
	Natural Products								
Pre-requi	sites	Course Assessment methods (Continuous (CT), mid-term (MT)							
		and end assessment (EA))							
None		CT+MT+EA							

Course	• CO1: Nomenclature, aromaticity acidity-basicity of heterocyclic compounds
Outcomes	CO2: Synthesis and reactions of heterocyclic compounds
	CO3: Study of heterocycles with two or more hetero atoms including
	purine & pyrimidine
	• CO4: Classification, general reactions of alkaloids aiding their isolation.
	purification and structure determination
	• CO5: Structure determination, synthesis and reactions of simple alkaloids
Topics Covered	Nomenclature of heterocycles, common nomenclature, replacement method, Hantzsch-Widman (IUPAC or Systematic) method (3 Lec)
covered	Aromatic and nonaromatic beterocycles, molecular orbital nicture and aromatic
	characteristics of pyrrole furan thiophene and pyridine and other small ring
	beterocycles. Comparison of basicity of pyridine, niperidine and pyrrole (3 Lec)
	Generalized approach to the synthesis of betarogycles possessing E. 6 and 7
	membered rings with one or two beterestems (2 Los)
	Deactions of betaroguelos with particular amphasis on the machanism of
	electronhilic substitution. Mashanism of nucleonhilic substitution reactions in
	electrophilic substitution. Mechanism of nucleophilic substitution reactions in
	pyriaine derivatives. Oxidation and reduction. (8 Lec)
	ruised live and isographic with energial references to Fisher indels surthesis
	quinoine and isoquinoine with special reference to Fisher indole synthesis,
	Skraup synthesis and Bischler- Napieralski synthesis. Miechanism of electrophilic
	substitution reactions of indole, quinoline and isoquinoline (4 Lec)
	Five and six membered neterocycles with two or more netero atoms (4 Lec)
	Purine & pyrimidines: Structure, synthesis, reactions (4 Lec)
	Alkaloids: Classification; general reactions of alkaloids; chemistry of simple
	alkaloids like chavicine, piperine, nicotine, quinzoline ring. (14 Lec)
Text Books,	Suggested Text Books:
and/or	1. Organic Chemistry, Volume 2: Stereochemistry and the Chemistry Natural
reference	Products, I. L. Finar, Pearson Education India, 2002.
material	2. Heterocyclic Chemistry, T. R. Gilchrist, Longman, 1989.
	3. Topics in Heterocycles Chemistry. G. W. Gribble. Spinger-Verlag Berlin
	Heidelberg, 2010.
	Suggested Reference Books:
	4. Modern Heterocyclic Chemistry. 4 Volume Set. Julio Alvarez-Builla, Juan
	Jose Vaquero, José Barluenga. Wiley. 2011.
	5. Principles of Modern Heterocyclic Chemistry, L.A. Paquette, W.B.
	Benjamin, Inc., 1978.
	6. Handbook of Heterocyclic Chemistry. Alan R. Katritzky and A. F. Pozharskii,
	Elservier, 2000.
	7. The Chemistry of Heterocycles. T. Eicher, S. Hauptmann, Wiley-VCH 2003
	8. Heterocyclic Chemistry, J.A.J. Joule and G.F. Smith, ELBS, 2nd Ed., 1982.
L	

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	2	3	1	3	3	3	2	3
CO2	3	3	3	3	3	3	2	3	3	3	2	3
CO3	3	3	3	3	3	3	1	3	3	3	2	3
CO4	3	3	3	3	3	3	1	3	3	3	3	3
CO5	3	3	3	3	3	3	1	3	3	3	3	3

Course CodeTitle of the courseProgram Core (PCR) / Electives (PEL)Total Number of contact hoursCreditCYC504Industrial ChemistryPCR30033Pre-requisitesCourse Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))OutcomesCT+MT+EACourseOutcomes•CO1: Understanding the applications of chemistry in the industrial set-up ••CO2: Development of basic knowledge of industrial applicationOutcomes•CO1: Understanding the applications of chemistry in the industrial set-up•CO2: Development of basic knowledge of industrial application••CO2: Development of basic knowledge to bridge the gap between education and industrial application so the students might be confident to apply for industrial career.1Fuel: Coal, Petroleum, Gaseous fuels and Biofuels (including industrial process for liquefaction of coal, distillation of petroleum, analysis of coal)102. Glass and ceramics: Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties 3. Cement: Types, different types industrial preparations, composition and chemistry34. Rubber and Plastic: Polymer Chemistry, industrial polymers and their chemistry55. Paints and pigments: Introduction, definitions, types, emulsions, additives and pigments: Introduction, definitions, types, emulsions, additives and pigments: Introduction, definitions, types, emulsions, additives and pigments: Introduction, definitions, types, emulsions,			Department of	of Chemistr	у							
Codecourse(PCR) / Electives (PEL)Lecture (L)Tutorial (T)Practical (P)Total HoursCYC504Industrial ChemistryPCR30033Pre-requisitesCourse Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))end assessment (EA))NoneCT+MT+EACourse Outcomes•CO1: Understanding the applications of chemistry in the industrial set-up •CO2: Development of basic knowledge of industrial application•CO3: Learning of different chemical tools which are useful and valued in industry•CO4: Generation of knowledge to bridge the gap between education and industrial application so the students might be confident to apply for industrial application of coal, distillation of petroleum, analysis of coal)102. Glass and ceramics: Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties 3. Cement: Types, different types industrial preparations, composition and chemistry34. Rubber and Plastic: Polymer Chemistry, introduction, types, structure, synthesis, natural rubber, vulcanization, thermosetiing plastics, industrial polymers and their chemistry55. Paints and pigments: Introduction, definitions, types, emulsions, beautication porture, ethomical porture, and plastics, industrial polymers and their chemistry	Course	Title of the	Program Core	Total Nu	mber of co	ntact hours	-	Credit				
CYC504Industrial ChemistryPCR30033Pre-requisitesCourse Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))NoneCT+MT+EACourse Outcomes• CO1: Understanding the applications of chemistry in the industrial set-up • CO2: Development of basic knowledge of industrial application • CO3: Learning of different chemical tools which are useful and valued in industry• CO4: Generation of knowledge to bridge the gap between education and industrial application so the students might be confident to apply for industrial career.Topics Covered1 Fuel: Coal, Petroleum, Gaseous fuels and Biofuels (including industrial process for liquefaction of coal, distillation of petroleum, analysis of coal)102. Glass and ceramics: Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties 3. Cement: Types, different types industrial preparations, composition and chemistry34. Rubber and Plastic: Polymer Chemistry, introduction, types, structure, synthesis, natural rubber, vulcanization, thermoseting plastics, industrial polymers and their chemistry 5. Paints and pigments: Introduction, definitions, types, emulsions, 5	Code	course	(PCR) /	Lecture	Tutorial	Practical	Total					
CYC504Industrial ChemistryPCR30033Pre-requisitesCourse Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))NoneCT+MT+EACourse Outcomes• CO1: Understanding the applications of chemistry in the industrial set-up • CO2: Development of basic knowledge of industrial application • CO3: Learning of different chemical tools which are useful and valued in industry• CO4: Generation of knowledge to bridge the gap between education and industrial application so the students might be confident to apply for industrial process for liquefaction of coal, distillation of petroleum, analysis of coal)10Covered1 Fuel: Coal, Petroleum, Gaseous fuels and Biofuels (including industrial process for liquefaction of coal, distillation of petroleum, analysis of coal)102. Glass and ceramics: Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties 3. Cement: Types, different types industrial preparations, composition and chemistry34. Rubber and Plastic: Polymer Chemistry, introduction, types, structure, synthesis, natural rubber, vulcanization, thermosetiing plastics, industrial polymers and their chemistry55. Paints and pigments: Introduction, definitions, types, emulsions, s atticorrosion5			Electives (PEL)	(L)	(T)	(P)	Hours					
Chemistry Course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA)) None CT+MT+EA Course • CO1: Understanding the applications of chemistry in the industrial set-up Outcomes • CO2: Development of basic knowledge of industrial application • CO3: Learning of different chemical tools which are useful and valued in industry • CO4: Generation of knowledge to bridge the gap between education and industrial application so the students might be confident to apply for industrial career. Topics 1 Fuel: Coal, Petroleum, Gaseous fuels and Biofuels (including industrial process for liquefaction of coal, distillation of petroleum, analysis of coal) 10 2. Glass and ceramics: Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties 3 3. Cement: Types, different types industrial preparations, composition and chemistry 4 4. Rubber and Plastic: Polymer Chemistry, introduction, types, structure, synthesis, natural rubber, vulcanization, thermosetiing plastics, industrial polymers and their chemistry 5 5. Paints and pigments: Introduction, definitions, types, emulsions, additives anti-cerrosion properties chemical formulas and 5	CYC504	Industrial	PCR	3	0	0	3	3				
Pre-requisites Course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA)) None CT+MT+EA Course • CO1: Understanding the applications of chemistry in the industrial set-up Outcomes • CO1: Understanding the applications of chemistry in the industrial set-up • CO2: Development of basic knowledge of industrial application • CO2: Development of basic knowledge of industrial application • CO3: Learning of different chemical tools which are useful and valued in industry • CO4: Generation of knowledge to bridge the gap between education and industrial application so the students might be confident to apply for industrial career Topics 1 Fuel: Coal, Petroleum, Gaseous fuels and Biofuels (including industrial process for liquefaction of coal, distillation of petroleum, analysis of coal) 10 2. Glass and ceramics: Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties 3 3. Cement: Types, different types industrial preparations, composition and chemistry 4 4. Rubber and Plastic: Polymer Chemistry, introduction, types, structure, synthesis, natural rubber, vulcanization, thermosetiing plastics, industrial polymers and their chemistry 5 5. Paints and pigments: Introduction, definitions, types, emulsions, additives anti-corrosion protection chemistry for anti-corrosion protection protection for and plastics industrial polymers and their chemistry for anti-corrosion protectior chemical formular and plastics for anticorrosion pro		Chemistry										
Image: None end assessment (EA)) None CT+MT+EA Course • CO1: Understanding the applications of chemistry in the industrial set-up Outcomes • CO2: Development of basic knowledge of industrial application • CO3: Learning of different chemical tools which are useful and valued in industry • CO4: Generation of knowledge to bridge the gap between education and industrial application so the students might be confident to apply for industrial career. Topics 1 Fuel: Coal, Petroleum, Gaseous fuels and Biofuels (including industrial process for liquefaction of coal, distillation of petroleum, analysis of coal) 10 2. Glass and ceramics: Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties 3 3. Cement: Types, different types industrial preparations, composition and endemistry 4 4. Rubber and Plastic: Polymer Chemistry, introduction, types, structure, synthesis, natural rubber, vulcanization, thermoseting plastics, industrial polymers and their chemistry 5 5. Paints and pigments: Introduction, definitions, types, emulsions, 5 5	Pre-requis	sites	Course Assessme	ent methoo	ls (Continue	ous (CT), mi	d-term (N	/IT) and				
NoneCT+MT+EACourse Outcomes• CO1: Understanding the applications of chemistry in the industrial set-up • CO2: Development of basic knowledge of industrial application • CO3: Learning of different chemical tools which are useful and valued in industry • CO4: Generation of knowledge to bridge the gap between education and industrial application so the students might be confident to apply for industrial career.Topics Covered1 Fuel: Coal, Petroleum, Gaseous fuels and Biofuels (including industrial process for liquefaction of coal, distillation of petroleum, analysis of coal)102. Glass and ceramics: Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties 3. Cement: Types, different types industrial preparations, composition and chemistry34. Rubber and Plastic: Polymer Chemistry, introduction, types, structure, synthesis, natural rubber, vulcanization, thermoseting plastics, industrial polymers and their chemistry 5. Paints and pigments: Introduction, definitions, types, emulsions, 55			end assessment	(EA))								
Course Outcomes• CO1: Understanding the applications of chemistry in the industrial set-up • CO2: Development of basic knowledge of industrial application • CO3: Learning of different chemical tools which are useful and valued in industry • CO4: Generation of knowledge to bridge the gap between education and industrial application so the students might be confident to apply for industrial career.Topics Covered1 Fuel: Coal, Petroleum, Gaseous fuels and Biofuels (including industrial process for liquefaction of coal, distillation of petroleum, analysis of coal) 2. Glass and ceramics: Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties 3. Cement: Types, different types industrial properties 3. Cement: Types, different types industrial properties 4. Rubber and Plastic: Polymer Chemistry, introduction, types, structure, synthesis, natural rubber, vulcanization, thermoseting plastics, industrial polymers and their chemistry 5. Paints and pigments: Introduction, definitions, types, emulsions, 55	None		CT+MT+EA									
Outcomes • CO2: Development of basic knowledge of industrial application • CO3: Learning of different chemical tools which are useful and valued in industry • CO4: Generation of knowledge to bridge the gap between education and industrial application so the students might be confident to apply for industrial career. Topics 1 Fuel: Coal, Petroleum, Gaseous fuels and Biofuels (including industrial process for liquefaction of coal, distillation of petroleum, analysis of coal) 10 2. Glass and ceramics: Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties 3 3. Cement: Types, different types industrial preparations, composition and chemistry 4 4. Rubber and Plastic: Polymer Chemistry, introduction, types, structure, synthesis, natural rubber, vulcanization, thermosetiing plastics, industrial polymers and their chemistry 5 5. Paints and pigments: Introduction, definitions, types, emulsions, additives application properties and formulas and commistry 5	Course	 CO1: Ur 	nderstanding the ap	plications	of chemistr	y in the indu	ustrial set	-up				
 CO3: Learning of different chemical tools which are useful and valued in industry CO4: Generation of knowledge to bridge the gap between education and industrial application so the students might be confident to apply for industrial career. Topics Fuel: Coal, Petroleum, Gaseous fuels and Biofuels (including industrial process for liquefaction of coal, distillation of petroleum, analysis of coal) Glass and ceramics: Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties Cement: Types, different types industrial preparations, composition and chemistry Rubber and Plastic: Polymer Chemistry, introduction, types, structure, synthesis, natural rubber, vulcanization, thermosetiing plastics, industrial polymers and their chemistry Paints and pigments: Introduction, definitions, types, emulsions, 5 	Outcomes	• CO2: De	evelopment of basic	: knowledg	e of industr	rial applicati	on					
 industry CO4: Generation of knowledge to bridge the gap between education and industrial application so the students might be confident to apply for industrial career Topics Fuel: Coal, Petroleum, Gaseous fuels and Biofuels (including industrial process for liquefaction of coal, distillation of petroleum, analysis of coal) Glass and ceramics: Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties Cement: Types, different types industrial preparations, composition and chemistry Rubber and Plastic: Polymer Chemistry, introduction, types, structure, synthesis, natural rubber, vulcanization, thermoseting plastics, industrial polymers and their chemistry Paints and pigments: Introduction, definitions, types, emulsions, 5 		• CO3: Le	arning of different	chemical to	ols which a	are useful ar	nd valued	in				
 CO4: Generation of knowledge to bridge the gap between education and industrial application so the students might be confident to apply for industrial career Topics Fuel: Coal, Petroleum, Gaseous fuels and Biofuels (including industrial process for liquefaction of coal, distillation of petroleum, analysis of coal) Glass and ceramics: Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties Cement: Types, different types industrial preparations, composition and chemistry Rubber and Plastic: Polymer Chemistry, introduction, types, structure, synthesis, natural rubber, vulcanization, thermosetiing plastics, industrial polymers and their chemistry Paints and pigments: Introduction, definitions, types, emulsions, additives anticorrosion properties and 		industry	/									
Industrial application so the students might be confident to apply for industrial careerTopics1 Fuel: Coal, Petroleum, Gaseous fuels and Biofuels (including industrial process for liquefaction of coal, distillation of petroleum, analysis of coal)102. Glass and ceramics: Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties 3. Cement: Types, different types industrial preparations, composition and chemistry 4. Rubber and Plastic: Polymer Chemistry, introduction, types, structure, synthesis, natural rubber, vulcanization, thermosetiing plastics, industrial polymers and their chemistry 5. Paints and pigments: Introduction, definitions, types, emulsions, 55		• CO4: Ge	• CO4: Generation of knowledge to bridge the gap between education and									
Industrial career.Topics1 Fuel: Coal, Petroleum, Gaseous fuels and Biofuels (including industrial process for liquefaction of coal, distillation of petroleum, analysis of coal)102. Glass and ceramics: Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties 3. Cement: Types, different types industrial preparations, composition and chemistry 4. Rubber and Plastic: Polymer Chemistry, introduction, types, structure, synthesis, natural rubber, vulcanization, thermosetiing plastics, industrial polymers and their chemistry 5. Paints and pigments: Introduction, definitions, types, emulsions, formulas and corrosion properties and formulas and formulas and		industri	industrial application so the students might be confident to apply for									
Topics1 Fuel: Coal, Petroleum, Gaseous fuels and Biofuels (including industrial process for liquefaction of coal, distillation of petroleum, analysis of coal)102. Glass and ceramics: Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties 3. Cement: Types, different types industrial preparations, composition and chemistry 4. Rubber and Plastic: Polymer Chemistry, introduction, types, structure, synthesis, natural rubber, vulcanization, thermosetiing plastics, industrial polymers and their chemistry 5. Paints and pigments: Introduction, definitions, types, emulsions, 55		industri	industrial career									
CoveredIndustrial process for liquefaction of coal, distillation of petroleum, analysis of coal)2. Glass and ceramics: Different types of glass and ceramics, and their chemical compositions, reactions, chemical properties 3. Cement: Types, different types industrial preparations, composition and chemistry 4. Rubber and Plastic: Polymer Chemistry, introduction, types, structure, synthesis, natural rubber, vulcanization, thermosetiing plastics, industrial polymers and their chemistry 5. Paints and pigments: Introduction, definitions, types, emulsions, 5	Topics	1 Fuel: Coal,	Petroleum, Gase	ous fuels	and Biofu	uels (includ	ling 10					
 analysis of coal) 2. Glass and ceramics: Different types of glass and ceramics, and their 4 chemical compositions, reactions, chemical properties 3. Cement: Types, different types industrial preparations, composition 3 and chemistry 4. Rubber and Plastic: Polymer Chemistry, introduction, types, 5 structure, synthesis, natural rubber, vulcanization, thermosetiing plastics, industrial polymers and their chemistry 5. Paints and pigments: Introduction, definitions, types, emulsions, 5 additives anti-corrosion properties chemical formulas and 	Covered	industrial proc	ess for liquefactio	n of coal,	distillation	of petrole	um,					
 2. Glass and ceramics: Different types of glass and ceramics, and their 4 chemical compositions, reactions, chemical properties 3. Cement: Types, different types industrial preparations, composition 3 and chemistry 4. Rubber and Plastic: Polymer Chemistry, introduction, types, 5 structure, synthesis, natural rubber, vulcanization, thermosetiing plastics, industrial polymers and their chemistry 5. Paints and pigments: Introduction, definitions, types, emulsions, 5 additives anti-corrosion properties chemical formulas and 		analysis of coal) 			الحامية مناط						
 3. Cement: Types, different types industrial properties 3. Cement: Types, different types industrial preparations, composition 3 and chemistry 4. Rubber and Plastic: Polymer Chemistry, introduction, types, 5 structure, synthesis, natural rubber, vulcanization, thermosetiing plastics, industrial polymers and their chemistry 5. Paints and pigments: Introduction, definitions, types, emulsions, 5 additives anti-corrosion properties chemical formulas and 		2. Glass and ce	eramics: Different ty	pes of gias	ss and cera	mics, and tr	heir 4					
 and chemistry 4. Rubber and Plastic: Polymer Chemistry, introduction, types, 5 structure, synthesis, natural rubber, vulcanization, thermosetiing plastics, industrial polymers and their chemistry 5. Paints and pigments: Introduction, definitions, types, emulsions, 5 additives anti-corrosion properties chemical formulas and 			ositions, reactions,	inductrial	roperties		ion 2					
4. Rubber and Plastic: Polymer Chemistry, introduction, types, 5 structure, synthesis, natural rubber, vulcanization, thermosetiing plastics, industrial polymers and their chemistry 5. Paints and pigments: Introduction, definitions, types, emulsions, 5 additives anti-corrosion properties chemical formulas and		3. Cement: Typ	es, amerent types	maustriar	preparation	is, composit	.1011 3					
structure, synthesis, natural rubber, vulcanization, thermosetiing plastics, industrial polymers and their chemistry 5. Paints and pigments: Introduction, definitions, types, emulsions, 5 additives anti-corrosion properties chemical formulas and		and chemistry										
plastics, industrial polymers and their chemistry 5. Paints and pigments: Introduction, definitions, types, emulsions, 5 additives anti-corrosion properties chemical formulas and		4. Rubbel and Plastic. Polymer Chemistry, introduction, types, 5										
5. Paints and pigments: Introduction, definitions, types, emulsions, 5 additives anti-corrosion properties chemical formulas and		nlastics industrial nolymers and their chemistry										
additives anti-corrosion properties chemical formulas and		5 Paints and	nigments: Introdu	rtion defi	nitions tvr	nes emulsio	ons 5					
		additives an	ti-corrosion pror	erties c	hemical f	formulas a	and					
compositions		compositions										
6. Biotechnology Industry: Introduction, Bioremediation of chemical 7		6. Biotechnolo	gv Industry: Introd	luction. Bid	premediatio	on of chem	ical 7					
waste, Bioleaching of ores, Biocatalyst, Fermentation, production of		waste, Bioleac	hing of ores, Bioca	talvst, Fer	mentation.	production	of					
vinegar, Biofuel.		vinegar, Biofue	l.	1,	,							

