NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR

CURRICULUM

OF

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING

2017 ONWARD UNDERGRADUATE ADMISSION BATCH

V0:

Resolution of 50th Senate	18-05-2018	Item no: 50.7
Resolution of 51st Senate	04-10-2018	ltem no: 51.2
Resolution of UGAC meeting	10-05-2019	
Final approval in 53rd Senate	13-05-2019	ltem no: 52.3
Publication date	30-05-2019	

V1:

Incorporation of new elective subjects 27-06-2019

V2:

Rectification of minor errors	UGAC 31-08-2022
-------------------------------	-----------------

Final Approval in 67th Senate dated 20/09/2022 vide Item no: # 67.3

DEPARTMENT OF MECHANICAL ENGINEERING

Program Name: Bachelor of Technology in Mechanical Engineering

DETAILED CURRICULUM

CURRICULUM OF 2021 ONWARD UNDERGRADUATE ADMISSION BATCH FOR MECHANICAL ENGINEERING- B.TECH.

L= Lecture hour/ week; T= Tutorial hour/ week; S= Sessional/ practical hour/ week

C= Subject credit point; H= Subject contact hour/ week.

Sen	nester - I						
SI. No	Code	Subject	L	т	S	С	Н
1	MAC01	Mathematics - I	3	1	0	4.0	4
2	PHC01	Engineering Physics	2	1	0	3.0	3
3	CYC01	Engineering Chemistry	2	1	0	3.0	3
4	XEC01	Engineering Mechanics	2	1	0	3.0	3
5	ESC01	Environmental Science	2	0	0	2.0	2
6	XES51	Engineering Graphics	1	0	3	2.5	4
7	HSS51	Professional Communication Laboratory	1	0	2	2.0	3
8	PHS51	Physics Laboratory	0	0	2	1.0	2
9	CYS51	Chemistry Laboratory	0	0	2	1.0	2
10	WSS51	Workshop Practice	0	0	3	1.5	3
11	XXS51	Co-curricular Activities - I	0	0	2	1.0	2
		TOTAL	13	4	14	24.0	31
Sem	ester - II				-		-
SI. No	Code	Subject	L	т	S	С	н
1	MAC02	Mathematics - II	3	1	0	4.0	4
2	CSC01	Introduction to Computing	2	1	0	3.0	3
3	ECC01	Basic Electronics	2	1	0	3.0	3
4	EEC01	Electrical Technology	2	1	0	3.0	3
5	BTC01	Life Science	2	0	0	2.0	2
6	XXC01	Constitution of India and Civic Norms	1	0	0	1.0	1
7	XES52	Graphical Analysis using CAD	0	0	2	1.0	2
8	CSS51	Computing Laboratory	0	0	2	1.0	2
9	ECS51	Basic Electronics Laboratory	0	0	2	1.0	2
10	EES51	Electrical Technology Laboratory	0	0	2	1.0	2
11	XXS52	Co-curricular Activities - II	0	0	2	1.0	2
		TOTAL	12	4	10	21.0	26

Sem	ester - III						
SI.	Code	Subject	L	Т	S	С	Н
1	MAC331	Mathematics - III	3	1	0	4	4
2	MEC301	Solid Mechanics	3	1	0	4	4
3	MEC302	Theory of Machines and Mechanisms	3	1	0	4	4
4	MEC303	Fluid Mechanics	3	1	0	4	4
5	MEC304	Engineering Thermodynamics	3	0	0	3	3
6	PHC333	Physics of Engineering Materials	3	0	0	3	3
7	PHS383	Physics of Engineering Materials Laboratory	0	0	3	1.5	3
8	XXS381	Co-curricular Activities - III (Optional)	0	0	0	0	0
		TOTAL	18	4	3	23.5	25
Sem	ester - IV						
SI.	Code	Subject	L	Т	S	С	Н
1	MEC401	Design of Machine Element	3	1	0	4	4
2	MEC402	Casting, Forming and Welding	3	1	0	4	4
3	MEC403	Heat and Mass Transfer	3	0	0	3	3
4	EEC432	Electrical Machines	3	0	0	3	3
5	YYO44*	Open Elective - I	3	0	0	3	3
6	MES451	Solid Mechanics Laboratory	0	0	3	1.5	3
7	MES452	Fluid Mechanics Laboratory	0	0	3	1.5	3
8	MES453	Mechanism Laboratory	0	0	3	1.5	3
9	EES482	Electrical Machines Laboratory	0	0	3	1.5	3
10	XXS481	Co-curricular Activities - IV (Optional)	0	0	0	0	0
		TOTAL	15	2	12	23	29
Sem	nester - V						
SI.	Code	Subject	L	Т	S	C	Н
1	MEC501	Machining and Machine Tools	3	1	0	4	4
2	MEC502	IC Engine and Gas Turbines	3	0	0	3	3
3	MEC503	Machine Design	3	1	0	4	4
4	MEC504	Dynamics of Machines	2	1	0	3	3
5	YYO54*	Open Elective - 2	3	0	0	3	3
6	MES551	Design and Dynamics Laboratory	0	0	3	1.5	3
7	MES552	Heat Transfer Laboratory	0	0	3	1.5	3
8	MES553	CAD/CAM Laboratory	0	0	3	1.5	3
9	WSS581	Workshop Practice- II	0	0	3	1.5	3
	XXS581	Co-curricular Activities - V (Optional)	0	0	0	0	0
		TOTAL	14	3	12	23	29

Sem	ester - VI						
SI.	Code	Subject	L	Т	S	С	н
1	HSC631	Economics and Management Accountancy	3	0	0	3	3
2	MEC601	Power Plant Engineering	2	1	0	3	3
3	MEC602	Industrial Engineering and Measurement	3	0	0	3	3
4	MEE610	Depth Elective - 1	3	0	0	3	3
5	MEE610	Depth Elective - 2	3	0	0	3	3
6	MES651	Engineering Measurement Laboratory	0	0	3	1.5	3
7	MES652	Power Generation Laboratory	0	0	3	1.5	3
8	MES653	Machine Design Sessional - I	0	0	3	1.5	3
9	MES654	Manufacturing Laboratory	0	0	3	1.5	3
10	XXS681	Co-curricular Activities - VI (Optional)	0	0	0	0	0
		TOTAL	14	1	12	21	27
Sem	Semester - VII						
SI. No	Code	Subject	L	т	S	с	н
1	MSC731	Principles of Management	3	0	0	3	3
2	MEE710	Depth Elective - 3	3	0	0	3	3
3	MEE710	Depth Elective - 4	3	0	0	3	3
4	MEE710	Depth Elective - 5	3	0	0	3	3
5	YYO74*	Open Elective - 3	3	0	0	3	3
6	MES751	Hydraulic Machine Laboratory	0	0	3	1.5	3
7	MES752	Machine Design Sessional - II	0	0	3	1.5	3
8	MES753	Vocational Training / Summer Internship and Seminar	0	0	3	1.5	3
9	MES754	Project - I	0	0	3	1	4
		TOTAL	15	0	12	20.5	27
Sem	ester - VIII						
SI. No	Code	Subject	L	т	S	с	н
1	MEE810	Depth Elective - 6	3	0	0	3	3
2	YYO84*	Open Elective - 4	3	0	0	3	3
3	YYO85*	Open Elective - 5	3	0	0	3	3
4	MES851	Project - II	0	0	15	5	15
5	MES852	Project Seminar	0	0	0	1	0
6	MES853	Viva Voce	0	0	0	1	0
		TOTAL	9	0	15	16	24

CREDIT UNIT OF THE PROGRAM:

Semester	I + II	III	IV	V	VI	VII	VIII	TOTAL
Credit Unit	45	23.5	23	23	21	20.5	16	172

DEPTH ELECTIVE COURSE BASKETS

THE STUDENTS PRIMARILY WILL OPT FROM THE DEPTH ELECTIVE SUBJECT(S) THAT ARE OFFERED IN A PARTICULAR SEMESTER BY HIS/ HER OWN DEPARTMENT. HOWEVER, A STUDENT CAN OPT FOR DEPTH ELECTIVE SUBJECT(S) THAT ARE OFFERED BY OTHER DEPARTMENT IN A PARTICULAR SEMESTER, WITH THE PERMISSION/ CONSENT FROM HIS/ HER HEAD OF THE DEPARTMENT AND THE CONCERNED TEACHER OF THAT SUBJECT.

6th Semester

	DEPARTMENT OF MECHANICAL ENGINEERING
MEE610	Automobile Engineering
MEE611	Gas Dynamics and Propulsion
MEE612	Mechanics of Forming and Press Working
MEE613	Advanced Solid Mechanics
MEE614	Advanced Machining and CNC Machine Tools
MEE615	Operation Research
MEE616	Mechanical Equipment Design
MEE620	Advanced Foundry Engineering
MEE621	Mechanics of Composite and Functionally Graded Materials
MEE622	Engineering Optimization
MEE623	Multi-Phase Flow and Heat Transfer
MEE624	Tribology
MEE625	Computer Aided Design and Manufacturing

7th Semester

	DEPARTMENT OF MECHANICAL ENGINEERING
MEE710	Finite Element Method
MEE711	Computational Fluid Dynamics and Heat Transfer
MEE712	Design and Optimisation of Thermal Systems
MEE713	Non-Conventional Machining
MEE714	Advanced Welding Technology
MEE715	Robotics
MEE716	Mechanical Equipment Design
MEE717	Control Systems
MEE718	Fundamentals of Combustion
MEE719	Modelling and Simulation of Dynamic Systems

MEE720	Non-Linear Vibration
MEE721	Convective Heat and Mass Transfer
MEE722	Additive Manufacturing
MEE723	Energy Conversion Systems
MEE724	Hydraulic Machines
MEE725	Introduction to Aerospace Engineering

8th Semester

	DEPARTMENT OF MECHANICAL ENGINEERING
MEE810	Solar Energy
MEE811	Mechatronics
MEE812	Micro and Nano Manufacturing
MEE813	Microfluidics
MEE814	Machine Tool Engineering and Automation
MEE815	Theory of Plates
MEE816	Advanced Mechanical Vibration

Sen	nester - I						
SI. No	Code	Subject	L	Т	S	С	н
1	MAC01	Mathematics - I	3	1	0	4.0	4
2	PHC01	Engineering Physics	2	1	0	3.0	3
3	CYC01	Engineering Chemistry	2	1	0	3.0	3
4	XEC01	Engineering Mechanics	2	1	0	3.0	3
5	ESC01	Environmental Science	2	0	0	2.0	2
6	XES51	Engineering Graphics	1	0	3	2.5	4
7	HSS51	Professional Communication Laboratory	1	0	2	2.0	3
8	PHS51	Physics Laboratory	0	0	2	1.0	2
9	CYS51	Chemistry Laboratory	0	0	2	1.0	2
10	WSS51	Workshop Practice	0	0	3	1.5	3
11	XXS51	Co-curricular Activities - I	0	0	2	1.0	2
		TOTAL	13	4	14	24.0	31

DETAILED SYLLABUS FIRST SEMESTER

Department of Mathematics Course Title of the course Program Total Number of contact hours Credit												
Course	Title of the course	Program	Tota	l Number c	of contact he	ours	Credit					
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P)	Hours						
		(PEL)										
MAC 01	MATHEMATICS - I	PCR	3	1	0	4	4					
Р	re-requisites	Course Assess	ment meth	nods (Conti	nuous (CT),	mid-term	n (MT)					
		and end assess	sment (EA))								
Basic conc	epts of function, limit,	CT+MT+EA										
differentia	tion, and integration.											
Course	CO1: To introdu	uce the fundame	entals of di	ifferential o	calculus of s	ingle and	several					
Outcomes	s variables											
	CO2: To devel	op the basic c	oncepts c	of integral	calculus in	cluding i	multiple					
	integrals and it	s application in	finding ar	nding area, volume, centre of mass, centre o								
	gravity etc.											
	CO3: To introdu	ice the fundame	ental conce	epts of vect	or calculus							
	CO4: To develo	p the concept o [.]	f converge	nce								
Topics	Functions of Single	e Variable: Rolle	s Theorer	n and Lagra	ange's Mea	n Value T	heorem					
Covered	(MVT), Cauchy's N	/IVT, Taylor's a	nd Maclau	ırin's serie	s, Asympto	tes & Ci	urvature					
	(Cartesian, Polar fo	rm).	(8)									
	Functions of seve	ral variables: F	unction o	f two varia	ables, Limit	, Continu	uity and					
	Differentiability, F	Partial derivati	ves, Parti	al derivat	ives of in	nplicit f	unction,					
	Homogeneous fur	nction, Euler's	theorem	and its c	onverse, Ex	kact diffe	erential,					
	Jacobian, Taylor's	& Maclaurin's	series, N	Maxima ar	nd Minima,	Necessa	ary and					
	sufficient conditio	on for maxima	and mi	nima (no	proof), St	ationary	points,					

	Lagrange's method of multipliers. (10) Sequences and Series: Sequences, Limit of a Sequence and its properties, Series of
	positive terms, Necessary condition for convergence, Comparison test, D Alembert's ratio test, Cauchy's root test, Alternating series, Leibnitz's rule, Absolute and conditional convergence. (6)
	Integral Calculus: Mean value theorems of integral calculus, Improper integral and it classifications, Beta and Gamma functions, Area and length in Cartesian and polar co-ordinates, Volume and surface area of solids of revolution in Cartesian and polar forms. (12)
	Multiple Integrals: Double integrals, Evaluation of double integrals, Evaluation of triple integrals, change of order of integration, Change of variables, Area and volume by double integration, Volume as a triple integral. (10)
	Vector Calculus: Vector valued functions and its differentiability, Line integral, Surface integral, Volume integral, Gradient, Curl, Divergence, Green's theorem in the plane (including vector form), Stokes' theorem, Gauss's divergence theorem and their applications. (10)
Text Books, and/or reference material	 Text Books: 1. E. Kreyszig, Advanced Engineering Mathematics: 10th ed., Wiley India Ed. (2010). 2. Daniel A. Murray, Differential, and Integral Calculus, Fb & c Limited, 2018. 3. Marsden, J. E; Tromba, A. J.; Weinstein: Basic Multivariable Calculus, Springer, 2014. Reference Books:
	 Tom Apostal, Calculus-Vol-I & II, Wiley Student Edition, 2011. Thomas and Finny: Calculus and Analytic Geometry, 11th Ed., Addison Wesley.

	Mapping of CO (Course outcome) and PO (Programme Outcome)														
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
	CO1	2	3	2	3	1	1	-	-	1	1	1	2		
MAC01	CO2	2	3	2	3	-	1	-	-	1	1	2	2		
WACUI	CO3	2	3	2	3	-	1	1	-	-	2	2	2		
	CO4	3	3	2	3	1	1	-	1	-	2	1	2		

froir na) and DO (D

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Total Nur	Total Number of contact hours						
Code	course	Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hour s				
PHC01	Engineering Physics	PCR	2	1	0	3	3			
Pre-requ	isites:	Course Assessr end assessmer		ods: (Contin	uous (CT), m	id-term	(MT) and			
NIL		CT+MT+EA								
Course	CO1: To realize	and apply the fu	Indamental	concepts o	of physics su	uch as si	uperposition			

Outcomes	principle, simple harmonic motion to real world problems.
	CO2: Learn about the quantum phenomenon of subatomic particles and its applications
	to the practical field.
	CO3: Gain an integrative overview and applications of fundamental optical phenomena
	such as interference, diffraction and polarization.
	CO4: Acquire basic knowledge related to the working mechanism of lasers and signal
	propagation through optical fibers.
Topics	Harmonic Oscillations - Linear superposition principle, Superposition of two
Covered	perpendicular oscillations having same and different frequencies and phases, Free,
	Damped and forced vibrations, Equation of motion, Amplitude resonance, Velocity
	resonance, Quality factor, sharpness of resonance, etc. [8]
	Wave Motion - Wave equation, Longitudinal waves, Transverse waves, Electro-magnetic
	waves. [3]
	Introductory Quantum Mechanics - Inadequacy of classical mechanics, Blackbody
	radiation, Planck's quantum hypothesis, de Broglie's hypothesis, Heisenberg's
	uncertainty principle and applications, Schrodinger's wave equation and applications to
	simple problems: Particle in a one-dimensional box, Simple harmonic oscillator,
	Tunnelling effect. [8]
	Interference & Diffraction - Huygens' principle, Young's experiment, Superposition of
	waves, Conditions of sustained Interference, Concepts of coherent sources, Interference
	by division of wavefront, Interference by division of amplitude with examples, The
	Michelson interferometer and some problems; Fraunhofer diffraction, Single slit,
	Multiple slits, Resolving power of grating. [13]
	Polarisation - Polarisation, Qualitative discussion on Plane, Circularly and elliptically
	polarized light, Malus law, Brewster's law, Double refraction (birefringence) - Ordinary
	and extra-ordinary rays, Optic axis etc.; Polaroid, Nicol prism, Retardation plates and
	analysis of polarized lights. [5]
	Laser and Optical Fiber - Spontaneous and stimulated emission of radiation, Population
	inversion, Einstein's A & B co-efficient, Optical resonator and pumping methods, He-Ne
	laser. Optical Fibre– Core and cladding, Total internal reflection, Calculation of numerical
	aperture and acceptance angle, Applications. [5]
Text	TEXT BOOKS:
Books,	1. The Physics of Vibrations and Waves, H. John Pain, Willy and Sons
and/or	2. A Text Book of Oscillations and Waves, M. Goswami and S. Sahoo, Scitech
reference	Publications
material	3. Engineering Physics, H. K. Malik and A. K. Singh, McGraw-Hill.
	REFERENCE BOOKS:
	1. Vibrations and Waves in Physics, Iain G. Main, Cambridge University Press
	2. Quantum Physics, R. Eisberg and R. Resnick, John Wiley and Sons
	3. Fundamental of Optics, Jankins and White, McGraw-Hill
	4. Optics, A. K. Ghatak, Tata McGraw-Hill
	5. Waves and Oscillations, N. K. Bajaj, Tata McGraw-Hill
	6. Lasers and Non-linear Optics, B. B. Laud, New Age International Pvt Lt
	6. Lasers and Non-linear Optics, B. B. Laud, New Age International Pvt Lt

Mapping of CO (Course outcome)	and PO (Programme Outcome)
--------------------------------	----------------------------

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	3	2	1	1	1	-	-	1	-	-	-	1
DUC01	CO2	3	2	-	2	-	-	-	-	-	-	-	1
PHC01	CO3	3	2	2	2	1	1	1	1	1	-	1	1
	CO4	3	2	2	2	1	1	1	-	1	-	1	1

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program Core	Total	Number o	of contact he	ours	Credit				
Code	course	(PCR) /	Lecture	Tutori	Practical	Total					
		Electives (PEL)	(L)	al (T)	(P)	Hours					
CYC 01	Engineering	PCR	2	1	0	3	3				
	Chemistry										
Pre	-requisites	Course Assessm		-		id-term (MT) and				
		end assessment (EA))									
	None		CT+MT+EA								
Course	CO1: Intro	duced to chemi	cal thermo	odynamics	s, kinetics,	electro	chemistr				
Outcomes	absorption,	and catalytic proce	sses for eng	ineering a	pplications						
	CO2: To lear	n fundamentals of	polymer che	emistry an	id petroleum	n enginee	ring.				
	CO3: Introd	uced to basic spect	roscopic teo	hniques f	or structure	determin	ation ar				
	characteriza	tion.									
	CO4: To stud	dy few inorganic an	d bioinorga	nic compo	unds of indu	ustrial imp	ortance				
Topics	ORGANIC CHEM	AISTRY									
Covered	i. Fundame	entals of organic re	eaction me	chanisms;	Few impor	tant reac	tions ar				
	their m	echanism along	with thei	r applica	tions; Rob	inson a	nnulatio				
	Hydrobo	ration reaction, Org	ganometallio	c reagents	(Gilman rea	agents), N	letathes				
	using Gru	ubb's catalyst and W	/ittig reaction	on. (3)							
	ii. Fundame	ental concept on s	tereochemi	stry and a	application:	Conform	ation ar				
	-	ation of organic of	-				-selectiv				
	regio-sele	ective, stereo-speci	fic, and ster	eo-selecti	ve reactions	. (3)					
	iii. Polymer	chemistry and poly	mer engine	ering: Fur	ndamental c	oncept oi	n polym				
	chemistr	y; synthesis and ap	plication of	important	t polymers,	Rubber, a	nd plast				
	materials	 Conducting polym 	ner. (2)								
		m Engineering and					-				
	principle	and techniques of	distillation	of crude	oil, Uses of	different	fraction				
	octane n	umber, cetane num	ıber, Knocki	ng, anti-k	nock compo	unds, and	d Bio-Fue				
	(2)										
	v. Structure	e elucidation of org	anic compo	unds by m	nodern spec	troscopic	method				
		on of UV-Visible and	d FT-IR spec	troscopy.	(3)						
	INORGANIC CHE										
		tion Chemistry: C	•	•							
		es, colour and magr tortion, Isomerism,		ties, Jahn	-Teller disto	rtion, pse	udo Jah				

	ii. Bioinorganic Chemistry: Heme and non-heme O2 transport protein
	(Haemoglobin, Myoglobin), Chlorophyll and photosynthesis. (3)
	iii. Inorganic Materials: Introduction towards industrially important inorganic
	materials like cementing material, refractory material, fertiliser, inorganic
	polymer. (2)
	iv. Organometallic Chemistry: π -acid ligands, stabilization of metal low oxidation
	state and 18 electron rules, metal carbonyls and nitrosyls, metal-alkene
	complexes. (4)
	PHYSICAL CHEMISTRY
	i. Thermodynamics: 2nd law of thermodynamics, entropy, free energy, Gibbs
	Helmholtz equation, change of phase. Cryogenics: joule Thomson experiment.
	(4) ii. Chemical Kinetics: 2nd and 3rd order rate expression, Reversible reaction, Chain
	ii. Chemical Kinetics: 2nd and 3rd order rate expression, Reversible reaction, Chain reaction, Consecutive reaction, Temp effect on reaction rate. (4)
	iii. Electrochemistry: Electrochemical cell, Effect of pH, precipitation, and complex
	formation on EMF of oxidation/reduction processes. (2)
	iv. Absorption: Physical and Chemical absorption, Absorption isotherms. (1)
	v. Catalysis: Types of catalysis, Rate expression for Catalysed reaction, Acid-base
	and Enzyme catalysis. (2)
Text	Suggested Text Books:
Books,	(i) Physical Chemistry by P. Atkins, Oxford
and/or	(ii) A guidebook to mechanism in Organic chemistry: Peter Sykes; Pearson Edu.
reference	(iii) Inorganic Chemistry Part-I & II, R. L. Dutta, The new book stall
material	Suggested Reference Books:
	Organic Chemistry:
	(i) Basic stereochemistry of organic molecules: S. Sengupta; Oxford University press
	(ii) Engineering Chemistry: Wiley
	(iii) Elementary Organic Spectroscopy: William Kemp, ELBS with Macmillan
	Inorganic Chemistry:
	(i) Inorganic Chemistry: Principle structure and reactivity, J. E. Huheey, E. A. Keiter and
	R. L. Keiter, Pearson Education
	(ii) Bioinorganic Chemistry Inorganic Elements in the Chemistry of Life: An
	Introductionand Guide, 2nd Edition, Wolfgang Kaim, Brigitte Schwederski, Axel Klein.
	(iii) Inorganic Chemistry Fourth Edition, Shriver & Atkins, Oxford
	Physical Chemistry: (i) Physical Chemistry by G.W Castellan
	(i) Physical Chemistry by G.W Castellan (ii) Physical Chemistry by P. C. Rakshit
	(II) FIIYSICAI CHEINISLIY DY F. C. RAKSINL