Text Books,	1. Industrial inorganic Chemistry by KH Büchel, HH Moretto, P. Woditsch
and/or	2. Industrial Chemistry by B K Sharma
reference	3. Biotechnology in the Chemical Industry: Towards a Green and Sustainable Future
material	by P Bazpai

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	2	3	1	3	3	3	2	3
CO2	3	3	3	3	3	3	2	3	3	3	2	3
CO3	3	3	3	3	3	3	1	3	3	3	2	3
CO4	3	3	3	3	3	3	1	3	3	3	3	3

CYS551	Chemical Kinetics, Surface Chemistry	PCR (Practical)	L	Т	Р	Н	С					
	and Conductometry Laboratory		0	0	3	3	1.5					
Pre-requi	sites	Course Assessment methods (Continuous (CT) and end assessment) (EA)and Viva-Voce)										
NIL		CT + Viva-voce	CT + Viva-voce									
Course Outcome (The students well- acquainte with)	 CO1: Moni CO2: Evalu CO3: Know CO4: devel analysis. 	toring kinetics of i ation of adsorptio /ledge of conducto lopment of labora	reactions b on isotherm ometric est tory skill, d	y various e n. imation. lata handlir	xperimenta	l method pretation	s. , error					
Topics Covered	 Determina Determina Determina Study of the rate constant Kinetic sture Determination adsorption Conductor Conductor Measurer Any other prace 	ation of rate constant ation of rate constant he kinetics of the ant and influence dy of Iodine clock ation of amount of hisotherm metric determinat n of Ostwald dilut nent of interfacial tical as assigned b	ant of inve ant of hydr reaction b of ionic str reaction acetic acio ion of stren ion law tension by y the Instru	rsion of suc olysis of es etween K ₂ ength on it d adsorbed ngth of acic contact ar uctor	crose ster by cond S ₂ O ₈ and KI, by charcoal I in a mixtur ngle measur	uctometr , determi l and eval re rement	y nation of uation of					

Referenc	1. Instruction manual provided by the Instructor
е	2. Selected experiments in Physical Chemistry By N.G.Mukherjee
material	3. Advanced Physical Chemistry Experiments: By Gurtu & Gurtu

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	1	1	3	1	1		2	1	1	2	1
CO2	3	1	1	3	1	1		2	1	1	2	1
CO3	3	1	1	3	1	1		2	1	1	3	1
CO4	1	1	1	3	1	1		2	2	1	2	1

Course	Titl	le of the course	Program	Total Nu	mber of co	ntact hours		Credi			
Code			Core (PCR)/	Lectur	Tutorial	Practica	Total	t			
			Electives	e (L)	(T)	l (P)	Hour				
			(PEL)				S				
CYS552	Qu	antitative	PCR	0	0	4	4	2			
	Est	imation of	(Practical)								
	Me	etal ions in									
	Mix	xture									
Pre-requis	sites		Course Asse	ssment n	nethods (Continuous	(CT) aı	nd end			
			assessment (E	assessment (EA) along with Viva-Voce)							
NIL			CT and Viva v	oce							
Course		• CO1: Basic c	oncepts of quar	ntitative es	timation						
Outcome		CO2: Unders	stand to evaluat	e the estin	nation of io	n mixture					
(The		CO3: Under	stand the fund	amental, s	scientific ba	asis, prepar	ation of	sample,			
students	will	sampling me	ethod and analy	tical metho	ods.						
master	the										
following))										
Topics		1. Permanganor	netry: Fe(III) and	d Mn(II) in	a mixture.						
Covered		2. Dichromatom	etry: Fe(III) and	Cu(II) in a	mixture; F	e(III) and Cr	(III) in				
		a mixture.									
		3. Complexome	try: CaCO ₃ and	d MgCO3 in mixture; Mg(II) and Zn(II) in							
		mixture using EDTA; Complexometric estimation of sulphate and									
		phosphate ion;									
		4. Analysis of four components mixture (Al ⁺³ , Fe ⁺³ , Co ⁺² , Ni ⁺²).									
		5. Gravimetric e	stimation of Ni(DMG)2 ;							
		Some more exp	eriments as dec	ided by the	e Instructor						

Text Books,	1. An Advanced Course in Practical Chemistry by Nad, Ghosal and											
and/or	Mohapatra, New Central Book agency.											
reference	2. A Manual of Practical Chemistry for Degree Classes (Vol I & II) by R. C.											
material	Bhattacharya,											
	3. College Practical chemistry by Ahluwalia, Dingra and Gulati.											
	4. Vogels textbook of quantitative chemical analysis By J Mendham, R. C.											
	Denney, M. Thomas and D. J. Barnes, Pearson India.											
	5. APHA, A, WEF, (1998). Standard Methods for the Examination of Water											
	and Wastewater. American Public Health Association, American Water											
	Works Association, Water Pollution Control Federation, Washington DC.											

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	2	3	1	2		2	3	2	3	1
CO2	3	3	2	3	1	2		1	3	2	3	1
CO3	3	3	2	3		2	1	2	3	2	3	1

				Department of	of Chemistr	Ŷ					
Course	Tit	le of	the	Program Core	Total Nu	mber of co	ntact hours		Credit		
Code	cou	urse		(PCR) /	Lecture	Tutorial	Practical	Total			
				Electives (PEL)	(L)	(T)	(P)	Hours			
CYS553	Qu	anti	tative	PCR	0	0	3	3	1.5		
	ana	alysi	is of								
	org	organic samples									
Pre-requis	sites			Course Assessme	ent metho	ds: Continu	ous assessm	ent and V	/iva-		
				Voce at the end	of the sem	ester.					
None				CT+VIVA							
Course		•	CO1: A bas	ic idea about the	methodol	ogy of qua	ntitative ar	alysis of	organic		
Outcomes	5		compounds	5.							
CO2: Conc				pt about the uses	of reagent	ts and solv	ents for qua	ntitative	analysis		
			of organic of	compounds							
		•	CO3: The us	ses of these quantitative analysis for important compounds.							
Topics		1.	Estimation	n of –OCH₃ group b	oy Zeisel's r	nethod					
Covered		2.	Estimation	n of carbonyl group	C						
		3.	Estimation	n of acetyl group							
		4.	Estimation	n of amine group (v	van Slyke m	nethod)					
		5.	Estimation	n of nitrogen by Kje	eldahl metł	nod					
		6. Estimation of phosphorus									
	7. FAME analysis by GC/ GC-MS										
		8.	Analysis o	f monosaccharide	compositic	on by HPLC					
		9.	Quantitat	ive estimation of C	, H, N and S	S present ir	n organic sar	nple by C	HNS		
			analyzer.								

Text Books,	(i) Textbook of Practical Organic Chemistry by Vogel
and/or	(ii) Comprehensive Practical Organic Chemistry: Quantitative Analysis by Ahluwalia
reference	
material	

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	3	2	2	2	3	2	3	1
CO2	2	2	3	3	2	2	3	2	3	1	2	2
CO3	3	3	3	2	1	3	2	3	2	2	1	1

Course	Title of the course	Program Core	Total Nu	mber of co	ntact hours		Credit
Code		(PCR)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	
		, Electives (PEL)					
CYC601	Basics of	PCR	3	1	0	4	4
	photochemistry,						
	Spectroscopy,						
	group theory and						
Pre-requi	sites	Course Assessm	l ent metho	ds (Continu	l IOUS (CT) an	d end	
i i c i cqui		assessment)					
		(EA))					
NIL		CT+EA					
Course Outcome	 CO1: Physic CO2: Funda CO3: Introc CO4: Applic structure. CO5: Conce 	cal understanding amentals of different luction to symme cation of spectros ept of data analysi	of photocl ent molecu try and cor copy and s is and its a	hemistry ar ular spectro ncept of po ymmetry to pplications.	nd photo-ph scopy. int group. o unravel th	iysical pro	ocesses. lar
Topics	Photochemistry						
Covered	Lambert-Beer's processes, reac	aw and its applic tions of electro	nically ex	cs of phot	cies; law o	of photo	, primary chemical
	equivalence, Fra	nck-Condon princ diative processes	Concent of	escence and	a pnospnore	escence, J	аріопѕку
	Laws of photo	chemistry, quant	um vield.	kinetics of	of HI deco	 mpositior	n. Ha-Bra
	reactions, quenc	hing, basic techni	ques of ab	sorption an	d emission	spectrosc 10L	хору.
	Basics of spectro	scopy:					
	Elementary idea	of rotational, vibr	rational and	d electronio	c spectrosco	ру.	10L
	Symmetry:		-:			na Daduu	
		symmetry and po	onit group practor tab	s, symmeti lo 101	ry operation	ns. Reduc	lible and
	Data Analysis:			10.101			
	Statistical data a	nalysis, mean, me	edian, mod	e, frequen	cy, standard	l deviatio	ns, mean
	deviation, etc. I	requency analys	is, Norma	l distributi	on, Poisson	distribu	tion and
	others. Regressio	on analysis, correl	ation.		12L		
TextBook	s, 1. Modern r	nolecular photocl	hemistry b	y N. J. Turro)		
	2. Fundame	ntals of molecula	r spectrosc	copy by Bar	well		
	3. Fundame	ntais of photoche	emistry by l	Konatgi-Mi	iknerjee		
	4. Statistica	eory and chemist	nu z Dy N. ry hy Risho	n n n n n			
	J. Group th	cory and chemisti		4			

SIXTH SEMESTER

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	1	1	1	3	1	1	1	1
CO2	3	3	1	2	1	1	1	3	1	2	2	2
CO3	3	3	1	2	1	1	1	3	3	1	1	2
CO4	3	3	2	2	1	3	1	3	3	3	3	2
CO5	3	1	1	3	1	1	1	3	3	2	2	1

Course	Tit	le of	the	Program Core	Total Nu	mber of co	ntact hours		Credi		
Code	со	urse		(PCR) /	Lectur	Tutoria	Practica	Total	t		
				Electives (PEL)	e (L)	I (T)	l (P)	Hour			
								S			
CYC602	Coc	ordination	Ì	PCR	3	1	0	4	4		
Pre-requi	sites	innstry		Course Assessment methods (Continuous (CT) mid-term (MT)							
i i e i equi	0.000			and end assessment (EA))							
NIL				CT+MT+EA							
Course		• CO1:	Conce	epts of coordination	on complex	xes, ligand	types and is	omerism			
Outcome		• CO2:	 CO2: Theories of bonding (e.g. VBT, CFT, MOT) 								
(Students	;	• CO3:	Appli	cation of CFT and	MOT to e	explain the	spectrosco	pic and m	nagnetic		
will	be	prop	properties of metal-ligand complexes.								
enriched	by)	• CO4	: Sp	ectroscopic Term	symbols,	Orgel dia	agram and	Tanabe	Sugano		
		diagı	ram								
		• CO5	CO5 : Circular dichroism, optical rotatory dispersion, cotton effect								
		• CO6	CO6 : Electronic spectral properties of Lanthanides and actinides								
lopics		Bloomsta	antran	d-Jorgensen's ch	ain theor	y, Warner	's theory	of coord	dination		
Covered		dotoction	ius, c	widence of compl	ov formati	ants, periec on in coluti	ion	nect con	ipiexes,		
		Classifica	tion	of Ligands Inne	ex ioiiiiati r-metallic	complex	Doly puc	loar or	4∟ bridgod		
		complexe		menclature of coo	rdination (compounds			Al		
		Structure	isom	erism and stered	chemistry	structura	, Lisomerism	conform	national		
		isomerisr	n. ster	eoisomerism, geo	metric iso	merism. or	tical isomer	rism	4L		
		Theories of bonding : Valence bond theory, crystal field theory, Factor effecting									
		the cryst	al fiel	d splitting param	eter, Pair	ing energy	and contro	olling the	pairing		
		energy, (CFT an	d octahedral com	mplexes, CFT and tetrahedral complexes, CFT and						
		TPB and	squa	re pyramidal co	complexes, Tetragonal distortion, in octahedral						
		symmetr	y,Jah	n Teller distortior	ion, CFT and square planer complex, Application of						
		CFT.	8L								

Molecular orbital Theory of Octahedral, tetrahedral and square planer complexe	es,
spectrochemical series and nephelauxeic series 4L	
Electronic spectra of transition metal complexes: Type of electronic spectral selection rules, Relaxation of selection rule, band intensity, band widt symmetric and asymmetric bands. 3L Spectroscopic term symbols, Orgel diagram, examples, limitation of org diagram. 5L Tanabe Sagano diagram, Charge Transfer spectra, Intervalence electron transfer bands. 3L Circular dichroism, optical rotatory dispersion, cotton effect. 3L	a, h, el
Electronic spectra of lanthanide and actinide complexes. 2L	
 Inorganic Chemistry, Part I, R.L. Dutta, New Book Stall Fundamental concept of Inorganic Chemistry, vol 4 & 5, Asim K. Das, CE publishers & distributors Inorganic Chemistry, Huheey, Kieter, kieter, Medhi, Pearson education Inorganic chemistry, Shriver & Atkins, Oxford Concept and models of inorganic Chemistry, Douglas, Mcdeniel, Alexande Wiley indiaPvt. Ltd. Concise inorganic chemistry, Lee, Wiley indiaPvt. Ltd. Inorganic Chemistry by Housecroft and Sharp. 	BS ≥r,
	Molecular orbital Theory of Octahedral, tetrahedral and square planer complexed spectrochemical series and nephelauxeic series 4L Electronic spectra of transition metal complexes: Type of electronic spectr selection rules, Relaxation of selection rule, band intensity , band widt symmetric and asymmetric bands. 3L Spectroscopic term symbols , Orgel diagram, examples, limitation of org diagram. 5L Tanabe Sagano diagram, Charge Transfer spectra, Intervalence electron transf bands. 3L Circular dichroism, optical rotatory dispersion, cotton effect. 3L Electronic spectra of lanthanide and actinide complexes. 2L 1) Inorganic Chemistry, Part I ,R.L. Dutta, New Book Stall 2) Fundamental concept of Inorganic Chemistry, vol 4 & 5, Asim K. Das, CI publishers & distributors 3) Inorganic chemistry, Huheey, Kieter, kieter, Medhi, Pearson education 4) Inorganic chemistry, Shriver & Atkins, Oxford 5) Concept and models of inorganic Chemistry, Douglas, Mcdeniel, Alexande Wiley indiaPvt. Ltd. 6) Concise inorganic chemistry, Lee, Wiley indiaPvt. Ltd. 7) Inorganic Chemistry by Housecroft and Sharp. 2) Divisione of Chemistry by Housecroft and Sharp.

· <u> </u>						<u> </u>						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	. 3	2	3	3	2	1	2	3	3	2	1	1
CO2	2	2	3	2	2	2	2	3	3	1	1	1
COS	2	3	3	2	2	3	2	3	3	3	1	1
CO4	2	2	3	2	2	3	2	3	3	2	1	1
CO5	3	2	3	2	2	3	2	3	3	3	1	1
COE	3	2	3	2	2	3	2	3	3	3	1	1

Department of Chemistry									
Course	Title of the	Program Core	Total Nu	Credi					
Code	course	(PCR) /	Lectur	Tutoria	Practica	Total	t		
		Electives (PEL)	e (L)	I (T)	l (P)	Hour			
						S			
CYC603	Reagents in	PCR	3	1	0	4	4		
	Organic								
	synthesis								
Pre-requisites		Course Assessment methods (Continuous (CT), mid-term (MT)							
		and end assessment (EA))							
None		CT+MT+EA							
Course	• CO1: A basic idea on synthesis of organic compounds has been incorporated								
-------------	--								
Outcomes	using some specific reagents for particular compound synthesis								
Outcomes	• CO2: How the better yield could be obtained their strategy bas been								
	• CO2. Now the better yield could be obtained, their strategy has been								
	nignighted.								
	• CO3: Role of specific reagents and catalysts including mechanism in their								
	transformation from substrate to products is included for their step by step								
	synthesis.								
Topics	1. Some important reactions with reagents: Aromatic electrophylic (Friedel craft								
Covered	reaction) and nucleophilic substitution reactions, Cine substitution reactions,								
	Aldol and Michael condensation reactions, Robinson annulation reaction;								
	Synthesis of bio-molecules like steriod Oestrone-1. ± Zearalenone and								
	Isonotkatone via Retro synthesis, 91								
	2 Protection and deprotection of functional groups: Merrifield reagents								
	2. Protection and deprotection of runctional groups, Mermield reagents								
	Pine expression and vine contraction reactions. Designation and exercise								
	Ring expansion and ring contraction reactions; Regio-selective and enantio-								
	selective reactions controlled by special reagents, Assymmetric synthesis by								
	Oxazoline derivatives, bis-lactone ether based chiral auxiliary. 9L								
	3. Special reagents and reactions: Barton reaction, Wittig reaction; Peterson's								
	synthesis (olifination); 2,3-dichloro-5,6-dicyano-1,4 benzoquinone (DDQ);								
	Umpolung reactivity (1,3-Dithianes); Dicyclohexyl-carbodiimide (DCC); OsO ₄ ;								
	Woodward and Prevost hydroxylation; SeO_2 ; Phase transfer catalyst, purple								
	benzene. cryptates and clathro chelates: Wilkinson catalyst:								
	hydroformylation reactions or Oxo reactions: Sapiro reaction: Favoriski								
	reactions: Hoffmann-Löffler reaction: Baker's yeast (enzymatic reduction) and								
	Gilman reagonts QL								
	4 Special reagents used in evidation and reduction organic transformation								
	4. Special reagents used in oxidation and reduction organic transformation								
	reactions: Oxidation reaction: CrO ₃ , pyridine complex, Min(IV) oxide (used in								
	retinal synthesis), RuO ₄ , Sharpless epoxidation, Moffat oxidation, Swern								
	oxidation, Dess-Martin periodinane oxidation.								
	Reduction reaction: hydride transfer reagents: DIBAL; Na(CN)BH;								
	Trialkylborohydrides; trialkyltin hydride; Low valent titanium(II) oxide,								
	diimide. 9L								
Text Books.	Suggested Text Books: (i) Modern Methods of Organic Synthesis 4th Edition, W.								
and/or	Carruthers Cambridge University Press								
reference	(ii) Reaction Mechanism in Organic Chemistry: S.M. Mukherji and S. P. Sinha;								
material	Macmillan India Pvt Ltd.								
	(iii) Organic synthesis Through Disconnection Approach: P. S. Kalsi:								
	(iv) Modern synthetic reactions by H. O. House								
	(v) Principles of Organic synthesis: R.O.C. Norman and I.M. Coxon: CRC Press								

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	2	2	2	3	2	2	3	3	2	3	2
CO2	2	3	3	3	2	2	3	2	3	3	2	2
CO3	3	3	3	2	1	3	2	3	2	2	1	2

Department of Humanities and Social Sciences											
Course	Title of the	Program	Total Nur	nber of con	tact hours	•	Credit				
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total					
		/ Electives	(L)	(T)	(P)	Hours					
		(PEL)									
HSC631	ECONOMICS	PCR	3	0	0	3	3				
	AND										
	MANAGEMENT										
	ACCOUNTANCY										
Pre-requ	isites	Course Asses	ssment met	hods (Conti	inuous (CT),	mid-term	(MT)				
		and end asse	essment (EA	())							
NIL		CT+MT+EA									
Course	• To rev	view basic econ	omic princi	ples with st	udents;						
Outcome	es lo int	roduce studen	ts basic cap	oital apprai	sal methods	used for	carrying				
	out eo	conomic analys	is of differe	ent alternat	ives of engin	ieering pr	ojects or				
	works	; 	anta an ha	w to ovalu	ata austama	tically the	variaus				
	• To ed	lomonts of a t	unical manu	w to evalu-	ale systema	nginooring					
	cost e	vice with a view	ments of a typical manufactured product, an engineering project								
Topics	PART 1: Econo	mics		nning the p	TICE OTTEL.						
Covered	Group A: Micro	Deconomics									
covercu		Jnit 1: Econom	nics: Basic Co	ncepts							
		Init 2: Theory of Consumer Behaviour									
	1	Unit 3: Theory of Production, Cost and Firms									
		Analyses of Market Structures: Perfect									
		Competition									
	l l	Jnit 5: Monopo	Init 5: Monopoly Market								
	1	Jnit 6: General	l Equilibrium	&Welfare E	conomics						
	Group B: Macr	oeconomics	_								
		SI. NO. Nam	e duction to N	Accrossonor	nicThoon						
		Unit 2: Natio	anal Income		Inc Theory						
		Unit 3: Dete	rmination of	Fequilibrium	Level of Inco	me					
		Unit 4: Mon	ev, Interest a	and Income							
		Unit 5: Inflat	tion and Une	employment							
		Unit 6: Outp	out, Price and	d Employme	nt						
	PART 2: Accou	ntancy									
		SI. No. N	lame								
		Unit 1: In	ntroduction 1	to Accountin	g (las so l)						
		Unit 2: Primary Books of Accounts (Journal)									
		Linit 4. Cash Book									
		Unit 5: Bank Reconciliation Statement									
		Unit 6: Trial Balance									
		Unit 7: F	inal Account	S							

Text	Suggested Text Books:
Books,	PART 1: Economics
and/or	Group A: Microeconomics
reference	1. Koutsoyiannis: Modern Microeconomics
material	2. Maddala and Miller: Microeconomics
	3. Anindya Sen: Microeconomics: Theory and Applications
	4. Pindyck & Rubenfeld: Microeconomics
	Group B: Microeconomics
	1. W. H. Branson: Macroeconomics – Theory and Policy (2nd ed)
	2. N. G. Mankiw: Macroeconomics, Worth Publishers
	3. Dornbush and Fisher: Macroeconomic Theory
	4. Soumyen Sikder: Principles of Macroeconomics
	PART 2: Accountancy
	1. Gupta, R. L. and Radhaswamy, M: Financial Accounting; S. Chand & Sons
	2. Ashoke Banerjee: Financial Accounting; Excel Books
	3. Maheshwari: Introduction to Accounting; Vikas Publishing
	4. Shukla, MC, Grewal TS and Gupta, SC: Advanced Accounts; S. Chand & Co.

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	1	-	-	3	-	-	3	2	1	-
CO2	3	2	-	1	-	2	-	2	-	-	3	1
CO3	-	-	-	-	1	-	3	-	-	-	2	-

Course	Title	e of	the	Program Core	Total Nu	mber of co	ntact hours		Credi		
Code	cou	rse		(PCR) /	Lectur	Tutorial	Practical	Total	t		
				Electives (PEL)	e (L)	(T)	(P)	Hour			
								S			
	Anal	ytical	and	PEL	3	0	0	3	3		
CYE611	Envi	ronmer	ntal								
	Cher	nistry									
Pre-requis	sites			Course Asses	Course Assessment methods (Continuous (CT) and end						
				assessment (EA	.)						
NIL				CT+EA							
Course		•	CO1: Kn	owledge on cher	nical proce	esses that r	egulate the	environi	ment as		
Outcome			well as	attention will be	paid to ur	nderstandir	ng chemical	equilibri	um and		
(Students			kinetics	of natural system	IS.						
will	 CO2: The course is designed to give the students a broad understand 								nding of		
enriched l	by)		the issu	es related to the	basic conce	epts and pr	inciple of di	fferent a	nalytical		

	 CO3: This course imparting the knowledge about the theory and techniques of analysis including introductory instrumental methods and its fundamental principle. CO4: Knowledge on quantification of various environmental parameters. CO5: Knowledge on Ecologically safe alternatives and basic principle of green chemistry.
Topics	Analytical chemistry: Quantitative and qualitative analysis: Detection of element,
Covered	detection of cations and anions, Volumetric analysis (acid-base, redox, complexometric), Colorimetric analysis, Titrimetric analysis, gravimetric analysis, conductometric, poteiometric titration, ion selective electrodes etc. 18 Environmental chemistry: Chemical aspects of air, water and soil pollution,
	chemistry of photochemical and sulphurous smog, stratosphere-chemistry and
	pollution, chemical specification, priority and water pollutants-their effects,
	Ecological balance and planning of industrial complexes Application of Bioreactors
	in industries for pollution control. Ecologically safe alternatives and basic principle
	of. Green chemistry. 18 lec
Text Books,	1. Skoog and West's, Fundamentals of Analytical Chemistry, Cengage Learning
and/or	India Pvt. Ltd., Delhi
reference material	2. Sawyer, C.N., McCarty, P.L., and Parkin, G.F., Chemistry for Environmental Engineering, 5 th Edition, McGraw-Hill, Inc., New York.
	3. Manahan, S.E., Fundamentals of Environmental Chemistry, Lewis Publishers, Inc., Boca Raton.
	4. Seinfeld, J. H. and Pandis, S N., Atmospheric Chemistry and Physics : from Air Pollution to Climate Change, John Wiley.
	5. Weber, W. J. Jr., Physicochemical Processes for Water Quality Control, John Wiley and Sons Inc., New York.
	6. A. K. Dey, <i>Environmental Chemistry</i> , Wiley Eastern, 2002.
	7. A. S. Douglas, F. J Holler, S. R. Crouch, Principles of Instrumental Analysis, Thomson, 2007.
	8. Metcalf& Eddy, Wastewater Engineering-Treatment and Reuse., 4th edition, McGraw-Hill, 2003; Publisher: McGraw-Hill Science/Engineering/MathISBN- 13: 978-0070418783, ISBN-10: 0070418780

<u> </u>				/		0						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	2	2	2	3	3	2	1	1
CO2	2	2	3	2	2	2	2	3	3	1	1	1
CO3	2	3	3	2	2	2	2	3	3	3	1	1
CO4	3	3	3	1	2	2	3	3	3	3	1	1
CO5	3	3	3	1	1	3	3	3	3	2	1	1

Course	Titleof the	Program Total Number of contact hours							
Code	course	Core (PCR)/	Lectur	Tutorial	Practical	Total			
		Electives	e (L)	(T)	(P)	Hours			
		(PEL)							
CYE612	Chromatographi	PCR	3	0	0	3	3		
	c Separation and								
	Instrumental								
	Methods of								
	Analysis								
Pre-requ	uisites	Course Asse	essment	methods	(Continuou	is (CT) a	and		
		end assessm	ent (EA)						
	NIL		СТ	+EA					
Course	• CO1: Get	a comprehens	sive knov	vledge abo	out solvent	extractio	on,		
Outcome	ion excha	nge and differ	ent chro	matograpi	hic techniqi	ues			
(Ine	CO2:Appl	ication of thes	se techni	ques in pra	actical and	industria	1		
students	capacity								
tho	• CO3:Worl	king principies	and app	lication of	some instr	umenta			
following)	methods								
Tonics	Senaration tech	niques:							
Covered	Solvent extract	ion distributi	on law d	istributior	constant	extractio	on of		
covered	inorganic speci	ies senaratio	on, distribution law, distribution constant, extraction of						
	metal chlorides	and nitrates, solid phase extraction							
	Ion exchange.	on exchange resin, ion exchange equilibria, application							
	of ion exchange	e methods, home water softeners							
	Chromatograph	ny: general description of chromatography, classification							
	of chromatogr	aphy, elution of column chromatography, migration							
	rates, distribut	ion constants, relation between, volumetric flow rate							
	and linear flow	rates, retenti	on facto	r, selectivi	ty factor, r	ate theo	ry of		
	chromatograph	iy, a quantitative description of column efficiency, thin							
	layer chromato	graphy (TLC)							
	Gas chromatog	graphy (GC), I	nstrume	ntation, Ir	ntroductior	n, carrier	gas		
	system, sample	e injection sy	stem, co	lumn con	figurations	and col	umn		
	oven, detectior	n system, chai	racteristi	c of ideal o	detector, Fl	D, TCD,	ECD,		
	mass spectroso	copy gas chromatography column and stationary phase							
	capillary, tubu	lar column,	packed o	column, li	quid statio	onary pł	nase,		
	applications								
	High performa	nce liquid ch	romatog	raphy: pai	rtition or li	iquid liq	uid		
	chromatograph	iy, adsorption	n or sol	id liquid	chromatog	graphy,	ion		
	exchange or i	on chromatog	graphy, s	size exclus	sion chrom	natograp	ny,		
	and chiral chro	matography							
	Instrumental m	ethod:		•		- l			
	Inermoanalytic	ai iechniqu	ies: the	ermogravir	netric an	alysis	(IGA),		
	introduction,	for antial the	istrumen		actors at	recting	IGA,		
	application, di	nerential the	annar an	aiysis, pr	incipie, ins	anument	auon,		
	application								

	Electroanalyticaltechniques:electrogravimetry,electricalcomponents,Gal vanostat and potentiostat, principle, experiments, coulometry, principle, colulometer, coulometry cell, constant current coulometry Polarography: Principal, process of current, polarogrphic cell, Ilkovic equation, half wave potential, experimental set up, application, quantitative and qualitative analysis, c y c l i c voltammetry: principal, cellconfiguration, instrumentation and circuit, application Atomic absorption spectroscopy: Principle, Instrumentation, application 02
Text Books,	1. Fundamentals of analytical chemistry, Skoog, West,
and/or	Hollerand Crouch,8th edition, Thomson
reference	2. Instrumental methods of analysis, Williard, Merit, Dean,
material	Settle, CBS publishers & distributors
	3. Inorganic electrochemistry, Theory practice and application,
	Piero Zanzello, RS.C

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	3	3	3	3	3	2
CO2	3	3	3	3	3	3	3	3	3	2	1	2
CO3	3	3	3	3	3	3	3	3	3	3	3	2

CYS651	Potentiometric	PCR	L	т	Р	Н	С		
	and Colorimetric Analysis	(Practical)	0 0 3 3						
Pre-requis	sites	Course Assessment methods (Continuous (CT) and end assessment) (EA)and Viva-Voce)							
NIL		CT + Viva-voce							
Course Outcome (The students v well- acquainte with)	 CO1: Hand CO2: Cons CO3: Appli CO4: develanalysis. 	ling spectrophoto truction of electro cation of potentio opment of labora	meter and chemical c metric esti tory skill, d	knowledge ell and mea mation. ata handlir	e on its appli asuring cell ng and inter	ication. potential pretation	,error		

Topics	1. Verification of Beer's law
Covered	 Determination of E⁰ of quin-hydrone electrode Determination of phosphate concentration in a soft drink Estimation of dissociation constant of acetic acid potentiometrically Titration of Mohr's salt solution and determination of formal potential of Fe3+/Fe2+ system Determination of Solubility product of silver chloride potentiometrically Any other practical as assigned by the Instructor
Referenc e material	 Instruction manual provided by the Instructor Selected experiments in Physical Chemistry By N.G.Mukherjee Advanced Physical Chemistry Experiments: By Gurtu & Gurtu

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	1	1	3	1	2		2	1	2	2	1
CO2	3	1	1	3	1	2		2	1	2	2	1
CO3	3	1	1	3	1	2		2	1	2	3	1
CO4	1	1	1	3	1	1		2	2	1	2	1

Course	Title of	the course	Program	Total Nu	mber of co	ntact hours		Credit
Code			Core (PCR)/	Lectur	Tutorial	Practical	Total	
			Electives	e (L)	(T)	(P)	Hours	
			(PEL)					
CYS652	Analysis	s of Ores	PCR	0	0	4	4	2
	and Allo	oys	(Practical)					
Pre-requis	sites		Course Asse	Course Assessment methods (Continuous (CT) and end				
			assessment (E	A) along w	ith Viva-Vo	ce)		
NIL			CT and Viva voce					
Course Ou	utcome	• CO1: Ba	sic concepts of Ores and alloys					
(The stud	ents will	• CO2: Ur	derstand to eva	aluate the a	analysis of o	different ore	es and allo	oys
master	the	• CO3: U	Inderstand the	fundame	ntal, scier	ntific basis,	prepara	tion of
following)		sample,	sampling meth	od and ana	lytical met	hods.		
Topics Co	vered	Analysis of						
		a) high spee	ed steel; b) dolo	mite; c) br	ass; d) broi	nze; e) bauxi	ite; f) pyr	olusite;

Text Books,	1. An Advanced Course in Practical Chemistry by Nad, Ghosal and
and/or reference	Mohapatra, New Central Book agency.
material	2. A Manual of Practical Chemistry for Degree Classes (Vol I & II) by R. C.
	Bhattacharya,
	3. College Practical chemistry by Ahluwalia, Dingra and Gulati.
	4. Vogels textbook of quantitative chemical analysis By J Mendham, R. C.
	Denney, M. Thomas and D. J. Barnes, Pearson India.

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	2	3	1	2		2	3	2	3	1
CO2	3	3	2	3	1	2		1	3	2	3	2
CO3	3	3	2	3		2	1	2	3	2	3	2

Department of Chemistry									
Course	Title	of the	Program Core	Total Nu	mber of co	ntact houi	ſS	Credi	
Code	cours	e	(PCR) /	Lectur	Tutoria	Practic	Total	t	
			Electives (PEL)	e (L)	I (T)	al (P)	Hours		
CYS653	Single	Step	PCR	0	0	4	4	2	
	Synth	esis of							
	Organ	ic							
	Comp	ounds							
Pre-requis	sites		Course Assessm	ent metho	ds (Continu	uous (CT) a	ind end		
			assessment (EA)	and Viva-	Voce)				
None			CT AND Viva-Vo	ce					
Course	•	CO1: To reach a targeted product through singlestep reaction process us						using	
Outcomes	5	suitable reagents and optimum reaction conditions.							
	CO2: To learn Separation and Purification of products								
	•	CO3: To lea	arn Purification teo	chniques, li	ike phase t	ransfer, cr	ystallizatio	n, GC-	
		Mass and o	other spectroscopi	c method v	will be ado	pted			
	•	CO4: To Le	arn Understand th	ie basic coi	ncept behir	nd separat	ion proces	s for	
		most comr	non spectroscopic	method lil	ke; UV-Vis,	FT-IR, NM	R, ESI-Mas	s and	
		GC-Mass.							
	•	CO5: To lea	arn how to reach a	maximum	n yield with	minimum	uses of so	lvent,	
		reagents a	nd energy like; hea	at and elec	tricity (Gre	en chemis	try).		
Topics	1.	Synthesis	of Osazone						
Covered	2.	Preparati	on of triphenyl me	ethanol					
	3.	Synthesis	of tans-p-anisalac	etophenar	ne (aldol)				
	4. Oxidation of 4-chlorobenzyl alcohol to 4-chlorobenzoic acid								
	5.	Nitration	of bromobenzene	(aromatic	substitutio	on)			
	6.	6. Preparation of 2-chloro-2-methyl butane from 2-methyl-2-butanol (substitution)							
	7.	Reaction	of 1,3-cyclopentac	liene with	maleic anh	ydride (Die	els-Alder re	eaction)	

Text Books,	1. Vogel's Textbook of practical organic chemistry
and/or	2. Advanced practical chemistry : Subas C. Das
reference	3. An Advanced Curse in Practical Chemistry: Nad, Mahapatra and Ghoshal
material	

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	3	3	3	1	2	3	2	1	2
CO2	3	3	3	2	2	3	1	3	2	2	1	2
CO3	3	2	3	2	2	2	2	3	2	2	1	1
CO4	3	3	3	2	2	3	3	3	2	3	2	2
CO5	3	3	3	3	2	3	3	3	2	3	1	2

	De	partment of M	anagemen	t Studies					
Course Code	Title of the course	Program Core (PCR) / Electives	Total Nu Lecture (L)	mber of co Tutorial (T)	ntact hours Practical (P)	Total Hours	Credit		
MSC731	PRINCIPLES OF MANAGEMENT	(PEL) PCR	3	0	0	3	3		
Pre-requisit	es	Course Asses and end asse CT+MT+EA	sment met ssment (EA	thods (Con ⁻ A))	tinuous (CT)	, mid-ter	m (MT)		
Course Outcomes	 CO1:To marequired for CO2:To imexecutives CO3:To marequired help CO4:To imexecutives CO5: To imexecutives	ake budding en or any organiza part knowledge of an organiza ake potential er o for their profe part knowledge oth in nature part knowledge , Finance, Beha cience	gineers aw tion e on variou tion ngineers av essional car e on organi e on each f vioral Scier	rare of vario is tools and vare of man reer izational ac functional a nce and Qu	bus manage techniques nagerial fun tivities oper trea of mana antitative T	ment fun applied l ction so t rational a agement echnique	ctions by the hat it nd like s and		
Topics Covered	UNIT I: Manage environment- m Management fu Planning- Steps, BCG matrix in or UNIT II: Quantit techniques, Dec UNIT III: Creatin marketing, Cons Positioning, Pro UNIT IV: Behavi Perception, Lea UNIT V: Finance organization, Pr Volume Profit (0 reference to Inc	 UNIT I: Management Functions and Business Environment: Business environment- macro, Business environment -micro; Porter's five forces, Management functions –overview, Different levels and roles of management, Planning- Steps, Planning and environmental analysis with SWOT, Application of BCG matrix in organization(8) UNIT II: Quantitative tools and techniques used in management: Forecasting techniques, Decision analysis, PERT & CPM as controlling technique (7) UNIT III: Creating and delivering superior customer value:Basic understanding of marketing, Consumer behavior-fundamentals, Segmentation, Targeting & Positioning, Product Life cycle. (8) UNIT IV: Behavioral management of individual: Motivation, Leadership, Perception, Learning. (8) UNIT V: Finance and Accounting: Basics of Financial management of an organization, Preparation of Final Accounts, Analysis of Financial statements, Cost Volume Profit (CVP) Analysis, An overview of financial market with special reference to India. (12) 							
Text Books, and/or reference material	Suggested Text 1. Financia 2. Marketin Pearson 3. Manage and Arya	<u>Books</u> : I Management, ng Manageme India ment Principle a Kumar, Oxfore	, 11th Editi nt 15th I s, Process d Higher ed	on, I M Par Edition, Ph es and pra ducation	ndey, Vikas I ilip Kotler actice, first	Publishing and Kelv edition,	g House. in Keller, Anil Bhat		

SEVENTH SEMESTER

- 4. Organizational Behavior,13 th edition, Stephen P Robbins, Pearson Prentice hall India
- Operations Management, 7th edition (Quality control, Forecasting), Buffa & Sarin, Willey

Suggested Reference Books:

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1									3	2	2	
CO2				2					2	2		
CO3				2					3	2		
CO4							1		3			
CO5				2					2	2	2	

Course	Title of the course	Program Core	Total Nu	mber of co	ntact hours		Credit
Code		(PCR)/ Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	
CYC701	Quantum Chemistry and Spectroscopy	PCR	3	1	0	4	4
Pre-requi	sites	Course Assessm assessment) (EA))	ent metho	ds (Continu	Jous (CT) an	d end	
NIL		CT+MT+EA					
Course Outcome (The students w master th following)	 CO1: Foundation (classical) a CO2: Unde CO3: Solvin CO4: Unde for most co CO5:Analyz molecules 	inquantummechand microscopic (constandtheconcept ng Schrödinger wa rstand the bases kommon spectrosco	anicstorem Juantum) w ofquantiza ve equatio pehind inte opic metho tramolecula	indthediffe vorld. tionofener n for mode raction of l ds. arinteractio	rencebetwe gyandwave- I quantum s ight and ma onsandprope	enmacro particled systems. tter and a ertiesof	scopic uality account

Topics	Fundamentals of quantum mechanics: operators, functions, basic postu	lates 5
Covered	LecTime-	
	independentSchrödingerequation,freeparticle,particleinaboxofvariousd	imensions,
		3 Lec
	Tunnelling effect	2Lec
	Rigid rotation in a plane	2Lec
	Rotation of diatomic molecule, spherical harmonic functions	
		3LecH
	armonicoscillator	2 Lec
	Electronicwavefunctionofhydrogenandhydrogen likeatom	
		3Lec
	Magneticeffecton electronmovement	2Lec
	Raisingand loweringoperators	2Lec
	Manyelectrontheory, Slaterdeterminant, Pauliexclusion principle	2Lec
	Time-dependentSchrödingerequation	2 Lec
	Atomicandmoleculartermsymbol	2 Lec
	Atomicspectra	2 Lec
	Pure rotational and vibrational spectra of diatomic and polyatomic mole	ecules 3 L
	Vibrational-rotationalcoupling	2Lec
	Raman spectroscopyofmolecules, concept of molecularpolarizability	4Lec
	Electronicspectraofmolecules	2Lec
TextBooks,	1.Quantum ChemistrybyLevine	
and/or	2. Physical Chemistry: A Molecular approach by Donald A. McQuarrie	
reference	3.IntroductoryquantumchemistrybyA. K.Chandra	
material	4. Chemical applications of Group theory by F. A. Cotton	
	5.MolecularQuantum MechanicsByAtkinsandFriedman,Oxford	
	6.Fundamentalsof molecularspectroscopyByBarnwell and McCash.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	2	2	3	3	2	2	1	1
CO2	3	2	3	2	2	2	3	3	2	2	1	1
CO3	3	2	3	2	2	2	3	3	2	2	1	1
CO4	3	3	3	2	2	3	3	3	2	3	1	1
CO5	3	3	3	2	2	3	3	3	2	3	1	1