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	1	2	-	-	-	-	-	-	-	-	-	-
	CO2	1	-	-	-	-	-	2	-	-	_	-	-
CYC 01	CO3	1	2	1	1	1	-	-	-	-	-	-	-
	CO4	-	1	-	-	2	-	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	٦	Title of the	ours	Credit								
Code		course	Core (PCR) /	Lecture	Tutorial	Practical	Total					
			Electives	(L)	(T)	(P) [#]	Hours					
			(PEL)									
XEC01	EN	IGINEERING	PCR	2	1	0	3	3				
	N	MECHANICS										
Pr	re-requ	uisites	Course Asse		•	•	T) <i>,</i> mid-te	rm (MT)				
			and end assessment (EA))									
					CT+MT-							
Course	2	• CO1: Acqui	ire knowledge o	f mechanio	s and abilit	y to draw fi	ree body (diagrams				
Outcome	es	• CO2: Apply	v knowledge of r	nechanics	for solving	special prol	olems like	e truss an				
		frame anal	ysis.									
		• CO3: Ability	y to calculate ce	entroid, mo	ments of ir	nertia for va	rious sha	pes.				
		• CO4: Learn	momentum an	d energy p	rinciples.							
		• CO5: Know	ledge on virtual	Work Prin	ciple and it	s applicatio	n					
Topics	E	Engineering Me	echanics; measu	rement an	d SI units. [1]						
Covered	d۱	Vectors and for	rce as a vector;	Resultant	of a syste	m of forces	on a par	rticle; fre				
	k	body diagram a	and conditions	of equilibr	ium of a p	article; pro	blems on	particle				
	e	equilibrium of p	particles in space	_ [2]	-	-		-				
				C·[2]								
		•	system of for		couples or	i a rigid b	ody; con	ditions of				
	F	Resultant of a	•	rces and o	•	-	•					
	F	Resultant of a equilibrium of	system of for	rces and o free body	diagrams	of rigid be	odies sub					
	F e	Resultant of a equilibrium of different types	system of for a rigid body;	rces and of free body simple space	diagrams ce problem	of rigid bo s of rigid bo	odies sub dies. [4]	ojected t				
	F C C	Resultant of a equilibrium of different types Coefficients of	system of for a rigid body; of constraints; s	rces and of free body simple space tic friction	diagrams ce problem ; problems	of rigid bo s of rigid bo involving f	odies sub dies. [4]	jected 1				
	F C C f	Resultant of a equilibrium of different types Coefficients of friction on squa	system of for a rigid body; of constraints; s static and kine	rces and of free body simple space tic friction wer screw	diagrams ce problem ; problems and flat be	of rigid bo s of rigid bo involving f lt. [5]	odies sub dies. [4] friction; tl	bjected 1 heories (
	F G C f	Resultant of a equilibrium of different types Coefficients of friction on squa Simple trusses;	system of for a rigid body; of constraints; s static and kine are threaded po	rces and o free body imple spac tic friction wer screw ses by met	diagrams ce problem ; problems and flat be hod of joint	of rigid be s of rigid bo involving f It. [5] ts and meth	odies sub dies. [4] friction; the	bjected t heories d tions. [5]				
	F 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Resultant of a equilibrium of different types Coefficients of friction on squa Simple trusses; Centre of grav	system of for a rigid body; of constraints; s static and kine analysis of truss	rces and o free body simple space tic friction wer screw ses by met of mass; c	diagrams ce problems ; problems and flat be hod of joint entroids o	of rigid be s of rigid bo involving f lt. [5] ts and meth f lines, curv	odies sub dies. [4] friction; th od of sec ves and a	bjected 1 heories (tions. [5] areas; fir				
	F 6 0 0 0 1 1 9 0 0 1 1 1 1 1 1 1 1 1 1 1 1	Resultant of a equilibrium of different types Coefficients of friction on squa Simple trusses; Centre of grav moment of are	system of for a rigid body; of constraints; s static and kine ire threaded por analysis of truss ity and centre	rces and o free body simple space tic friction wer screw ses by met of mass; c ment of a	diagrams ce problems ; problems and flat be hod of joint entroids o rea; polar	of rigid be s of rigid bo involving f lt. [5] ts and meth f lines, curv moment o	odies sub dies. [4] friction; th od of sec ves and a f inertia;	bjected 1 heories (tions. [5] areas; fir				
	F 6 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Resultant of a equilibrium of different types Coefficients of friction on squa Simple trusses; Centre of grav moment of are gyration of an a	system of for a rigid body; of constraints; s static and kine are threaded por analysis of truss ity and centre ea; second more	rces and o free body simple space tic friction wer screw ses by methor of mass; c ment of a s theorem;	diagrams ce problems ; problems and flat be hod of joint entroids o rea; polar ; mass mon	of rigid be s of rigid bo involving f lt. [5] ts and meth f lines, curv moment o nent of iner	odies sub dies. [4] friction; th od of sec ves and a f inertia; tia. [4]	bjected t heories (tions. [5] areas; fir radius (
	F 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Resultant of a equilibrium of different types Coefficients of friction on squa Simple trusses; Centre of grav moment of are gyration of an a Path, velocity, a	system of for a rigid body; of constraints; s static and kine re threaded por analysis of truss ity and centre ea; second mon area; parallel axi	rces and o free body simple space tic friction wer screw ses by met of mass; c ment of a s theorem; ctilinear an	diagrams ce problems ; problems and flat be hod of joint entroids o rea; polar ; mass mon d curvilines	of rigid be s of rigid bo involving f It. [5] ts and meth f lines, curv moment o nent of iner ar motion; r	odies sub dies. [4] friction; the od of sec ves and a f inertia; tia. [4] motion of	bjected t heories (tions. [5] areas; fir radius (system (
	F 6 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Resultant of a equilibrium of different types Coefficients of friction on squa Simple trusses; Centre of grav moment of are gyration of an a Path, velocity, a particles; introc	system of for a rigid body; of constraints; s static and kine re threaded por analysis of truss ity and centre ea; second mon area; parallel axi acceleration; rec	rces and o free body simple space tic friction wer screw ses by methor of mass; c ment of a s theorem; ctilinear an oncept of p	diagrams ce problems and flat be hod of joint entroids o rea; polar ; mass mon d curvilines plane kinem	of rigid be s of rigid bo involving f It. [5] ts and meth f lines, curv moment o nent of iner ar motion; r natics of rigi	odies sub dies. [4] friction; th od of sec ves and a f inertia; tia. [4] notion of d bodies.	bjected t heories tions. [5] treas; fir radius system [6]				
	F 6 7 7 7 7 7 7 7 7 7 7 7 7	Resultant of a equilibrium of different types Coefficients of friction on squa Simple trusses; Centre of grav moment of ara gyration of an a Path, velocity, a particles; introc	system of for a rigid body; of constraints; s static and kine are threaded por analysis of truss ity and centre ea; second mon area; parallel axi acceleration; rec duction to the co	rces and o free body simple space tic friction wer screw ses by met of mass; c ment of a s theorem; ctilinear an oncept of p on; dynami	diagrams ce problems ; problems and flat be hod of joint entroids o rea; polar ; mass mon d curvilines blane kinem c equilibriu	of rigid be s of rigid bo involving f It. [5] ts and meth f lines, curv moment o nent of iner ar motion; r natics of rigi im and D'A	odies sub dies. [4] friction; the od of sec ves and a f inertia; tia. [4] notion of d bodies. lembert's	ojected heories tions. [5] ireas; fir radius system [6] principl				
	F 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Resultant of a equilibrium of different types Coefficients of friction on squa Simple trusses; Centre of grav moment of are gyration of an a Path, velocity, a particles; introc Newton's secon linear momen	system of for a rigid body; of constraints; s static and kine re threaded por analysis of truss ity and centre ea; second mor area; parallel axi acceleration; rec duction to the co nd law of motic	rces and o free body simple space tic friction wer screw ses by met of mass; c ment of a s theorem; ctilinear an oncept of p on; dynami momentur	diagrams ce problems and flat be hod of joint entroids o rea; polar ; mass mon d curvilines plane kinem c equilibriu m; rectilin	of rigid be s of rigid bo involving f It. [5] ts and meth f lines, curv moment o nent of iner ar motion; r natics of rigi im and D'A ear and c	odies sub dies. [4] friction; the od of sec ves and a f inertia; tia. [4] motion of d bodies. lembert's curvilinear	bjected t heories o tions. [5] areas; fir radius o system o [6] principlo r motio				
	 	Resultant of a equilibrium of different types Coefficients of friction on squa Simple trusses; Centre of grav moment of ara gyration of an a Path, velocity, a particles; introc Newton's secon linear momen principles of wo	system of for a rigid body; of constraints; s static and kine are threaded por analysis of truss ity and centre ea; second mor acceleration; rec duction to the co nd law of motic tum; angular	rces and o free body simple space tic friction wer screw ses by methor of mass; c ment of a s theorem; ctilinear an oncept of p on; dynami momentur impulse—n	diagrams ce problems and flat be hod of joint entroids of rea; polar ; mass mon d curvilines blane kinem c equilibriu m; rectilin nomentum	of rigid be s of rigid bo involving f lt. [5] ts and meth f lines, curv moment o nent of iner ar motion; r natics of rigi im and D'A ear and c ; impact of	odies sub dies. [4] friction; the od of sec ves and a f inertia; tia. [4] notion of d bodies. lembert's curvilinear system of	bjected t heories o tions. [5] areas; fir radius o system o [6] principlo r motio				
	F 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Resultant of a equilibrium of different types Coefficients of friction on squa Simple trusses; Centre of grav moment of ara gyration of an a Path, velocity, a particles; introc Newton's secon linear momen principles of wo	system of for a rigid body; of constraints; s static and kine analysis of truss ity and centre ea; second mor area; parallel axi acceleration; rec duction to the co nd law of motic tum; angular ork-energy and	rces and o free body simple space tic friction wer screw ses by met of mass; c ment of a s theorem; ctilinear an oncept of p on; dynami momentur impulse—n plane kinet	diagrams ce problems and flat be hod of joint entroids of rea; polar d curvilines lane kinem c equilibriu m; rectilin nomentum tics of rigid	of rigid be s of rigid bo involving f it. [5] ts and meth f lines, curv moment o nent of iner ar motion; r natics of rigi im and D'A ear and c ; impact of bodies. [12	odies sub dies. [4] friction; the od of sec ves and a f inertia; tia. [4] motion of d bodies. lembert's curvilinear system of]	bjected t heories of tions. [5] treas; fir radius of system of [6] principlo r motio f particle				
	F 6 7 7 7 7 7 7 7 8 8 7 7 8 7 8 7 8 7 8 7	Resultant of a equilibrium of different types Coefficients of friction on squa Simple trusses; Centre of grav moment of ara gyration of an a Path, velocity, a particles; introc Newton's secon linear momen principles of wo	system of for a rigid body; of constraints; s static and kine analysis of truss ity and centre ea; second mor acceleration; red duction to the cond tum; angular ork-energy and the concept of tual Work, Solu	rces and o free body simple space tic friction wer screw ses by met of mass; c ment of a s theorem; ctilinear an oncept of p on; dynami momentur impulse—n plane kinet	diagrams ce problems and flat be hod of joint entroids of rea; polar d curvilines lane kinem c equilibriu m; rectilin nomentum tics of rigid	of rigid be s of rigid bo involving f it. [5] ts and meth f lines, curv moment o nent of iner ar motion; r natics of rigi im and D'A ear and c ; impact of bodies. [12	odies sub dies. [4] friction; the od of sec ves and a f inertia; tia. [4] motion of d bodies. lembert's curvilinear system of]	bjected t heories of tions. [5] treas; fir radius of system of [6] principlo r motio f particle				
Text Boo	F 6 7 7 7 7 7 7 7 7 8 8 7 7 7 7 7 7 7 7 7	Resultant of a equilibrium of different types Coefficients of friction on squa Simple trusses; Centre of grav moment of are gyration of an a Path, velocity, a particles; introo Newton's secon linear momen principles of wo introduction to Principle of Vir <u>Virtual Work [3</u>	system of for a rigid body; of constraints; s static and kine analysis of truss ity and centre ea; second mor acceleration; red duction to the cond tum; angular ork-energy and the concept of tual Work, Solu	rces and o free body simple space tic friction wer screw ses by methor of mass; coment of a s theorem; ctilinear an oncept of pon; dynami momentur impulse—n plane kinet ution of Pr	diagrams ce problems ; problems and flat be hod of joint entroids of rea; polar ; mass mon d curvilines olane kinem c equilibriu m; rectilin nomentum tics of rigid roblems on	of rigid be s of rigid bo involving f it. [5] ts and meth f lines, curv moment of nent of iner ar motion; r natics of rigi im and D'A ear and c ; impact of bodies. [12 Mechanics	odies sub dies. [4] friction; the od of sec ves and a f inertia; tia. [4] motion of d bodies. lembert's curvilinear system of] s using Pr	bjected t heories of tions. [5] treas; fir radius of system of [6] principlo r motio f particle				
Text Bool and/or	F () () () () () () () () () () () () ()	Resultant of a equilibrium of different types Coefficients of friction on squa Simple trusses; Centre of grav moment of ara gyration of an a Path, velocity, a particles; introo Newton's secon linear momen principles of wo introduction to Principle of Vir <u>Virtual Work [3</u> 1) S P Timosher	system of for a rigid body; of constraints; s static and kine are threaded por analysis of truss ity and centre ea; second mor area; parallel axi acceleration; rec duction to the co nd law of motio tum; angular ork—energy and the concept of tual Work, Solu]	rces and o free body simple space tic friction wer screw ses by met of mass; c ment of a s theorem; ctilinear an oncept of p on; dynami momentur impulse—n plane kinet ution of Pr	diagrams ce problems and flat be hod of joint entroids of rea; polar ; mass mon d curvilines blane kinem c equilibriu m; rectilin nomentum tics of rigid roblems on ering Mech	of rigid be s of rigid bo involving f lt. [5] ts and meth f lines, curv moment o nent of iner ar motion; r natics of rigi im and D'A ear and c ; impact of bodies. [12 Mechanics	odies sub dies. [4] friction; the od of sec ves and a f inertia; tia. [4] notion of d bodies. lembert's curvilinear system of] s using Pri- dition	ojected t heories of tions. [5] areas; fir radius of system of [6] principle f particle				
	F F F F F F F F F F F F F F	Resultant of a equilibrium of different types Coefficients of friction on squa Simple trusses; Centre of grav moment of are gyration of an a Path, velocity, a particles; introc Newton's secon linear momen principles of wo introduction to Principle of Vir <u>Virtual Work [3</u> 1) S P Timosher 2) J L Meriam a	system of for a rigid body; of constraints; s static and kine are threaded por analysis of truss ity and centre ea; second mor acceleration; red duction to the con duction to the con tum; angular ork-energy and the concept of tual Work, Solu]	rces and o free body simple space tic friction wer screw ses by methor of mass; coment of a s theorem; ctilinear an oncept of pon; dynami momentur impulse—n plane kineto ution of Pro- ing, Engine ngineering	diagrams ce problems and flat be hod of joint entroids of rea; polar d curvilines olane kinem c equilibriu m; rectilin nomentum tics of rigid oblems on ering Mech Mechanics	of rigid be s of rigid bo involving f it. [5] ts and meth f lines, curv moment o nent of iner ar motion; r natics of rigi im and D'A ear and c ; impact of bodies. [12 Mechanics	odies sub dies. [4] friction; the od of sec ves and a f inertia; tia. [4] notion of d bodies. lembert's curvilinear system of] s using Pri- dition	ojected t heories o tions. [5] areas; fir: radius o system o [6] principle f particle				

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12	
	CO1	1	-	-	-	-	-	-	-	-	-	-	1	
	CO2	1	1	1	1	1	I	-	-	-	-	-	1	
XEC01	CO3	1	1	-	-	-	-	-	-	-	-	-	1	
	CO4	1	2	-	-	-	-	-	-	-	-	-	1	
	CO5	_	2	2	2	2	1	-	-	-	1	-	1	

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tota	l Number c	f contact ho	ours	Credit			
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total				
		Electives	(L)	(T)	(P)#	Hours				
		(PEL)								
ESC01	Environmental	PCR	2	0	0	2	2			
	Science									
Р	e-requisites	Course Asse	essment me	ethods (Coi	ntinuous (C	r), mid-te	rm (MT)			
			and	end assess	ment (EA))					
				CT+MT-	FEA					
Course	CO1: Unde	erstand the impo	rtance of e	nvironmer	t and ecosy	stem.				
Outcom	es 🔹 CO2: Und	lerstand the fu	ndamental	aspect o	of pollutant	tracking	g and it:			
	implemen	tation in natura	al and ant	hropogeni	c pollution	of air a	nd wate			
	system.									
	• CO3: Unde	erstand the scien	tific basis c	of local and	as well as g	lobal issu	es.			
	CO4: Appl	y of knowledge t	o develop s	sustainable	solution.					
Topics	Introduction:	oduction: Multidisciplinary nature of Environmental Studies; Basic issues in								
Covere	d Environmenta	Studies. [2]								
	Human popula	ition and the Env	ironment.	[1]						
	Social issues a	nd the Environm	ent.	[1]						
	Constituents	of our Environr	nent & th	ne Natural	Resources	: Atmosp	ohere– it			
	layers, their ch	aracters; Global	warming, (Ozone depl	etion, Acid	rain, etc.	[5]			
	Hydrosphere -	Its constituents.	Oceans G	roundwate	r. Surface w	aters; Hy	ما بيم ا م ما م			
	Hydrosphere - Its constituents, Oceans, Groundwater, Surface waters; Hydrological									
	cycle. [4]	,	Oceans, G	lounuwate			arologica			
		constituents of								
	Lithosphere -		lithosphe							
	Lithosphere - Tectonic Conce Biosphere- its	constituents of ept and its impor components; Ec	iithosphe tance. osystems a	re; Rock [5] nd Ecology	and Minera	al resourd	ces; Plato s. [5]			
	Lithosphere - Tectonic Conce Biosphere- its	constituents of of and its impor	iithosphe tance. osystems a	re; Rock [5] nd Ecology	and Minera	al resourd	ces; Plato s. [5]			
	Lithosphere - Tectonic Conce Biosphere its Natural disas Cyclones. [3]	constituents of ept and its impor components; Ec ter and their	^E lithosphe tance. osystems a manageme	re; Rock [5] Ind Ecology Int – Earl	and Minera ; Biodiversit :hquakes, I	al resourd	ces; Plat s. [5]			
	Lithosphere - Tectonic Conce Biosphere its Natural disas Cyclones. [3]	constituents of ept and its impor components; Ec	^E lithosphe tance. osystems a manageme	re; Rock [5] Ind Ecology Int – Earl	and Minera ; Biodiversit :hquakes, I	al resourd	ces; Plato s. [5]			
Text Boo	Lithosphere - Tectonic Conce Biosphere- its Natural disas Cyclones. [3] Pollution: Pol ks, 1. Environmen	constituents of ept and its impor components; Ec ter and their lutants and their tal Studies – Ben	iithosphe tance. osystems a manageme <u>role in air a</u> ny Joseph	ere; Rock [5] and Ecology ent – Earl and water – Tata Mcg	and Minera ; Biodiversit :hquakes, I pollution. ;rawHill-200	al resourd ty; Biome Floods, L [2] 5	ces; Plato s. [5]			
and/o	Lithosphere - Tectonic Conce Biosphere- its Natural disas Cyclones. [3] Pollution: Pol ks, 1. Environmen 2.Environmen	constituents of ept and its impor components; Ec ter and their lutants and their tal Studies – Ben tal Studies – Dr. I	^E lithosphe tance. osystems a manageme <u>role in air a</u> ny Joseph D.L. Manjur	ere; Rock [5] and Ecology ent – Eart and water – Tata Mcg nath, Pears	and Minera ; Biodiversit :hquakes, I pollution. ;rawHill-200 on Educatio	al resourd ty; Biomes Floods, L [2] 95 9n-2006.	ces; Plato s. [5]			
and/or referen	Lithosphere - Tectonic Conce Biosphere	constituents of ept and its impor components; Ec ter and their lutants and their tal Studies – Ben tal Studies – Dr. I Environmental S	ilithosphe tance. osystems a manageme <u>role in air</u> ny Joseph D.L. Manjur cience and	ere; Rock [5] and Ecology ent – Earl and water – Tata Mcg nath, Pears Engineerir	and Minera ; Biodiversit hquakes, I pollution. ;rawHill-200 on Educatio ng – P. V. Ra	al resourd ty; Biomes Floods, L [2] 5 n-2006. o, PHI.	ces; Plat s. [5] andslides			
and/o	Lithosphere - Tectonic Conce Biosphere	constituents of ept and its impor components; Ec ter and their <u>lutants and their</u> tal Studies – Ben tal Studies – Dr. I Environmental S tal Science and E	^E lithosphe tance. osystems a manageme <u>role in air a</u> ny Joseph D.L. Manjur cience and ingineering	ere; Rock [5] and Ecology ent – Eart and water – Tata Mcg nath, Pears Engineerir ; – Meenak	and Minera ; Biodiversit :hquakes, I pollution. ;rawHill-200 on Educatio ng – P. V. Ra shi, Prentice	al resourd ty; Biomes Floods, L [2] 95 90-2006. 0, PHI. e Hall Indi	ces; Plat s. [5] andslides			
and/or referen	Lithosphere - Tectonic Conce Biosphere	constituents of ept and its impor components; Ec ter and their lutants and their tal Studies – Ben tal Studies – Dr. I Environmental S	^E lithosphe tance. osystems a manageme <u>role in air</u> ny Joseph D.L. Manjur cience and ingineering ajagopalan	ere; Rock [5] and Ecology ent – Eart and water – Tata Mcg nath, Pears Engineerir g – Meenak – Oxford P	and Minera ; Biodiversit :hquakes, I pollution. ;rawHill-200 on Educatio ng – P. V. Ra shi, Prentice ublication -	al resourd ty; Biomes Floods, L [2] (5 on-2006. o, PHI. e Hall Indi 2005.	ces; Plato s. [5] andslides a.			

		mapp		00 (00			<i>,</i> and i	0 (110	<u>6 . a</u>		come,		
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	3	-	-	-	-	-	2	-	-	-	-	-
ESC01	CO2	1	-	-	-	-	-	2	-	-	-	-	-
	CO3	2	-	-	-	-	-	2	-	-	-	-	-
	CO4	1	-	3	-	-	2	1	-	-	-	-	-

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Tota	l Number c	of contact ho	ours	Credit				
Code		(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives (PEL)	(L)	(T)	(P)	Hours					
XES51	ENGINEERING GRAPHICS	PCR	1	0	3	4	2.5				
Pi	re-requisites	Course As	sessment n	nethods (C	ontinuous ((CT) and ei	nd				
			as	sessment (EA))	-					
	NIL			CT+EA							
Course	• CO1: Ability o	f mental visualizat	tion of diffe	erent objec	ts						
Outcom	es •CO2: Theore	tical knowledge c	of orthogra	phic proje	ction to so	lve probl	ems on				
		e dimensional obj									
	• CO3: Able to	read/interpret ind	ustrial drav	wing and to	o communic	ate with r	elevant				
	people										
Topics		guage of communi			-		• • •				
Covere	••	s of lines; construction of geometrical figures; lettering and dimensioning. [6] truction and use of scales; construction of curves of engineering importance									
					•	• •					
		of conic section;			olutes and	different	loci of				
	•	quations for drawi	-		C						
		ometry: necessity	•		•						
		vertical referent ints and lines situ	•		-						
		es of lines. First ar		•							
	•	, front and left (c	-		-		•				
		projections; prima	•	-							
		nd auxiliary elevati	• •	[···]····			[·····,				
		, mple regular solic		ms, cubes,	cylinders,	pyramids	, cones,				
		oheres, hemi-sphe									
	Section of solid	tion of solids; section by perpendicular planes; sectional views; true shapes of									
	sections. [6]										
	Dimensional tec	hniques; internati	onal and n	ational star	ndards (ISO	and BIS).	[3]				
	Freehand graph	ics. [3]									
Text and		Drawing and Gra		enugopal							
referenc		; Drawing – N D Bh									
materia	al 3) Practical Ge	ometry and Engin	eering Gra	phics – W A	Abbott						

		mapp					<u>, ana i</u>	0 (110	<u>8 ann</u>		come		
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	1	-	-	-	-	-	-	-	-	-	-	-
XES51	CO2	1	1	-	-	-	-	-	-	-	-	-	-
	CO3	1	-	1	-	-	-	-	-	-	-	-	-