Course	Titl	e of the course	Program Total Number of contact hours										
Code			Core (PCR) /	Lecture	Tutorial	Practical	Total						
			Electives	(L)	(T)	(P)	Hours						
			(PEL)										
CYC702	Ino	rganic reaction	PCR	3	1	0	4	4					
	me	chanisms and											
	ma	gnetochemistry											
Pre-requi	sites		Course Asses	sment m	ethods (C	Continuous	(CT) ar	nd end					
			assessment (EA	4))									
NIL													
Course		• CO1: Basic c	ncept of inorganic reaction mechanism associated with octahedral										
Outcome		and square p	planar complexes	olanar complexes.									
(The		• CO2: Types	of electron trans	fer reactio	ns of the c	omplexes in	cluding th	ne detail					
students	will	mechanism											
master	the	 CO3: Solving 	; the problems re	lated to M	arcus theo	ry.							
following)	 CO4: Types of 	of magnetic subs	tances and	their magr	netic proper	ties.						
		 CO5: Quant 	um numbers ar	nd origin o	of magnetic	: moments;	microsta	ites and					
		derivation o	f Russel-Saunder	s Terms fo	r various el	ectronic cor	ifiguratio	n, Lande					
		Interval Rule	e, Hole formalism	n and equiv	alency.								
		CO6: Deter	mination metho	ods of ma	gnetic sus	ceptibility o	of variou	s metal					
		complexes,	multiplet widths	and derivation	ation of va	rious equati	ons to de	termine					
		magnetic m	oments, orbital	magnetic	moment d	quenching, a	concept o	of high-,					
		low-, interm	ediate- and adm	ixed-spin s	tate and th	eir interactio	ons.						
Topics		(i) Stoichiometri	ic mechanism, se	econd orde	r limiting ra	ate constant	, base hy	drolysis,					
Covered		Effects of non-le	eaving ligands, pr	oton excha	ange, activa	ition parame	eters	5Lec					
		(ii) Stereochem	istry of octahed	Iral substit	tution read	tions, racer	nisation	reaction					
		(Bailar twist and	l Ray –Dutt twist)				4Lec					
		(iii) Square plar	nar complexes: L	igands sub.	ostitution r	eactions,	General f	eatures,					
		significance of	rate law, effect	of entering	g and leavi	ing ligands,	The trans	s effect,					
		theories of trar	ns effect, ground	ls state ef	fects, trans	ition effect,	steric ef	fects of					
		non-leaving liga	nds, catalysis of s	substitutio	n by redox	process.		4Lec					
		(iv) Electron tra	insfer reaction:	Types of e	lectron tra	nsfer reacti	on, outer	^r sphere					
		electron transf	er process: elec	ctron tran	sfer and r	eorganisatio	on and c	hemical					
		activation, pote	ential energy d	iagram, N	larcus the	ory for out	er spher	e cross					
		reaction. 5	iLec										
		(v) Inner sphere	e electron transf	er process	: steps, rat	e law, type	s of inner	sphere					
		electron transfe	r process, bridgii	ng ligand, r	emote atta	ck, the chen	nical mecl	hanism.					
			_				4Lec						
		vi) Definition of	of magnetic pro	operties, t	ypes of m	nagnetic bo	dies, sou	irces of					
		paramagnetism	: orbital and sp	in effects,	Diamagne	etism and P	ascal's c	onstant,					
		diamagnetic cor	rection of ligand	s and meta	l complexe	S	Э	3Lec					
		(vii) Quantum	numbers and ve	ectors, Mu	tual inclina	ation of ele	ctron or	oits and					
		resultant vector	rs, Russel-Saund	ers couplir	ng and i-i d	coupling, Gr	ound Sta	te Term					
		Symbol	and		Hu	ind's		rules					
		2Lec											

	(viii) Microstates and derivation of Russel-Saunders Terms for p ² , d ² and pd configuration, Spin-orbit interaction 2Lec (ix) Lande Interval Rule, Hole formalism and equivalency, Hund's third rule and energies of J levels, Russel-Saunders coupling of d2 system and j-j coupling 3Lec (x) Thermal energy and magnetic property, Magnetic moments for different multiplet widths i.e for multiplet width large compared to KT, small compared to KT and comparable to KT 3Lec (xi) Magnetic properties of Lanthanides, first transition series metal ions and actinides 2Lec (xii) Determination of magnetic susceptibility: Gouy's method, Faraday's method, NMR method and their advantage and disadvantages, magnetic anisotropy. 3Lec (xiii) Magnetic properties of complexes with different geometries based on crystal field model, spin-state equilibrium in octahedral stereochemistry, magnetic properties of high-spin, low-spin, intermediate-spin and admixed-spin state concept. 2Lec								
	(xiv) Quenching of Orbital magnetic moment by crystal field, loss of orbital degeneracy and quenching of orbital magnetic moment, valence bond and crystal field interpretation of magnetic moment, shortcomings of crystal field theory. 2Lec								
Text Books,	1. Inorganic chemistry, Shriver & Atkins, Oxford.								
and/or	2. Concept and models of inorganic Chemistry, Douglas, Mcdeniel, Alexander, Wiley								
material	3. Inorganic Chemistry, Huheey, Kieter, kieter, Medhi, Pearson education								
	4. Concise Inorganic chemistry. Lee. Wiley indiaPyt. Ltd								
	5. Elements of magnetochemistry by Dutta & Shyamal								
	6. Mechanisms of Inorganic Reactions by Fred Basolo and Ralph Pearson								

 	•			•	•	•		•				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	1	1	1	3	3	1	1	1
CO2	3	1	3	3	1	1	1	3	1	1	1	1
CO3	3	1	3	3	1	1	1	3	1	1	1	1
CO4	3	2	3	2	2	1	3	3	3	3	1	1
CO5	3	2	3	3	2	1	3	3	3	3	1	1
CO6	3	2	3	3	2	3	3	3	3	3	1	1

Department of Chemistry												
Course	Title of the course	Program Core	Total Nu	Credit								
Code		(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives (PEL)	(L)	(T)	(P)	Hours						
CYC703	Concept of	PCR	3	1	0	4	4					
organic synthesis												
and asymmetric												
	synthesis											

Pre-requisites	Course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))
None	CT+MT+EA
Course Outcomes	 CO1: A complete knowledge on tactics, strategy and control for the synthesis of organic compounds has been elaborately discussed using some specific reagents for particular compound synthesis. CO2: How the better yield of product could be obtained, their tactics, strategy and control has been highlighted. CO3: Role of specific reagents with related mechanism in their transformation and mechanistic path from substrate to products is included for their step by step reactions.
Topics Covered	 Planning Organic Syntheses: 1. Tactics, Strategy and Control; Slectivity: chemoselectivity, regioselectivity: 2L 2. Making Carbon-carbon single and double bonds: Enolates, homoenolates, extenddenolates, nitrogen analogues of enols and enolates, acyl anion equivalents, allyl anions, specific enol equivalents, Michael reaction, σ-complexes of metals, orgnometallic reagents, aldol addition and condensation reactions, Mukaiyama aldol condnsation, conrol of facial reactivity, Claisen and Dieckmann condensation, conjugate addition, orthostrategy for aromatic compounds, reactions involving carbocation, carbenes and radicals, vinyl anion equivalent, allyl cation equivalent, Palladium catalysed coupling reactions. Olefination reactions – wittig and related reactions, Julia olefination. Sulfenylation and selenenylation, hydroalumination, carboalumination, ROMP and RCMP. 8 L 3. Functional group interconversions and Retrosynthetic analysis: Synthones and synthetic equivalents, functional group interconversions and order of events in organic synthesis. One group - C-X and two groups C-X disconnections, chemoselectivity, reversal of polarity, cyclisation reactions, amine synthesis. Diels-Alder reactions, 1,3- and 1,5- difunctionalised compounds, α, β-unsaturated carbonyl compounds, control in carbonyl condensation, Michael addition and Robinson annealation. Ring synthesis: saturated heterocycles synthesis of 3-, 4-, 5-, and 6-membered rings, aromatic heterocycles in organic synthesis of some classic examples of total synthesis; Periplanone B, penicillin V, reserpine, erythronolide B, thienamycin, biotin, menthol, strychnine by Woodwards method. 10L 5. Asymmetric induction via catalysis, kinetic resolution, enantiomerically pure compounds and sophiscticated synthesis. 8L

and/or reference material	 Organic Chemistry by J. Clayden, N. Greeves, S. Warren & P. Wothers, Oxford University Press, 2001 Organic synthesis strategy and control by P. Wyatt & S. Warren, Wiley, 2007. Advanced Organic Chemistry by F.A. Carey & R.J. Sundberg, Springer, 2007. Principles of Organic Synthesis, R.O.C. Norman & J.M. Coxon, Nelson Thrones, 1993, CRC Press. Organic synthesis by M. Smith, Elevier, 4th Edition, 2016. Classics in Total Synthesis: Targets, strategies and Methods by K.C. Nicolaou& E.J. Sorensen, Wiley, 1996. Modern Methods in Organic Synthesis by W. Carruthers, Cambridge University Press, 2004. Protective Groups in Organic Synthesis by T.W. Green & P.G.M. Wuts, Wiley, 2002.
---------------------------------	---

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	2	3	2	3	3	3	1	3	2
CO2	3	3	2	3	2	2	3	2	3	3	1	2
CO3	3	2	3	2	1	3	2	3	2	2	1	2

Course	Title of the course	Program	Total Nu	Total Number of contact hours						
Code		Core (PCR)/Electiv es (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours				
CYC704	Mathematicaland computational chemistry	PCR	3	0	0	3	3			
Pre-requi	sites	Course Assessment methods (Continuous (CT) and end assessment(EA))								
NIL		CT+EA								

Course	• CO1:Foundationinbasicmathematicaltechniquesthatarecommonlyusedinchemis
Outcome	 try. CO2:Learntheartofscientificprogrammingtosolvechemicalproblems. CO3:Writesimpleprogramsformatrixdiagonalisation,solvenumericaldifferentiati on,integration and elementarydifferential equations. CO4:Applycomputationalmethodstocomplexproblemsofgrouptheory,quantumc hemistry,molecularspectroscopy,chemicalkineticsandothertopics. CO5:Introductiontocomputationalchemistrysoftwarepackagesforquantum mechanicalandmacromolecularmodelling.
	inquantummechanics. 2 Lec Linearalgebrainquantummechanicsandsymmetryoperation:Vectorspace,determinan ts, matrix and liner transformations, orthogonal transformation,symmetryoperations,matrixeigenvalueproblemetc. 3LecDifferentialequationandchemistry:rateprocess,harmonicoscillat or,waveequationfor harmonic oscillator,particle inbox, particle inaring 2LecTheLegendre equation,Legendrepolynomials,associatedLegendre polynomial,orthogonalityandnormalisation,Hermiteequation,Laguerreequation,assoc iatedLaguerrefunctions,separableequationinchemicalkineties. 2 LecPartialdifferentialequation:generalsolution,separationofvariable,particleinarectan gularbox,inacirclebox,hydrogenatom,vibratingstring,normalmodesofvibration. 5 Lec Function in three dimension: spherical polar coordinates, Density functions, atomicorbitals, volume integrals, average value, Maxwell velocity distribution, Laplacianoperatoretc. 3 Lec Fourier Transform in IR and NMR spectroscopy and X ray diffraction: orthogonalexpansions and Fourier analysis, Fourier series, periodicity, Fourier transforms,Fouriertransformpairsandapplicationin IR,NMRandX-raysdiffraction. 3
	Lec Introduction to Fortran/Python language: data types, integer, complex, character,logicalconstantsandvariables.Arithmeticstatements,expressions,libraryfu nction,relationaloperators. 2Lec Inputandoutputstatements,l/Oformatstatements,differenttypesofcontrolstatement s. 1Lec Loop structures, subscribed variables and arrays. Writing and executing of simpleexampleprogrammes. 2 Lec Programmingexercisestochemicalproblems 5Lec ApplicationofDensityFunctionalTheoryusingGaussian(orsimilar)softwareinchemistry. 5 Lec
	pasicconceptonmacromoleculemodeningsoftware. SLec

Text Books,	1. TheChemistryMathsBooks, ErichSteiner, Oxford
and/or	2. Mathematicsforchemistry, DoggettandSuiclific,Logman.
Reference	3. MathematicalforPhysicalchemistry: F.Daniels,Mc.GrawHill.
material	4. Chapman, Fortran 95/2003 for Scientists and Engineers, McGraw-
	HillInternationalEdition, New York (2006).
	5. V.Rajaraman,ComputerProgramminginFortran90and95,PHILearningPvt.Ltd,
	New Delhi (1997).
	6. W.H.Press, S.A.Teukolsky, W.H.Vetterling, B.P.Flannery, Fortran Numerical Recip
	es (Fortran 90),CambridgeUniversityPress(1996)
	7. UserReferenceManualforGaussian09software

MappingofCO(Course Outcome)andPO(ProgrammeOutcome)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	3	3	3	2	1	2	3
CO2	3	3	3	2	2	3	3	3	2	1	2	3
CO3	3	3	3	2	3	3	3	3	2	1	2	2
CO4	3	3	3	2	3	3	3	3	2	1	2	2
CO5	3	3	3	2	3	3	3	3	2	1	2	2

Course	Title of the course	Program	Total Nu	mber of co	ntact hours		Credit
Code		Core (PCR)/ Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	
CYS751	Spectro photochemical Analysis	PCR (Practical)	0	0	3	3	1.5
Pre-requi	sites	Course Assessment methods (Continuous(CT) and end assessment(EA) along with Viva-Voce)					
NIL		CT and Viva	a-voce				
Course Outcome	CO1:Basicconc	eptsofspectro	ophotomet	tric estimat	ion		

(Thestudents will master thefollowing)	 CO2:Learningabouthandlingofspectrophotometerandfluorescencespectrome terand theirbasic theory. CO3:Todeveloplaboratoryskillsandtheabilitytoworkindependentlyaswellasin a group. CO4:Knowingpresentation,analysisandinterpretationofdata,sourceoferrorand error analysis. CO5: To understand the interconnection betweenexperimental foundationandunderlyingtheoretical principles. CO6:Todeveloptheabilityofscientificcommunicationsthroughoralquizzes, writtenreportsandpresentations.
Topics	1. Determination of stoichiometry of Ferricsalicylicacid complex by Job
Covered	's method
	2. Determinationofindicatorconstantofmethylorange
	 DeterminationofconcentrationofCu²⁺andFe³⁺photometricallybyti tratingwith EDTA
	4. Determination of arsenic (III) and antimony (IV) simultaneously in a
	mixturespectrophotometrically.
	5. Determinationofmolarextinctioncoefficient
	6. Determinationoffluorescencequantumyield.
	7. Fluorescencequenchingexperiment:determinationofmicellaraggr
	Someadditional experimentsas decidedbythe Instructor
-	
Text	1. Instruction manual provided by the Instructor
Books,	2. ExperimentsinPhysicalChemistrybyCarlGarland,JosephNibler,DavidShoem
and/orReferen	aker
ce material	3. Practicalsin PhysicalChemistrybyPS Sindhu
	4. PracticalPhysicalChemistrybyViswanathan andRaghavan

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									
CO2	3	3		2	2	3		2	2		1	
CO3						2		2	2		3	3

Course	Title c	of the course	Program	Total Nu	mber of co	ntact hour	S	Credi		
Code			Core (PCR)/	Lectur	Tutoria	Practic	Total	t		
			Electives	e (L)	I (T)	al (P)	Hours			
			(PEL)							
CYS752	Spect	rophotometric	PCR	0	0	3	3	1.5		
	Estima	ation of Cations	(Practical)							
	and A	nions								
Pre-requ	isites		Course Assessment methods (Continuous (CT) and end							
			assessment (EA) along with Viva-Voce)							
NIL			CT and Viva voce							
Course		• CO1: Basic co	oncepts of spec	trophoton	netric estim	nation				
Outcome	9	• CO2: Unders	tand to evaluat	te the estir	nation of ic	on mixture				
(The stu	udents	CO3: Learnin	ig about handli	ng of spect	trophotom	eter				
will mast	ter the	CO4: Unders	stand the fund	amental, s	scientific ba	asis, prepa	aration of	sample,		
following	g)	sampling m	ethod and an	alytical m	nethods fo	r water a	and waste	e water		
		samples.								
		CO5: Studen	ts will also accu	umulate id	ea about tl	he permiss	sible limit,	present		
		concentratio	n etc. of differe	ent enviror	nmental im	purities.				
Topics Co	overed	Estimation of Mi	$nO4^{-}-Cr_{2}O_{7}^{2^{-}}$ n	nixture						
		Estimation of Cu	Cu ⁺² –Zn ⁺² mixture							
		Estimation of NC	$D_3^ PO_4^{3-} mixt$	ure						
		Estimation of II	$-v^{\circ}$ mixture dissolved oxygen and oxygen demand (BOD and COD) of							
		Estimation of (dissolved oxygen and oxygen demand (BOD and COD) of							
		Environmental S	amples							
		(i) Deter	enments from the followings as decided by the instructor.							
		(i) Deter	rinnation of Ni in Steel (Gravimetrically).							
		(iii) Spectr	rosconic detern	nination of	f Iron in Bai	, Ixite				
Text	Books.	1. An Adva	nced Course	in Practic	cal Chemi	strv bv N	Nad. Ghos	sal and		
and/or	,	Mohapatr	ra. New Central	Book age	ncv.					
reference	e	2. A Manual	al of Practical Chemistry for Degree Classes (Vol 1 & 11) by R C							
material		Bhattacha	arya,	,	U	·	,	,		
		3. College Pr	ractical chemist	try by Ahlu	walia, Ding	ra and Gu	lati.			
		4. Vogels te	extbook of quantitative chemical analysis By J Mendham, R. C.							
		Denney, N	M. Thomas and	D. J. Barne	es, Pearson	India.				
		5. APHA, A, WEF, (1998). Standard Methods for the Examination of Water								
		and Wast	stewater. American Public Health Association, American Water							
		Works As	sociation,Wate	r Pollution	Control Fe	deration, V	Washingto	n DC.		
ping of CC	<mark>) (Cours</mark>	e outcome) and P	O (Programme	Outcome)					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	3	3	3		3	2	1	1	
CO2	3	2	1	2	1	2	1	3	2	2	1	1
CO3	3	2	3	2		3	3	3	2	2	1	
CO4	3	3	3	3	3	2	1	3	3	3	2	3
CO5	3	2	3	2	3	2	1	3	3	3	3	3

CYS753	Separation and	PCR (Practical)	L	Т	Р	н	C				
	Organic Compounds from Binary Mixture	(Practical)	0	0	4	4	2				
Pre-requis	sites	Course Assessment methods (Continuous (CT) and end assessment) (EA)and Viva-Voce)									
CYS351		CT + Viva-voce									
Course Outcome (The students well- acquainte with)	CO1: Scientific k pure separate co CO2: Become sk will chemistry. CO3: Separation Mass and other CO4: Understand different method crystallization ar CO5: To reach a energylike; heat	nowledge on principle of separation techniques to reach a targeted omponent from a binary mixture, silled to optimise the uses of solvent obeying the principle of green and purification techniques, like phase transfer, crystallization, GC- spectroscopic method will be adopted d the basic concept behind separation process for most common dology and their principles like; distillation, sublimation, nd solvent extraction will be adopted. maximum yield with minimum uses of solvent, reagents and									
Topics Covered Referenc	 Aniline and be Ethyl acetoace Benzil and Bei p-chlorobenze cyclohexanon each case, sep derivatives of ea <i>Vogel's</i> Textbo Advanced prace 	enzil (Liquid and so etate and Benzoic nzoic acid (solid an pic acid and aniling e/ cyclohexanol a paration and ident ch component, th ok of practical org etical chemistry, 3r	olid) acid (Liqui nd solid) e (solid-liqu nd N,N dim cification of <u>neir purifica</u> anic chemis d ed.: Suba	d and solid uid) hethyl anilin individual htion and ch stry, 5th Edi s C. Das) ne (liquid ar component naracterizat tion	nd liquid) ts, prepar :ion.	ation of				
material	3. An Advanced Curse in Practical Chemistry, New Central Book Agency; 3rd ed.: Mahapatra and Ghoshal						: Nad <i>,</i>				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	2	2	1	3	2	2	1	2
CO2	3	3	2	2	2	2	2	3	2	2	1	2
CO3	3	2	3	2	2	2	2	2	2	2	1	2
CO4	3	2	3	2	3	3	1	3	2	3	1	2
CO5	3	3	2	2	3	3	2	3	2	3	1	2

Course	Title of the course	Program	Total Nun	nber of con	tact hours		Credit			
Code		Core (PCR) /Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours				
CYC801	Chemical, Statistical Thermodynamics and Electrochemistry	PCR	3	1	0	4	4			
Pre-requis	sites	Course Assessment methods (Continuous (CT) and end assessment) (EA))								
NIL		CT+EA								
Outcome	 CO1:underst multicompor CO2: underst itsimplication CO3: accour analysetherm Fermi-Diraca CO4:underst nd theirinter CO5: accourt 	thermo cept ofention l interpreta operties of in statistics. opertiesinso atal ideasof	odynamics Topy of a Ition of pa model sy lution,liked Debye-Huck	ofideal, system at artition func ystems with liffusion,mig celtheoryand	non-ideal absolute tions and using Bo ration,con litsapplicat	and zero and l able to oltzmann, ductiona tion.				
Topics Covered	Third law of thern Thirdlawofclassica	nodynamics: Ithermodynamicsandtheirapplications. 2L								
	Thermodynamics Thermodynamics entropyofmixing,p determination, Gibbs-Duhemequa temperaturedeper Thermodynamicex coefficientofelectr StatisticalThermod Introductiontostat Partition function. Comparisonamong Statisticalmechani contribution of re residual entropy.	of non-ideal so ofidealandnon artialmolarqua ation,Duhem-M ndent equilibrin cessfunctions. olytes andnone dynamics: isticalthermod gMaxwell-Boltz csonthethermo otation, vibrat	blution: idealbinarys antitiesandth largulesequ um constant Experiments electrolytes ynamics,pro mann,Ferm odynamicso ion and tra	solutions:fr neirdeterm ation,equil t. aldetermina bability,en i-DiracandI fmono,diat	eeenergyand ination,fuga 4L ibriumconsta ationofactivi semblesand 2L Bose-Einsteir omicandpoly opartitionfu	d cityandits ant, 3L ty 3L distributio nStatistics. yatomic io nction. Co 4L	onlaws. 2L deal gas- oncept of			