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tota	l Number o	of contact ho	ours	Credit					
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total						
		Electives (PEL)	(L)	(T)	(P)	Hours						
HSS51	Professional	PCR	1	0	2	3	2					
	Communication											
	Lab											
Pro	e-requisites	Course Assessr	nent metho	ods (Continu (EA))	uous (CT) an	d end ass	essment					
	None			CT+EA								
Course	CO1: Impr	CO1: Improvement in linguistic proficiency of the learners										
Outcome	es • CO2: Impr	ovement in comr	nunicative	ability of th	e learners							
	CO3: Impr	ovement in socia	l connectivi	ty skill								
Topics	1. Professi	onal Communica	tion: Introd	uction (1)								
Covered	l 2. Technic	2. Technical Writing: Basic Concepts (2)										
	3. Style in	Technical Writing	g (3)									
	4. Technic	al Report (2)										
	5. Recomn	nendation Report	t (2)									
	6. Progress	s Report (1)										
		al Proposal (3)										
	8. Busines	. ,										
		of Job Applicatior										
	-	Scientific and Eng		apers (3)								
		e Use of Graphic										
		ation Techniques	(6)									
		viscussion (6)										
		14. Interview Techniques (6)										
Text		Text Book: English for Engineers –Sudharshana& Savitha (Cambridge UP) 										
Books,	-	-	arshana& S	avitha (Can	nbridge UP)							
and/or	Reference Boo	-		- 11h (C								
referenc	- 0	Engineers -Sudha		•								
materia		echnical Commur to relevant NPTI		•			2					

	Mapping of CO (Course outcome) and PO (Programme Outcome)												
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
HSS51	CO1	1	_	_	1	_	1	_	1	2	3	1	_
пэээт	CO2	1	_	_	1	_	2	_	2	2	3	2	_
	CO3				1		3		3	3	3	2	

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Title of the	Program	Total Nur	nber of con	tact hours		Credit				
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total					
		/ Electives	(L)	(T)	(P)	Hours					
		(PEL)									
PHS51	Physics	PCR	0	0	2	2	1				
	Laboratory										
Pre-requ	isites	Course Asse	ssment met	hods: (Cont	inuous evalu	ation (CE)	and end				
		assessment	(EA))								
NIL	1	CE+EA									
Course		lize and apply o	different teo	hniques for	measuring r	efractive i	ndices of				
Outcome											
		lize different ty	-		-	-	RO.				
		CO3: To understand charging and discharging mechanism of a capacitor. CO4: To understand interference, diffraction and polarization related optical									
			erence, diffr	action and	polarization r	elated opt	ical				
	phenomena										
		uire basic know									
Topics			=	d by a travelling microscope.							
Covered		e the refractive			•	.					
		ation of amplit			lectrical sign	als by osci	lloscope.				
		the characteris									
		Brewster's law		-	light.						
		the diffraction	• ·								
		 To study the interference of light by Newton's ring apparatus. To determine numerical aperture of optical fiber. 									
			•	r optical fibe	er.						
		ation of Planck	constant.								
Text and				~							
reference	,	ok on Practical	•		dar and B. Gł	nosh					
material	2) Practical	Physics – Wors	nop and Fli	nt							

Mapping of CO (Course outcome) and PO (Programme Outcome)

	mapping of co (course outcome) and to (trogramme outcome)												
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	3	2	1	-	-	-	-	-	2	1	-	1
	CO2	3	2	1	-	-	1	-	-	2	1	-	1
PHS51	CO3	3	1	-	-	-	-	-	-	2	1	-	1
	CO4	3	2	-	1	-	1	1	-	2	1	-	1
	CO5	3	2	1	-	1	1	1	-	2	1	_	1

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Title	e of the	Program Core	Tota	l Number o	of contact ho	ours	Credit			
Code	C	ourse	(PCR) /	Lecture	Tutorial	Practical	Total				
			Electives (PEL)	(L)	(T)	(P)	Hours				
CYS51	CHE	MISTRY	PCR	0	0	2	2	1			
	LABC	DRATORY									
Pr	e-requisi	ites	Course As	sessment n	nethods (C	ontinuous ((CT) and e	nd			
				as	sessment ((EA))					
	None				CT+EA						
Course	•	CO1: To lea	arn basic analytica	l technique	es useful fo	r engg appli	cations.				
Outcome	es •	CO2: Synth	nesis and character	erization n	nethods of	few organ	ic, inorga	nic and			
		polymer co	mpounds of indus	strial impoi	rtance.						
	•	CO3: Learr	n chromatographie	c separatio	n methods						
	•	CO4: Appli	cations of spectro	scopic mea	asurement	S.					
Topics	i.	Experime	nts based on pH n	netry: Dete	ermination	of dissociati	ion const	ant of we			
Covered	d	acids by p	H meter.								
	ii.	Experime	nts based on co	nductivity	measurem	ent: Deterr	nination	of amo			
		of HCl by conductometric titration with NaOH.									
	iii.	Estimatio	n of metal ion: Est	imation of	Fe ²⁺ by pe	rmangnome	ntry				
	iv.	Estimatio	n of metal ion: De	term. of to	tal hardnes	ss of water b	by EDTA t	itration.			
	۷.	•	and characterizat			-	• •	•			
			cinato)copper (II)	monohyd	rate and t	heir charact	terization	by m. p			
		FTIR etc.									
	vi.	•	and charact. of or		-	g.Dibenzylid	eneaceto	ne.			
	vii.	•	of polymer: polyn	•							
	viii.		on of Beer-Lamber	ts law and	determina	tion of amo	unt of irc	on prese			
			ied solution.								
	ix.		graphy: Separation				nromatog	rapny			
	X.		ation of saponifica	ition value	or rat/ veg						
		Suggested Text Books: 1. Vogel's Quantitative Chemical Analysis (6th Edition) Prentice Hall									
		-			-		311				
			nysical Chemistry sive Practical Orga	-	-						
		luwalia and	-		ary. Qualle	alive Alidiys	אט ני ט ני v. N	•			
			erence Books:								
			emistry By R.C. Br	attacharva	4						
			periments in Physi			Mukheriee	1				
	Ζ	Selected exp	eriments in Physi		uy by N. G	. wukneijee					

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	2	1	-	1	-	-	-	-	-	-	-	-
CYS51	CO2	-	1	-	1	1	2	-	-	-	-	-	-
C1351	CO3	2	-	-	1	1	-	-	-	-	-	-	-
	CO4	-	1	-	1	1	-	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tota	al Number o	f contact ho	urs	Credit			
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total				
		/ Electives	(L)	(T)	(P) [#]	Hours				
		(PEL)								
WSS51	WORKSHOP	PCR	0	0	3	3	1.5			
	PRACTICE									
Pre	-requisites	Course Asses	ssment met	hods (Contir	nuous (CT) an	d end ass	essment			
				(EA))						
	NIL			CT+E/	4					
Course	• CO1: 5	Study and pract	ice on mach	nine tools an	d their opera	ations				
Outcome	• CO2:	Practice on m	anufacturin	g of compo	onents using	worksho	p trade			
	includ	ing fitting, carp	entry, foun	dry and weld	ding					
	• CO3:	Identify and a	oply suitabl	e tools for	machining p	rocesses i	including			
	turnin	g, facing, threa	d cutting an	id tapping						
	• CO4:	Develop basic	electrical	engineering	knowledge	for hous	e wirin			
	practi	practice								
Topics	M/c shop & 0	 c shop & Carpentry shop 3X3= 9hrs. Introduction on machining process. 								
Covered	d Introd	uction on mach	nining proce	ess.						
	 Introd 	uction to mach	ine tools- La	athe, Shapei	^r , Milling and	Drill mach	nine.			
	 Introd 	 Introduction to woods- Types, structure, disease and defect of wood. 								
	 Introd 	 Introduction to wood working machines and tools. 								
	 Makin 	g of dovetail jo	int and brid	le joint.						
	Welding Sho	o & Sheet meta	l	3)	(3= 9hrs.					
	 Introd 	uction to weldi	ng.Safety a	nd precautic	ons in welding	g.				
	Forma	tion of weld be	ad by SMA	W on mild st	eel flat.					
	Forma	tion of weld be	ead by oxy-f	uel welding	on mild steel	l flat.				
	 Introd 	uction to sheet	Metal wor	ks.						
	Tools	and Machines ι	used in shee	et metal wor	ks.					
	Conce	pt of developm	ient, markir	ig out of me	tal sheets.					
		g and joining o		-						
		precautions, G			in the shop f	floor.				
	Black smithy	-		-	(3= 9hrs.					
	-	uction Smithir	ng and For			Furnaces	and it			
		sories, fuels.	-			-	-			
		and precaution	ns in blacksı	mithy.						
	-	g of bars of dif		-						
		g of hexagonal								
	-	uction to Foun	dry Technol	ogy.						
		ration of sand r	-		Pattern.					
	Fitting & Elec				X3= 9hrs.					
		-	metal cutt			ons. nome	enclature			
		Introduction to hand metal cutting tools with specifications, nomenclature and their use.								
		ng tools, measu	ring tools a	nd their use	·.					
		s of joints of mi	-		-					
			a steel nats	•						

 Introduction to electrical hazards and safety precaution.
 Wire jointing and soldering.
 PVC Conduit Wiring controlled by separate single way switches.
 PVC Cashing Capping Wiring for two-way switches.
• Conduit wiring for the connection of a Calling Bell with In& Out Indicators.
 Batten Wiring and Cleat Wiring.
Tube Light Connection.
 Insulation Resistance Testing of 1ph / 3ph Motor and House Wiring.
Earth Resistance Testing.
DOL Starter Connection.
Viva voce 1X3= 3hrs.
1. Workshop Technology Part I and Part II by W. A. J. Chapman
2. Elements of Workshop Technology S. K. Hazra Chowdhury, A. K. Hazra
Chowdhury and Nirjhar Roy
3. Mechanical Workshop Practice by K. C. John

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	2	-	-	-	-	1	-	-	-	1	-	I
WSS51	CO2	1	-	1	-	-	1	-	-	-	1	-	-
VV 2221	CO3	1	-	2	-	-	1	-	-	-	1	-	-
	CO4	1	-	-	-	-	2	-	-	-	1	-	-

Correlation levels 1, 2 or 3 as defined below:

C	The	.f.16.a	Program Core	Total	Number o	f contact ho	ours				
Course Code	Title o		(PCR) /	Lecture	Tutorial	Practical	Total	Credit			
Coue	course		Electives (PEL)	(L)	(T)	(P)	Hours				
XXS-51	Co-curricular Activities		PCR	0	0	2	2	1			
Pre-requi	isites	Cour	se Assessment n	e Assessment methods (Continuous (CT) and end assessment (EA))							
NIL					CT+EA						
Course	•	CO1: Social Interaction: Through the medium of sports									
Outcomes	•	CO2: Ethics: Recognize different value systems including your own,									
	•	 independent and life-long learning in the broadest context socio- technological changes. CO4: Personality development through community engagement 									
Topics	YOGA										
Covered	•	Introdu	ction of Yoga.								
	•	Sitting I	Sitting Posture/Asanas- Padmasana, Vajrasana, Ardhakurmasana, Ustrasana,								
		Bakrasa	ina, Sasankasana	a, Janusirsh	lasana, Sur	yanamaskar					

	Anjali mudra.
	 Laying Posture/Asanas- PavanaMuktasana, UttanaPadasana, Sarpasana, <u>Bhujangasana (Cobra Pose)</u>, Eka Pada Salabhāsana, Dhanurasana,
	Chakrasana, Viparitkarani.
	 Meditation- Yognidra, Om chant, Pray chant. Standing Posture/Asanas- Tadasana (Mountain Pose), Vrikshasana (Tree
	 Pose), Ardhachandrasana, Trikonasana, Utkatasana, Padahastasana. Pranayama- Deep breathing, AnulomVilom, Suryabhedi, Chandrabhedi.
	Kriya- Kapalbhati, Trataka.
	ATHLETICS
	Introduction of Athletic.
	 Starting Technique for Track events- Standing start, Crouch & Block start.
	 Finishing Techniques. Belay Base, 4x100m, 4x400m, 8 Baten Exchange Technique 8 Bulac
	 Relay Race- 4×100m, 4×400m & Baton Exchange Technique & Rules. Track Marking with Fundamentals- 200m, 400m and Diagonal Distance
	Radius, Straight Distance, Staggers of Different Lanes & Curve Distance.
	BASKETBALL
	 Introduction and Players stance and ball handling.
	 Passing- Two hand chest pass, two hand bounce pass, One hand baseball
	pass, Side arm pass, Overhead pass, Hook pass.
	 Receiving- Two hand receiving, one hand receiving, receiving in stationary
	position, Receiving while jumping and Receiving while running.
	 Dribbling- Dribble, High dribble, Low dribble, Reverse dribble, Rolling
	dribble.Rules of Basketball.
	 Basketball game.
,	VOLLEYBALL
	Introduction of Volleyball
	 Service- Underarm service, Sidearm service, Tennis service, Floating service, Jump service.
	 Pass: Underarm pass- Ready position, Teaching stage of underarm pass and Upper hand pass- Volley pass, Back pass, Short set, Jump set & Underarm set.
	Rules and their interpretation.
	FOOTBALL
	Introduction of Football
	Push pass- Instep inside, Instep outer side. Kiaking Spatialist laster kiak laster kiak
	 Kicking- Spot kick, Instep kick, Lofted kick. Dribbling, One log, Both logs, Instep
	 Dribbling- One leg, Both legs, Instep. Trapping- Rolling ball sole trapping, High ball sole trapping, High ball chest
	 Trapping- Koning ball sole trapping, Figh ball sole trapping, Figh ball thigh trapping.
	 Throwing- Standing throw, Running throw, Seating throw.
	 Goal Keeping- Griping the ball, Full volley, Half volley, Drop Kick.
	 Rules and their interpretation.
	CRICKET

 Batting gripping & Stance, Bowling gripping technique. Batting front foot defense& Drive. Batting Square cut. Bowling medium pace, Bowling off break. Fielding drill, Catching (Short & High). Rules & Regulation. SADMINTON Basic introduction about Badminton and Badminton court. Racket parts, Racket Grip, Shuttle Grip. Basic stance, Basic Footwork, Shadow practice (Full court movement). Strokes services: Forehand- Overhead & Underarm, Backhand- Overhead & Underarm. Match practice (Single & Double). Rules & Regulation. FALE TENNIS Introduction of Table Tennis. Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). ECC FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. AEWWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 	•	Introduction of Cricket
 Batting front foot defense& Drive. Batting Back foot defense& Drive. Batting Square cut. Bowling medium pace, Bowling off break. Fielding drill, Catching (Short & High). Rules & Regulation. SADMINTON Basic introduction about Badminton and Badminton court. Racket parts, Racket Grip, Shuttle Grip. Basic stance, Basic Footwork, Shadow practice (Full court movement). Strokes services: Forehand- Overhead & Underarm, Backhand- Overhead & Underarm. Match practice (Single & Double). Rules & Regulation. TABLE TENNIS Introduction of Table Tennis. Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Table Tennis Match (Singles & Doubles). ICC FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-1 2 Parade practice. YEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc.<td></td><td></td>		
 Batting Back foot defense& Drive. Batting Square cut. Bowling medium pace, Bowling off break. Fielding drill, Catching (Short & High). Rules & Regulation. SADMINTON Basic introduction about Badminton and Badminton court. Racket parts, Racket Grip, Shuttle Grip. Basic stance, Basic Footwork, Shadow practice (Full court movement). Strokes services: Forehand- Overhead & Underarm, Backhand- Overhead & Underarm. Match practice (Single & Double). Rules & Regulation. 7ABLE TENNIS Introduction of Table Tennis. Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). FCC FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-7 Turning on the March and Wheeling. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. XEWWODO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 		
 Batting Square cut. Bowling medium pace, Bowling off break. Fielding drill, Catching (Short & High). Rules & Regulation. SADMINTON Basic introduction about Badminton and Badminton court. Racket parts, Racket Grip, Shuttle Grip. Basic stance, Basic Footwork, Shadow practice (Full court movement). Strokes services: Forehand- Overhead & Underarm, Backhand- Overhead & Underarm. Match practice (Single & Double). Rules & Regulation. YABLE TENNIS Introduction of Table Tennis. Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-1 Turning on the March and		-
 Bowling medium pace, Bowling off break. Fielding drill, Catching (Short & High). Rules & Regulation. SADMINTON Basic introduction about Badminton and Badminton court. Racket parts, Racket Grip, Shuttle Grip. Basic stance, Basic Footwork, Shadow practice (Full court movement). Strokes services: Forehand- Overhead & Underarm, Backhand- Overhead & Underarm. Match practice (Single & Double). Rules & Regulation. 7ABLE TENNIS Introduction of Table Tennis. Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Table Tennis Match (Singles & Doubles). ICC FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-12 Parade practice. XEKWNDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 		-
 Fielding drill, Catching (Short & High). Rules & Regulation. SADMINTON Basic introduction about Badminton and Badminton court. Racket parts, Racket Grip, Shuttle Grip. Basic stance, Basic Footwork, Shadow practice (Full court movement). Strokes services: Forehand- Overhead & Underarm, Backhand- Overhead & Underarm. Match practice (Single & Double). Rules & Regulation. TABLE TENNIS Introduction of Table Tennis. Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). UCC FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-12 Parade practi		•
 Rules & Regulation. SADMINTON Basic introduction about Badminton and Badminton court. Racket parts, Racket Grip, Shuttle Grip. Basic stance, Basic Footwork, Shadow practice (Full court movement). Strokes services: Forehand- Overhead & Underarm, Backhand- Overhead & Underarm. Match practice (Single & Double). Rules & Regulation. CALE TENNIS Introduction of Table Tennis. Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. XEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 		
 BADMINTON Basic introduction about Badminton and Badminton court. Racket parts, Racket Grip, Shuttle Grip. Basic stance, Basic Footwork, Shadow practice (Full court movement). Strokes services: Forehand- Overhead & Underarm, Backhand- Overhead & Underarm. Match practice (Single & Double). Rules & Regulation. TABLE TENNIS Introduction of Table Tennis. Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. KEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 		
 Basic introduction about Badminton and Badminton court. Racket parts, Racket Grip, Shuttle Grip. Basic stance, Basic Footwork, Shadow practice (Full court movement). Strokes services: Forehand- Overhead & Underarm, Backhand- Overhead & Underarm. Match practice (Single & Double). Rules & Regulation. TABLE TENNIS Introduction of Table Tennis. Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). ICC FD -1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. TAEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 		-
 Racket parts, Racket Grip, Shuttle Grip. Basic stance, Basic Footwork, Shadow practice (Full court movement). Strokes services: Forehand- Overhead & Underarm, Backhand- Overhead & Underarm. Match practice (Single & Double). Rules & Regulation. 7ABLE TENNIS Introduction of Table Tennis. Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). VCC FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. XEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 		
 Basic stance, Basic Footwork, Shadow practice (Full court movement). Strokes services: Forehand- Overhead & Underarm, Backhand- Overhead & Underarm. Match practice (Single & Double). Rules & Regulation. ZABLE TENNIS Introduction of Table Tennis. Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Table Tennis Match (Singles & Doubles). FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. AEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 		
 Strokes services: Forehand- Overhead & Underarm, Backhand- Overhead & Underarm. Match practice (Single & Double). Rules & Regulation. TABLE TENNIS Introduction of Table Tennis. Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). VCC FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. XEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 	•	• • • •
 Underarm. Match practice (Single & Double). Rules & Regulation. ABLE TENNIS Introduction of Table Tennis. Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). VCC FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. AEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 	•	
 Match practice (Single & Double). Rules & Regulation. CABLE TENNIS Introduction of Table Tennis. Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). ICC FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. ActeWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Upper blocks, Middle block, Side block, Suto etc. 	•	
 Rules & Regulation. TABLE TENNIS Introduction of Table Tennis. Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. AEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 		
 FABLE TENNIS Introduction of Table Tennis. Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-12 Parade practice. TAEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 	•	
 Introduction of Table Tennis. Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). ICC FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. TAEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc.	•	0
 Basic Stance and Grip (Shake hand & Pen hold). Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. TAEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc.	TABLE	
 Service Basic. Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). ICC FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. TAEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 		
 Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). ICC FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. TAEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 	•	
 Block, Smash. Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). ICC FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. AEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 	•	
 Block, Smash. Rules and their interpretations. Table Tennis Match (Singles & Doubles). FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. YAEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc.	•	
 Table Tennis Match (Singles & Doubles). FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. TAEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc.	•	Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick, Block, Smash.
 FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. CEEXWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc.	٠	Rules and their interpretations.
 FD-1 General Introduction and words of command. FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. TAEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc.	٠	Table Tennis Match (Singles & Doubles).
 FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. TAEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc.	NCC	
 halt. FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. TAEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc.	٠	FD-1 General Introduction and words of command.
 March and Dressing. FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. TAEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc.	•	FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the halt.
 FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out. FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. TAEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc.	•	FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order March and Dressing.
 FD-5 Marching, Length of pace and Time of Marching in quick time and Halt, Slow March and Halt. FD-7 Turning on the March and Wheeling. FD-12 Parade practice. TAEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 	٠	0
 FD-7 Turning on the March and Wheeling. FD-12 Parade practice. TAEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc.	•	FD-5 Marching, Length of pace and Time of Marching in quick time and Halt,
 FD-12 Parade practice. TAEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 	•	
 AEKWONDO Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 		
 Introduction about Taekwondo- Meaning of Taekwondo, Korean language of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 		·
 of dress, Fighting area, Punch, Block, Kicks etc. Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 		
 Stance- Ready stance, Walking stance, Fighting stance, Front stance, Back stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 	-	
 stance, Cat stance etc. Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc. 	•	
• Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With stance etc. Blocks- Upper blocks, Middle block, Side block, Suto etc.	•	
	•	Punch Technique- Front fist punch, Rear fist punch, Double fist punch, With
	•	Foot Technique (Balgisul)- Standing kick (Saseochagi), Front kick (Abchagi),

Doliyo (Chagi), Abdalchagi (Butterfly kick), Back kick etc.

NSS

- Swachha Bharat Mission
- Free Medical Camp
- Sanitation drive in and around the campus.
- Unnat Bharat Abhiyaan
- MatribhashaSaptah celebration

Mapping of CO (Course outcome) and PO (Programme Outcome)

r													
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	-	-	-	-	-	2	-	-	3	-	-	-
	CO2	-	-	-	-	-	-	-	2	-	-	-	-
XXS51	CO3	-	-	-	-	-	-	1	-	-	-	-	3
	CO4	-	-	-	-	-	-	-	-	2	2	-	-
	CO5	-	-	-	-	-	3	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

SECOND S	SEMESTER

SI. No	Code	Subject	L	т	S	С	н
1	MAC02	Mathematics - II	3	1	0	4.0	4
2	CSC01	Introduction to Computing	2	1	0	3.0	3
3	ECC01	Basic Electronics	2	1	0	3.0	3
4	EEC01	Electrical Technology	2	1	0	3.0	3
5	BTC01	Life Science	2	0	0	2.0	2
6	XXC01	The Constitution of India and Civic Norms	1	0	0	1.0	1
7	XES52	Graphical Analysis using CAD	0	0	2	1.0	2
8	CSS51	Computing Laboratory	0	0	2	1.0	2
9	ECS51	Basic Electronics Laboratory	0	0	2	1.0	2
10	EES51	Electrical Technology Laboratory	0	0	2	1.0	2
11	XXS52	Co-curricular Activities - II	0	0	2	1.0	2
		TOTAL	12	4	10	21.0	26

Course	Title of the course	Department of I Program			of contact ho	ours	Credit			
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
MAC 02	MATHEMATICS - II	PCR	3	1	0	4	4			
Р	re-requisites	Course Assessi and end assess		•	nuous (CT),	mid-term	n (MT)			
Basic co	ncepts of set theory,	CT+MT+EA		1						
differer	ntial equations, and probability.									
Course	CO1: Develop	the concept of k	basic linea	r algebra a	nd matrix e	quations	so as to			
 Outcomes apply mathematical methods involving arithmetic, algebra, geometry to solv problems. CO2: To acquire the basic concepts required to understand, construct, solv and interpret differential equations. CO3: Develop the concepts of Laplace transformation & Fourier transformation with its property to solve ordinary differential equations with given boundary differential equations. 						t, solve rmatior				
		 conditions which are helpful in all engineering & research work. CO4: To grasp the basic concepts of probability theory. 								
Topics	Elementary algebra	-		-	-	integral o	domain			
Covered	and field.	(5)	1,	0 1,	<i>o, o,</i>	0				
	Linear Algebra: Ve	Linear Algebra: Vector space, Subspaces, Linear dependence and independence of								
	vectors, Linear spa	in, Basis and d	imension	of a vecto	or space. Ra	ank of a	matrix			
	Elementary transfe				•					
	equations, Eigen	values and	Eigen v	vectors, (Cayley-Ham	ilton Tł	neorem			
	Diagonalization of n		(1	- \						

	Ordinary Differential Equations: Existence and uniqueness of solutions of ODE								
	(Statement Only), Equations of first order but higher degree, Clairaut's equation,								
	Second order differential equations, Linear dependence of solutions,								
	Wronskian determinant, Method of variation of parameters, Solution of								
	simultaneous equations. (12)								
	Fourier series: Basic properties, Dirichlet conditions, Sine series, Cosine series,								
	Convergence. (4)								
	Laplace and Fourier Transforms: Laplace transforms, Inverse Laplace transforms,								
	Convolution theorem, Applications to Ordinary differential equations. Fourier transforms, Inverse Fourier transform, Fourier sine and cosine transforms and their inversion, Properties of Fourier transforms, Convolution.								
	(10)								
	Probability: Historical development of the subject and basic concepts, Axiomatic definition of probability, Examples to calculate probability, Random numbers.								
	Random variables and probability distributions, Binomial distribution, Normal								
	distribution. (10)								
Text Books,	Text Books:								
and/or	1. E. Kreyszig, Advanced Engineering Mathematics: 10 th ed, Wiley India Ed. (2010).								
reference	2. Gilbert Strang, Linear algebra and its applications (4th Ed), Thomson (2006).								
material	3. Shepley L. Ross, Differential Equations, 3 rd Edition, Wiley Student Ed (2017).								
	Reference Books:								
	1. S. Kumaresan, Linear algebra - A Geometric approach, PHI (2000).								
	2. C. Grinstead, J. L. Snell, Introduction to Probability, American Math. Society.								

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	3	2	1	2	-	2	-	-	-	1	2
MAC02	CO2	3	3	2	2	2	-	2	-	-	1	-	2
WACUZ	CO3	3	3	2	2	3	1	1	-	1	1	1	2
	CO4	3	2	1	3	2	1	1	1	1	-	-	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Tit	le of the course	Program Core	Tota	l Number o	of contact ho	ours	Credit		
Code			(PCR) /	Lecture	Tutorial	Practical	Total			
			Electives	(L)	(T)	(P)	Hours			
			(PEL)							
CSC01		ITRODUCTION	PCR	2	1	0	3	3		
Р	re-re	quisites		Course Assessment methods (Continuous (CT), mid-term (MT) and end assessment (EA))						
Basic know	Basic knowledge of computer.			CT+MT+EA						
Course	e CO1: Recognize the changes in hardware and software technologies with resp					spect to				
Outcom	es	the evolution	the evolution of computers and describe the function of system software's							

24 | Page

[
	(operating Systems) and application software's, languages, number system, logic gates.
	CO2: Illustrate the flowchart and inscribe an algorithm for a given problem Inscribe C programs using operators.
	CO3: Develop conditional and iterative statements to write C programs.
	CO4: Exercise user defined functions to solve real time problems
	CO5: Inscribe C programs that use Pointers to access arrays, strings and functions.
	CO6: Exercise user defined data types including structures and unions to solve problems.
Topics	Fundamentals of Computer: History of Computer, Generation of Computer,
Covered	Classification of Computers 2L Basic Anatomy of Computer System, Primary &
	Secondary Memory, Processing Unit, Input & Output devices. [2]
	Languages: Assembly language, high level language, compiler, and assembler (basic
	concepts) [1]
	Binary & Allied number systems representation of signed and unsigned numbers.
	BCD, ASII. Binary Arithmetic & logic gates. [2]
	Basic concepts of operating systems like MS DOS, MS WINDOW, UNIX, Algorithm &
	flow chart. [1]
	C Fundamentals: The C character set identifiers and keywords, data type & sizes,
	variable names, declaration, statements. [2]
	Operators & Expressions: Arithmetic operators, relational and logical operators,
	type, conversion, increment and decrement operators, bit wise operators,
	assignment operators and expressions, precedence, and order of evaluation. Input
	and Output: Standard input and output, formatted output printf, formatted input
	scanf. [8]
	Flow of Control: Statement and blocks, if - else, switch, loops - while, for do while,
	break and continue, go to and labels. [5]
	Fundamentals and Program Structures: Basic of functions, function types, functions
	returning values, functions not returning values, auto, external, static and register
	Variables, scope rules, recursion, function prototypes, C pre-processor, command
	line arguments. [5]
	Arrays and Pointers: One-dimensional, two-dimensional arrays, pointers and
	functions, multi-dimensional arrays. [10]
	Structures Union and File: Structure, union, structures and functions, arrays of
	structures, file read, file write.[5]
Text Books,	Text Books:
and/or	1. Let us C by Kanetkar
reference	2. C Programming by Gottfried
material	3. Introduction to Computing by Balaguruswamy
	4. The C-programming language by Dennis Ritchie
	Reference Books:
	1. Computer fundamental and programming in C by P Dey and M. Ghosh
	2. Computer fundamental and programming in C by Reema Thareja
	3. programming with C by Schaum Series

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	1	2	1	-	-	-	-	-	-	-	-
	CO2	-	2	1	2	1	-	-	-	-	-	-	-
CC C01	CO3	1	2	-	-	3	-	-	-	-	-	-	-
CSC01	CO4	1	3	1	2	3	-	-	-	-	-	-	1
	CO5	2	1	-	-	3	-	-	-	-	-	-	-
	CO6	2	-	3	-	1	-	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program Core	To	tal Numbe	r of contact	hours	Credit				
Code	course	(PCR) /	Lectur	Tutoria	Practical	Total					
		Electives (PEL)	e (L)	I (T)	(P)	Hours					
ECC01	Basic	PCR	2	1	0	3	3				
	Electronics										
	Pre-requisi	tes	Course Assessment methods (Continuous (CT), mid-								
				term (MT) and end as	ssessment (EA))				
(10+2)	level mathemat	ics and physics			CT+MT+	EA					
Course	e • CO1:	Knowledge of Sem	iconduct	or physics	and devices						
Outcom	es • CO2:	Have an in depth	understa	nding of ba	asic electror	nic circuit, c	onstruction,				
	opera	ation.									
	• CO3:	Ability to make pr	oper des	igns using	these circui	t elements	for different				
	appli	cations.									
	• CO4:	Learn to analyze t	he circuit	s and to fi	nd out rela	tion betwee	en input and				
	outpu	output.									
Topics	s 1. Se	miconductors									
Covere		ncept of band fo									
		of Fermi level, in	variance	of Fermi	level in a	system un	der thermal				
	equilibriu		r, conductor and semiconductor using band diagram								
					niconductor	using band	diagram				
		alline structure of	semicono	ductor							
		valent bond neration of holes a	سر ما ما م								
		ect of temperature									
		sic semiconductor	Onsenn	LUNUULLUI							
		g and Extrinsic sen	niconduct	or							
		pe semiconductor									
		1.5.2 p-Type semiconductor and band diagram									
		s-action law of ser		-							
		luctivity of semicor			nathematica	al expression	า)				
		er transport pheno	•	-		•					
		odes		. ,							
	2.1. Cons	truction									

2.2. Unbiased diode; Depletion layer and Barrier potential; junction capacitance (expression only)

2.3. Principle of operation with forward biasing and reverse biasing

2.4. Characteristics

2.5 Diode's three models/equivalent circuits.(02 hrs.)

3. Diode Circuits

3.1 Diode rectifier

3.1.1 Half wave rectifier

3.1.2 Full wave rectifier:centre tap and bridge rectifier

3.1.3 Capacitive filter and DC power supply (Numerical problems)

3.2 Special Diodes

3.2.1 Zenerdiode: Avalanche breakdown and Zener breakdown and characteristics.

3.2.2 Zener diode as a voltage regulator

3.2.3 Displaydevices: LED and LCD. (03 hrs.)

4. Bipolar Junction Transistor (BJT)

4.1 n-p-n and p-n-p transistor and their constructions

4.2 Principle of operation

4.3 Transistor configuration: common base, common emitter, and common collector

4.4 Transistor characteristics: input and output characteristics of CB and CE configurations

4.5 DC load line: quiescent (Q) point; cut-off, active, and saturation region

4.6 Amplifier: Principle of operation

4.7 Transistor as a switch. (04 hrs.)

5. Transistor Biasing

5.1 Need of biasing

5.2 Methods of biasing: base resistor or fixed bias, emitter feedback, voltage divider biasing

(02 hrs.)

5.3 Stability of Q-point (qualitative discussions)

5.4 (Numerical problems).

6.Single Stage Amplifier:

classification of amplifiers (voltage amplifier, current amplifier, power amplifier etc.) Class-A CE Amplifier with coupling and bypass capacitors, Qualitative discussions of magnitude characteristics of frequency response (graph only) (02 hrs.)

7.Feedback Amplifier

7.1 Positive and negative feedback

7.2 Deduction of gain with negative feedback, explanation of stability of gain with negative feedback, other effects of negative feedback (no deduction), numerical problems. (03 hrs.)

8. Other Semiconductor Devices

8.1 JFET: Construction, principle of operation, characteristics

- 8.2 MOSFET: Construction, principle of operation, characteristics
- 8.3 Power Electronic Device-SCR: Brief discussions. (02 hrs.)

9. Operational Amplifier

- 9.1 Characteristics of ideal operational amplifier
- 9.2 Pin Configuration of IC 741,

	9.3 Analysis of simple operational amplifier circuits: concept of virtual ground;
	noninverting amplifier and inverting amplifier.
	9.4 Applications: voltage follower, summer, differentiator, integrator, and
	comparator (04 hrs)
	10.Oscillator
	10.1 Positive feedback and condition of oscillation
	10.2 R-C phase-shift oscillator, Wien bridge oscillator.(02 hrs.)
	11.Boolean Algebra
	11.1 Boolean algebra, De Morgan's theorem, simplification of Boolean
	expressions
	11.2 Number system, range extension of numbers, overflow
	11.3 Different codes: gray code, ASCII code and BCD codes and them
	Applications. (01 hrs.)
	12. Logic Gates
	12.1 NOT, OR, AND, NOR, NAND, EX-OR, EX-NOR gates
	12.2 Simplification of logic functions
	12.3 Realizations of logic expressions using logic gates. (01 hrs.)
	13. CRO and its applications and other test and measurement instruments. (01
	hrs.)
Text Books,	Text Books:
and/or	1. Introduction Electronic Devices & Circuit Theory,11/e, 2012, Pearson:
reference	Boylestad & Nashelsky
material	2. Electronic Principles, by Albert Paul MalvinoDr. and David J. Bates, 7/e.
	Reference Books:
	1. Integrated Electronics by Millman, Halkias and Parikh, 2/e, McGrawHill.
	2. ELECTRONICS Fundamentals and Applications by Chattopadhyay and
	Rakshit,15/e, New Age Publishers.
	3. The Art of Electronics by Paul Horowitz, Winfield Hill, 2/e, Cambridge
	University.
	4. Electronics - Circuits and Systems by Owen Bishop, 4/e, Elsevier.
	5. Electronics Fundamentals: Circuits, Devices & Applications by Thomas L. Floyd
	& David M. Buchla, 8/e, Pearson Education.

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	3	2	2	-	1	-	-	-	-	-	1
FCC01	CO2	3	2	1	2	2	1	-	2	2	-	-	1
ECC01	CO3	3	2	2	2	3	-	-	-	2	-	-	1
	CO4	3	3	2	2	-	-	-	-	2	_	_	1

Correlation levels 1, 2 or 3 as defined below:

	•	partment of Electri		ening			r				
Course	Title of the	Program Core	Tota	l Number	of contact h	ours	Credit				
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives (PEL)	(L)	(T)	(P)	Hours					
EEC01	ELECTRICAL	PCR	3	0	0	3	3				
	TECHNOLOGY										
Pre-r	requisites	Course Assessn		•	• •	Mid Ter	m (MT)				
		and end assessment (EA))									
Course	NIL	cessful completior		CT+MT+ E							
Outcomes	 analysis c CO2: dev the worki CO3: lear such circu CO4: intro 	n the fundamenta of electrical networvelop an idea on N ing principles of so rn about single pl uits based on these oduce the basic co alyze the transie	rk based or Aagnetic ci ome fundar nase and p e concepts ncept of si	n these co ircuits, Ele mental ele poly-phase ingle-phas	ncepts. ctromagnet ctrical equi AC circuit e transform	tism and pment's s and ar ier.	learnir nalysis (
Topics Covered	Fundamentals and Dependent Network theo Theorem, Maxi Magnetic circu transformer an coupled circuits Transients with Generation of R.M.S. value, P quantity, Beha circuits. AC Ne theorem, maxi sources. (10) Single-Phase T tests (6) Poly-phase sys voltages, Volta phase balance circuits. (5)	Single-Phase Transformer, equivalent circuits, open circuit and short circutests (6) Poly-phase system, Advantages of 3-phase system, Generation of 3-pha voltages, Voltage, current and power in a star and delta connected systems, phase balanced and unbalanced circuits, Power measurement in 3-pha					orton's uction, ysis of (8) ge and rnating I R-L-C orton's vith AC circuit circuit				
Textbooks/Refere nce materialTextbooks: 1. Electrical & Electronic Technology by Hughes, Pearson Education India Reference Books:1. Advanced Electrical Technology by H. Cotton, Reem Publication Pvt. Ltd2. Electrical Engineering fundamentals by Vincent Deltoro, Pearson Edu India											

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
C01	3	3	3	3	3	1	1	1	1	1	1	1
CO2	3	3	3	3	2	1	2	1	1	1	1	1
CO3	3	3	3	3	3	2	2	1	1	1	1	1
CO4	3	3	3	3	3	2	2	1	1	1	1	1
CO5	3	3	2	2	2	1	1	1	1	1	1	1

Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

2: Moderate (Medium)

1: Slight (Low)

3: Substantial (High)

Course	Title o	f the	Program Core	Tota	l Number c	of contact ho	ours	Credi			
Code	cour	rse	(PCR) /	Lecture	Tutorial	Practical	Total				
			Electives (PEL)	(L)	(T)	(P)	Hours				
BTC01	LIFE SC	IENCE	PCR	2	0	0	2	2			
Pr	e-requisites	5	Course Assessment methods (Continuous (CT), mid-term (MT)								
			and end assessment (EA))								
			CT+MT+EA								
Course	e CO1: I	Basic und	erstanding of bas	ic cellular	organizatio	on of organ	isms and	cellula			
Outcom	es comm	unication	s, structure and	l functions	s of the	macromole	cules an	d the			
	biosyn	nthesis an	d catabolism.								
	CO2:	To give	an understanding	of the k	ey feature	s of the st	ructure,	growt			
			behavior of bacte		-						
	CO3: 1	Fo introdu	uce molecular bio	logy to und	derstand bi	ological pro	cesses in	variou			
		ations.									
		•	e a foundation in		• 1		overviev	v of th			
			ween the immune		•						
		CO5: To provide knowledge about biological and biochemical processes						es tha			
		-	ering expertise to a								
		=	de knowledge ak		-	biochemica	l process	es tha			
			ering expertise to a	solve them							
Topics		Biology									
Covere	d a)		ction to life science	e: prokaryo	otes & euka	aryotes					
	1.)		on; Difference		6	(11					
			ction to cells - Defi								
	-		organelles - All or	garielles ar	ia function	sinonei					
	u)		communications	aling, and	ocrino nor	acrina ciana	ling: con	conte d			
		mitrouud	ction to basic sign		Johne, par	-	-	•			
		roconto	r ligand on off cu	uitch hu nh	acabaaylat	ion/donhoc	nhonulatiu	nn -			
	2 Bio	•	r, ligand, on-off sv	vitch by ph	osphorylat	ion/dephos	phorylatio	on			
		chemistry	v (4)								
		chemistry Biologic	(4) al function of car								
	a)	chemistry Biologic functior	(4) al function of car	bohydrate	and lipid -	Introductio	on, struct	ure an			
		chemistry Biologic functior Biologic	(4) al function of car	bohydrate eic acids a	and lipid - nd protein	Introductio	on, struct and funct	ure an ion			

	TCA; overall degradation of proteins and lipids
	d) Biosynthesis of Macromolecules
	Generation of ATP (ETS), Generation of Glucose (Photosynthesis)
	3. Microbiology (5)
	a) Types of microorganisms and their general features - Bacteria, Yeast, Fungi,
	Virus, Protozoa- general introduction with practical significance and
	diseases
	b) Microbial cell organization - Internal and External features of cell- bacterial
	cell wall, viral capsule, pilus etc,
	c) Microbial nutritional requirements and growth - Different Sources of
	energy; growth curve
	d) Basic microbial metabolism - Fermentation, Respiration, Sulfur, N ₂ cycle
	4. Immunology (5)
	a) Basic concept of innate and adaptive immunity - Immunity-innate and
	adaptive, differences, components of the immune system
	b) Antigen and antibody interaction - Antigen and antibody, immunogen,
	factors affecting immunogenicity, basic antigen-antibody mediated assays,
	introduction to monoclonal antibody
	c) Functions of B cell - B cell, antibody production, memory generation and
	principle of vaccination
	d) Role of T cell in cell-mediated immunity - Th and Tc, functions of the T cell
	with respect to different pathogen and cancer cell
	5. Molecular Biology (5)
	a) Prokaryotic Genomes (Genome organization & structure) - Nucleoid,
	circular or linear
	b) Eukaryotic Genomes (Genome organization & structure) - Intron, exon,
	packaging, chromatin
	c) Central Dogma (Replication, Transcription and Translation)
	d) Applications of Molecular Biology (Diagnostics, DNA-fingerprinting,
	Recombinant products etc.) - Introduction to Recombinant DNA,
	fingerprinting, cloning
	6. Bioprocess Development (5)
	a) Microbial growth kinetics - Batch, fed-batch and continuous systems,
	Monod Equation
	b) Enzyme kinetics, kinetics of enzyme inhibition and deactivation
	Definition of enzymes, activation energy, Concepts of Km, Vmax, Ki
	c) Microbial sterilization techniques and kinetics
	, Introduction to sterilization, dry and moist sterilization
	d) Thermodynamics of biological system - Concepts of Enthalpy, Entropy,
	favorable reactions, exergonic and endergonic reactions
	e) Material and energy balance for biological reactions - Stoichiometry
Text Books,	1. Biotechnology 01 Edition, authored by U. Satyanarayana, BOOKS & ALLIED (P)
and/or	LTD.
reference	2. Biochemistry by Lehninger. McMillan publishers
material	3. Microbiology by Pelczar, Chan and Krieg, Tata McGraw Hill
	4. Brown, T.A., Genetics a Molecular Approach, 4th Ed. Chapman and Hall, 1992
	5. Kuby J, Thomas J. Kindt, Barbara, A. Osborne Immunology, 6th Edition,
L	

Freeman, 2002.
6. Bioprocess Engineering: Basic Concepts (2nd Ed), Shuler and Kargi, PHI.

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	1	1	-	1	-	-	-	-	-	-	-
	CO2	2	1	1	-	1	-	1	-	-	-	-	-
BTC01	CO3	2	1	1	-	1	-	-	-	-	-	-	-
	CO4	2	1	1	-	1	-	-	1	-	-	-	1
	CO5	2	1	1	-	1	1	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Tit	le of the course	Program Core	Tota	l Number o	of contact ho	ours	Cred		
Code			(PCR) /	Lecture	Tutorial	Practical	Total			
			Electives (PEL)	(L)	(T)	(P)	Hours			
	Tł	ne Constitution								
XXC01	of	India and Civic	PCR	1	0	0	1	1		
		Norms								
Pi	re-re	quisites	Course Assess				mid-term	n (MT)		
				and er	nd assessm	ent (EA))				
	٦	NIL			CT+MT+E	A				
Course	2	CO1: Elementa	ry understanding	of the evol	ution of his	storical even	its that le	d to		
Outcom	es	the making o	the making of the Indian constitution, the philosophical values, basic structure							
		and fundame	and fundamental concerns enshrined in the Constitution of India.							
		CO2: Aware of	CO2: Aware of the fundamental rights and duties as a citizen of the country.							
		CO3: Enable t	CO3: Enable to know the civic norms to be followed according to the Inc							
		constitution								
Topics			I background of th	-						
Covere	d		e and the Philosop			•				
			erview of Salient F			•	Hour)			
			II: Territoriality ar)				
			undamental Right	•	•	_				
			Directive Principles			ur)				
			Fundamental Dut	•	•					
			overnment: Presid	ent, Prime	Minister a	nd Council c	of Ministe	rs (2		
		Hours)			6 . 1 -		,			
			 9. Parliament: Council of States and House of the People (1 Hour) 10. State Government: Governor, Chief Mister and Council of Ministers (1 Hour) 							
							•			
		•	gislature: Legislativ		-	•	nciis (1 H	our)		
			diciary: Supreme		Hign Courts	s (1 Hour)				
			tate Relations (1 H		nd Constitu	ition Amore	dmoret / 1	استعال		
		14. Reservat	ion Policy, Langua	ве копсу а	na Constiti	ation Ameno	iment (1	Hour)		

Text Books,	Primary Readings:
and/or	1) P. M. Bakshi, The Constitution of India, 18 th ed. (2022)
reference	2) Durga Das Basu, Introduction to the Constitution of India, 25 th ed. (2021)
material	3) J.C. Johari, Indian Government and Politics, Vol. II, (2012)
	Secondary Readings: Granville Austin, The Indian Constitution: Cornerstone of a
	Nation (1966; paperback ed. 1999); Granville Austin, Working a Democratic
	Constitution: The Indian Experience (1999; paperback ed. 2003).