EIGHTH SEMESTER

	Electroniccontributiontothespecificheatofdiatomicgases.
	Solids- Vibrational contribution to the specific heat of solids. Statistical treatment of Black-bodyradiation
	Maxwell-Boltzmannprobability distribution of molecular velocities and speeds.
	Dynamics of chemical reaction insolution-transition state theory using
	partitionfunctions. 6L
	Electrochemistry:
	Somepreliminaryconceptofelectrostatics. 3L
	Ion-solventinteraction:Bornequation,Electrostrictionandpartialmolarvolume. Solvation number of electrolytes. Dielectric constant of solution.Effectofnonelectrolyte onion- solventinteraction.Ion-dipoleinteraction. 4L
	Ion-ion interaction: Debye-Huckel-Onsagar theory of inter-ionic interaction,thicknessof ionicatmosphere.Debye-Huckel limitinglaw. 4L
	Ion transport in solution: Fick's first and second law of diffusion, Molecularinterpretation of diffusion, Migration of ion under electric field, Effect ofviscosity and diffusion on ionic migration. Relaxation of ionic atmosphere,Effectof
	highelectricfield and highfrequencyofionicconduction. 4L
	Rate processapproachtowards ionicmigration:Nernst-PlanckFluxequation
	anditsapplication. 3L
	Transportofionthroughmembrane:Donanequilibrium. 2L
Text Books, and/or	1. Modernelectrochemistry:Ionics(Part1);andElectrodics(Part2)byBockrisand Reddy
Reference	2. AnintroductiontostatisticalthermodynamicsbyT.L.Hill
material	3. PhysicalChemistry:StatisticalMechanicsbyH. Metiu(TaylorandFrancis)
	4. PhysicalChemistry:ThermodynamicsbyH.Metiu(Taylorand Francis)
	5. Chemical hermodynamics:PrinciplesandApplications;andAdVancedApplication sby Ott andGoates

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3			2		2	3	3	2	2	1	1
CO2	3			2		2	3	3	2	2	1	1
CO3	3		2	2		2	3	3	2	2	1	1
CO4	3	3	3	2	2	3	3	3	2	3	1	1
CO5	3			3	1							

Course	Titl	e of	the	Program Core	Total Nu	mber of co	ntact hours		Credi			
Code	COL	rse		(PCR) /	Lectur	Tutorial	Practica	Total	t			
				Electives (PEL)	e (L)	(T)	l (P)	Hour				
								S				
	Org	anometa	llic	PCR	3	1	0	4	4			
CVC802	Con	npounds	and									
010002	Bioi	norganio										
	Che	mistry										
Pre-requi	sites			course Assessment methods (Continuous (CT) and end assessment (EA)								
NIL				CT+EA								
Course		• CO1	: know	ledge of s, p and	l d block c	rganometa	allics in resp	pect of sy	nthesis,			
Outcome		stru	cture a	nd bonding in different ligand environment.								
(Students		• CO2	: know	ledge of different	edge of different types of reactions of organometallics compounds							
will	be	and	their r	r role in different catalytic cycles related to industrial processe					s.			
enriched	by)	• CO3	: unde	rstanding the rol	e of trace	elements	in health a	nd enviro	onment,			
		cher	nistry (of metal cytotoxic	ity and its	remedy.						
		• CO4	: knov	wledge the stru	icture an	d functior	n of meta	lloenzym	es and			
		met	metalloproteins with special emphasis of iron storage, oxygen transport					port and				
		pho correction	tosynth	ntnesis. Indication of modern constructionic tools to elucidate the active site								
		• CU:	o: appii	cation of modern	spectrosco	pic tools to	o elucidate t	the active	e sites of			
Topics		Gr. Land Gr. II organometallics: synthesis, properties and application 2.						2 100				
Covered		d _mot		nometallics: Hist	orv stable	oloctroni	c configura	tion 18	and 16			
covereu		electron	in orga	electron cour	nt and oxid	dation stat	e Nomeni	clature	π- acid			
		ligands a	ind low	oxidation states			ie, nomen	ciature,	3			
		lec							5			
		Metal	carbo	nyl: Binary ca	arbonyl:	synthesis,	bonding,	spect	roscopic			
		characte	risatio	n of carbonyl com	, pounds,		U,	·	•			
		4 lec		-	-							
		Substitu hydrides	ted ca , and	rbonyl: phosphir dihydrogen, η1	ie, isocyai alkyl, alke	nide, nitro nyl, alkyny	syl, dinitro /l, aryl, η2	gen, ca 2 alkene,	arbenes, alkyne,			
		nonconj	ugated	diene, , butadie	ne, cyclo	butadiene,	cyclotetra	cene, all	yllgand,			
		cyclpope	entadie	ne, and cyclohep	tatriene, I	Metallocen	es: synthes	is, reactiv	vity and			
		bonding	of ferr	ocene etc.				6	lec			
		Reactior	ıs: ligar	nd substitution oxi	idative add	lition and r	eductive eli	mination,	σ-bond			
		metathe	sis, 1	,1 migratory in	sertion, 1	.,2 inserti	on, β-hydr	ide elim	nination,			
		Homoge	neous	catalysis: hydro	genation	catalyst, ł	nydro torm	iylation,	Wacker			
		oxidatio	n of alk	enes, asymmetrie	c oxidation	, metathes	SIS	~	5 lec			
		Cage and	a meta	l clusters.				3	lec			
		BIO-INOR	ganic:	d availability a	f inoraar:	c alaman i	in orac	nicme: -	ccontial			
		benefici	ice al al and	iu availability 0 trace elements 9	i inorgani Svnorgistic	and antage	s III UIBAI	ionshin a	ssential,			
ions. Element det				leficiency and toyi	city Metal	noisoning	detoxificati	on				
		1 lec				Personing		U 11				

	Biological ligands for metal ions: Nucleobases, nucleotides and nuclic acids (DNA, RNA) as ligands, tetrapyrrole ligands and other macrocycles (chlorin, corrin), Concept of protein structures: primary, secondary, tertiary and quaternary; Coordination of proteins and comments on enzymatic catalysis 1 lec Cobalamins including vitamin and Coenzyme B12: History and structural characterisation; Reactions of the alkylcobalamins (a) One-electron reduction and oxidation, (b) Co-C bond cleavage, (c) Mutase activity of Coenzyme B12 and (d) alkylation reactions of Methylcobalamins; Model systems and the role of the Apoenzyme 3 lec Metals at the center of photosynthesis: Total efficiency of photosynthesis; Primary processes in photosynthesis such as (a) Light absorption, (b) Exciton Transport, (c) Charge separation and electron transport (Photosystem-I, Photosystem-II, Z-Scheme); Manganese catalysed oxidation of H_2O to O_2 4 lec The dioxygen molecule, O_2 Uptake, transport and storage: Molecular and chemical properties of O_2 , Oxygen transport and storage through Hemoglobin and Myoglobin, Alternative oxygen transport by some lower animals by Hemerythrin and Hemocyanin, Active site structure elucidation using magnetism, light absorption, vibrational spectroscopy and Mössbauer spectroscopy4 lec Uptake, transport and storage of an essential elements as exemplified by Iron: Iron mobilization problemOxidation states, solubility and medical relevance; Siderophores (Fe uptake by microorganism), Phytosiderophores (Fe uptake by microorganism), Phytosiderophores (Fe uptake by microorganism), Phytosiderophores (Fe uptake by plants), Transport and storage of iron (Transferrin, Ferritin, Hemosiderin) 4 lec Copper containing proteins as an alternative to biological iron: Type 1 blue copper center, Type 2 and Type 3 copper centers in O_2 activating proteins, Copper proteins as Oxidases/Reductases, Cytochrome c Oxidase, Cu-Zn and Ni superoxide dismutases. 4 lec
Text Books, and/or	1. Concept and models of inorganic Chemistry, Douglas, Mcdeniel, Alexander, 2. Inorganic chemistry, Shriver & Atkins, Oxford
reference	3. Inorganic Chemistry, Huheey, Kieter, Kieter, Medhi, Pearson education.
material	4. The Organometallic Chemistry of the Tr. Metals by Robert H. Carbtree.

	<u> </u>				<u> </u>							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	2	2	2	3	3	2	1	1
CO2	2	2	3	2	2	2	2	3	3	1	1	1
CO3	2	3	3	2	2	2	2	3	3	3	1	1
CO4	3	3	3	1	2	2	3	3	3	3	1	1
CO5	3	3	3	1	1	3	3	3	3	2	1	1

Course Tit	le of the	Program Core	Total Nu	mber of co	ntact hours		Cre					
Code co	urse	(PCR) /	Lectur	Tutoria	Practica	Total	dit					
		Electives (PEL)	e (L)	I (T)	I (P)	Hours						
Per	icyclic	PCR	3	1	0	4	4					
Rea	ictions and											
Org	anic											
Pho	otochemistry											
Pre-requisites		Course Assess	ment me	ethods (C	ontinuous	(CT) and	end					
		assessment (EA	assessment (EA)									
NIL		CT+EA										
Course	CO1: Unde	rstand the basic principles of pericyclic and organic photochemical										
Outcome	reactions											
(The	CO2: Unde	rstand the classifi	cation of c	lifferent ty	pes of perio	cyclic and o	rganic					
students	photochem	nical reactions										
will master	 CO3: Solvin 	ig mechanism of p	pericyclic a	nd organic	photochem	ical reactio	ns					
the	• CO4: Unde	erstand the appli	cation of	pericyclic	and organi	c photoche	emical					
following)	reactions											
Topics	Pericyclic React	ions(18L):					_					
Covered	Molecular orbi	tal symmetry, Fro	ontier orbi	tals of eth	iylene, 1,3-l	outadiene,	1,3,5-					
	hexatriene and	allyl system.			-	31	_					
	Classification o	t pericyclic reacti	ons. Wood	dward-Hot	tmann corre	elation diag	grams.					
	FMO & PMO ap	proach.		•		3L						
	Electrocyclic re	eactions-conrotate	ory and d	isrotatory	motions. 4	In, 4n+2 s	ystem					
	4L		· · ·			a .						
	Cycloaddition -	- antarafacial and	l supratcia	l additions	, 4n and 4r	1+2 system	s, 2+2					
	addition of k	etenes, 1,3 dipo	olar cyclo	additions	and chelet	ropic read	ctions.					
	4L Signaturania rad			ad a stavaf	aial abifta a	fil Ciana	+					
	signatropic rea	arrangements-sup	oranacian ar	T cigmotro		or H, Sigma	tropic					
	shirts involving	carbon moleties,	5,5- driu 5,	,5 Sigmatro Eluvional	pic rearrang	gements. Ci	tions					
	Cope and aza-co	os from surrent li	toroturo	. FIUXIONAI	lautomensi	n, Ene reac	41011S.					
	Organic Photos	bomictry (201)	lerature.				4L					
	Conoral inform	ation Dhoto cho	mical onor	av offoct	of light into	ncity on th	o rato					
	of photochor	nical reactions		gy, enect (vi-diagram	nhoto-so	nsitisation	and					
	auonching	ilical reactions.	Japiolisi	N-ulagi alli,	photo-se		anu					
	Norrish type-I	type-II process	os Datorr	o-Buchi r	aaction nh	otochomist	try of					
	unsaturated co	mounds	cs, ratell		caccion, pri		ΔI					
	Types of nhot	ochemical reacti	ons [.] Phot	o-dissociat	tion gas n	hase nhot	⊣∟ ∩lvsis					
	Photochemistry	of alkenes. Ir	tramolecu	ilar reacti	ons of the	olefinic	hond-					
	geometrical is	y or aixenes. Initianiolecular reactions of the olerific DOIIG-										
	dienes	all all the section of the sections, realizing effective of 1,4- all 1,5-										
	Photochemistry	v of Carbonyl compounds: Intramolecular reactions of carbonyl										
	compounds sa	turated cyclic a	nd acvelie	.B.v-iinsati	irated and	a.B-unsati	irated					
	compounds	Cyclohexadienor	nes.Interm	olecular	cvcloaddit	ion read	ctions					
	dimerisation an	id oxetane format	ion.		-,		4L					
Covered	Molecular orbit hexatriene and Classification o FMO & PMO ap Electrocyclic rea 4L Cycloaddition – addition of ke 4L Sigmatropic rea shifts involving cope and aza-ce Recent advanc Organic Photoc General inform of photocher quenching. Norrish tyoe-I, unsaturated co Types of phot Photochemistry geometrical iso dienes. Photochemistry compounds sa compounds sa	tal symmetry, Fro allyl system. f pericyclic reaction proach. eactions-conrotate - antarafacial and etenes, 1,3 dipo arrangements-sup carbon moieties, ope carbon rearra es from current li hemistry (20L): ation, Photo-chen nical reactions. type-II process mpounds. cochemical reactions. type-II process mpounds. cochemical reactions. type-II process mpounds. cochemical reactions. type-II process mpounds. cochemical reactions. type-II process mpounds. cochemical reactions. d of Carbonyl co turated, cyclic a Cyclohexadienor	ontier orbi ons. Wood ory and d l suprafcia orafacial ar 3,3- and 5, ngements terature. mical ener Jablonsk es, Paterr ions: Phot ntramolecu ion reaction mpounds: nd acyclic nes,Interm ion.	tals of eth dward-Hoft lisrotatory I additions additions additions additions d antarafa 5 sigmatro . Fluxional gy, effect of ki-diagram, no-Buchi ro co-dissociat lar reactio ons, rearra Intramole β,γ-unsatu olecular	inviene, 1,3-in fmann correct motions. 4 , 4n and 4r and chelet acial shifts of pic rearrang tautomerism of light inte photo-se eaction, pho tion, gas pons of the angement of cular react urated and cycloaddit	butadiene, 31 21 21 21 21 21 21 21 21 21 2	1,3,5- grams. ystem s, 2+2 ctions. tropic laisen, tions. 4L e rate and try of 4L olysis. bond- d 1,5- rbonyl urated ctions, 4L					

	Aromatic compounds: Isomerisations, additions and substitutions. Miscellaneous photochemical reactions: Photo-Fries reactions of anilides, photo-fries rearrangement, Barton reaction, Singlet molecular oxygen reactions.
	Photochemical formation of smog. 1L Photodegradation of polymers, photosubstitution, photoreduction of ketones, photooxidation, di- π methane rearrangement, photochemistry of arenes. 3L
	Organo-metalic photochemistry, photochemistry of vision. 2L
Text Books, and/or	 Molecular Orbitals and Organic Chemical Reactions by I. Fleming, Wiley. Pericyclic reaction By S. Sankararaman Wiley VCH, 2005. Photochemistry, and Paricyclic Reactions by Londorshe, Cinch. New Acc.
material	 3. Photochemistry and Pericyclic Reactions by Jagdamba Singh, New Age Science publisher 4. Mechanism of Organic Chemistry by Peter Sykes

Mapping of CO (Course outcome) and PO (Programme Outcome)

U												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	3	1	3	2	1	2	2
CO2	3	3	3	2	2	3	1	3	3	1	1	2
CO3	3	3	3	3	3	3	2	3	3	2	2	3
CO4	3	3	3	3	3	3	2	3	3	3	2	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Title	e of the course	Program Core	Total Nu	umber of co	ntact hou	rs	Credit		
Code			(PCR) /	Lectur	Tutorial	Practic	Total			
			Electives (PEL)	e (L)	(T)	al (P)	Hours			
CYE811	Ad	vanced Natural	PCR	3	0	0	3	3		
	Pro	oducts and								
	Me	edicinal Chemistry								
Pre-req	uisit	es	Course Assessr	ment me	thods (Cor	ntinuous	(CT)and e	end		
			assessment (EA)						
		NIL	CT+EA							
Course		CO1:Underst	anding the impor	rtance of	natural pro	ducts				
Outcome		CO2: Learning	g of the structure, synthesis and uses of different Terpenes							
(The		 CO3: Know th 	ne chemistry of Steroids in hormones							
students	will	CO4: Develop	howledge of the chemical structure, synthesis of different							
master	the	natural pigme	ents							
following)		 CO5:Concept 	generation on ra	ational m	edicinal che	emistry an	d classific	ation		
		CO6: Introdu	ction to drug ma	nufacturi	ng done in	pharmace	utical ind	ustries		
CO7:Fundamental use of computer in drug design and discovery										
Topics		Terpenes: Stru	uctural studies	on ses	squi terpe	nes, dite	erpenes,	9Lec		
Covered		triterpenes and	carotenoids; che	emistry of	f carryophy	llene, abie	tic acid,			
		beta-amyrin, al	pha and beta-carotenoids							

	Steroids and Prostanoids: Reaction and synthesis of steroids, sources of steroid hormones; diosgenin, hecogenin, etc., structure and 9Lec synthesis of prostanoids
	Natural Pigments: General methods of isolation, structure elucidationandsynthesisofanthocyanins,flavones,flavones,isoflavones, 9Lec aurone, chalcone, xanthone and their chemical interconversions Medicinal Chemistry:
	Definition, Concepts of LD50 and ED50, introduction to rational approach to drug design, physical and chemical factors associated with
	biological activities, structure-activity relationship, and mechanism of 9Lec drug action.
	Classification of Medicine: Based on structure or pharmacological basis
	infective, psychoactive, antibiotics (including vancomycin).
	Industrial synthesis of important medicines.
	Modelling: Molecular modeling, conformational analysis, qualitative
	and quantitative structure-activity relationship.
TextBooks,	4. Asymmetric Synthesis of Natural products By Ari M PKoskinen (Wiley)
and/or	5. Chemistry of Natural products By S BBhat, B A Nagasampagi, M
reference	Sivakumar (Narosa)
material	6. Medicinal Chemistry: An introduction By Gareth Thomas (Wiley)
	7. An Introduction to Medicinal Chemistry by GL Patrick (Oxford)'
	8. Bioinformatics and Computational Biology in Drug Discovery
	and Development by William T. Loging (Cambridge)

				0							
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
3	1	1	1	1	2	1	2	3	3	1	1
3	1	1	1	1	2	1	3	2	2	2	1
3	2	1	1	1	3	1	3	3	3	1	1
3	1	1	1	1	2	1	2	2	3	1	1
3	3	3	3	3	3	1	3	3	1	3	1
3	3	3	3	3	3	1	3	3	1	3	1
3	3	3	3	3	3	3	3	3	1	3	1
	PO1 3 3 3 3 3 3 3 3 3 3 3 3	PO1 PO2 3 1 3 1 3 2 3 1 3 2 3 1 3 3 3 3 3 3 3 3 3 3	PO1 PO2 PO3 3 1 1 3 1 1 3 2 1 3 1 1 3 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PO1 PO2 PO3 PO4 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PO1 PO2 PO3 PO4 PO5 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PO1 PO2 PO3 PO4 PO5 PO6 3 1 1 1 1 2 3 1 1 1 1 2 3 1 1 1 1 2 3 1 1 1 1 2 3 1 1 1 1 2 3 2 1 1 1 3 3 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 1 1 1 1 2 1 3 1 1 1 1 2 1 3 1 1 1 1 2 1 3 1 1 1 1 2 1 3 2 1 1 1 3 1 3 1 1 1 2 1 3 3 3 3 3 1 3 3 3 3 3 1 3 3 3 3 3 1 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 1 1 1 1 2 1 2 3 1 1 1 1 2 1 2 3 1 1 1 1 2 1 3 3 2 1 1 1 3 1 3 3 2 1 1 1 2 1 2 3 1 1 1 2 1 2 3 3 3 3 3 1 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 3 1 1 1 1 2 1 2 3 3 1 1 1 1 2 1 2 3 3 1 1 1 1 2 1 3 2 3 2 1 1 1 3 1 3 2 3 2 1 1 1 2 1 3 3 3 1 1 1 2 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3 1 1 1 1 2 1 2 3 3 3 1 1 1 1 2 1 2 3 3 3 1 1 1 1 2 1 3 2 2 3 2 1 1 1 3 1 3 3 3 1 3 3 1 3 3 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 1 1 1 2 1 2 3 3 1 3 1 1 1 2 1 2 3 3 1 3 1 1 1 2 1 3 2 2 2 3 2 1 1 1 3 3 3 1 3 1 1 1 2 1 3 3 3 1 3 1 1 1 2 1 2 2 3 1 3 3 3 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3 3 3 3 3 3 1 3 3 1 3

		Department of	of Chemist	ry					
Course	Title of the	Program Core	Total Nu	Credi					
Code	course	(PCR) / Electives (PEL)	Lectur e (L)	Tutoria I (T)	Practica I (P)	Total Hour	t		
						S			
CYE 812	Spectroscopic methods of analysis	PEL	3	0	0	3	3		
Pre-requi	sites	Course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))							
None		CT+EA							