Course	Title of the course	Program Core	Tota	l Number o	of contact ho	ours	Credit				
Code		(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives (PEL)	(L)	(T)	(P)	Hours					
XES52	GRAPHICAL										
AE352	ANALYSIS USING	PCR	0	0	2	2	1				
	CAD										
Pr	e-requisites	Course Ass	sessment n	nethods (Co	ontinuous ((CT) and ei	nd				
			as	sessment (EA))						
	NIL			CT+EA							
Course	•CO1: Introdu	ction to graphical s	olution of	mechanics	problems						
Outcome	es •CO2: Knowle	edge on graphica	dge on graphical solution methods for solving equilibrium in								
	coplanar forc	system									
	•CO3: Introdu	cing Maxwell diagram and solution of plane trusses by graphical									
	method										
	•CO4: Determ	ination of centroid	of plane fi	gures by gi	raphical met	thod					
	CO5: Exposur	e to AutoCAD soft	ware for co	omputer ai	ded graphic	al solutio	n				
Topics	Graphical a	nalysis of problems	s on statics	. [14]							
Covered	d • Graphical so	olution of engineer	ing proble	ms using C	AD (with the	e help of					
	"AutoCAD")	"AutoCAD") [14]									
Text and/	or 1) Engineering	g Drawing and Grap	ohics – K Ve	enugopal							
referenc	e 2) AutoCAD —	- George Omura									
materia	I 3) Practical Ge	eometry and Engin	eering Gra	phics – W A	Abbott						

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	-	-	-	-	-	-	-	-	-	-	-
	CO2	1	2	-	-	-	-	-	-	-	-	-	-
XES52	CO3	2	1	-	-	-	-	-	-	-	-	-	-
	CO4	2	1	-	-	-	-	-	-	-	-	-	-
	CO5	1	-	-	-	2	-	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program Core	Tota	l Number c	of contact ho	ours	Credit					
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives (PEL)	(L)	(T)	(P)	Hours						
CSS51	COMPUTING LABORATORY	PCR	0	0	2	2	1					
Pr	e-requisites	Course As	sessment n	nethods (Co	ontinuous (O	CT) and ei	nd					
		assessment (EA))										
	NIL			CT+EA								
Course	•CO1: To und	erstand the prind	ciple of op	erators, lo	ops, branc	hing stat	ements					
Outcome	es function, rec	ursion, arrays, poir	nter, param	neter passir	ng technique	es						
	• CO2: To deta	il out the operatio	ns of string	S								
	• CO3: To unde	rstand structure, union										
	• CO4: Applica	tion of C-programr	ning to solv	ve various i	real time pro	oblems						
Topics	List of Experime	ents:										
Covered	1 1. Assignments	on expression eva	luation									
	2. Assignments	2. Assignments on conditional branching, iterations, pattern matching										
	3. Assignments	on function, recursion										
	4. Assignments	on arrays, pointers, parameter passing										
	5. Assignments	on string using array and pointers										
		on structures, unio	on									
Text Book												
and/or	,											
referenc		ning by Gottfried										
materia		n to Computing by	-	•								
		amming language	by Dennis	Ritchie								
	Reference Bool	-	· · ·									
		ndamental and pro	0 0	•	•							
	•	2. Computer fundamental and programming in C by Reema Thareja										
	3. programming	g with C by Schaum	i Series									

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	-	1	-	-	-	-	-	-	-	-	-
CSS51	CO2	-	2	1	3	-	-	-	-	-	-	-	-
C2221	CO3	-	1	-	2	1	-	-	-	-	-	-	-
	CO4	-	-	3	2	-	-	1	-	-	_	2	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program Core	Tota	l Number c	of contact ho	ours	Credit						
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total							
		Electives (PEL)	(L)	(T)	(P)	Hours							
ECS 51	Basic electronics	PCR	0	0	2	2	1						
	Lab												
Pr	e-requisites	Course Assessment methods (Continuous (CT) and end											
		assessment (EA))											
	NIL			CT+EA									
Course													
Outcom													
		letermine IV chara	acteristics	of these C	ircuit eleme	ents for c	lifferent						
	applicatio												
		n to analyze the o	circuits and	d observe a	and relate i	nput and	output						
	signals.			<u> </u>									
Labs		your laboratory: ٦	=	and unde	rstand the	use of c	lifferent						
Conducte		electronic and electrical instruments.To identify and understand name and related terms of various electronics											
		-											
	•	its used in elect its, fid their values					nais oi						
	•				-		noscuro						
		e of oscilloscope and function generator: Use of oscilloscope to measure											
	-		quency/time and Lissajous figures of displayed waveforms. If wave and Full-wave (Bridge) rectifier with and without capacitor										
	filter circu			Sel rectifie		vicino de c	apacitoi						
		n of basic logic gat	es: Truth ta	able verific	ation of OR	AND. NO	DT. NOT						
		logic gates from T			,		- , -						
	gate												
	8. Zenner dio	ode as voltage regu	lator										
	9. To study c	lipping and Clampi	ng circuits										
	10. To study d	ifferent biasing cirt	tis.										
	11. Study of C	E amplifier and obs	serve its fre	equency re	sponse.								
Text Boo	ks, <u>Text Books</u> :												
and/or	•	s Manual for use v		•	• •	-							
referenc	0	& the Trades) by A	lbert Paul I	MalvinoDr.	, David J. Ba	tes, et al.							
materia													
		1. The Art of Electronics 3e, by Paul Horowitz, Winfield Hill											
	2. Electro	ronic Principles, by Albert Paul MalvinoDr. and David J. Bates											

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	3	2	1	2	2	1	-	-	2	-	-	-
ECS51	CO2	3	2	2	2	3	-	-	-	2	-	-	-
	CO3	3	3	2	2	-	-	-	-	2	-	-	-

Correlation levels 1, 2 or 3 as defined below:

		D	epartment of Elec	trical Engir	neering							
Course	-	Title of the	Program Core	Tota	l Number o	of contact he	ours	Credit				
Code		course	(PCR) /	Lecture	Tutorial	Practical	Total					
			Electives (PEL)	(L)	(T)	(P)	Hours					
EES51	ELI	ECTRICAL										
	TEC	HNOLOGY	PCR	0	0	2	2	1				
	LAB	BORATORY										
Pre	e-requ	uisites	Course Assessment methods (Continuous (CT) and end									
				as	sessment (EA))						
	Non	ne			CT+EA							
Course	9	•CO1: unders	tand the principle	of superpo	sition.							
Outcom	es	•CO2: underst	tand the principle	of maximu	m power t	ransfer						
		•CO3: underst	tand the character	istics of CF	L, incande	scent Lamp,	carbon la	amp.				
		•CO4: underst	and the calibration of energy meter.									
		•CO5: underst	and open circuit and short circuit test of single-phase transformer.									
		•CO6: analyze	e RLC series and parallel circuits									
		•CO7: unders	tand three phase o	connection	s.							
		•C08: underst	and determination	n of B-H cu	rve							
Topics		List of Experin	nents:									
Covere	d	1.To verify Su	perposition and Thevenin's Theorem.									
		•	orton and Maximu									
			cics of fluorescent	and compa	act fluoresc	ent lamp						
			on energy meter									
		•	the open circuit ar									
		,	e balanced three p				nnected	load				
			cics of different typ		ndescent la	imps						
		•	ies and parallel R-									
			ion of B-H Curve fo	or magneti	c material							
Textbool		Textbooks:										
•	and/or 1. Handbook of Laboratory Experiments in Electronics and Electrical Engir											
referenc		by A M Zungeru, J M Chuma, H U Ezea										
material 2. Laboratory Courses in Electrical Engineering (5 th Edition) by S. G. Tarnel K. Kharbanda, S. B. Bodhke, S. D. Naik, D. J. Dahigaonkar (S. Chand Publications)								kar, P.				

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	
COs													
CO1	3	3	3	3	3	1	1	1	2	2	2	3	
CO2	3	3	3	3	3	1	1	1	2	2	2	3	
CO3	3	3	3	3	3	1	1	1	2	2	2	3	
CO4	3	3	3	3	3	1	1	1	2	2	2	3	
CO5	3	3	3	3	3	1	1	1	2	2	2	3	
CO6	3	3	3	3	3	1	1	1	2	2	2	3	
CO7	3	3	3	3	3	1	1	1	2	2	2	3	
CO8	3	3	3	3	3	1	1	1	2	2	2	3	

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

	Title of the	Program Core (PCR)	Tota	l Number o	f contact ho	urs					
Course Code	course	/ Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P) [#]	Total Hours	Credit				
XXS-52	Co-curricular Activities	PCR	0	0	2	2	1				
Pre-requisites	Course asses	ssment methods: (Cont	tinuous eva	luation((CE) and end as	sessment	(EA)				
NIL			CE + EA								
Course Outcomes	 CO2: Et the mor CO3: Se indepen changes 	independent and life-long learning in the broadest context socio-technological changes.CO4: Personality development through community engagement									
	 CO5: Exp 	posure to social service									
Topics Covered	YOGA	Posture/Asanas- Gom	Lhai	C							
	 Mudra- Laying Posture, Halasan Posture, Meditat Standing (Triangle Vrikshas) Pranaya Bandha- Kriya- Ka 	asana, ArdhaMats ottanasana, Shashanka Vayu, Shunya, Prithvi, V Posture/Asanas-Shal), ArdhaHalasana (Ha a (Plough Pose), <u>M</u>), Naukasana (Boat Pos ion- 'Om'meditation, K g Posture/Asanas-Arc e Posture), Parshwal sana (Tree Pose), Garuc ma-Nadisodha, Shitali, Uddiyana Bandha, Mu apalabhati, Trataka, Na	asana, Bhac Varuna, Apa abhasana If Plough atsyasana, ture), Shava undalini or dhaChakrsa (onasana lasana (Eag , Ujjayi, Bha ila Bandha,	Irasana. ana, Hridaya (Locust Po Pose), Sarv SuptaVajr asana (Rela chakra Me na (Half V (Side Angl le Pose). astrika, Bhra	a, Bhairav m osture), Dh vangasana (x vasana, Cha xing Pose), N ditation, Ma Vheel Postu e Posture), amari.	anurasan Shoulder krasana Aakaraasa ntramedi re), Trik Padaha	Stand) (Whee ana. tation. onasana stasana				
	 ATHLETICS Long Jump- Hitch kick, Paddling, Approach run, Take off, Velocity, Techniques, Flight & Landing Discus throw, Javelin throw and Shot-put- Basic skill & Technique, Grip, Stance, Release & Follow through. Field events marking. General Rules of Track & Field Events. 										
	 BASKETBALL Shooting- Layup shot, Set shot, Hook shot, Jump shot. Free throw. Rebounding- Defensive rebound, Offensive rebound. Individual Defensive- Guarding the man without ball and with ball. 										

•	Pivoting.
---	-----------

- Rules of Basketball.
- Basketball game.

VOLLEYBALL

- Spike- Straight spike, Body turn spike, Tip spike, Back attack, Slide spike, Wipe out spike.
- Block- Single block, Double block, Triple block, Group block.
- Field Defense- Dig pass, Double pass, Roll pass.
- Rules and their interpretation.

FOOTBALL

- Dribbling- Square pass, Parallel pass, Forward pass.
- Heading (Standing & Running)- Fore head, Side fore head, Drop heading, Body covering during heading.
- Kicking- Full volley, Half volley, Drop kick, Back volley, Side volley, Chiping (lobe).
- Tackling: Covering the angle, Chessing time sliding chese, Heading time shoulder tackle etc.
- Feinting- Body movement to misbalance the opponent and find space to go with ball.
- Rules of Football.

CRICKET

- Batting straight drive.
- Batting pull shot.
- Batting hook shot.
- Bowling good length, In swing.
- Bowling out swing, Leg break, Goggle.
- Fielding drill.
- Catching (Long & Slip).
- Wicket keeping technique.
- Rules & Regulation.

BADMINTON

- Net play- Tumbling net shot, Net Kill, and Net Lift.
- Smashing.
- Defensive high clear/Lob.
- Half court toss practice, Cross court toss drop practice, Full court Game practice.
- Player Positioning, Placements.
- Rules & Regulation.
- Doubles & Mixed doubles match practice.

TABLE TENNIS

- Stroke: Backhand- Topspin against push ball, Topspin against deep ball, Topspin against rally ball, Topspin against topspin.
- Stroke: Forehand- Topspin against push ball, Topspin against deep ball, Topspin against rally ball, Topspin against topspin.
- Stroke- Backhand lob with rally, Backhand lob with sidespin, Forehand lob with rally, Forehand lob with sidespin.
- Service: Backhand/Forehand- Push service, Deep push service, Rally service.

CURRICULUM AND SYLLABUS FOR B.TECH. IN MECHANICAL ENGINEERING • Service: Backhand sidespin (Left to right & Right to left). • Service: Forehand- High toss backspin service, High toss sidespin service, High toss reverse spin service. Rules and their interpretations. • Table Tennis Match (Singles & Doubles). NCC • FD-6 Side pace, Pace Forward and to the Rear. • FD-7 Turning on the March and Wheeling. • FD-8 Saluting on the March. • FD-9 Marking time, Forward March and Halt in Quick Time. • FD-10 Changing step. • FD-11 Formation of Squad and Squad Drill. • FD-12 Parade practice. **TAEKWONDO** • Poomsae (Forms)- Jang, Yi Jang. • Self Defense Technique- Self defense from arms, Fist and Punch. • Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring). • Combination Technique- Combined kick and punch. Board Breaking (Kyokpa)- Sheet breaking. • Interpretation Rules above Technique of Taekwondo. NSS • No Smoking Campaign Anti- Terrorism Day Celebration Any other observation/celebration proposed by Ministry/institute Public Speaking • Discussion on Current Affairs Viva voce

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	-	-	-	-	-	2	-	-	3	-	-	-
	CO2	-	-	-	-	-	-	-	2	-	-	-	-
XXS52	CO3	-	-	-	-	-	-	1	-	-	-	-	3
	CO4	-	-	-	-	-	-	-	-	2	2	-	-
	CO5	-	-	-	-	-	3	1	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Cours e	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12
	CO1	3	3	1	2	-	-	-	-	1	-	-	-
MAC0	CO2	3	3	1	2	-	-	-	-	1	-	-	-
1	CO3	3	3	1	2	-	-	-	-	1	-	1	1
	CO4	3	-	-	2	-	2	-	-	1	-	-	-

CO-PO Mapping and Matrix

I	CO1	3	2	1	1	1	_	_	1	_	_	-	1
	CO2	3	2	_	2	_	_	-	-	_	_	_	1
PHC01	CO3	3	2	2	2	1	1	1	1	1	_	1	1
	CO4	3	2	2	2	1	1	1	-	1	_	1	1
	CO1	1	2	-	-	-	-	-	-	-	_	-	-
	CO2	1	_	_	_	_	-	2	-	_	_	_	_
CYC01	CO3	1	2	1	1	1	-		-	_	-	-	-
	CO4	-	1	-	-	2	-	1	-	-	_	-	-
	C01	1	-	-	-	-	-	-	-	-	_	-	1
	CO2	1	1	1	1	-	-	-	-	-	_	-	1
XEC01	CO3	1	1	-	-	-	-	-	-	-	_	_	1
	CO4	1	2	-	-	-	-	-	-	-	-	-	1
	CO5	-	2	2	2	2	1	-	-	-	1	-	1
	CO1	3	-	-	-	-	_	2	-	-	-	-	-
56604	CO2	1	-	-	-	-	-	2	-	-	-	-	-
ESC01	CO3	2	-	-	-	-	-	2	-	-	-	-	-
	CO4	1	-	3	-	-	2	1	-	-	-	-	-
	CO1	1	-	-	-	-	-	-	-	-	-	-	-
XES51	CO2	1	1	-	-	-	-	-	-	-	-	-	-
	CO3	1	-	1	-	-	-	-	-	-	-	-	-
	CO1	-	-	-	-	-	1	-	-	1	3	-	3
HSS51	CO2	-	-	-	-	-	2	-	-	2	3	-	3
	CO1	3	2	1	-	-	-	-	-	2	1	-	1
	CO2	3	2	1	-	-	1	-	-	2	1	-	1
PHS51	CO3	3	1	-	-	-	-	-	-	2	1	-	1
	CO4	3	2	-	1	-	1	1	I	2	1	-	1
	CO5	3	2	1	-	1	1	1	-	2	1	-	1
	CO1	2	1	-	1	-	I	I	I	-	-	-	-
CVCE1	CO2	-	1	-	1	1	2	-	-	-	-	-	-
CYS51	CO3	2	-	-	1	1	-	-	-	-	-	-	-
	CO4	-	1	-	1	1	-	-	-	-	-	-	-
	CO1	2	-	-	-	-	1	-	-	-	1	-	-
WSS51	CO2	1	-	1	-	-	1	-	-	-	1	-	-
VV3331	CO3	1	-	2	-	-	1	-	-	-	1	-	-
	CO4	1	-	-	-	-	2	-	-	-	1	-	-
	CO1	2	3	1	3	-	-	-	-	2	-	-	-
MAC0	CO2	2	3	1	2	-	-	-	-	2	-	-	-
2	CO3	2	2	2	3	2	-	-	-	3	-	1	1
	CO4	2	3	2	3	2	1	1	-	2	-	-	-
	CO1	3	1	2	1	-	-	-	-	-	-	-	-
	CO2	-	2	1	2	1	-	-	-	-	-	-	-
CSC01	CO3	1	2	-	-	3	-	-	-	-	-	-	-
0.001	CO4	1	3	1	2	3	-	-	-	-	-	-	1
	CO5	2	1	-	-	3	-	-	-	-	-	-	-
	CO6	2	-	3	-	1	-	-	-	-	-	-	-

40 | Page

	CO1	-	_	_	_	-	-	-	_	-	_	_	-
	CO2	_	_	_	_	_	_	_	_	_	_	_	_
ECC01	CO3												
	CO4	-	-	-	-	-	-	-	-	_	_	_	_
	CO1	3	1	_	_	2	-	_	_	_	1	_	_
	CO2	2	3	2	_	2	_	_	_	_	-	_	_
EEC01	CO3	2	3	1	-	-	-	-	-	_	1	_	_
11001	CO4	3	1	2	_	1	_	_	_	_	_	_	_
	CO5	3	1	2	_	1	-	_	_	_	_	_	_
	CO1	2	1	1	-	1	-	-	-	-	_	_	_
	CO2	2	1	1	-	1	-	1	-	-	_	_	_
BTC01	CO3	2	1	1	_	1	_	-	_	_	_	_	_
5.001	CO4	2	1	1	-	1	-	-	1	-	_	_	1
	CO5	2	1	1	-	1	1	1	-	_	-	-	-
	CO1	2	_	_	_	-	-	-	_	_	_	_	_
	CO2	1	2	_	_	_	-	_	_	_	_	_	_
XES52	CO3	2	1	-	-	-	-	-	-	_	-	-	-
	CO4	2	1	-	-	-	-	-	-	_	-	-	-
	CO5	1		_	_	2	_	_	-	_	_	_	_
	CO1	3	-	1	_	-	-	-	-	-	_	_	_
	CO2	-	2	1	3	_	_	_	-	_	-	-	-
CSS51	CO3	-	1	-	2	1	-	-	-	-	-	-	-
	CO4	-	-	3	2	-	-	1	-	-	_	2	-
	CO1	3	2	1	2	2	1	-	-	2	_	_	_
ECS51	CO2	3	2	2	2	3	-	-	-	2	_	_	_
	CO3	3	3	2	2	-	-	-	-	2	_	_	_
	CO1	3	-	2	-	3	-	-	-	1	-	-	_
	CO2	3	-	2	-	3	-	-	-	1	-	-	_
	CO3	2	3	2	2	1	-	2	-	1	_	_	_
EES51	CO4	2	3	1	2	2	-	1	-	1	1	-	-
	CO5	2	3	1	2	2	-	-	-	1	-	-	-
	CO6	2	3	2	2	2	-	-	-	1	-	-	-
	CO1	-	-	-	-	-	2	-	-	3	-	-	-
	CO2	-	-	-	-	-	-	-	2	-	-	-	-
XXS51	CO3	-	-	-	-	-	-	1	-	-	-	-	3
	CO4	-	-	-	-	-	-	-	-	2	2	-	-
	CO5	-	-	-	-	-	3	1	-	-	-	-	-
	CO1	-	-	-	-	-	2	-	-	3	-	-	-
	CO2	-	-	-	-	-	-	-	2	-	-	-	-
XXS51	CO3	-	-	-	-	-	-	1	-	-	-	-	3
	CO4	-	-	-	-	-	-	-	-	2	2	-	-
	CO5	-	-	-	-	-	3	1	-	-	-	-	-

		Department of N	Mathemati	CS			
Course	Title of the course	Program	Total Nu	mber of c	ontact hour	S	Credi
Code		Core (PCR) /	Lectur	Tutori	Practica	Total	t
		Electives	e (L)	al (T)	l (P)	Hour	
		(PEL)			. ,	s	
MAC331	Mathematics-III	PCR	3	1	0	4	4
Pre-requis	ites	Basic knowled	ge of topic	s included	d in MAC01	& MAC02	2
Course	CO1: Acquire	the idea about	mathema	atical form	nulations of	⁻ phenon	nena in
Outcomes	physics ar	d engineering.				-	
	CO2: To unders	tand the commo	n numerica	al method	s to obtain t	he appro	oximate
	solutions	for the intractabl	e mathem	atical prob	olems.		
	CO3: To under	stand the basics	s of comp	lex analys	sis and its	role in i	modern
		tics and applied o	-	·			
	CO4: To unders	stand the optimi	ization me	thods and	d algorithm:	s develo	ped for
	solvingvarious types of optimization problems.						
Topics	Partial Differential Equations (PDE): Formation of PDEs; Lagrange method for						
Covered	overed solution of first order quasilinear PDE; Charpit method for first order nonline						nlinea
	PDE; Homogeno	ous and Nonhom	ogeneous	linear PDE	with const	ant coef	ficients
	Complimentary F	unction, Particul	ar integral	; Classific	ation of sec	ond orde	er linea
	PDE and canor	nical forms; Initi	al & Bour	ndary Val	ue Problem	s involvi	ng one
	dimensional wa	ve equation,	one dime	ensional	heat equ	ation ar	nd two
	dimensional Lap	lace equation.				[14]	
	Numerical Meth	ods: Significant	digits, Erro	ors; Diffe	rence opera	tors N	-wton'
	Forward, Backw			,		1013, 10	
	, , , ,	ard and Lagrang	e's interpo		-		
	of nonlinear al	ard and Lagrang gebraic/transcen	=	lation for	mulae; Nun	nerical so	olutions
Raphson methods; Trapezoidal and Simpson's 1/3 rule for numerical integratio							olution: lewton
		gebraic/transcen ls; Trapezoidal ar	dental eq nd Simpsor	blation for uations k n's 1/3 rul	mulae; Nun by Bisectior e for nume	nerical son and N rical integ	olution: lewton gration
	Raphson method	gebraic/transcen ls; Trapezoidal ar	dental eq nd Simpsor	blation for uations k n's 1/3 rul ods for sc	mulae; Nun by Bisectior e for nume	nerical son and N rical integ	olutions lewton gration
	Raphson method Euler's method	gebraic/transcen ls; Trapezoidal ar and modified Eu	dental eq nd Simpsor Iar's meth [14	blation for uations k n's 1/3 rul ods for sc]	mulae; Nun by Bisectior e for numer plving first o	nerical son and N rical integor rder diffo	olution: lewton gration erentia
	Raphson method Euler's method equations.	gebraic/transcen ls; Trapezoidal ar and modified Eu <u>sis:</u> Functions c	dental eq nd Simpson lar's meth [14 of comple	blation for uations k n's 1/3 rul ods for sc] x variable	mulae; Nun by Bisectior e for numer olving first o e, Limit,	nerical so n and N rical integ rder diffo Continui	olution: lewton gration erentia ty and
	Raphson method Euler's method equations. <u>Complex Analys</u>	gebraic/transcen ls; Trapezoidal ar and modified Eu <u>sis:</u> Functions c ytic function; Ha	dental eq nd Simpson lar's meth [14 of comple rmonic fur	blation for uations k n's 1/3 rul ods for sc] x variable nction; Co	mulae; Nun by Bisectior e for numer olving first o e, Limit, nformal tran	nerical so n and N rical integorder diffo rder diffo Continui	olution: lewton gration erentia ty and ion and
	Raphson method Euler's method equations. Complex Analys Derivative; Anal	gebraic/transcen ls; Trapezoidal ar and modified Eu sis: Functions c ytic function; Ha rmation; Com	dental eq nd Simpson lar's meth [14 of comple rmonic fur plex integ	blation for uations t n's 1/3 rul ods for so] x variable nction; Co ration; C	mulae; Nun by Bisectior e for numer olving first o e, Limit, nformal tran auchy's int	nerical so n and N rical integ rder diff Continui nsformat regral th	olution: lewton gration erentia ty and ion and leorem
	Raphson method Euler's method equations. Complex Analys Derivative; Anal Bilinear transfor	gebraic/transcen ls; Trapezoidal ar and modified Eu sis: Functions c ytic function; Ha rmation; Comp I formula; Taylor'	dental eq nd Simpson lar's meth [14 of comple rmonic fur plex integ s theorem	blation for uations k n's 1/3 rul ods for sc] x variable nction; Co ration; Co , Laurent's	mulae; Nun oy Bisectior e for numer olving first o e, Limit, nformal tran auchy's int s theorem (S	nerical so n and N rical integ rder diff Continui nsformat regral th	olutions lewton gration erentia ty and ion and beorem
	Raphson method Euler's method equations. Complex Analys Derivative; Anal Bilinear transfor Cauchy's integra	gebraic/transcen ls; Trapezoidal ar and modified Eu sis: Functions c ytic function; Ha rmation; Comp I formula; Taylor'	dental eq nd Simpson lar's meth [14 of comple rmonic fur plex integ s theorem	blation for uations k n's 1/3 rul ods for sc] x variable nction; Co ration; Co , Laurent's	mulae; Nun oy Bisectior e for numer olving first o e, Limit, nformal tran auchy's int s theorem (S	nerical so n and N rical integ rder diff Continui nsformat regral th	olutions lewton gration erentia ty and ion and beorem
	Raphson method Euler's method equations. Complex Analys Derivative; Anal Bilinear transfor Cauchy's integral Singular points a	gebraic/transcen ls; Trapezoidal ar and modified Eu sis: Functions c ytic function; Ha rmation; Comp I formula; Taylor' nd residues; Cauc	dental eq nd Simpson lar's meth [14 of comple rmonic fur plex integ s theorem chy's residu	blation for uations k n's 1/3 rul ods for so] x variable nction; Co ration; Co ration; C , Laurent's ue theore	mulae; Nun oy Bisectior e for numer olving first o e, Limit, nformal tran auchy's int s theorem (S m.[17]	nerical so n and N rical integ rder diffe Continui nsformat segral th Statemer	olutions lewton gration erentia ty and ion and ieorem nt only)
	Raphson method Euler's method equations. Complex Analys Derivative; Anal Bilinear transfor Cauchy's integral Singular points a Optimization:	gebraic/transcen ls; Trapezoidal ar and modified Eu sis: Functions c ytic function; Ha rmation; Comp formula; Taylor' nd residues; Cauc preliminaries: Hy	dental eq nd Simpson lar's meth [14 of comple rmonic fur plex integ s theorem chy's residu	blation for uations k n's 1/3 rul ods for so] x variable nction; Co ration; Co ration; C , Laurent's ue theore	mulae; Nun oy Bisectior e for numer olving first o e, Limit, nformal tran auchy's int s theorem (S m.[17]	nerical so n and N rical integ rder diffe Continui nsformat segral th Statemer	olutions lewton gration erentia ty and ion and ieorem nt only)
	Raphson method Euler's method equations. Complex Analys Derivative; Anal Bilinear transfor Cauchy's integral Singular points a Optimization: Mathematical P	gebraic/transcen ls; Trapezoidal ar and modified Eu sis: Functions of ytic function; Ha rmation; Comp formula; Taylor' nd residues; Caud preliminaries: Hy plyhedra. [2]	dental eq nd Simpson lar's meth [14 of comple rmonic fur plex integ s theorem chy's residu	olation for uations k n's 1/3 rul ods for so] x variable nction; Co ration; Co ration; C , Laurent's ue theore and Line	mulae; Nun oy Bisectior e for numer olving first o e, Limit, nformal trar auchy's int s theorem (S m.[17] ear Varietie	nerical so n and N rical integ rder diffe Continui nsformat segral th Statemer s; Conve	blutions lewton gration erentia ty and ion and ieorem it only) ex Sets
	Raphson method Euler's method equations. <u>Complex Analys</u> Derivative; Anal Bilinear transfor Cauchy's integral Singular points a <u>Optimization:</u> Mathematical P Polytopes and Po	gebraic/transcen ls; Trapezoidal ar and modified Eu sis: Functions c ytic function; Ha rmation; Comp I formula; Taylor' nd residues; Cauc Preliminaries: Hy olyhedra. [2] ming Problem	dental eq nd Simpson lar's meth [14 of comple rmonic fur plex integ s theorem chy's reside vperplanes (LPP): In	blation for uations k ods for so ds for so variable x variable ration; Co ration; Co ration; Co ration; Co and Line and Line	mulae; Nun by Bisection e for numer olving first o e, Limit, nformal tran auchy's int s theorem (S m.[17] ear Varietie a; Formul	nerical so n and N rical integ rder diffe Continui nsformat segral th Statemer s; Conve ation of	blutions lewton gration erentia ty and ion and ion and eorem it only) ex Sets

THIRD SEMESTER

Text Books,	Text Books:
and/or	1. An Elementary Course in Partial Differential Equations-T. Amarnath
reference	2. Numerical Methods for scientific & Engineering Computation- M.K.Jain,
material	S.R.K. Iyengar & R.K.Jain.
	3. Foundations of Complex Analysis- S. Ponnuswami
	4. Operations Research Principles and Practices- Ravindran, Phillips, Solberg
	5. Advanced Engineering Mathematics- E. Kreyszig
	Reference Books:
	1. Complex Analysis-L. V. Ahfors
	2. Elements of partial differential equations- I. N. Sneddon
	3. Operations Research- H. A. Taha

	De	partment of Mech	anical Engi	neering						
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit			
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
MEC 301	Solid Mechanics	PCR	3	1	0	4	4			
Pre-requis	ites	Course Assessment methods (Continuous (CT) and end assessment (EA))								
Basic knov	vledge on	CT+EA	,							
	g Mechanics									
Course		e on the analysis o	f stress, str	ains, elastic	city proper	ties of				
Outcomes	-	materials, strain energy principles								
	CO2 Exposure	CO2 Exposure towards members subjected to shear force, bending moments,								
	flexure loa	flexure loads, torsional loads								
	CO3 Idea abou	CO3 Idea about analyzing deflection of beams								
	CO4 Acquire tl	CO4 Acquire the fundamentals about members subjected to compressive loads.								
Topics	Introduction to	Introduction to stress and strains, Generalized Hooke's Law, Relationship among								
Covered	different elastic	coefficients. 4								
	Theory of Benc	ling, Shearing Forc	es and Ber	nding Mom	ents in bea	ams, SF a	and BM			
	Diagrams.6									
	Bending Stresse Shear Centre.6	es in Beams, Flexur	al rigidity, S	Section Mod	dulus, Shea	r Flow,				
		eams: Double-Inte	aration mo	thad Araa	Momont r	nothod.D	ronnod			
	cantilever and F			tilou, Alea-	inoment i	nethou,r	Topped			
		erminate beam pro	blems. 4							
	Torsion of Circu	•								
	Analysis of bi-a	kial stress and Moh	r's Circle.	6						
	Combined Load	ing and Theories o	f Failure. 4							
	Columns: Buckl	ing of columns, Eul	er's formul	a for stabili	ty of colun	ın. 6				
	Stresses in Thin	Cylinder 2								
	Strain Energy m	iethods – Castigliar	no's Theore	em. 4						
Text Books	5, Text Books:									
and/or	1. Strength of	Materials: Part I, I	I, S. Timosł	nenko, CBS I	Publishers,	1985.				
reference	2. Engineerin	2. Engineering Mechanics of Solids, E. P. Popov, PHI, 1993.								

material

Reference Books:

1. Introduction to Solid Mechanics, I. H. Shames and J. M. Pittariesi, PHI, 2003.

2. Strength of Materials, F. L. Singer and A. Pytel, Harper Collins Publishers, 1991

	D	epartment of Mech	anical Engi	neering								
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours	5	Credit					
Code	course	(PCR) / Lecture Tutorial Practical Total Electives (PEL) (L) (T) (P) Hours										
		Electives (PEL)	(L)	(T)	(P)	Hours						
MEC 302	Theory of	PCR)	3	1	0	4	4					
	Machines &											
	Mechanisms											
Pre-requis	ites	Course Assessm	ent metho	ds (Continue	ous (CT) an	d end						
		assessment (EA))										
Mechanics	5	CT+EA										
Course	CO1 Knowl	CO1 Knowledge of dynamics of elementary mechanisms and machines										
Outcomes	CO2 Knowl	CO2 Knowledge of the fundamental of machine design										
Topics	Introduction to	Mechanisms										
Covered	Linkages, Med	chanisms and ma	chines; Ki	nematic pa	air, eleme	nt, chai	ns and					
	inversions; de	grees of freedom	, mobility	and Grue	bler's crit	erion; fo	bur bar					
	mechanisms ar	mechanisms and slidercrank mechanismsSpecial Mechanisms - Indicator Diagram										
	Mechanisms, S	Mechanisms, Steering Mechanism, Hookes Joint4										
	Kinematics of Rigid Bodies Frame of reference in general motion, General pla											
	motion, absolu	ite and relative ve	elocity in p	lane motio	n, Instanta	neous ce	enter of					
	rotation in plar	ne motion3										
	Kinetics of Rig	id Bodies in 3D P	Plane mot	tion of ri	igid bodie	es: Ford	e and					
	accelerations r	methods, Energy a	nd mome	ntum metho	ods3							
	Kinematic Ana	lysis of Planar Link	ages Posit	ion & displa	acement a	nalysis, V	Velocity					
	analysis, Accele	eration analysis9										
	Gears& Gear t	rains: Fundament	al law of g	gearing, gea	ar tooth te	rminolog	gy, gear					
	type, contact	ratio & Kinema	tics analy	/sis, Kinen	natic ana	lysis of	Gear					
	trains:Velocity	ratio and sense	of rotation	; simple, co	mpound ai	nd epicyc	lic gear					
	trains7											
	Cam Mechanis	ms: Cam terminol	ogy, displa	icement dia	agram, gra	phical la	yout of					
	cam profile. 2											
	Kinematic Syr	nthesis of Planar	Linkages	: Type, n	umber ar	nd dime	ensional					
	synthesis, Bo	ody guidance, pat	h and fur	nction gene	eration, Ar	nalytical	linkage					
	synthesis4											
	Computer Aide	d Mechanism Analy	ysis 1									
	Dynamic Force	e Analysis of Mac	hines Dyn	amic force	analysis	for slide	r crank					
		ertia forces in rec										
	forces; simple	engine mechanism	n – gas fo	orce, piston	effort, gu	dgeon p	in load,					
	crank effort of	or turning mome	nt; single	and doub	le acting	engine;	inertia					
	force analysis											

	considering mass of the connecting rod; force analysis for a four bar mechanism6 Flywheels:Turning moment diagram, indicator diagrams – mean effective pressures for suction, compression, expansion and exhaust strokes; overall mean effective pressure for the cycle; mean resisting torque; fluctuation of energy and speed; flywheel6 Governor Mechanisms:Types, characteristics of centrifugal governors; conical pendulum type governors – Watt, Porter, and Proell; Spring loaded type of governors – Hartnell; controlling force, effort, power, sensitiveness, isochronism, stability and hunting of governors 5
Text Books,	Text Books:
and/or	1. Theory of Machines and Mechanisms, Uicker J.J., Pennock G.R., Shigley J.E.
reference	2. Theory of Mechanisms and Machines, Ghosh A., Mallik A.K.
material	Reference Books:
	1. Introduction to the mechanics of machines, Morrison J.L.M., Crossland B.

	De	partment of Mech	anical Engi	neering						
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit			
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
MEC303	Fluid Mechanics	PCR	3	1	0	4	4			
Pre-requis	ites	Course Assessment methods (Continuous (CT) and end								
		assessment (EA))								
Nil		CT+EA								
Course	6 6									
Outcomes										
Topics	I. Introduction: 08									
Covered	Definition of fluid; Concept of continuum and Knudsen number; Concept of									
	velocity, pressure and stress fields; Stress tensor; Fluid properties; Slip and									
		essibility and bu	lk moduli	us; Vapour	pressure; S	Surface t	ension;			
	Capillary rise an									
		f flow and flow me			08					
		ow field; Lagrang			•		-			
		rivative; Reynolo				-				
		uations of fluid m					-			
		line and stream								
	-	ation of fluid elen					-			
		ed vortex flows;	-		-					
	•	c, stagnation and	dynamic	pressures:	Applicatio	n of Ber	noullis			
	Equation.				مر با م بر ا م	a.00				
		analysis of fluid mo					othosis			
		of mass; conser					-			
		equation; Euler's	•				-			
	Couette Flow, fa	S equations for stalling film flow	Leauy IIICO	Thesene	now. plane	ruiseuli	ie now,			
		annig IIIII 110W,.								

	IV. Incompressible Flow through pipes and ducts:06
	Hagen-Poiseuille flow, Darcy Wesibach Equation, Major and minor losses, Surge
	control;
	V. Dimensional Analysis:04
	Measurement and dimension; Variables and functions; Dimensional
	homogeneity; Pi Theorem; Dimensionless parameters; Scaling rules,
	dimensionless numbers; Similitude; Similarity solutions and transformations;
	Geometric and dynamic similitude.
	VI. Boundary layer flows: 06
	Boundary layer concepts; Prandtl's boundary layer equations; Blasius Equation for
	flow over a flat plate; Momentum integral equations for boundary layers; Wall
	shear stress; Separation of boundary layers; Fluid flows about immersed bodies.
	VII. Potential flow: 06
	Irrotational flow; Velocity potential and stream function; Stream function for
	two-dimensional incompressible flow; Laplace equation; Method of solution;
	Complex potential for fundamental flows; Superposition of elementary flows;
	Flow about a half body; Uniform flow past a source and a sink, a doublet, and a
	cylinder with circulation; Aerofoil theory.
	VIII. Compressible flow:06
	Propagation of sound wave; Types of flow regimes: Mach cone; Stagnation
	and critical states; Isentropic flow of an ideal gas: area variation; Isentropic flow
	in converging and converging-diverging nozzle; normal shock.
Text Books,	Text Books:
and/or	1. Introduction to Fluid Mechanics: Fox
reference	2. Fluid Mechanics: Munson and Okiish
material	3. Fluid Mechanics: Robert Granger
	Reference Books:
	1. Fluid Mechanics: Frank M. White
	2. Mechanics of Fluids: B. S. Massey

	Dep	artment of Mechar	nical Engi	neering				
Course	Title of the course	Program Core	Program Core Total Number of contact hours				Credit	
Code		(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
MEC304	Engineering	PCR	3	0	0	3	3	
	Thermodynamics							
Pre-requis	ites	Course Assessment methods (Continuous (CT) and end						
		assessment (EA))						
Nil		CT+EA						
Course	CO1 Knowled	ge of thermo-dyna	imical sys	tem				
Outcomes	CO2 Masterir	ng laws of thermod	ynamics					
	CO3 Study of	air standard therm	nodynami	c cycles				
	CO4 Properti	es of pure substand	ce					
	CO5 Thermoo	dynamic relations						

Taulas	
Topics	Reynolds transport theorem based reformulations of conservation principles 2
Covered	PVT and non-PVT equation of states, Important slopes and projections. 2
	Zeroth law of thermodynamics: Concept of temperature 1
	First law of thermodynamics: Concept of heat, work and energy 2
	Second law of thermodynamics: Concept of Entropy 2
	Gouy-Stodola theorem: Exergy analysis, Some aspects of entropy generation
	minimization 1
	Third law of thermodynamics: Nernst heat theorem 1
	Thermodynamic relations: Partial derivatives, Maxwell relations,
	Thermodynamic mnemonic diagram 2
	Applications of SFEE 1
	Heat engine, heat pump and refrigerators. First and second law based
	performances 2
	Air standard cycles: Carnot, reversed Carnot, Otto, Diesel, dual, Joule-Brayton,
	reversed Joule-Brayton 5
	Properties of pure substances: Steam table, Mollier diagram, P-h chart 6
	Vapour power cycles: Rankine, reheat, regenerative, binary vapour cycles 6
	Reciprocating air compressor: Single stage air compressor, isothermal
	efficiency, clearance and clearance volume, volumetric efficiency, two stage
	and multistage compression, Intercooler, heat rejected per kg. air, indicator
	diagram, mean effective pressure, Mechanical efficiency 4
	Rotary compressor: Roots blower, vane type blower, rotary dynamic
	compressor, centrifugal compressor. Momentum principles and Euler's
	equation for energy transfer. Static and total head quantities, velocity diagrams 3
Text Books,	Text Books:
and/or	1. M. J. Moran, H. N. Shapiro, Fundamentals of Engineering Thermodynamics,
reference	Wiley.
material	2. R. E. Sonntag, C. Borgnakke, G. J. Van Wylen, Fundamentals of
	Thermodynamics, Wiley.
	3. P. K. Nag, Engineering Thermodynamics, McGraw-Hill.
	4. D. K. Kondepudi, I. Prigogine, Modern Thermodynamics, Wiley.
	5. J. F. Lee, F. W. Sears, Thermodynamics, Addison Wesely
	Reference Books:
	1. E. P. Gyftopoulos, G. P. Beretta, Thermodynamics: Foundations and
	Applications, Dover.
	2. A. Thess, The Entropy Principle, Springer.

		Department	of Physics				
	Offered	d for Department of	Mechanica	l Engineerir	וg		
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
PHC333	Physics of	PCR	3	0	0	3	3
	Engineering						
	Materials						

Course	CO1. To understand fundamental theory of motal
Course	CO1: To understand fundamental theory of metal
Outcomes	CO2: To comprehend theory and device applications of semiconductor materials
	CO3: To be familiar with fundamental of laser and its applications.
	CO4: To know about the super conductivity, dielectric and mechanical properties
	of material
Topics	Electron Theory of Metals Fermi-Dirac Statistics and Fermi energy, Density of
Covered	states, Concept of density of states in nanomaterials, Electrical conduction in
	metals and alloys, Current density, Drift velocity, Mobility etc., Classical electron
	theory of metal (Drude-Lorentz Theory), Quantum mechanical consideration
	(Sommerfeld Model). Origin of band gap (Kronig-Penny Model), Brillouin zone,
	Resistivity of pure metals and alloys, Electronic specific heat of metals, Thermal
	conductivity of metals, Factors affecting electrical conductivity, Resistivity of pure
	metals and alloys, Solders, Soft and hard and the use of fluxes and their
	classifications. [12L] Semiconductors Intrinsic and extrinsic semiconductors, Fermi
	level, Calculation of number density of carriers and their temperature
	dependence, Conductivity, Mobility and its temperature dependence, Hall effect.
	Compound semiconductors, Direct and indirect bandgap semiconductors.
	Applications of semiconductor material; Semiconductor devices, p-n diode, Zener
	diode, Tunnel diode, Solar cell. Semiconductor device fabrication (Mention only
	techniques). Double hetrostructure LED (ILED). [10L] Materials for Optical
	Applications Optical materials for Light Emitting Diode, Laser- Solid-state lasers,
	Liquid & Gas lasers. Semiconductor Laser, Band diagram, Pumping mechanism,
	Operation. Examples of nonlinear optical materials [4L] Superconductors
	Superconductivity; Electrical & magnetic properties of superconducting materials,
	Zero resistance property, Meissner effect, A.C. resistance, BCS Theory
	(Qualitative), Josephson's junction, Engineering applications of superconducting
	materials. [5L] Dielectrics Definitions, The local field, The Clauius-Mossoti relation,
	Sources of polarizability, Dipolar polarizability, Debye equation and study of
	molecular structure, Electronic polarizability, Ionic polarizability (Brief),
	Measurement of dielectric constant, Electrets, Piezoelectricity, Ferroelectricity and
	comparison with piezoelectricity, Applications of ferroelectric materials. [5L]
	Mechanical Beheviour of Materials Bonding of solids, Crystal structure, Crystal
	imperfections, Estimation of theoretical strength, Introduction of stress and strain,
	Hooke's law, elasticity, plasticity, Fracture of materials, (Fracture, Fatigue, Creep),
Toxt Dools	Strengthening mechanism, Composites. [6L]
Text Books,	TEXT BOOKS: 1. Introduction to Modern Physics, H. S. Mani & G. K. Mehta 2.
and/or	Solid State Electronic Devices, B. G. Streetman 3. Solid State Physics, S.
reference	O. Pillai
material	REFERENCE BOOKS: 1. Introduction to Solid State Physics, C. Kittel 2. Introduction
	to Materials Science for Engineers, J. F. Shackelford & M. K. Muralidhara
	3. Electronic Properties of Metals, E. Hamuel

		Department	of Physics				
	Offered f	for Department of	Mechanica	l Engineerir	ng		
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	

PHS383	Physics of	PCR	0	0	3	3	2		
	Engineering								
	Materials								
	Laboratory								
Course	CO1: To realize	and apply different	t technique	es for measu	uring chara	acteristic	s of p-n		
Outcome	s junction a	nd application of Z	ener diode	as voltage	regulator.				
	CO2: To detern	nine the properties	(carrier co	ncentration	and type)	of			
	semicond	uctor by Hall-effect	experime	nts.					
	CO3: To apply t	he knowledge to de	etermine t	he propertie	es (bandga	p and			
	resistivity) of semiconductor	materials	by four-prol	be methoc	l at differ	ent		
	temperat	ures.							
	CO4: To detern	CO4: To determine the characteristics of solar cell.							
	CO5: To detern	CO5: To determine the physical parameter such as e/m of an electron and Stefan's							
	constant.								
Topics	1. Determ	ination of Stefan's o	constant.						
Covered	2. Study o	f Hall voltage and H	all coeffici	ent of a give	en materia	Ι.			
		ement of electrical		•					
		rmine the energy b	• •						
		y the variation of th			p-couple w	ith temp	erature		
		ermine its thermo-	•						
		ination of power co		-					
		y the quantization o	••••		•	•			
		rmine the value of	e/m of an o	electron by	using a cat	hode ray	v tube		
		air of bar magnet.							
Text Books	, 00								
and/or		n Practical Physics -		umdar.					
reference	Practical Phys	ics – Worsnop and I	Flint						
material									

		<u>FOURTH S</u>	EMESTE	<u>R</u>					
	C	epartment of Mech	anical Engi	neering					
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours				
Code	course	(PCR) /	Lecture	Tutorial	Practical	ical Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
MEC401	Design of	PCR	3	1	0	4	4		
	Machine								
	Elements								
Pre-requis	sites	Course Assessm		ds (Continue	ous (CT) an	d end			
		assessment (EA))						
MEC 301 (Solid Mechanics)	CT+EA							
Course		an idea about engin	-						
Outcomes		the basic design pro	ocedure for	r different e	lementary	machine			
		ients							
		about design of bol		ed joints, pr	essure ves	sels etc.			
	CO4 Introduc	CO4 Introduction to fatigue design							
					<u> </u>				
Topics		ess analysis, Theorie	es of failur	e, Machine	Design in	continua	ition of		
Covered	-	strength of materials. 5							
		Fundamentals of machine design - General Principles and Procedures of							
	-	design of machine elements, Factor of safety and Service Factor Mechanical							
		properties of Engineering Materials 3 Design under Static load: C-frames and Crane hooks 4							
	-	variable loading and							
	-	-	•	-	ad and Co	omhined	loads		
	-	Design of Shaft under Torsion, Bending, Axial load and Combined loads, Design of Shafts under fatigue load.10							
	-	, Splines, Rigid and		inlings 5					
	Design of Bolt			.p					
	-	Design of Welded joints 4							
	-	•	ers and pre	essure vesse	els 5				
		Analysis and Design of thick cylinders and pressure vessels 5 Springs: Stress analysis and Design of Helical and Leaf springs. 4							
	Design of Con	necting rods. 3			-				
Text Book	s, Text Books:								
and/or	1. Mechanic	al Engineering Desig	gn – J.E. Shi	igley					
reference	2. Design of	Machine Elements -	– M.F. Spot	ts					
material	3. Design of	Machine Elements -	– V.B. Bhan	ıdari					
	Reference Bo								
	Machine D	esign – Black and A	dams						

COUDTH SEMESTER

	De	partment of Mech	anical Engi	neering			
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
MEC 402	Casting, Forming	PCR	3	1	0	4	4
	and Welding						

50 | Page

Pre-requisite	es Course Assessment methods (Continuous (CT) and end assessment (EA))					
NIL	CT+EA					
Course	CO1. Learn different types of casting process.					
Outcomes	CO2. Select suitable manufacturing process for typical components.					
	CO3. Learn the various welding process.					
T	CO4. Explain the concept of forging, rolling process and drawing.					
Topics	Casting (20 hrs)					
Covered	Foundry: foundry materials- moulding and core sand- binders – additives; sand					
	preparation- sand control tests 2					
	pattern and pattern making 3					
	mould and core making, expendable and non-expendable moulds, 3					
	mould assembly; solidification of pure metals and alloys, grain growth. 1					
	Casting processes- sand casting, shell moulding, investment casting, slush casting,					
	gravity and pressure die casting, centrifugal casting; continuous casting					
	5					
	casting design, gateway system design, riser design 3					
	casting defects- inspection, testing- destructive and non-destructive. 3					
	Welding (18 hrs)					
	Metal joining- classification, welding heat sources, 1					
	arc welding machines, arc production, arc characteristics, metal transfer,					
	welding electrode, 5					
	resistance welding, thermit welding, soldering and brazing, 2					
	gas welding, 3 Welding metallurgy, weldability of ferrous and nonferrous metals. 1					
	Welding metallurgy, weldability of ferrous and nonferrous metals,1Welding defects , testing of welded joints3					
	Other nonconventional welding methods like, ultrasonic welding, electron beam					
	welding, laser beam welding etc. 3 Forming(18 hrs)					
	Metal forming- cold, warm and hot working.					
	Forging: processes and its classification- drop forging and press forging, open die, impression die, closed die and precision forging processes.					
	grain flow in a forged product, 4					
	Specific forging operations like, coining, piercing, hubbing, heading, Swaging, roll					
	forging, orbital forging, incremental and isothermal forging. 2					
	Forging defects. 1					
	Rolling: Strip rolling- recrystallisation and process details, Rolling mills, ring rolling,					
	gear and thread rolling, various rolled sections, defects in rolled products.					
	5					
	Drawing: drawing terms and their definitions, circular drawing die, rod and wire					
	and tube drawing.					
	Extrusion: processes- direct and indirect extrusion, impact and hydrostatic					
	extrusion, metal extrusion practice, metal flow during extrusion.					
	2					