Course	· CO1: Understanding the principle and applications of UV-VIS, IR and Raman
Outcomes	spectroscopy to elucidate the structure of different organic and inorganic
	molecules.
	 CO2: Understanding the principles of ESR spectroscopy and its application in
	the structure determination of inorganic complexes and reactive
	intermediates involved in organic and inorganic reactions.
	 CO3: Understanding the basic concept of Mössbauer Spectroscopy and
	usefulness of this technique to the studies of bonding and structures of
	inorganic compounds.
	 CO4: Understand the core concept of Mass Spectroscopic techniques and
	their contribution to the methods of structure elucidation of organic and
	inorganic species.
	 CO5:Understand the different aspect of Nuclear Magnetic Resonance
	spectroscopy and its application in the field of structure determination of
	organic and inorganic species
Topics	1. Applications of UV-VIS, IR and Raman spectroscopy to elucidate the structure
Covered	of different organic and inorganic molecules. 4 Lecs
	2. ESR spectroscopy: Hyperfine coupling, Spin polarization for atoms and
	transition metal ions, Spin-orbit coupling and significance of g-tensors,
	application to transition metal complexes including free radicals. 4 Lecs
	3. Mössbauer Spectroscopy Basic principles, spectral parameters and spectrum
	display. Application of the technique to the studies of i) bonding and
	structures of Fell, Fell compounds including those of intermediate- spin, ii)
	SnII and SnIV compounds, nature of M-L bond, coordination number and
	structure and iii) detection of oxidation states. 4 Lecs
	4. Mass Spectroscopy Generation of ions and detection; El, Cl, FD, FAB, plasma
	desorption etc; fragmentation pattern in El, GC-MS, MS-MS, LC-MS.
	Application of UV, IR, NMR and MS in structure elucidation.
	8 Lecs
	5. NMR Spectroscopy Long-range spin-spin interaction. Interpretation of non-
	first order NMR; double resonance, Lanthanide shift reagent, spin-tickling,
	INDOR, NOE, effect of solvents (aliphatic and aromatic), preliminary idea on
	19F, 31P, 14N, 15N, 17O. NMR of solids, NMR imaging. 13C NMR
	Spectroscopy: Introduction, theory, instrumentation, chemical shift, coupling
	constants, application in organic molecules. 15 Lecs
Text Books,	1. Elements of magnetochemistry: Dutta and Shyamal
and/or	2. 2. Fundamental concept of inorganic Chemistry (Vol-7): A. K. Das
reference	3. Structural methods in molecular inorganic chemistry: Rankin, Mitzel,
material	Mosrision
	4. NIVIK spectroscopy (Basic Principles, concepts and application in chemistry): H.
	Guillier E Spectrometric identification of organic compounds: Behart Silverstein
	6 Organic spectroscopy: William Komp
	0. Organic specificscopy. Willdin Keinp 7. Structural mothods in Inorganic Chamistry : Ehowarth, Bankin and Cradack
	7. Suluciular methous in morganic Chemistry : EDSWORTH, Kankin and Cradock

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
COs												
CO1	3	3	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3	3

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

3: Substantial (High)

Course	Title of the course	Program Core	Total Nu	mber of co	ntact hours		Credit			
Code		(PCR)	Lecture	Tutorial	Practical	Total				
		/	(L)	(T)	(P)	Hours				
		7 Flectives								
		(PEL)								
CYS851	Advanced	PCR			4	4	2			
	Physical									
	Chemistry									
	Practical									
Pre-requi	sites	Course Assessm	ent metho	ds (Continu	ious (CT) an	d end				
		assessment)								
CYS751		(EA)) CT and viva-voc	e							
0										
Course	CO1: Basic	concepts of spe	ctrophotor	netric estir	nation and	IR specti	oscopy.			
(The	experiment	tal knowledge on	the influei	nce of read	tion parame	eters on	the rate			
students	will • CO2·Learni	ngahouthandling	ofsnectronl	notometera	andIRsnectro	ometeran	h			
stadento	their basic	theory.	sispectiop.			Sincteran				
Topics	1. Determina	ationofisoelectricp	Hofgelatin							
Covered	2. Rateconst	antofalkaline hydr	olysisofcry	stalviolet						
	3. Salteffecto	onthe rateof alkali	nehydrolys	sisofcrystal	violet					
	4. Solventeff	ectonthe rateofal	kalinehydro	olysisofcrys	talviolet					
	5. Micellaref	fectontherateofal	kalinehydro	olysisofcrys	talviolet					
	6. Intermole	cularhydrogenbor	idinginben:	zylalcoholu	singlRspectr	oscopy				
	7. Inermody	namicsormiceiliza	uon. arametero	fareaction						
	9. Determina	8. Determinationolactivationparameterolareaction.								
Text Book	s, 1. Instruct	1. Instruction manual provided by the Instructor								
and/or	2. Experim	entsinPhysicalChe	emistrybyC	arlGarland,	JosephNible	er,DavidSl	noemak			
Reference	e er									
material	3. Practica	lsin PhysicalChem	istrybyPS S	indhu						
	4. Practica	IPhysicalChemistr	ybyViswan	athan andR	laghavan					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									
CO2	3	3		2	2	3		2	2		1	
CO3						2		2	2		3	3
CO4	3	3		3	3		1	3				
CO5								3	3			
CO6								3	3		2	2

Mapping of COs (Course outcomes) and POs (Programme Outcomes)

CYS852	Synthesis and	PCR	L	Т	Р	н	С				
	Characterisation	(Practical)									
	of Complex	(0	0	3	З	15				
	Compounds		Ū	Ŭ	5	5	1.5				
	Compounds										
Pre-requi	sites	Course Assessment methods (Continuous (CT) and end									
_		assessment (EA) and Viva-Voce)									
NIL		CT + Viva voce									
Course		tion complex synth	tion to him invoc to purify the synthesized materials								
Outcome	2 CO2: Crystalliza	ation techniques to	purify the	synthesized	i materials.						
(The	🛛 CO3: Decompo	sition and estimati	on of meta	l ion(s) usin	g spectroph	otometry.	•				
students	will 🛛 CO4: Character	rization of synthesized materials using FTIR, UV-Vis and EPR									
well-	spectroscopy and	d CHN analysis.									
acquainte	d 🛛 🖸 CO5: Spectral d	lata interpretation.									
with)											
with j							<u> </u>				
Topics	Synthesis of a) [\	/O(acac)2]; b) [Co(N	IH3)5(N3)]; (c) [Mn(acac)3]; d) (NH4)2	2[MnF5]; e) Mohr's				
Covered	salt and other co	mplexes and their	characteriz	ation using	various spec	troscopic					
	methods. Estima	tion of metal ion of	f suitable co	omplexes.							
Referenc											
е	1. Advanced Inor	rganic Experiments, By G. N. MUKHERJEE.									
material											
material											

1 0				/	· · ·	,		,				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	3	3	2	2	1	3	3	3	1	1
CO2	2	2	3	3	2	1	1	3	3	3	1	1
CO3	1	3	3	3	2	2	1	3	3	3	1	1
CO4	3	3	3	3	2	2	1	3	3	3	1	1
CO5	3	2	3	3	2	3	1	3	3	3	1	1

Course	Titl	e d	of	the	Program Core	Total Nu	mber of co	ntact hours		Credit	
Code	ςοι	urse			(PCR) /	Lecture	Tutorial	Practical	Total		
					Electives (PEL)	(L)	(T)	(P)	Hours		
	Chro	omato	graph	ic	PCR						
CYS853	Sepa	aration	n of			0	0	3	3	1.5	
	Orga	anic	-l			-		-	-		
Dro roqui	Lon Litor	ipound	as			mont mo	thoda (C	ontinuous	(CT) ar	d and	
Pre-requi	sites				assessment (FA)	ethous (C	ontinuous	(CI) al	iu enu	
NII)					
Course		• (01.1	Inde	rstand the workin	g nrincinle	s of differe	nt types of c	hromato	granhy	
Outcome	Outcome • CO2: Learn the sampling method including derivatization for analysis							analysis	Sidpily.		
(The		• (CO3: Master the techniques and application of thin layer paper and co								
students	will	c	chromatography								
master	the	 CO4: Learn to analyze the chromatograms of GC and HPLC 									
following)					-					
Topics		Thin Layer Chromatography									
Covered			Dete	rmina	ation of R _f values	and identif	ication of c	organic com	pounds.		
			Prep	aratio	on and separation	of DNP de	rivatives of	carbonyl co	ompound	S	
			Sepa	ratio	n of a mixture of o	dyes using	cyclohexan	e and ethyl	acetate (a	3.5:1.5).	
		Pape	r Chro	omat	ography: Ascendi	ng and Ciro	cular				
			Dete	rmina	ation of R _f values	and identif	ication of c	organic com	pounds.		
			Sepa	ratio	n of a mixture of a	amino acid	S				
			Sepa	ratio	n of sugars						
		Colur	nn Ch	nrom	atography:						
			Sepa	ratio	n of Fluorescein a	nd methyle	ene blue				
			Separation of aniline and <i>N</i> , <i>N</i> dimethyl aniline								
		Dom	Separation of Lycopene and p-carotene								
Toyt Dog	ske	Demo	Eur	ation	on chromatograp	al chomictr		Wast Hallar	and Crou	ch 0+h	
and/or	JK5,	1.	rui odi	tion	Thomson		y, skuug, v	vest, nollei		cii, otii	
reference			cui	,							
material											

Mapping of CO (Course outcome) and PO (Programme Outcome)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	3	1	3	3	3	3	3
CO2	2	3	3	3	3	3	1	3	3	3	3	3
CO3	1	3	3	3	3	3	1	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Title of the course	Program	Total Nu	mber of co	ntact hours		Credit		
Code		Core (PCR) /Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours			
CYE911	Advanced Quantum Chemistry and Application of Group Theory	PCR	3	1	0	4	4		
Pre-requis	sites	Course Assessment methods (Continuous (CT) and end assessment(EA))							
CYC701, 7	04	CT+EA							
Course Outcome	 Se CO1: Different time dependent and time independent approximation metosolvevariousmolecularproblemswhenSchrödingerwaveequationcannotbeso xactly. CO2: Oppenheimerapproximationtoseparatenuclearandelectroniccomponentsfrom molecular Hamiltonian. CO3:Detailedunderstandingontheinteractionofradiationwithmatterandselecti esfor transition amongdifferent molecularenergylevels. CO4:Hückeltheoryinconjugatedsystemanditapplications CO5: Development of concept of GOT, SALC from symmetry aspect theirapplication 								
Topics Covered	Variationandtime cases):Applicatio Antisymmetricand orbitalinteraction: Moleculesand che Born-Oppenheime lecDirectedvalence consistentfield. Timedependentpe	eindependentpen ntowardsdifferen lexclusionprincip LS andJJ couplin micalbonding: erapproximation eandhybridizatic erturbationtheor	rturbationt ntsystems. Ile,Slaterde g,Termsym :MOandVB oninsimplep y:Transition	heory(nond 08 le terminalwa boland spe treatmento polyatomicu ndipolemou	degenerated ec avefunction ectroscopics ofdiatomicm molecules.lo ment.Fermi	anddegen ,spin- tates.04 k nolecules. (deaofself- 'sGoldenr	erate ec 04 04 lec ule.Eins		

NINTH SEMESTER

	Hückeltheoryofconjugatedsystems.Bondorderandchargedensitycalculations.Applicat ionstoethylene, butadiene,cyclopropenylradical,cyclobutadiene.06lec									
	Group theory: GOT, SALC: Their applications: representation of molecula									
	Application of Group theory in developing selection rules in spectroscopy02									
	lecApplicationincrystalfield theoryandmolecular orbitaltheory 02									
	lecConceptoforbital symmetryand applicationinchemical bonding 03lec									
	Probabilityandefficiencyoftransitionsin IR and Ramanspectroscopy03lec									
Text Books,	1. QuantumChemistrybyLevine									
and/or	2.PhysicalChemistry:									
Reference	AMolecularapproachbyDonaldA.McQuarrie3.Introductoryquantum									
material	chemistrybyA. K.Chandra									
	4. Group theoryandchemistrybyBishop									
	5. Chemical application of group theorybyFA Cotton									
	6. MoleculartheoryandgrouptheorybyR.L. Carter									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	3	3	1	3	3	3	2	1	1
CO2	3	1	3	3	3	1	3	3	3	2	1	1
CO3	3	1	3	3	3	1	3	3	3	2	1	1
CO4	3	1	3	3	3	1	3	3	3	2	1	1
CO5	3	3	2	3	2	1	3	3	2	1	2	3
CO6	3	3	2	3	2	1	3	3	2	1	2	3

		-							
Course	Title of the course	Program	Tota	al Number (of contact h	ours	Credit		
Code		Core	Lecture	Tutorial	Practical	Total			
		(PCR)/Electi	(L)	(T)	(P)	Hours			
		ves							
		(PEL)							
CYE912	Non-Equilibrium	PCR	PCR 3 1 0 4						
	Thermodynamics								
	and Biophysical								
	Chemistry								
Pre-requi	sites	Course Assessment methods (Continuous (CT) and end							
		assessment) (EA))							
CYC401, 0	CYC801	CT+EA							

_		
Course Outcome	 CO1: difference between equilibrium and non-equilibrium thera and the significance of the later. Understanding of different of theories innon-equilibriumthermodynamics. CO2: Concept on stationary state, coupled transfer (like of electriccharge, heat and electric charge), entropy production an of theseconcepts. CO3:Learningofdifferentbiophysicalprocessesinsideimportantbior CO4:DevelopknowledgeonvariousinstrumentaltechniquesusedinE emistry 	rmodynamics concepts and liffusion and d application nolecules BiophysicalCh
Topics	Non-equilibriumthermodynamics:	15Lec
Covere	Postulates and methodologies, forces and fluxes, linear laws,	
d	Gibbsequation Onsagarreciprocaltheory Curie-	
ŭ	Prigoginenrinciple diffusion effusion sedimentation chemical	
	affinition membranoproportion Thormooloctricoffacts	
	Stationary states, time variation of entropy production	
	Stationary states: time variation of entropy production,	
	minimumentropyproduction, stabilityof	
	stationarystate.Fluctuation.	
	Biophysical Chemistry:	
	Enzyme kinetics and Enzyme inhibition: Introduction of	
	Enzyme,Enzyme-	
	substrateKinetics,Enzymeinhibition,Reversibleinhibition,Irreversible	
	inhibition, Competitive Inhibitor, Allosteric Inhibitor,Non-	
	CompetitiveInhibitor,Biophysicalandkineticsstudiesofenzyme-	
	inhibitorcomplex,Enzymesasdrugtargets,pharmacokinetics,pharmaco	
	dynamics, ADMET profile, examples of enzymetargeted drug discovery.	
	Nucleic acid structure and therapeutics: Biophysical of nucleic	
	acid, sensing and anti-sensing of nucleotides, interactions between	
	strandsofnucleicacid, strand-displacement assayas sensor.	5Lec
	Techniquesformacromolecularseparation:Ionexchange.gelfiltrationch	
	romatography sedimentation electrophoresisandisoelectricfocusing	
	Bio-analyticalChemistry:	
	(i) Applications of X-ray AFM LIV-Vis CD fluorescence NMR	2 Lec
	incharacterizationofhiological macromolecules	2 200
	(ii) Applications of the ERET and ALIC to study	
	conformationaldynamics of protein and nucleoprotein complexes	31.00
	(iii) Applications of IV-	JLCC
	VisandITCtoctudythokinoticsandthormodynamicsof protoin ligand	
	hinding	
	Unituding.	
	(iv) Application of different gel-based assays (SDS-PAGE,	101.00
		TOLEC
	tyang DNArepairprocess.	
	(v) Applicationotpull-downmethodandsequencing	
	toanalyzeprotein-DNAinteraction.	

TextBooks,an	1.	IntroductiontoThermodynamicsofIrreversibleProcessesbyI.Pri
d/orreference		gogine
material	2.	Principlesof Physical biochemistrybyHolde, Johnson and Ho
	3.	Experimentalbiophysical ChemistryByCopeland, R. A.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3		2	2				3	2	1	1	
CO2	3		2	2				3	2	1	1	
CO3	3	3	3	2	2	3	2	3	2	2	2	1
CO4	3	3	3	2	3	2	2	3	2	2	1	1

Course	Title of the	Program Core	Tota	al Number o	of contact h	ours	Credit		
Code	course	(PCR)/Electives	Lecture	Tutorial	Practical	Total			
		(PEL)	(L)	(T)	(P)	Hours			
CYE913	Material chemistry	PCR	3	1	0	4	4		
	and advanced								
	spectroscopy								
(EA))					ious (CT) an	d end ass	essment)		
CYC701,8	01	CT+EA							
 Course CO1:Fundamentalsoflaserandapplicationinscience and ind CO2: Properties and applications of semiconductors superconductors, nanomaterials and manyotherindustrial CO3:Physicalchemistryofpolymer. CO4:sciencebehindmanymodernspectroscopicmethodsan 							terials. s		
Topics Covered	Laser: Fund spect toinvestigated dissociation,p Freeelectrong Semiconducto PhysicalChem olecular fpolymers.Sec lecFluorescen s.	amentals and a roscopy(picosecor differentphotophy hotoisomerization astheoryofsolids: orandsuperconduc istryofpolymers:Ki systems. De ofconformatio dimentationandult cesensor,solarand	pplications nd,femtose sicalproces n(witharefe Fermi leve tor:proper ineticsofpo terminatio onsandmon racentrifug fuelcell,su	, Time r condlasers seslikepho rencetovisi 07 lec l,densityofs tiesand app lymerizatio n of mol rphologies, gationofma percriticalfl	resolved la pectroscopy to- ionprocess)a states. plications. on,thermody ar masses thermomec cromolecule uid,ionicliqu	ser y)anditsap andrelated 04 le vnamicsof and stu hanicalpro es. uids,Nano 05 lec	oplication dtopics. 03 lec macrom udies opertieso 07 material		
CURRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY

	Kineticsofdiffusioncontrolledreactions,photophysicalquenchingprocesses,excitedstatepHandacidityconstant,Charge-transferprocesses (Marcustheory).Experimentalmethodstoobservekineticsoffastreactionsinsolution:stoppedflowandrelaxationmethods.06 lecAdvancedspectroscopy:NMR,X-rayphotoelectronspectroscopy,06 lecspectroscopy,Mossbouerspectroscopy,SEM06 lec
Text Books, and/or Reference material	 Modern spectroscopybyJMHollas Solidstatechemistryandits applicationbyWest ChemicalKinetics byK.J.Laidler OrganicandphysicalChemistryofPolymersbyYGnanouandM.Fontaanille,Wiley Atkin'sPhysicalChemistrybyPAtkinsandJ dePaula(7thed.) Fundamentalsof molecularspectroscopyByBanwelland McCash FundamentalsofphotochemistryByRohatgi and Mukherjee.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	2	1	3	3		1	1
CO2	3	3	3	2	2	2	1	3	3	2	2	1
CO3	3	3	3	2	2	2	1	3	3	2	2	1
CO4	3	3	3	2	2	2	1	3	3	2	2	1

Course	Title of the course	Program	Tota	al Number o	of contact h	ours	Credit		
Code		Core (PCR)/Electi ves (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours			
CYE914	Electrode kinetics and corrosion science	PCR	3	1	0	4	4		
Pre-requi	sites	Course Assessment methods (Continuous (CT) and end assessment) (EA))							
CYC801		CT+EA							
Course Outcome (The students master th following)	 CO1: proce different ty isotherm to CO2: basic andtechnolo CO3: conce colloidalsta CO4: kinet towardsind CO5:corrosi mitigationm 	ess of adsorpti pes of adsorbate determine catal s of surfactants ogy. ept of electrica bility. ics of reaction ustrially importan onofvariousmet nethods.	on and v e-adsorben lytic efficie s and mic Il double n at the nt hydroge alsunderdi	various ads t combinat ncy. celles and layer, zeta electrode n evolution fferentenvi	sorption iso ion. Application. Application their application potential surface a from dissoc ronmentalc	otherms ition of ac cation in and its nd its r iation ofw onditions	involving dsorption science role for relevance vater. and		