Text Books,	Text Books:	
and/or	1.	Manufacturing Processes for Engg. Materials - Kalpakjian
reference	2.	Production Technology (vol I & II)—R. K. Jain and S.C. Gupta
material	3.	Manufacturing Processes: H. S. Shan, Vol. 1
	4.	A textbook of Production Technology – P. C. Sharma
	Reference B	ooks:
	1. Manufact	uring Science A. Ghosh, A.K.Mallik
	2. Principles	of Foundry Technology P.L.Jain

Course	Title of the	Program Core	Total Nu	Total Number of contact hours			Crec			
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
MEC 403	Heat and Mass	PCR	3	0	0	3	3			
	Transfer									
Pre-requis	ites		Course Asse		thods (Con	tinuous (CT) a			
			end assessn	nent (EA))						
•	Engineering Thermo		CT+EA							
Course		n of thermodyna								
Outcomes		dge of Conducti								
		dge of Convection								
		dge of radiation								
		nd mass transfer								
Topics	Introduction, ba	•		•			1			
Covered		Conduction: Mechanism; Fourier law of heat conduction in 3-D, 1-D steady state								
		conduction with heat generation, composite plane wall, cylinders and spheres								
		thermal resistance network. Critical thickness of insulation; Use of analytical								
		numerical and graphical methods, thermal diffusivity, Fourier number, Heat								
		Transfer from extended surface 12								
		Conservation principles: various conservation equations, Relation between								
		system and control volume approach: Reynolds Transport Theorem, Entropy								
				eynolds Tra	nsport Th	eorem,	Entro			
	generation min	imization as a	general heat	eynolds Tra transfer o	nsport Th bjective, I	ieorem, Basic cor	Entro nvecti			
	generation min configurations,	imization as a Fluid flow and h	general heat eat transfer	eynolds Tra transfer c aspect of in	insport Th bjective, I ternal flow	eorem, Basic cor v, Fluid fl	Entro nvecti ow a			
	generation min configurations, heat transfer as	imization as a Fluid flow and h pect of externa	general heat eat transfer I flow, Visual	eynolds Tra transfer c aspect of in ization of co	ansport The bjective, I ternal flow ponvection,	eorem, Basic cor v, Fluid fl Flow ove	Entro nvecti ow a er a f			
	generation min configurations, heat transfer as plate, Concept	imization as a Fluid flow and h pect of externa of thermal ar	general heat eat transfer I flow, Visual nd hydrodyn	eynolds Tra transfer c aspect of in ization of co amic bound	insport Th bjective, I ternal flow prvection, dary layer	eorem, 1 Basic cor v, Fluid fl Flow ove s, Lamin	Entro nvecti ow a er a f nar a			
	generation min configurations, heat transfer as plate, Concept turbulent boun	imization as a Fluid flow and h pect of externa of thermal ar dary layers, Sca	general heat eat transfer I flow, Visual nd hydrodyn ing analysis,	eynolds Tra transfer of aspect of in ization of co amic bound Natural, fo	insport Th bjective, I ternal flow prvection, dary layer rced, mixe	eorem, Basic cor 7, Fluid fl Flow ove s, Lamin ed and tu	Entro ow a er a f ar a			
	generation min configurations, heat transfer as plate, Concept turbulent boun convection, Din	imization as a Fluid flow and h pect of externa of thermal ar dary layers, Sca nensional analys	general heat eat transfer I flow, Visual Ind hydrodyn Ing analysis, is in correlat	eynolds Tra transfer of aspect of in ization of co amic bound Natural, fo cions for o	ansport The bjective, I ternal flow prvection, dary layer rced, mixe convective	eorem, I Basic cor v, Fluid fl Flow ove s, Lamin ed and tu heat t	Entro nvect ow a er a f lar a irbule ransf			
	generation min configurations, heat transfer as plate, Concept turbulent boun convection, Din Relation betwe	imization as a Fluid flow and h pect of externa of thermal ar dary layers, Sca nensional analys en fluid friction	general heat eat transfer I flow, Visual nd hydrodyn ing analysis, is in correlat n and heat	eynolds Tra transfer of aspect of in ization of co amic bound Natural, fo tions for o transfer, An	ansport The bjective, I ternal flow prvection, dary layer rced, mixe convective alysis of l	eorem, Basic cor V, Fluid fl Flow ove s, Lamin d and tu heat t heat exc	Entro nvect ow a er a f nar a nrbule ransf hang			
	generation min configurations, heat transfer as plate, Concept turbulent boun convection, Din Relation betwee LMTD, effectiv	imization as a Fluid flow and h pect of externa of thermal ar dary layers, Sca nensional analys en fluid friction veness-NTU mo	general heat eat transfer I flow, Visual ing analysis, is in correlat and heat ethod, Boili	eynolds Tra transfer of aspect of in ization of co amic bound Natural, fo tions for o transfer, An ng and o	ansport The bjective, I ternal flow prvection, dary layer rced, mixe convective alysis of l condensation	leorem, l Basic cor v, Fluid fl Flow ove s, Lamin d and tu heat t heat exc on mech	Entro ow a er a f ar a f ar bule ransf hang anisr			
	generation min configurations, heat transfer as plate, Concept turbulent boun convection, Din Relation betwe LMTD, effectiv Discrimination	imization as a Fluid flow and h pect of externa of thermal ar dary layers, Sca nensional analys en fluid friction veness-NTU mo between diffus	general heat eat transfer I flow, Visual ing analysis, is in correlat and heat ethod, Boili	eynolds Tra transfer of aspect of in ization of co amic bound Natural, fo tions for o transfer, An ng and o	ansport The bjective, I ternal flow prvection, dary layer rced, mixe convective alysis of l condensation	leorem, l Basic cor v, Fluid fl Flow ove s, Lamin d and tu heat t heat exc on mech	Entro nvecti ow a er a f nar a urbule ransf hang anisn			
	generation min configurations, heat transfer as plate, Concept turbulent boun convection, Din Relation betwe LMTD, effectiv Discrimination diffusion.	imization as a Fluid flow and h pect of externa of thermal ar dary layers, Sca nensional analys en fluid friction veness-NTU mo between diffus 16	general heat eat transfer I flow, Visual ing analysis, is in correlat n and heat ethod, Boili ive and con	eynolds Tra transfer of aspect of in ization of co amic bound Natural, fo ions for o transfer, An ng and o vective ma	ansport The bjective, I ternal flow prvection, dary layer rced, mixe convective alysis of l condensations ss transfe	eorem, l Basic cor v, Fluid fl Flow ove s, Lamin ed and tu heat t heat exc on mech r, Fick's	Entro nvecti ow a er a f har a irbule ransf hang hang hang anisr law			
	generation min configurations, heat transfer as plate, Concept turbulent boun convection, Din Relation betwe LMTD, effectiv Discrimination diffusion. Radiation: phys	imization as a Fluid flow and h pect of externa of thermal ar dary layers, Sca nensional analys en fluid friction veness-NTU mo between diffus 16 ical mechanism	general heat eat transfer I flow, Visual ing analysis, is in correlat n and heat ethod, Boili ive and con , radiation p	eynolds Tra transfer of aspect of in ization of co amic bound Natural, fo tions for of transfer, An ng and of vective man	ansport The bjective, I ternal flow prvection, dary layer rced, mixe convective alysis of l condensations ss transfe	eorem, Basic cor V, Fluid fl Flow ove s, Lamin d and tu heat t heat exc on mech r, Fick's	Entro nvecti ow a er a f lar a urbule ransfo hang lanism law			
	generation min configurations, heat transfer as plate, Concept turbulent boun convection, Din Relation betwe LMTD, effectiv Discrimination diffusion. Radiation: phys body, spectra	imization as a Fluid flow and h pect of externa of thermal ar dary layers, Sca nensional analys en fluid friction veness-NTU mo between diffus 16 ical mechanism dependence c	general heat eat transfer I flow, Visual ing analysis, is in correlat and heat ethod, Boili ive and con , radiation p f radiation p	eynolds Tra transfer of aspect of in ization of co amic bound Natural, fo transfer, An ng and o vective ma properties, k	ansport The bjective, I ternal flow provection, dary layer rced, mixe convective alysis of l condensations ss transfe black body Wien's dis	eorem, l Basic cor V, Fluid fl Flow ove s, Lamin d and tu heat t heat exc on mech r, Fick's radiatio splaceme	Entro nvecti ow a er a f lar a urbule ransfi hang lanisn law on, gr			
	generation min configurations, heat transfer as plate, Concept turbulent boun convection, Din Relation betwe LMTD, effectiv Discrimination diffusion. Radiation: phys body, spectral Kirchoff's law. S	imization as a Fluid flow and h pect of externa of thermal ar dary layers, Sca nensional analys en fluid friction veness-NTU me between diffus 16 ical mechanism dependence of hape factor, hea	general heat eat transfer I flow, Visual ing analysis, is in correlat and heat ethod, Boili ive and con , radiation p f radiation p it exchange I	eynolds Tra transfer of aspect of in ization of co amic bound Natural, fo transfer, An ng and o vective ma roperties, between in	ansport The bjective, I ternal flow prvection, dary layer rced, mixe convective alysis of I condensations transfe plack body Wien's dis finite para	eorem, l Basic cor V, Fluid fl Flow ove s, Lamin d and tu heat t heat exc on mech r, Fick's radiatio splaceme	Entro nvecti ow a er a f lar a urbule ransf hang lanisr law on, gr ent la			
	generation min configurations, heat transfer as plate, Concept turbulent boun convection, Din Relation betwe LMTD, effectiv Discrimination diffusion. Radiation: phys body, spectra	imization as a Fluid flow and h pect of externa of thermal ar dary layers, Sca nensional analys en fluid friction veness-NTU mo between diffus 16 ical mechanism dependence of hape factor, hea diation shields,	general heat eat transfer I flow, Visual ad hydrodyn ing analysis, is in correlat and heat ethod, Boili ive and con , radiation p of radiation p it exchange I network rep	eynolds Tra transfer of aspect of in ization of co amic bound Natural, fo tons for of transfer, An ng and of vective man properties, to properties, between inter resentation	ansport The bjective, I ternal flow provection, dary layer rced, mixe convective alysis of I condensations transfe black body Wien's dis finite para . 7	eorem, l Basic cor V, Fluid fl Flow ove s, Lamin d and tu heat t heat exc on mech r, Fick's radiatio splaceme illel plane	Entro nvecti ow a er a f lar a urbule ransfi hang anism law on, gr ent la es, a			

Text Books,	Text Books:
and/or	1. Heat Transfer J. P. Holman
reference	2. Principles of Heat and Mass Transfer—F. P. Incropera, D. P. DeWitt, T.L. Bergan
material	3. A Heat Transfer Text Book, Dover - John H. Lienhard V, John H. Lienhard IV
	Reference Books:
	1. Heat and Mass Transfer- Y. A. Cengel, A.J. Ghajar

	D	epartment of Elect							
		OFFERED FOR M	T						
Course	Title of the course						Credi		
Code		(PCR) / Electives (PEL)	Lectur e (L)	Tutoria I (T)	Practical (P) [#]	Total Hour s	t		
EEC432	Electrical Machines	PCR	3	0	0	3	3		
Pre-requis	sites	Course Assessme	ent metho	ds (Continu	ious evaluat	tion (CE) a	and		
		end assessment	(EA))						
EEC01(EL		CE+EA							
TECHNOL	í								
Course		electromechanical	• ·		ne concepts	of voltag	ge		
Outcomes	-	n and fundamental	• •						
		erstanding of the pr	-			uction of	airect		
		ating current mach							
	=	f theory and concept of Electric Machines (AC & DC). equivalent circuit of electrical machines.							
	-	the performance and characteristics of Electrical machines (AC &							
	DC).						CQ		
Topics	Basic principle	of Faraday's law o	f electro-n	nagnetic ir	nduction, er	nergy cor	version		
Covered	and magnetic ci	rcuit. (4)		-					
	Transformer: Co	onstruction and pri	inciple of o	operation of	of single ph	ase trans	former,		
	Step-up and Ste	ep-down transforn	ner, E.M.F.	equation	, Equivalent	circuits,	phasor		
	diagram, Open	circuit and shor	t circuit t	tests, loss	es and eff	iciency,	All day		
	•	transformer. (8)							
		D.C. Machines Construction, Methods of excitation and classifications, Simple lap							
		and wave windings, emf equation, characteristics of different dc generator,							
		armature reaction, Commutation, Back e.m.f in a d.c. motor, Motor Starter, Speed							
		and torque equations, Speed vs torque characteristics and speed control of DC							
		motors, losses in dc machines, Applications. (12) Induction Motor: Pulsating and rotating magnetic field construction and principle							
		0	•	0		•	•		
	-	Single and three	-		-				
		rs, comparison bet							
		tests, Circle diagr tions of single phas					1 speed 12)		
				e priase ili					

	Synchronous Machines: Construction-alternators-turbo & hydro generators, principle of operation, emf equation, excitation control, synchronization load sharing synchronous motor operation, Synchronous condenser, applications of synchronous generator and motor. (6)
Text Books, and/or reference material	Text Books: 1. Electrical Machinery by P S Bimbhra 2. Electrical Technology Vol-II by B L Thereza Reference Books: 1. Electrical Machines by J B Gupta

	Department of Mechanical Engineering						
Course	Title of the	Program Core	Program Core Total Number of contact hours Cred				Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
MES451	Solid Mechanics	PCR	0	0	3	3	1.5
	Laboratory						
Pre-requis	ites	Course Assessme	ent metho	ds (Continuo	ous (CT) an	d end	
		assessment (EA))				
Engineerin	ng Mechanics,	CT+EA					
Solid Mech	nanics						
Course	CO1: Graph	ical and experimer	ital verifica	tion of the	solid Mech	anics and	d
Outcomes	Engine	eering mechanics					
Topics	Mohr's Circl	e on strain Rosette	e- Graphica	l Solution.			
Covered	Mohr's Circl	e on Moment of In	iertia - Gra	phical Solut	ion.		
	Mechanical	testing of Enginee	ring Materi	ials.			
	Experiments	s on the principles	of strength	of materia	s.		
	Instrumenta	tion for measurem	nent of def	lection unde	er loading.		
Text Books	s, Text Books:						
and/or	1. Strength of	1. Strength of Materials – A. Pytel and F. L. Singer					
reference	Reference Boo	ks:					
material	1. Elements o	f Strength of Mate	rials – S. P.	Timoshenk	o and D. H	. Young	
	2. Strength of	Materials – S. S. R	attan				

	Department of Mechanical Engineering								
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit		
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
MES452	Fluid Mechanics	PCR	0	0	3	3	1.5		
	Laboratory								
Pre-requis	·			ourse Assessment methods (Continuous (CT) and end ssessment (EA))					
MEC303 (F	MEC303 (Fluid Mechanics) CT+EA		CT+EA						
Course CO1: Fundamentals of fluid mechanics.									
Outcomes									

Topics	Calibration of Venturimeter.
Covered	Calibration of Orificemeter
	Determination of friction factor in flow through pipes.
	Determination of coefficient of bend loss in flow through pipes.
	Experiment on Impact of jet.
	Calibration of V-notch.
	Experiment on Bernoullie's Theorem.
Text Books,	Text Books:
and/or	1. Mechanics of Fluids: Massey, B. S.
reference	2. Fluid Mechanics – J. F. Douglas, J. M. Gasiorek, J. A. Swaffied, L. B. Jack
material	3. Introduction to Fluid Mechanics and Fluid Machines- S.K. Som, et al.
	4. Hydraulic Machinery - Jagdish Lal
	Reference Books:
	Fluid Mechanics—F. M. White

	D	epartment of Mech	anical Engi	neering			
Course	Title of the	Program Core	Total Number of contact hours Cr			Credit	
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
MES 453	Mechanism	PCR	0	0	3	3	1.5
	Laboratory						
Pre-requis	ites	Course Assessm	ent metho	ds (Continuo	ous (CT) an	d end	
		assessment (EA))				
Engineerir	g Mechanics	CT+EA					
Course	CO1: Stud	dents will be able to	solve kine	matics of m	lechanism l	by graph	ical
Outcomes	meth	nod					
		dents will be able to					
		lents will be able to	solve mec	hanism syn	thesis prob	lems usi	ng
		outer aided tools					
		lents will be able to					
Topics		ition of velocity and	laccelerati	on of variou	is mechani	sms by s	emi
Covered	graphical r						
		f inertia forces.					
		Aided Kinematic Ar					
	•	Aided Mechanism	•	•			
	•	& simulation of me	chanisms u	sing Compu	iter Aided	ools	
TUDII	Model ma	king					
Text Book		machines and mach	onicmo I	lickor Door	adi and Ch	ialou	
and/or reference		machines and mech mechanisms and m				igiey	
material					HIICK		
material	Reference Bo	machines – S S Ratt	an				
		machines – Thomas	Boyan				
		on to the mechanic		nes – Morris	on and Cro	ssland	
						/331011U	

	D	epartment of Elect	rical Engin	eering			
		OFFERED FOR M					
Course	Title of the	Program Core	Total Nu	mber of co	ontact hours	5	Credi
Code	course	(PCR) / Electives (PEL)	Lectur e (L)	Tutori al (T)	Practical (P)	Total Hour s	t
EES482	Electrical Machines Laboratory	PCR	0	0	3	3	1.5
Pre-requis	sites	Course Assessme assessment (EA)		ds (Contin	uous (CT) an	id end	
	OGY LAB), ILECTRICAL	CT+EA					
Course Outcomes	s transform CO2: Ability to induction CO3: Ability to generato CO4: Ability to CO5: Ability eva	 CO1: Ability to determine the equivalent circuit parameters of a single-pha transformer CO2: Ability to determine the parameters of single-phase as well as three pha induction motor. CO3: Ability to determine the characteristics of dc shunt generator and seri generator CO4: Ability to control the speed of a dc shunt motor CO5: Ability evaluate the voltage regulation of an alternator CO5: Ability to determine the officiency of dc machines 				e phase	
Topics Covered	Determination of 2. No-load and l 3. Speed contro 4. Open-circuit a 5. Voltage regul 6. To perform n 7. To perform n	 CO6: Ability to determine the efficiency of dc machines List of Experiments: Determination of equivalent circuit parameters of a single-phase transformer. 2. No-load and load characteristics of a dc shunt generator. 3. Speed control of a dc shunt motor. 4. Open-circuit and load characteristics of a dc series generator. 5. Voltage regulation of an alternator. 6. To perform no-load and blocked-rotor tests on a three-phase Induction Motor. 7. To perform no-load and blocked-rotor tests on a single-phase Induction Motor. 8. Swinburne's test of a dc machine. 					
Text Book and/or reference material	s, Text Books: 1. A. E. Fitzgera Inc. 2. D. P. Kothari a Reference Book	Text Books: 1. A. E. Fitzgerald, C. Kingsley and S. Umans, Electric Machinery, McGraw-Hill Co.					

FIFTH SEMESTER

	De	partment of Mech	anical Engi	neering			
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
MEC 501	Machining and Machine Tools	PCR	3	1	0	4	4
Pre-requisit	es	Course Assessm assessment (EA)		ds (Continuc	ous (CT) an	d end	
NIL		CT+EA	-				
Course Outcomes	scienc	es of machining ar	dge of fundamental machining processes and the underlying es of machining and the related processes machine tools, their operations and the mechanisms in machine				
Topics						(28 hrs)	
Covered	Machining(28 hrs)Introduction to Manufacturing processes and Metal cutting, Types of basic motions, Speed, feed and depth of cut, Shapes produced by different combination of motions, representation of chip formation in 3D. 2Cutting Tools: Single point, Multi point, Left hand and Right hand cutting tool. Single point cutting tool nomenclature and representation in 3D, Tool geometry in ASA and ORS systems, Effect of tool geometry on performance. 2Experimental observations in metal cutting- chip thickness, width of cut, primary deformation zone, shear angle concept, Piispanen's model, types of chips and the conditions of their formation, strain hardening, heat generation and dissipation, cutting fluid. Orthogonal and Oblique cutting- 2D and 3D representation, effect on chip formation and on mechanics of chip formation. Concept of undeformed chip thickness, chip reduction coefficient determination- experimentally from chip length. Analytical determination of shear angle and shear strain from simple geometry of chip formation. 4Forces in Metal cutting: Free body diagram and mechanics of chip formation, direction and Representation of forces on basic plane and orthogonal plane, 3D representation of forces on cutting tool, Merchant's Circle Diagram representation of forces, transformation, different specific energies, power estimation, Merchant's first shear angle relationship and its deviation from experimental 						

	Grinding- Machines and processes, Transverse grinding and plunge grinding, creep-feed grinding, centreless grinding, truing and dressing of grinding wheels, balancing of grinding wheels, Details of grinding wheels- Manufacturing and specifications, grinding wheel wear, grinding temperature. 6 Nonconventional machining processes: Working principles, processes and mechanics of process parameters and applications. ECM, EDM, AJM, USM 6
	Machine tools(28 hours)Fundamental of Machine tools, Machine tool elements.1General feature of construction and working of Lathe, Different parts of a Lathe,Types of Lathe and specification.Back gear arrangement, Work holding devices.Screw cutting, Taper turning, Form turning and various other operationsperformed by a Lathe.Feed, speed, depth of cut and machining time calculation.6
	General feature of construction and working of Drilling machine, Different parts of a Drilling machine, Types of Drilling machine and Specification. Reaming, Threading and various other operations performed by a Drilling machine. Types of Drill bits. Feed, speed and machining time calculation. 4 General feature of construction and working of Milling machine, Different parts of a Milling machine, Types of Milling machine and Specification. Dividing head and Indexing method. Up milling, Down milling, Spiral milling and other operations performed by a Milling machine. Types and choice of Milling cutter. Machining time calculation. 6 General feature of construction and working of Shaping machine and Slotting machine. Quick return mechanism. Whitworth mechanism, Feed mechanism. Types of tools. Machining time calculation. 4
	Gear manufacture- milling, hobbing and shaping, Gear finishing processes 4 Turret and Capstan Lathe: Types, parts, equipments and tools for use on turret and capstan lathe, operational planning and turret tool layout. 4
Text Books,	Text Books:
and/or	1. Theory of metal cutting – G. Kuppuswamy
reference	2. Production Engineering Sciences – Pandey and Singh
material	3. Manufacturing Processes – H. S. Shan, Vol. 2
	4. A textbook of Production Engineering – P. C. Sharma
	Reference Books:
	1. Manufacturing Science – A. Ghosh, A.K.Mallik
	Theory of metal cutting – Sen and Bhattacharya

	De	epartment of Mech	anical Engi	neering			
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
MEC502	IC Engine and	PCR	3	0	0	3	3
	Gas Turbines						
Pre-requis	ites	Course Assessment methods (Continuous (CT) and end					
		assessment (EA))					
MEC 304,	MEC 304, MEC 403 CT+EA						

58 | Page

<u>г т</u>	
Course	CO1 Concept of internal combustion engines
Outcomes	CO2 Mechanism of internal combustion engines
	CO3 Pollution from internal combustion engines
	CO4 Mechanism of gas turbines
	CO5 Outlines of alternative fuels
Topics	Internal Combustion Engines: Basic engine types and their operation, construction
Covered	and application. Engine design and operating parameters, thermo-chemistry of
	fuel air mixture, air-fuel cycle, properties of working fluids. Indicator diagrams,
	engine performance and output, compression ratio, air-fuel ratio, Ignition
	timing and other affecting variables on engine performance. Fuel and fuel rating.
	Charge motion within the cylinder, combustions in SI and CI engines. Detonation
	and Knock, Combustion chamber, Carburation and fuel injection systems.
	Scavenging, natural aspiration, turbo charging and super charging, Engine friction,
	lubrication and cooling. Operating variables Affecting SI and CI engine
	performance. Modern systems for controlling engine operation. Testing of IC
	engines. 27
	Pollution from I. C. Engines and its control: Exhaust of IC engines,
	Composition of exhaust gases, Apparatus for exhaust gas analysis, Permissible
	limits and Remedial measures for control emissions. 5
	Alternative fuels for I. C. Engines. 4
	Gas Turbines: Application of gas turbines, analysis of open and closed cycles, Gas
	turbine combustion chamber. Single and multi-shell arrangements. Inter-cooling.
	Reheat and regeneration. Matching of turbine and compressor. Performance
	characteristics. Jet propulsion and application. 6
Text Books,	Text Books:
and/or	1. Internal Combustion Engine – V Ganesan
reference	2. A text book of Internal Combustion Engines—R. K. Rajput
material	Reference Books:
	1. I. C. Engines P. W. Gill, Smith, Zury
	2. I. C. Engine Fundamentals Obert
	3. I. C. Engine Fundamentals – Heywood