CURRICULUM AND SYLLABUS FOR INTEGRATED MSC IN CHEMISTRY

	Adsorption on solid:
	BET, Harkins-Juraand Gibbs adsorption is otherms, surface tension and surface pressure,
	contactangle:interfacialtension,Hysteresis. 4 lec
	Micellesandmicroemulsions: Phasediagramofmicellarsystem. Massaction model and
	pseudophasemodelfornon-
	ionicandionicmicelles.Relationshipbetweenthermodynamicpropertiesformicellizati
	onwithCMC. 3
	lecEstimationoffractionofcounterion, aggregation number and solvation for micelles. C
	onceptofreversemicelleandmicroemulsion.Packingfactor. 4lecIon
	Electrical double layer: Electricaldoublelayer,
	Zetapotential, Stability of colloids, Electrokinetic effect (electroos mosis and electrophor
	esis) 3 le c
	Electrode kinetics:
	DerivationofButler-
	volmerequation, Study of the kinetics of different electrodereactions (including elucidat
	ion ofreaction mechanism).Numerical problems. 4 lec
	Corrosion science:
	Differentformsofcorrosion:propertiesandremedialmethods. 4 lec
	Tafelrelationandmixedpotentialtheory,Concept
	ofexchangeandlimitingcurrentdensity. 3 lec
	Potentio dynamic polarization and electrochemical impedance spectroscopic
	methods to determine rate of corrosion. 4
	lecCorrosioncontrol:Cathodic(impressedcurrentmethodandmetalliccoating)andano
	diccontrolmethods.Numericalproblems. 4
	lecApplicationofcorrosioninhibitorsincludinggreeninhibitors 2 lec
	Hightemperaturecorrosion3 lec
Text Books,	1. ModernElectrochemistry2A-FundamentalsofElectrodicsbyBockrisandReddy
and/or	2. CorrosionEngineeringbyMG Fontana
Reference	3. CorrosionEngineeringbyBNPopov
material	4. SurfactantscienceandTechnology(3rded.) byD. Myers.
	5. Principles of colloid and surface chemistry (3rded)by PC Hiemenz and R
	Rajgopalan

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	2	1	3	3	3	3	1
CO2	3	3	3	2	2	2	1	3	3	3	3	1
CO3	3	3	3	2	2	2	1	3	3	3	3	1
CO4	3	3	3	2	2	2	1	3	3	3	3	2
CO5	3	3	3	2	2	2	1	3	3	3	3	2

CYS951	Advanced	PCR	L	Т	Р	н	C			
	Physical Chemistry-II Laboratory	(Practical)	0	0	3	3	1.5			
Pre-requise CYS751, 8 Course Outcome (The students well- acquainte with)	51 51 • CO1:basiculion,spectrulion,spectrulion • CO2:know anditsmiti • CO3:basiculi haracterizz • CO4:develi analysis.	Course Assessm assessment) (EA)and Viva-Vo CT + Viva-voce understandingofva oscopic techniques ledgeonmeasuring gationbychemical understandingontl ation. opmentoflaborato	Course Assessment methods (Continuous (CT) and end assessment) (EA)and Viva-Voce) CT + Viva-voce nderstandingofvariousmodernelectrochemical,surfacecharacteriza scopic techniques. edgeonmeasuringtherateofcorrosionofmetals gationbychemical route. Inderstandingonthedesignofsolarcell,nanomaterialpreparationando tion. opmentoflaboratoryskill,datahandlingandinterpretation,error							
Topics Covered	1.Determine ethod2.Determine hod3.Evaluation icsolution4.Determine 5.5.Construct on aptholb7.Synthesise 8.8.Molecula Any other prace	nationofrateofcorr nationofrateofcorr nofpotentialatzer n. nationofcorrosioni tion of a dye sensi onofexcitedstatepr yexcitedstatelifeti sandcharacterizatio armodellingprogra	osionofme osionofme ochargeon nhibitionef tized solar otontransf me measu onofnanop ms y the Instru	talusingpot talusingele ametalsurfa ficiencyofa cell erprocessir rement articles	centiodynan ctrochemica aceinpreser norganiccon n1-	nicpolariz alimpeda aceofanel rrosioninl	ationm ncemet ectrolyt nibitor.			
Referenc e material	1. Instruct 2. Selecte 3. Advanc	ion manual provided by the Instructor d experiments in Physical Chemistry By N.G.Mukherjee ed Physical Chemistry Experiments: By Gurtu & Gurtu								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3		3		3	3			
CO2	3	3	3	3	3	3		3	3	2	2	1
CO3	3	3	3	3	3	3		3	3	2	3	1
CO4				3	3						2	1

Course	Title of the	Program Core	Total Nu	mber of co	ntact hours		Credi				
Code	course	(PCR) /	Lectur	Tutorial	Practica	Total	t				
		Electives (PEL)	e (L)	(T)	l (P)	Hour					
						S					
CYE921	Advanced Green	PCR	3	1	0	4.0	4				
	Chemistry and										
	Analytical										
	Chemistry										
						()					
Pre-requis	sites	Course Assess	ment me	ethods (C	ontinuous	(CT) ar	nd end				
		assessment (EA))								
NIL		CI+EA									
Course	CO1: Stud	ents will be give	n an intro	duction to	green che	mistry ar	nd learn				
Outcome	about its b	asic concepts.									
(The	CO2: Stude	ents will learn the	application	n of green c	chemistry						
students	• CO3: Dem	ionstrate the des	sign for sa	afer, energ	gy efficient	technolo	ogy and				
will mas	ter process op	timization for clea	iner indust	rial proces	ses.						
the	• CO4: Unde	erstand the funda	stand the fundamentals of pollution prevention technique wit								
rollowing)	respect to	nearth Significance	mental Understanding of monitoring and analysis of air and water								
Topics	COS. Fullu	Groop Chomistry		Torntoring	anu anaiysis 1						
Covered	Definition and	strategic of gree	In chomist	ry Why Gr	L Chami	stru? Dro	. Vention				
Covereu	Atom Econom	v Less Hazardous	Chemical	Syntheses	Designing	Safor Ch	omicals				
	Safer Solvents	and Auxiliaries, Design for Energy Efficiency, Use of Renewable,									
	Feedstocks, R	educe Derivative	duce Derivatives, Catalysis, Design for Degradation, Real-time								
	analysis for	Pollution Prevent	tion. Inhe	rently Safe	er Chemist	rv for A	Accident				
	Prevention, La	boratory pollution	n preventic	on.		, -					
	Application of (Green Chemistry:	<u> </u>		1	0 Lecture					
	Applications a	, nd benefits of g	reen cher	nistry: Pro	duction of	new ch	emicals,				
	materials, and	products. Examp	les of suce	cessful gree	en technolo	ogies; Alt	ernative				
	synthetic route	s, new separation	n processes	s, new met	hods for de	livery or	product				
	application (A	ternative solvent	s, Energy	vs. mater	ial activity)	. Import	ance of				
	pollution and	wastefulness in	modern	cultures b	y reflecting	g on the	e green				
	chemistry.										
	Principle of Ana	alysis for Air and V	Vater samp	oles:	1	LO Lecture	5				
	Objectives of	chemical analysis	s of air a	nd water.	Analysis o	of water:	colour,				
	turbidity, total solid, conductivity, acidity, alkalinity, hardness, chloride, sulfate						sulfate,				
	fluoride, phosp	hates, and differe	ent forms	of nitroger	n. Heavy me	etal analy	sis with				
	respect to hea	Ith significance. N	leasureme	ent of DO,	BOD and CO	OD. Pesti	cides as				
	water pollutan	ts analysis.									
	Monitoring an	id analysis of ai	r: Monito	ring techn	ique throug	gn high	volume				
	sampler, SPM	and KPIVI sample	r. Nieasure	ement and	analysis of	SPIVI, RP	VIVI, SUX				
	Air and water a										
			stanudius.	•							

Text Books,	1.	Green Chemistry, An Introductory Text By Mike Lancaster, RSC
and/or		publications.
reference	2.	Handbook on Green Analytical Chemistry By Miguel de la Guardia, Salvador
material		Garrigues, Wiley.
	3.	Innovations in Green Chemistry and Green Engineering By Paul T. Anastas,
		Julie Beth Zimmerman, Springer publications.
	4.	Alternative Solvents for Green Chemistry By Francesca M Kerton, Ray
		Marriott, RSC publications.
	5.	Environmental Chemistry with Green Chemistry By Asim Kumar Das, Books
		and Allied (P) Ltd.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	1	3	3	3	2	3
CO2	3	2	3	2	3	2	1	3	3	3	3	3
CO3	3	2	2	2	3	2	1	3	3	3	2	3
CO4	3	3	3	2	2	3	1	3	3	3	3	3
CO5	3	3	3	2	2	3	1	3	3	3	3	3

Course	Title of the course	Program	Total Nu	mber of co	ntact hours		Credit		
Code		Core (PCR)/	Lectur	Tutorial	Practica	Total			
		Electives	e (L)	(T)	l (P)	Hours			
		(PEL)							
CYE922	Synthetic	PCR	3	1	0	4	4		
	Methodology for								
	Metal Complexes								
	and Coordination								
	Aggregates								
Pre-requis	ites	Course Asse	essment r	nethods (Continuous	(CT) a	nd end		
		assessment (EA))							
CYC602 &	CYC702	CT+EA	CT+EA						
Course	CO1: Under	stand the impor	tance of tr	ansition me	etal complex	kes			
Outcome	CO2: Basic l	nowledge of dif	ferent type	es of ligand	s and their a	applicatio	ns		
(The	 CO3: Prima 	ry Concept of de	signing and	d synthesis	of a ligand				
students	will • CO4: Learn	about the differe	ent aspects	s of supram	olecular che	emistry			
master	the • CO5: Clear i	dea about the synthesis of diversified macrocycles							
following)	CO6: Funda	mentals of thermodynamic effects upon changing the cavity size of							
	a macrocyc	e							

	Topics Covered	Introduction, Importance of ligand design and their applications in metal-complex formation	6 Lec
		Nitrogen Based Ligand: N ₂ as Ligand, Reactivity of Bound N ₂ , Macrocyclic Amines, Polyimines, Porphyrin, Polypyrazolylborate Ligand, Hydroxylamido Ligand, Schiff Base Ligand, Azide and Other	5 Lec
		Phosphorus Based Ligands: Phosphine as Ligand, Monophosphines, Diphosphines, PolydentatePhosphines, Phosphate Ligands, Heterocyclic Phosphorus Ligands, Dialkyl- and Diarylphosphido Ligands	4 Lec
		Oxygen Based Ligand: Dioxygen, Sueroxo and Peroxo Ligand, Alkoxides and Aryloxides, Ketone and Ester, Crown Ethers, β- Ketoenolato and Related Ligands, Carbamates, Oxo Anions as Ligands	5 Lec
		Sulphur Based Ligand: Thiolates, Disulphides, Thioethers, Sulphur Oxide, Dithiocarbamates, 1,2-Dithiolenes	3 Lec
		Metal-Organic Frameworks Supramolecular Chemistry:	2 Lec
		Introduction, Host-Guest Chemistry, SelfAssembly, Supramolecular Building Blocks and Spacer, Driving Forces for the Formation of Supramolecular Structure	2 Lec
		Spatial Relationships between Host and Guest, Classification Of Host-Guest Compounds, General Introduction To Podand, Coronand, Spherand, Coronand-Podand Hybrid, Cryptands	2 Lec
		The Chelate And Macrocyclic Effect On Host-Guest Binding, Synthesis of Crown Ethers, The Template Effect, Synthesis of Cryptands, Recent Developments in the Synthesis of Cryptands, Synthesis of Aza Crown Ethers and Related Compounds	3 Lec
		Chiral Crown Ethers, Proton Ionisable Crown Ethers, Diester Crown Ethers, Synthesis of Lariat Ethers	2 Lec
		Synthesis of Calix[n] Arenes, Chiral Calix[n] Arenes, Introduction of Functional Groups in Calix[n] Arenes, Reactions at Upper Rim of Calixarene	3 Lec
		Selectivity of Cation Complexation, Cation Binding by Crown Ethers, Cation Binding by Lariat Ethers, Cation Binding by Cryptands, Thermodynamic Effect of Binding	4 Lec
	Text Books,	1. An Introduction to Supramolecular Chemistry by Asim K Da	as and Mahua
	and/or	Das.	
	reterence material	 Analytical Chemistry of Macrocyclic and Supramolecular Cor M. Khopkar. 	npounds by S.
	material	 Advanced Inorganic Chemistry by F. A. Cotton, G. Wilkinson and M. Bochmann. 	, C. A. Murillo
		4. Synergy in Supramolecular Chemistry edited by Tatsuya Nabes	shima.
		 Concepts and Models of inorganic chemistry by B. E. D McDaniel and J. J. Alexander. 	ouglas, D. H.
1			

Mapping of CO (Course Outcome) and PO (Programme Outcome)

114 | Page

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
												2
CO1	3	3	3	3	2	1		3	3	2		1
CO2	3	3	3	3	1		1	3	3	1	1	1
CO3	3	3	3	3	2	2		3	3	2		1
CO4	3		3	2	2	2	1	3	1	1	1	1
CO5	3	3	3	3	2	2	1	3	3	2	1	1
CO6	3		3	2	2	1	1	3	2	1		1

Topics	Importance of NO as ligand and its diverse roles in biology, NO Synthase enzyme
Covered	and NO donors including metal nitrosyls, MO diagram of NO, Bonding nature of
	NO, Enemark-Feltham {MNO} ⁿ notation, Spectroscopic and structural properties
	of various {MNO} ⁿ species. NO detection methods. Electrophilic and nucleophilic
	reactivity on metal activated NO mojety
	Nitrite and Nitrawa Ovida Deductore, their active site structures and estabric
	Nitrite and Nitrous Oxide Reductase, their active site structures and catalytic
	activity and impact on Atmospheric Nitrogen Cycle 5Lec
	The N ₂ fixation, Biological N ₂ reduction using FeMo cofactor and Models, Chatt
	Cycle, Electrocatalytic reduction using low-valent tungsten (W), Mo(III) mediated
	N ₂ reduction system, cleavage of N ₂ , Mo-N ₂ complexes, N ₂ Redcution
	Mechanisms. Nitrogenase-related transformations 5Lec
	Concept of Quarks: Size shape stability and classification of nuclides Nuclear
	notantial diagram Backing fraction. Mass defact Binding onergy and related
	potential diagram, Facking fraction, Mass defect, binding energy and related
	numerical problems, Quantum numbers of nucleon and magnetic properties,
	Nordheim's rules, Nuclear magnetic resonance (NMR) and its application to
	medical diagnosis such as MRI, Electric quadrupole moment of the nuclides and
	concept of electric multipoles; Nuclear spin (I), quadrupole moment (Q) and
	Ellipticity of the nucleus and numerical problems 5 Lec
	Nuclear resonance or recoilless absorption and Mössbauer Spectroscopy;
	Recoiling Frequency shift. Frequency broadening and Doppler effect.
	Characteristics of Mössbauer nuclides and related Decay scheme. Quadrupole
	splitting Isomer shift and its application to assign the spin states
	Floc
	Electron chin recompany (ESB) spectroscony: Interaction between electron chin
	Electron spin resonance (ESR) spectroscopy. Interaction between electron spin
	and magnetic field, rechniques of ESR spectroscopy, Relaxation process and line
	widths in ESR transition, ESR relaxation and chemical bonding, Interaction
	between electron spin with nuclear spin: hyperfine/super hyperfine splitting, g
	values and factors affecting it, determination of g values, Zero field splitting,
	Kramer's degeneracy, applications of ESR measurement.
	6 Lec
	Nuclear shell model, magic number and periodicity of nuclear properties, liquid
	drop model. 1 Lec
	Detection and measurement of radioactivity Preparation of radio-isotones. Cow
	and milk systems. Applications of radio-isotopes as tracers such as for chemical
	investigation physics chamical applications age determination modical
	annications, physico-chemical applications, age determination, medical
	applications, agricultural and industrial applications etc. 2Lec
lext Books,	1. Nitric Oxide Research (Eds. M. Feelish, J.S. Stamler) Wiley, Chichester,
and/or	1996.
reference	2. Activation of Small Molecules, William B. Tolman, Wiley.
material	3. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life,
	Wolfgang Kaim and Brigitte Schwederski, Wiley
	4. Essentials of Nuclear Chemistry, H. J. Arnikar, New Age International
	Publishers, 2009
	5. Nuclear Physics, Irving Kaplan, Narosa Publishing House, 2002
	6 Modern Nuclear Chemistry W D Loveland D I Morrisey Glenn T
	Seaborg Wiley
	7 Elements of Magnotochomistry P. L. Dutta and A. Syamal
	7. Elements of wagnetochemistry, K. L. Dutta and A. Syamai

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
												2
CO1	3	3	3	2	2	3	3	3	3	2	1	1
CO2	3	2	3	2	2	2	3	3	3	2	1	1
CO3	3	2	3	2	2	2	1	3	2	2	1	1
CO4	3	3	3	2	2	3	1	3	2	3	1	1
CO5	3	3	3	2	2	3	1	3	2	3	1	1
CO6	3	3	3	3	2	3	1	3	2	2	1	1

Course	Title of the	Program Core	ogram Core Total Number of contact hours						
Code	course	(PCR) /	Lectur	Tutorial	Practica	Total	t		
		Electives (PEL)	e (L)	(T)	l (P)	Hour			
						S			
CYE924	Group theory, applied electrochemistry and X-ray structure analysis	PCR	3	1	0	4	4		
Pre-requisi	tes	Course Assessment methods (Continuous (CT) and end assessment (EA))							
NIL		CT+ EA							
Course	Course out	come accounts of							
Outcome	· CO1: ma	trix representatio	n of oper	ator, forma	ation of cha	aracter ta	ables of		
	different p	oint group and its	application application and the second se	on in analy:	zing vibratio	on and ele	ectronic		
	spectrosco	py of complex mo	lecules.						
	· CO2: Use	e of character tal	ole, symm	etry and p	projection o	perator t	o learn		
	hybridizatio	on and formation	of SALC a	and LCAO v	which enab	le to und	erstand		
	bonding in	molecules.	(·				
	·CO3: TOL	indation in dif	terent ei	ectrocnem	ical metho	ods like	CYCIIC		
	voitammet	and evaluating	kinotic pr		niques to a	the electronic	organic		
	solution int	erface	kinetic pi	0000000	curring at		Li UUES-		
	· CO4: knov	vledge of unit cell	. symmetr	v and space	e group of d	ifferent c	rvstal.		
	• CO5: idea of reciprocal lattice and its importance in structure elucidation of								
	inorganic c	omplexes using X	ray diffrac	tion techni	que.				
	· CO6: uno	derstanding of th	ne working	g principle	of various	electroc	hemical		
	instrument	s as well as X-ray	diffractom	eter.					

Topics	Group theory: representation of groups, techniques and relationships for
Covered	chemical applications, symmetry and chemical bonding, equation of wave
	functions, vibrational spectroscopy, transition metal complexes
	12 lec
	Electrochemistry: fundamental of electrode reaction, basic equipment for
	electrochemical measurements, voltammetric techniques, coulometric
	techniques, electrochemical behaviour of transition metal complexes, metal
	complexes containing redox active ligands
	12 lec
	X-ray structure determination: Diffraction of X-rays, Lattices, Plane and indices,
	X-ray diffraction. The reciprocal lattice, Brag's law in reciprocal lattice, crystal
	symmetry and space group, data collection, Intensity of data collection, theory of
	structure factors, and Fourier syntheses.
	12 lec.
Text Books,	1. Electrochemical Methods: Fundamentals and Applications By Bard and
and/or	Faulkner
reference	2. Chemical applications of Group theory by F. A. Cotton
material	3. Molecular theory and group theory by R. L. Carter
	4. Inorganic Electrochemistry: Theory, practice and application By P Zanello (RSC)
	5. X-ray Crystallography By William Clegg (Oxford)

0 -					1 -0			- 1				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	3	3	3	2	2	1	3	3	3	1	1
CO2	2	2	3	3	2	1	1	3	3	3	1	1
CO3	1	3	3	3	2	2	1	3	3	3	1	1
CO4	3	3	3	3	2	2	1	3	3	3	1	1
CO5	3	2	3	3	2	3	1	3	3	3	1	1
CO6	3	2	3	3	2	3	1	3	3	3	1	1

Course	Title of the		Program Core	Total Nu	mber of co	ntact hours		Credi		
Code	course		(PCR) /	Lectur	Tutorial	Practica	Total	t		
			Electives (PEL)	e (L)	(T)	l (P)	Hour			
							S			
CYS952	Environmental		PCR (Practical)	0	0	2	2	1 5		
	Sample Ana	lysis		0	0	5	5	1.5		
Pre-requis	sites		Course Assessment methods (Continuous (CT) and end							
			assessment (EA) and Viva-Voce							
CY1152,2	152		CT and Viva voce							

Course	• CO1:. The course is designed to give the students a broad understanding of						
Outcome	the issues related to the basic concepts and principles of analysis of soil and						
(The	water quality parameters.						
students	• CO2: Students will also accumulate idea about the permissible limit, present						
will master	concentration etc. of different environmental impurities.						
the	• CO3:. Demonstrate an idea about the soil, water and wastewater quality						
following)	standards and its regulations.						
	• CO4: Students will also accumulate idea about the soil quality status with						
	respect to nutrients like N, P and K present.						
Topics	1. <i>p</i> H measurement of soil;						
Covered	2. Estimation of organic carbon content in soil;						
	3. Chlorine content in drinking water;						
	Estimation of phenol in industrial waste-water sample						
	5. N, P and K of soil						
	6. Cyanide in industrial waste-water sample						
Text Books,	1. APHA, A, WEF, (1998). Standard Methods for the Examination of Water						
and/or	and Wastewater. American Public Health Association, American Water						
reference	Works Association, Water Pollution Control Federation, Washington DC.						
material	2. Practical Environmental Analysis. Miroslav Radojevic & Vladimir N. Bashkin,						
	Publisher: Royal Society of Chemistry; 2 nd edition (April 26, 2006),ISBN-						
	10: 0854046798, ISBN-13: 978-0854046799						
	3. Practical Manual of wastewater chemistry. Barbara A.						
	Hauser, Publisher: CRC Press, 1 st edition (June 1, 1996). ISBN-						
	10: 1575040123 ISBN-13: 978-1575040127.						

Mapping of CO (Course outcome) and PO (Programme Outcome)

U												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	1	3	3	3	2	3
CO2	3	2	3	2	3	2	1	3	3	3	3	3
CO3	3	2	3	3	3	2	1	3	3	3	3	3
CO4	3	3	3	2	3	2	1	3	3	3	3	3

	Department of Chemistry									
Course	Title of the	Program Core	Total Nu	ontact hours	tact hours					
Code	course	(PCR) /	Lectur	Tutoria	Practica	Total	t			
		Electives (PEL)	e (L)	I (T)	l (P)	Hour				
						S				
CYE931	Application of some important reactions in synthetic organic chemistry	PCR	3	1	0	4	4			
Pre-requi	sites	Course Assessm and end assessn	Course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))							
None		CT+MT+EA								

119 | Page

Course Outcomes	 CO1: Understanding of mechanism of few important reactions, their application in different field of synthetic organic chemistry. CO2: Uses of strategy of Hydroboration and wittig reaction for carbon-carbon bond formation, reduction of methodology for specific transformation by Birch reduction, how the better yield of product could be obtained, their tactics, strategy and control has been highlighted. CO3: Role of specific reagents with related mechanism in their transformation and their mechanism from substrate to products is included for their step by step synthesis.
	T. Trydroboration reaction of alkenes, mechanism and trydrolysis process,
Covered	 Regioselectivity, stereoselectivity and Enantioselective hydroboration reaction, Uses of 9-BBN (in Suzuki Cross coupling reaction and others) and Monoisocamphenylborane (IpcBH₂), isomerisation of alkenes via hydroboration reactions, Carbon-Nitrogen, Carbon-halogen bond formation, synthesis of cyclopropyl, cyclobutyl derivatives and bicyclo compounds. 10 L Birch Reduction: Mechanism, dependent factors, Application of birch reduction in aminolysis, hydrogenolysis, Wilds & Nelsen modification for pure products in Birch reduction, Regio-selectivity of Birch reduction. Hine postulates; Reduction of substitute benzenoid systems with EWG and EDG; biphenyl systems, regio-selective reduction in naphthalene. Reduction of Anthracene and Phenanthrene systems; single electron transfer system (SET), application in natural product synthesis of phosphoylide; Stereo-chemical outcome of wittig reactions and their dependent factors. Stereo-selectivity in case of stabilised and non stabilizedylides. Scholar modifications. Effect of ligands in phosphorous ylide. Advantages of Wittig-Horner reaction over Wittig reaction; Difference in reactivity of phosphorous and sulphur ylide; Regio selective and stereoselective reaction with stabilized and non-stabalizes sulphur ylides. 10L
Text Books.	Suggested Text and reference Books:
and/or	1. F.A. Carey & R.J. Sundberg, Advanced Organic Chemistry. Springer. 2007
reference	2. K.C. Nicolaou& E.J. Sorensen, Classics in Total Synthesis: Targets, strategies and
material	Methods, Wiley, 1996.
	3 W Carrythers Modern Methods in Organic Synthesis Cambridge University
	Bross 2004
	4. Principles of Organic Synthesis, R.O.C. Norman & J.M. Coxon, Nelson Thrones, 1993, CRC Press.
	5. Organic synthesis by M. Smith, Elevier, 4th Edition, 2016.
	6. Recent published papers in reputed journals on Hydroboration reaction, Wittig
	reaction and Birch reduction have to follow as advance study for this elective paper.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

120 | Page

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	3	2	3	3	3	1	3	1
CO2	3	3	2	3	2	2	3	2	3	3	1	2
CO3	3	2	3	2	1	3	2	2	2	2	2	1

Course	Title of the course	Program	ours	Credit								
Code		Core (PCR)/	Lectur	Tutorial	Practica	Total						
		Electives	e (L)	(T)	l (P)	Hours						
		(PEL)										
CYE932	Natural Products	PCR	3	1	0	4	4					
	and Drug Design											
Pre-requis	ites	Course Asse assessment (I	essment r EA))	nethods	(Continuous	(CT) a	nd end					
CYC401		CT+EA	CT+EA									
Course	CO1: Under	standing the im	oortance o	f natural pr	oducts							
Outcome	CO2: Learni	ng of the structu	g of the structure, synthesis and uses of different Ternenes									
(The	 CO3: Know 	the chemistry of	f Steroids ii	n hormone	s							
students	will • CO4: Devel	op knowledge	on the ch	emical stri	- ucture, svni	thesis of	different					
master	the natural pigr	nents										
following)	 CO5: Conce 	pt generation or	n rational d	lrug design	and drug cl	assificatio	n					
	 CO6: Introd 	uction to drug m	nanufacturi	ing done in	pharmaceu	tical indu	stries					
	CO7: Funda	mental use of co	omputer in	drug desig	n and disco	very						
Topics	Terpenes: Stru	uctural studies	on seso	uiterpenes	, diterpen	es, 9	Lec					
Covered	triterpenes and	d carotenoids; c	hemistry o	f carryoph	yllene, abie	tic						
	acid, beta-amyi	rin, alpha and be	ta-caroten	oids								
	Steroids and Pro	stanoids: Re	action and	d synthesi	s of steroi	ds, 91	ec					
	sources of stere	oid hormones; d	iosgenin, h	ecogenin,	etc., structı	ire						
	and synthesis of	prostanoids		-								
	Natural Pigme	ents: General	methods	of isolati	on, structu	ıre 9	Lec					
	elucidation an	synthesis of anthocyanins, flavones, flavones,										
	isoflavones, a	urone, chalcon	rone, chalcone, xanthone and their chemical									
	interconversior	IS										
	Drug Design:											
	Drug definitior	n, Concepts of	LD50 and	l ED50, in	troduction	to 9 L	ec					
	rational approa	ach to drug des	ign, physio	cal and ch	emical facto	ors						
	associated with	n biological activ	ities, struct	ture-activit	y relationsh	ip,						
	and mechanism	n of drug action.										
	Classification of	of drugs: Based	on struct	ture or ph	narmacologi	cal						
	basis with exar	nples. Antineoplastic agents, cardiovascular drugs,										
	local anti-infect	ive drugs, psych	oactive dru	ugs, antibio	otics (includi	ng						
	vancomycin).											
	Industrial synth	esis of important drugs.										
	Modelling: N	Iolecular modeling, conformational analysis,										
	qualitative and	quantitative str	ucture-acti	vity relatio	nship.							

Text Books,	1. Medicinal Chemistry: An introduction By Gareth Thomas (Wiley)
and/or	2. Asymmetric Synthesis of Natural products By Ari M P Koskinen (Wiley)
reference	3. Chemistry of Natural products By S B Bhat, B A Nagasampagi, M Sivakumar
material	(Narosa)
	4. An Introduction to Medicinal Chemistry by G L Patrick (Oxford)'
	5. Bioinformatics and Computational Biology in Drug Discovery and
	Development by William T. Loging (Cambridge)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	1	1	2	1	2	3	3	1	1
CO2	3	1	1	1	1	2	1	3	2	2	2	1
CO3	3	2	1	1	1	3	1	3	3	3	1	1
CO4	3	1	1	1	1	2	1	2	2	3	1	1
CO5	3	3	3	3	3	3	1	3	3	1	3	1
CO6	3	3	3	3	3	3	1	3	3	1	3	1
C07	3	3	3	3	3	3	3	3	3	1	3	1

Course	Title of the course	Program	Tota	l Number o	of contact h	ours	Credit			
Code		Core (PCR)/	Lectur	Tutorial	Practica	Total				
		Electives	e (L)	(T)	l (P)	Hours				
		(PEL)								
CYE933	Bioorganic	PCR	3	1	0	4	4			
	Chemistry									
Pre-requisi	tes	Course Asse	essment r	nethods (Continuous	(CT) a	ind end			
		assessment (E	EA))							
CYC401, C	/C503	CT+EA								
Course	CO1: Gene	ration of conce	ept on the	e interdisc	iplinary int	erface lie	es within			
Outcome	Chemistry a	nd Biology								
(The	CO2: Learn	the Chemistry of	f Nucleic a	cids (DNA, I	RNA)					
students v	vill • CO3: Develo	CO3: Develop knowledge on the enzyme chemistry								
master t	the CO4: Introduction of enzyme inhibitors and inhibition kinetics									
following)										

Topics Covered	Nucleoside, nucleotides and Nucleic acids: Basic concept and importance; Bio-synthesis of purine and pyrimidine nucleotides, synthesis of adenosine, Guanosine; Nucleotides: synthesis of adenyltlic acid(AMP), Guanylic acid(GMP), uridylic(UMP) acid and cytidilic acid; Cell structure, DNA structure and genetic material, replication and transcription of DNA, RNA and protein synthesis, genetic material and genetic code Enzyme Chemistry:	8 Lec
	Enzymes: Chemical and biological catalysts. Nomenclature and classification, concept and identification of active sites by use of inhibitors, catalytic power, specificity and regulation. Examples of some typical enzyme mechanisms for chymotripsin, and carboxypeptidase-A.	12 Lec
	Different types of enzyme catalyzed reactions, Co-enzyme chemistry. Enzyme models: Host-guest chemistry, chiral recognition, molecular asymmetry and prochirality, biomimetic chemistry, crown ether, cryptates, cyclodextrins, calixarin	
	 Bioorganic Chemistry: Enzyme kinetics: MichaelisMenten and Lineweaver-Burk plots, reversible and irreversible inhibition. Mechanism of enzyme action: Typical enzyme mechanism for ribonuclease, lysozyme. Chemical models and mimics for enzymes, receptors, peptides, carbohydrates and other bioactive molecules, catalytic antibodies- Design, synthesis and evaluation of enzyme inhibitors. Enzyme catalyzed reactions: Carboxylation and decarboxylation. Isomerization and rearrangement. 	12 Lec
Text Books,	1. Principles of Biochemistry by Lehninger	
and/or	2. Biochemistry by Voet&Voet	
reference material	3. An Introduction to Medicinal Chemistry by G L Patrick (Oxford)	

 					· ·							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	3	3	2	2	3	3	1	3	1
CO2	3	3	3	2	3	3	2	3	3	1	2	1
CO3	3	2	2	3	3	3	1	3	3	1	1	1
CO4	3	3	3	3	3	2	2	2	3	2	2	1

Course CodeTitle of the courseProgram Core (PCR) / Electives (PEL)Total Number of contact hoursCredi tCYE934Advanced Stereochemistry and structure activity CorrelationPCR31044Pre-requisitesCourse Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))CY2303CT+EACourse OutcomesCO1: Learn about the three dimensional structure of organic molecules, which govern their reactivity in different reactions.CO2: Advance stereochemistry helps to synthesize biological active compounds with better yield and minimum by-products.CO3: In the field of drug design & drug delivery, insecticides and pesticides, new bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science.CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
Codecourse(PCR) / Electives (PEL)Lectur e (L)Tutoria I (T)Practical (P)Total Hour sCYE934Advanced Stereochemistry and structure activity CorrelationPCR31044Pre-requisitesCourse Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))CYC303CT+EACourse OutcomesCO1: Learn about the three dimensional structure of organic molecules, which govern their reactivity in different reactions.CO2: Advance stereochemistry helps to synthesize biological active compounds with better yield and minimum by-products.CO2: Advance stereochemistry helps to synthesize d for better utility in field of pharmaceutical science, agriculture and material science.CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle.CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
CYE934Advanced Stereochemistry and structure activity CorrelationPCR31044Pre-requisitesCourse Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))Continuous (CT), mid-term (MT) and end assessment (EA))CYC303CT+EACourse OutcomesCO1: Learn about the three dimensional structure of organic molecules, which govern their reactivity in different reactions.CO2: Advance stereochemistry helps to synthesize biological active compounds with better yield and minimum by-products.CO3: In the field of drug design & drug delivery, insecticides and pesticides, new bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science.CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle.CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
CYE934Advanced Stereochemistry and structure activity CorrelationPCR31044Pre-requisitesCourse Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))CYC303CT+EACourse Outcomes•CO1: Learn about the three dimensional structure of organic molecules, which govern their reactivity in different reactions.•CO2: Advance stereochemistry helps to synthesize biological active compounds with better yield and minimum by-products.•CO3: In the field of drug design & drug delivery, insecticides and pesticides, new bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science.•CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle.•CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
CYE934Advanced Stereochemistry and structure activity CorrelationPCR31044Pre-requisitesCourse Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))CYC303CT+EACourse Outcomes•CO1: Learn about the three dimensional structure of organic molecules, which govern their reactivity in different reactions.•CO2: Advance stereochemistry helps to synthesize biological active compounds with better yield and minimum by-products.•CO3: In the field of drug design & drug delivery, insecticides and pesticides, new bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science.•CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle.•CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
Stereochemistry and structure activity Correlation Course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA)) Pre-requisites Course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA)) CYC303 CT+EA Course Outcomes • CO1: Learn about the three dimensional structure of organic molecules, which govern their reactivity in different reactions. • CO2: Advance stereochemistry helps to synthesize biological active compounds with better yield and minimum by-products. • CO3: In the field of drug design & drug delivery, insecticides and pesticides, new bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science. • CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle. • CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
and structure activity Correlation and structure activity Correlation Pre-requisites Course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA)) CYC303 CT+EA Course Outcomes • CO1: Learn about the three dimensional structure of organic molecules, which govern their reactivity in different reactions. • CO2: Advance stereochemistry helps to synthesize biological active compounds with better yield and minimum by-products. • CO3: In the field of drug design & drug delivery, insecticides and pesticides, new bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science. • CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle. • CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
activity Correlation Course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA)) CYC303 CT+EA Course Outcomes • CO1: Learn about the three dimensional structure of organic molecules, which govern their reactivity in different reactions. • CO2: Advance stereochemistry helps to synthesize biological active compounds with better yield and minimum by-products. • CO3: In the field of drug design & drug delivery, insecticides and pesticides, new bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science. • CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle. • CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
Correlation Course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA)) CYC303 CT+EA Course • CO1: Learn about the three dimensional structure of organic molecules, which govern their reactivity in different reactions. • CO2: Advance stereochemistry helps to synthesize biological active compounds with better yield and minimum by-products. • CO3: In the field of drug design & drug delivery, insecticides and pesticides, new bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science. • CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle. • CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
Pre-requisites Course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA)) CYC303 CT+EA Course • CO1: Learn about the three dimensional structure of organic molecules, which govern their reactivity in different reactions. • CO2: Advance stereochemistry helps to synthesize biological active compounds with better yield and minimum by-products. • CO3: In the field of drug design & drug delivery, insecticides and pesticides, new bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science. • CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle. • CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
and end assessment (EA)) CYC303 CT+EA Course • CO1: Learn about the three dimensional structure of organic molecules, which govern their reactivity in different reactions. • CO2: Advance stereochemistry helps to synthesize biological active compounds with better yield and minimum by-products. • CO3: In the field of drug design & drug delivery, insecticides and pesticides, new bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science. • CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle. • CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
CYC303CT+EACourse Outcomes• CO1: Learn about the three dimensional structure of organic molecules, which govern their reactivity in different reactions.• CO2: Advance stereochemistry helps to synthesize biological active compounds with better yield and minimum by-products.• CO3: In the field of drug design & drug delivery, insecticides and pesticides, new bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science.• CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle.• CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
 Course CO1: Learn about the three dimensional structure of organic molecules, which govern their reactivity in different reactions. CO2: Advance stereochemistry helps to synthesize biological active compounds with better yield and minimum by-products. CO3: In the field of drug design & drug delivery, insecticides and pesticides, new bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science. CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle. CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
 Outcomes govern their reactivity in different reactions. CO2: Advance stereochemistry helps to synthesize biological active compounds with better yield and minimum by-products. CO3: In the field of drug design & drug delivery, insecticides and pesticides, new bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science. CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle. CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
 CO2: Advance stereochemistry helps to synthesize biological active compounds with better yield and minimum by-products. CO3: In the field of drug design & drug delivery, insecticides and pesticides, new bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science. CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle. CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
 compounds with better yield and minimum by-products. CO3: In the field of drug design & drug delivery, insecticides and pesticides, new bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science. CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle. CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
 CO3: In the field of drug design & drug delivery, insecticides and pesticides, new bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science. CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle. CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
 new bio-active molecules could be synthesized for better utility in field of pharmaceutical science, agriculture and material science. CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle. CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
 pharmaceutical science, agriculture and material science. CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle. CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
 CO4: It helps to understand the basic knowledge in synthesis of organic molecules and to obey the guide lines of green chemistry principle. CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
 molecules and to obey the guide lines of green chemistry principle. CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
 CO5: With help of knowledge in stereochemistry and structural correlation, the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
the hurdle in stereochemical problem in industries in large scale production of polymer, drug etc. could be solved.
polymer, drug etc. could be solved.
Topics 1. Advanced stereochemistry: Configarational analysis: Relative and absolute
Covered configuration. 2 Lec.
2. Determination of relative configuration:
(i) Chemical correlation not affecting the chiral atom,
 (ii) Chemical correlation affecting bonds to the chiral atom in a 'known way'
(iii) Correlation by asymmetric synthesis: Horeaus rule. Prelog's rule
Cram's rule (Felkin modification). and Sharpless rule
(iv) Physical methods: NMR. MS. IR. dipole moment. ORD. CD
8Lec.
3. Optical rotation and optical rotatory dispersion: Preliminary concept about
linearly polarised light (LP). RCP and LCP: circular birefringence: and circular
dichroism and optical rotatory dispersion; Cotton effect; ORD of ketones
and Octant rule. 8 Lec.

	 4. Conformation of acyclic and cyclic system (3-8 membered rings), decalin, octalene, and bridged bicyclo systems; stability, reactivity and mechanism, Cortin Hammett principle and Winstein-Eliel equation (special emphasis on 5 and 6 membered rings with and without heteroatoms like O, S and N). 8Lec. 5. Quantitative relationship between structure and reactivity: Liner free energy relation: Hammett equation; Equilibrium and rate in the structure is structure in the structure is structure in the structure in the structure in the structure is structure in the structure in the structure is structure in the structure in the structure in the structure is structure in the structure
	organic reactions;
	(ii) Separation of polar, steric and resonance:
	(iii) Taft equation; (iv) Grunwald-Winstein equation.
	(iv) Some application of structure-reactivity correlation study. 8 Lec.
Text Book	s, 1. Stereochemistry of Carbon Compounds. Ernest L. Eliel. McGraw-Hill
and/or	2. Basic Stereochemistry of Organic Molecules, Oxford University Press: Subrata
matorial	2 Storoochomictry Of Organic Compound: Bringinle and Applications by D
materia	Nasipuri
	4. Stereochemistry. Conformation and Mechanism. P. S. Kalsi

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	2	3	2	2	2	1	3	2	2	1	2
CO2	3	2	3	2	2	2	2	3	2	2	1	2
CO3	3	2	3	2	2	2	2	3	2	2	1	2
CO4	3	3	3	2	2	3	1	3	2	3	1	2
CO5	3	3	3	2	2	3	2	3	2	3	1	2

Department of Chemistry									
Course	Title of the	Program Core	Total Nu	Credi					
Code	course	(PCR) /	Lectur	Tutoria	Practica	Total	t		
		Electives (PEL)	e (L)	I (T)	l (P)	Hour			
						S			
CYS953	Multi Step Synthesi	PCR	0	0	3	3	1.5		
	and characterizatio								
	of Organic								
	Compounds								
Pre-requi	sites	Course Assessment methods (Continuous (CT) and end							
		assessment (EA) and Viva-Voce)							
CYS653		CT AND Viva-Vo	ce						

Course	 CO1: To reach a targeted product through multiple reaction process using
Outcomes	suitable reagents and optimum reaction conditions.
	 CO2: To learn Separation and Purification of products
	• CO3: To learn Purification techniques, like phase transfer, crystallization, GC-
	Mass and other spectroscopic method will be adopted
	• CO4: To Learn Understand the basic concept behind separation process for
	most common spectroscopic method like; UV-Vis, FT-IR, NMR, ESI-Mass and
	GC-Mass.
	• CO5: To learn how to reach a maximum yield with minimum uses of solvent,
	reagents and energy like; heat and electricity (Green chemistry).
Topics	1. Oxidation of Benzoin to benzil followed by rearrangement to benzilic acid
Covered	2. Preparation ofbenzophenoneoxime followed by rearrangement
	tobenzanilide
	3. Preparation of 1, 3, 5 tribrom obenzene from 2, 4, 6- tribrom oaniline via
	diazotization
	4. Preparation of diethyl adipate from Cyclohexanol followed by Dickmann
	cyclisation to 2-carboethoxy cyclopentanone
	5. Preparation of <i>p</i> -nitro aniline from acetanilide
Text Books,	1. Vogel's Textbook of practical organic chemistry
and/or	2. Advanced practical chemistry : Subas C. Das
reference	3. An Advanced Curse in Practical Chemistry: Nad, Mahapatra and Ghoshal
material	