	Department of Mechanical Engineering						
Course	Title of the	Program Core	m Core Total Number of contact hours Credi			Credit	
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
MEC503	Machine Design	PCR	3	1	0	4	4
Pre-requis	ites	Course Assessment methods (Continuous (CT) and end assessment (EA))					
MEC 302 (Theory of	CT+EA					
Machines and Mechanisms),							
MEC 401 (Design of Machine							
Element)							

Course	CO1 Detail analysis of members under fatigue loads			
Outcomes	CO2 Design procedures for some machine elements used in mechanical drives			
	CO3 Exposed to the importance of engineering tolerances and its use			
	CO4 Introduction to different types of bearings and lubrications			
	CO5 To understand the basics of gear mechanics			
Topics	Manufacturing considerations in Design: Fits and Tolerances. 4			
Covered	Belt drives: Flat belts and V-belts. 5			
	Power screw 5			
	Bearings: Sliding contact bearing; Rolling contact bearings -Construction,			
	Types and selection, Constructional details, Types of lubrication.7			
	Toothed Gear Drive: Spur gear- Contact forces, Materials, Static design by Lewis			
	equation. 7			
	Dynamic loads on gears – Buckingham's method. Types, Terminology, Geometrical			
	proportions, Analysis of contact, Materials, Analysis of Force, and Design of			
	Helical, Bevel and Worm gears. Check for dynamicload and wear strength.			
	Design of gear boxes.15			
	Brakes: Band brakes and Shoe brakes 5			
	Clutch: Friction clutches and Jaw clutches. 4			
Text Books,	Text Books:			
and/or	1. Mechanical Engineering Design – J.E. Shigley			
reference	Design of Machine Elements – M.F. Spotts			
material	3. Design of Machine Elements – V.B. Bhandari			
	Reference Books:			
	1. Machine Design – Black and Adams			

	Department of Mechanical Engineering						
Course	Title of the	Program Core	Program Core Total Number of contact hours			;	Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
MEC 504	Dynamics of	PCR	2	1	0	3	3
	Machinery						
Pre-requis	ites	Course Assessment methods (Continuous (CT) and end					
		assessment (EA))					
MEC 302 (Theory of	CT+EA					
Machines	and Mechanisms)						
Course	CO1 Knowle	edge of gyroscopic	motion of	dynamic me	echanical s	ystem	
Outcomes CO2 Knowledge of balancing of rotating and reciprocati			cating mac	hines			
	CO3 Knowledge of longitudinal, torsional and transverse vibration of						
mechanical system							

Topics	Gyroscope					
Covered	Spinning, precession and gyroscopic couple; gyroscopic effect on ships and					
	aeroplane; Application of Gyroscope 14					
	Balancing					
	Internal and external balancing; Balancing of rotating masses -single plane					
	balancing and two plane balancing, Balancing of reciprocating masses – single					
	cylinder engine, Vee cylinder engine, and multicylinder inline engine.14					
	Vibration					
	Longitudinal vibration – free vibration, damped vibration, and forced damped					
	vibration; Torsional vibration – free vibration of rotor system and torsionally					
	equivalent shaft; Transverse vibration – vibration of shaft carrying uniformly					
	distributed load and several concentrated load, and critical speed of shaft.					
	14					
Text Books,	Text Books:					
and/or	1. Theory of Machines and Mechanisms, Uicker J.J., Pennock G					
reference	2. Theory of Mechanisms and Machines, Ghosh A., Mallik A.K.					
material	Reference Books:					
	1. Dynamics of machinery : Holowenko, Alfred R					

	Department of Mechanical Engineering						
Course	Title of the	Program Core	Total Nu	mber of co	ntact hours	S	Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
MEO 541	Experimental	PEL	3	0	0	3	3
	Methods in						
	Engineering						
Pre-requisit	es	Course Assessm	ent metho	ds (Continu	ous (CT) ar	nd end	
		assessment (EA))				
Nil		CT+EA					
Course	CO1: Acquir	e an idea about ba	isic concep	ots of engine	eering mea	suremer	nts
Outcomes	CO2: To lea	rn the basics of dat	ta analysis				
	CO3: To lea	rn the fundamenta	Is of data	acquisition.			
	CO4: To lea	rn the measureme	nt techniq	ues for elec	trical signa	ls, press	ure,
	tempe	rature, flow, force	, motion, v	vibration et o	2.		
Topics	Basic concepts	: Calibration, Stan	dards, Dyn	amic Meas	urement, S	ystem re	esponse
Covered	and Fourier Ar	alysis					4
		Error analysis, L	Incertainty	/ analysis,	Statistical	analysis	, Curve
	fitting, Goodne						
		of electrical sigr					/digital
	=	fiers, Signal Condit		=		5	
		s of physical variab	les: Pressu	ure measure	ement 4		
	Flow measure						6
	Temperature r						4
	•	strain measurem					
	•	on and processing	g: Signal c	onditioning	, Data tra	nsmissio	n, ADC
	and DAC	4					

Text Books,	Text Books:				
and/or	1. Experimental Methods for Engineers – J. P. Holman				
reference	Reference Books:				
material	1. Instrumentation, measurements and experiments in Fluids by E.				
	Rathakrishnan				
	2. Handbook of experimental fluid mechanics by Foss et al.				
	3. Measurement systems—application and design, Doebelin, E. O.				

	Department of Mechanical Engineering						
Course	Title of the	Program Core	Total Nu	mber of con	tact hours		Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
MES 551	Design and	PCR	0	0	3	3	1.5
	Dynamics						
	Laboratory						
Pre-requisi		Course Assessme	ent metho	ds (Continuc	ous (CT))		
XEC01, ME	C 302, MEC 401	СТ					
Course	CO1: Acquire b	asic idea about the	machine o	component o	drawing, ge	eometric	
Outcomes		of gears and cams					
		stand the use of gy		-			
		nding vibratory sys		nass balanci	ng concep	t.	
Topics	-	s of the followings.					
Covered		ignment 1: Dimens	-	cept and de	tail drawir	ng of mac	hine
		nponents. (3hrs x3	•				
		ignment 2: Genera	ition of geo	ometric prof	iles of gea	rs and ca	ms.
		rs x 2)				(211.)	
		ed gyroscope – Stu		-	-		Dautau
		or - Determination	-	nsitivity, eff	ort etc., to	r watts /	Porter
		⁷ Hartnell Governor egree of freedom S	. ,	Suctor D	otorminat	ion of no	tural
	-	cy and verification					luiai
		nation (3Hrs)		springs – Do		lincient	
		ent on rotor baland	ring (3 Hrs	v2)			
				~~)			
Text Books	, Text Books:						
and/or		echanisms and Ma	chines, Gho	osh, Mallik			
reference		2. Theory of Machines and Mechanisms, Uicker J.J., Pennock G.R., Shigley J.E.					
material							
	Reference Boo	ks					
	1. Introductio	n to the mechanics	of machin	es, Morriso	n J.L.M., Cr	ossland I	3.
	2. Dynamics o	f machinery : Holo	wenko, Alf	red R			

	Department of Mechanical Engineering						
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
MES 552	Heat Transfer	PCR	0	0	3	3	1.5
	Laboratory						
Pre-requis	ites	Course Assessme	ent metho	ds (Continuo	ous (CT) an	d end	
		assessment (EA))				
MEC 304,	MEC 403	CT+EA					
Course	CO1: Fundame	ental concepts of T	emperatur	e measuren	nent syster	ns	
Outcomes		neat transferring ap	•				
		ge on conduction h					
	CO4: Knowledge on convection heat transfer						
	CO3: Knowled	ge on Radiation he	at transfer				
Topics	Various types	of temperatur	e measu	ring and	controlling	g instru	iments.
Covered	Thermocouples	, Thermostats etc.					
	Fundamental co	oncept and function	n of Multi-	channel tem	nperature i	ndicator,	,
	Experiments on	<u> -</u>					
		of forced convecti				ough pin	fin for
		tes of fluid at diffe		•			
		of LMTD and ef	fectiveness	s for parall	el and co	unterflo	w heat
	exchanger.						
		he laws of radiatio	n with the	help of radi	ation labor	atory un	it.
Text Book							
and/or		ansfer J. P. Holma		C Devid			
reference		2. A Course in Heat and Mass Transfer S.Domkundwar					
material		e in Internal Combu	•	nes R. P. S	narma, M.	L. Mathu	Jr
	4. I. C. Eng	ines P. W. Gill, Sn	hith, Zury				

	Department of Mechanical Engineering							
Course	Title of the	Program Core Total Number of cor		ntact hours	Credit			
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
MES 553	CAD/CAM	PCR	0	0	3	3	1.5	
	Laboratory							
Pre-requis	ites	Course Assessme	ent metho	ds (Continuo	ous (CT) an	d end		
		assessment (EA))						
MEC 401		CT+EA						
Course	CO1: Able to le	arn geometric moo	delling usin	g CAD tools				
Outcomes	CO2: Able to us	e MATLAB for solv	ing compu	ter graphics	s problem a	and engir	neering	
	analysis	problem						
	CO3: Exposed to CNC part programming							
Topics	Solid Modeling	Solid Modeling using software packages						
Covered	Graphics progra	Graphics programming using MATLAB						
	CNC part progra	CNC part programming for Tool path generation & verification using CAM software						
CNC part programming for Tool path generation & verification using CAM software								

Text Books,	Text Books:	
and/or	1. Mastering CAD/CAM by I.Zeid	
reference	2. Getting started with MATLAB by Rudra Pratap	
material	Reference Books:	
	1. Computer Graphics by Roy A Plastock	

	De	partment of Mech	anical Engi	neering			
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
WSS 581	Workshop	PCR	0	0	3	3	1.5
	Practice II						
Pre-requis	ites	Course Assessme	ent metho	ds (Continuc	ous (CT) an	d end	
		assessment (EA))				
		CT+EA					
Course		practice on Found	•				
Outcomes		practice on differe	-	nufacturing	in machine	shop	
		practice on Patter	-				
		practice on weldin					
Topics	Machine shop		-	(6=18hrs.			
Covered		ism and function o	f different	parts of ma	chine tool.		
		ng operations:					
		ng of shaft and knu	Irling by lat	he.			
		cutting by lathe.					
		rning by lathe.					
		ng of gear blank by					
		of Square Bar by sh	•				
		ng of surface by sh					
		ar cutting by milling		• •			
		tion of two and the		C m/cs.			
	=	ion of 'G' and 'M' (
		tion to non-conver		-			
	Welding shop			(2= 6hrs.	CRANK .		
		joints- square butt	joint & I-f	illet joint by	SIVIAW WI	th mild s	teel
	flat.	alastradas and sa	ding system	ne of alastro	dac		
		electrodes and co		ns of electro	baes.		
	• Types and functions of flux.						
	Positions of welding, polarity in						
	Pattern shop	ion of woodon inst		(2= 6hrs.			
	=	ion of wooden pat					
		pattern, pattern a					
	Layout a	nd design of patte	ni making.				

	Foundry	3X2= 6hrs.			
	 Preparation of s 	and mould using Solid/Split Pattern.			
	 Aluminium casting using the prepared mould. 				
	 Determination of properties of Green Moulding Sand using Sand Testing 				
	Equipments.				
	Viva voce	1X3= 3hrs.			
Text Books,	Text Books: Reference	e Books:			
and/or	1. Manufacturing S	cience A. Ghosh, A.K.Mallik			
reference	2. Principles of Fou	indry Technology P.L.Jain			
material					

		<u>SIXTH SE</u>	MESTER	<u> </u>						
	De	partment of Mech	anical Engi	neering						
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours	5	Credit			
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
HSC 631	Principles of	PCR	2	1	0	3	3			
	Economics									
Pre-requis	ites	Course Assessme	ent metho	ds (Continue	ous (CT) an	d end				
		assessment (EA))							
MEC 304 Engineering		CT+EA								
Thermody	namics, MEC 403									
Heat and I	Mass Transfer									
Course		v basic economic pr								
Outcomes	CO2: To introd	uce students basic	capital app	oraisal meth	ods used f	or carryir	ng out			
		nalysis of different		-	• · ·					
		te the students on								
		a typical manufact			neering pro	oject or s	ervice,			
	with a view	to determining the	price offe	r.						
Topics	Group A: Micro									
Covered	Economics: Bas	ic Concepts 3								
	Theory of Cons	Theory of Consumer Behaviour 3								
	Theory of Produ	Theory of Production, Cost and Firms 3								
	Analyses of Ma	Analyses of Market Structures: Perfect								
	Competition 3	Competition 3								
	Monopoly Mar	onopoly Market 3								
	General Equilib									
	Welfare Econor									
	Group B: Macro									
		Macroeconomic T	heory 3							
		National Income Accounting 3								
		Determination of Equilibrium Level of								
	Income 3									
	Money, Interes	t and Income 3								
	Inflation 3	-								
	Unemployment	: 3								
	Multiplier 3									
Text Book	·	licroeconomics								
and/or	,	annis: Modern Mic		ics						
reference		and Miller: Microe								
material	=	3. AnindyaSen: Microeconomics: Theory and Applications								
		4. Pindyck&Rubenfeld: Microeconomics								
	•	licroeconomics								
		anson: Macroecon		•		d)				
		nkiw: Macroecono			S					
		h and Fisher: Macr		-						
	4. Soumver	nSikder: Principles	of Macroed	conomics						

SIXTH SEMESTER

	De	partment of Mech	anical Engi	neering					
Course	Title of the	Program Core		mber of cor	ntact hours	5	Credit		
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
MEC601	Power Plant	PCR	2	1	0	3	3		
	Engineering								
Pre-requis	ites	Course Assessme		ds (Continuo	ous (CT) an	id end			
		assessment (EA))						
	ngineering	CT+EA							
	namics, MEC 403 ⁄Iass Transfer								
Course		l of power productio	n						
Outcomes		of some power plar		auinment's					
Outcomes	002 5000 0		it related t	quipinent	,				
Topics	Primary and Sec	condary sources of	energy, Gl	obal trend f	or per cap	ita consu	mption		
Covered		nand of energy a					-		
	developments i	n renovation of en	ergy source	es. 2					
	Analysis of st	eam cycles: Ste	am powe	er plant o	outline, ef	ffect of	steam		
		condition on thermal efficiency, regenerative feed heating, feed water heater							
	optimum degree of regeneration, deaerator, co-generation of power and proce						process		
	heat 9								
		ustion: Coal- rank	ing and an	alysis, fuel	oil, natura	I and pet	roleum		
	gas, Combustion Combustion		firing	mothods	Euol bo	d com	ustion		
		quipment's and firing methods: Fuel bed combustion, firing, Cyclone furnace, fluidized bed combustion-CFB and BFB,							
	Coal gasifiers 7	r ming, cyclone n			combastic				
	-	or: High pressure	boilers,	Subcritical	and Supe	rcritical	boilers,		
	-	economizer, Supe							
	systems - FD, I	D and balanced c	lraught, ca	lculation o	f fan pow	er. Circ	ulation-		
	natural and For	ced, circulation rat	io, Perform	nance rating	g of boilers	. 8			
	-	ozzles and diffuse	ers, Shocks	s, Super-sat	uration of	steam t	through		
	nozzle Flow. 3								
		s: Machines wo	-	-		-	-		
	-	, Velocity triangle		•		y and p	ressure		
Toyt Books		itage and overall e	mciencies,	Degree of r	eaction.8				
Text Books and/or	,	1. Power Plant Engineering-P.K.Nag							
reference									
material		3. A Course in Power Plant Engineering- S. Domkundwar, S.C. Arora							
	Reference Boo		- 0 5		,	-			
	1. Power Plan	t Engineering- F.T.	Morse						
	2. Steam Turb	2. Steam Turbine Design and Practice- Kareton							
	3. Power Plan	t Engineering- Blac	k and Veat	ch					

	Department of Mechanical Engineering										
Course	Title of the	Program Core	Total Nu		Credit						
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives (PEL)	(L)	(T)	(P)	Hours					
MEC 602	Industrial	PCR	3	3	3						
	Engineering and										
	Measurement										
Pre-requis	ites	Course Assessment methods (Continuous (CT) and end									
		assessment (EA))									
Basic knov	vledge of	CT+EA									
Engineerin	g Mechanics										
Course	CO1: Knowledge	e on the structures	of Engine	ering Organi	ization in g	eneral.					
Outcomes	s CO2: Planning of manning and production line.										
	CO3: Ability for	CO3: Ability for material management.									
	CO4: Indian star	CO4: Indian standards of measurement.									
	CO5: Technique	CO5: Techniques of engineering measurements with its application.									

Topics Covered	Organization Structure: Classical principles, Different types of organization structure- Line, Staff, Line and staff, Committee organization, Case study.					
	Plant Location: Factors affecting plant location, Plant location theories- material index theory, location factor theory, Dimensional decision making model, Force analogy method, Specific site selection. 4					
	Plant layout: Different types of layout, Various flow patterns, Factory building construction, Travel chart. 2					
	Job evaluation, Merit rating and Wage incentive schemes: Methods of job evaluation- Ranking method, Classification method, Point method, Factor comparison method. Merit rating- Point rating scale, Employee comparison system. Different wage incentive schemes. 4					
	Work study: Operation process chart, Flow process chart, Flow diagram, String diagram, Multiple activity chart- Man-machine chart, Man-machine-helper chart, Left hand-right hand chart, Motion study, SIMO study, Cycle graph and chronocycle graph, Performance rating, Stop watch time study. 4					
	Production, planning and control: Routing and scheduling, Assignment problems- 2 machines and n jobs, 3 machines and n jobs, m machines and n jobs, n machines and n jobs, Gantt chart. 4 Generalised measurement systems- Calibration, Sensitivity, Damping,					
	Characteristics of first order and second order systems, Dynamic response, Harmonic analysis. 5					
	Standardsoflinearmeasurements,Interferometricmeasurements.2Limit, Fit and Tolerances: Basis of a limit system, Unilateral and Bilateral systems.					
	2 Indian limit system IS 919:1993; Types of fits and selection of fits, IS 2709:1982 3					
	Dimension chain and Dimensional analysis, Design and use of limit gauges. 2 Error of flatness and straightness: Concept of mean true plane, Measurement of flatness error using Beam Comparator, Autocollimator and Precision Block Level. 3					
	Dynamometers for measuring 2-component and 3-component machining forces. 2					
	Surface roughness measurement. 3					
Text Books,	Text Books:					
and/or reference	 Industrial Engineering and Management Dr. Ravishankar Industrial Engineering and Production Management M. Mahajan 					
material	 A Text book of Engineering Metrology I.C.Gupta 					
	4. Engineering Dimentional Metrology - L.Miller					
	Reference Books:					
	1. Management in Industry C.S.George					
	2. Engineering Tolerences H.W.Conway					

	D	epartment of Me	echanical E	Engineering	5						
Course	Title of the	Program	Total Nu	imber of co	ontact hours		Credit				
Code	course	Core (PCR) /	Lectur	Tutoria	Practica	Total					
		Electives	e (L)	I (T)	l (P)#	Hour					
		(PEL)				S					
MEE 610	Automobile	PEL	3	0	0	3	3				
	Engineering										
Pre-requisites		Course Assessment methods (Continuous (CT) and end									
		assessment (E	A))								
MEC 304, N	1EC403, MEC 502	CT+EA									
Course		ion and layouts		t vehicles							
Outcomes		types of Engines									
		types of clutch, ខ្									
		types of brakes,			-						
Topics		gine: Constructio	on, operati	on and ser	vice of auto	motive e	ngine.				
Covered		8									
	0,	Bearing, lubrication and cooling system.									
		Fuel and exhaust, emission control.									
	-	6									
	-	arting and charging system. Contact point and electronic ignition system. Other									
		th electrical and electronic devices. Engine trouble diagnosis and									
	tune up.										
	•	Automotive power train: Transmission and transaxles, gear train, differentials and									
		drive axles, drive lines and universal joints, clutches and brakes.									
	-	8 Automotive chassic Environment and succession system, stearing system, wheels and									
		Automotive chassis: Springs and suspension system, steering system, wheels and									
	-	tyres. 6									
	-										
	4	Automotive ventilation and air conditioning techniques.									
Text Books,		Books									
and/or		bile Engineering	K Singh								
reference		otive mechanics-	_		nglin						
material				,usc, D. L. F	<u></u> Б						
material		Suggested Reference Books: 1. Automotive mechanics J. Heitner									
	I. Aut	omotive metilal	1.1.61	ulei							

	De	partn	nent of Mech	anical Engi	neering					
Course	Title of the	Pro	gram Core	Total Nu	Credi					
Code	course	course (PCR) /		Lectur	Tutoria	Practical	Total	t		
		Ele	ctives (PEL)	e (L)	I (T)	(P) [#]	Hour			
							S			
MEE 611	Gas Dynamics	PEL		3	0	0	3	3		
	and Propulsion									
•	uid Mechanics) and			•	ontinuous ev	valuation	(CE)			
	nermodynamics)		and end ass	sessment (EA))					
NIL			CE+EA							
Course	CO1: To learn c	-			tant entrop	by only, with	n friction	only		
Outcomes			transfer only.							
	CO2: To learn N		al shock, oblic	que Shock a	and Prand	tl-Meyer Flo	w with re	eal life		
	applicatio									
CO3: To learn Performance analysis of Air Breathing Er (standard): Fan exhausted turbojet & Fan mixed										
					•		1 /			
	CO4: To learn P	-		Air Breathi	ng Engines (Solid Roo	cket			
		Motors and Liquid Rocket Engines).								
Topics	Part-I: Gas Dyna							-1		
Covered		Review of basic compressible flow e.g. sonic velocity, wave propagation. Flow								
		with Variable area duct without normal shock and with normal shock. Fanno								
	=	flow and Rayleigh flow. Solution of problems using gas table.7 Moving Normal shocks and Oblique shocks: Normal velocity superposition for								
	-			-		-				
	moving Norm			-		-	-			
	oblique shock 7	allal	ysis for perfe	ci gas, opi	ique shock	table and c	narts. Pr	oblems.		
	-	r flov	v: Isentronic	turn (pith	ner around	l evnansion	or comr	ression		
		Prandtl-Meyer flow: Isentropic turn (either around expansion or compression corner) from infinitesimal shocks. Mach waves. Prandtl-Meyer flow analysis								
	· · · · · ·	corner) from infinitesimal shocks, Mach waves, Prandtl-Meyer flow analysis, Prandtl-Meyer function, over-expanded and under-expanded pozzles, boundary								
	-	Prandtl-Meyer function, over-expanded and under-expanded nozzles, boundary conditions for flow direction and pressure, shock diamond, supersonic aerofoils								
		conditions for flow direction and pressure, shock diamond, supersonic aerofoils, Working of supersonic wind tunnel. 4								
	-	Correlation of Fanno flow, Rayleigh flow, and a normal shock 2								
		Part-II: JET PROPULSION								
		Air Breathing Engines: Derivation of generalized equation/ expressions for								
	-	thrust, propulsion efficiency, thermal efficiency and overall efficiency. Relation								
		between them, TSFC(Thrust specific fuel consumption); stoichiometry ,								
	equivalence r		•	•		•		•		
	chemical equ				•	•				
	constant pres									
	and its stoichi		•			•		-		
	Performance	analy	sis of the foll	owing:		-				

	 (a) Ramjet, (b) Turbojet (standard): Fan exhausted turbojet & Fan mixed turbojet (c) Turbo prop. Effect of after burner on all the above. Related problems 12 Non-air breathing engines: Performance of Rocket vehicles such as Thrust, specific Impulse (I_{sp}), vehicle acceleration, burning time. Type of chemical Rockets: Solid Rocket Motors and Liquid Rocket Engines. Elementary theory and performance characteristics of both types of chemical rockets. Related problems.10 					
Text Books, and/or reference material	 Text Books: Fundamentals of gas dynamics -R.D. Zucker & Oscar Biblarz. Mechanics and thermodynamics of propulsion: P. G. Hill & C.R. Peterson. Reference Books: The Dynamics and Thermodynamics of Compressible Fluid Flow by A. H. Shapiro. 					
	2. Aircraft Propulsion : V. Babu					

	De	partment of Mech	anical Engi	neering							
Course	Title of the	Program Core	Total Nu	mber of co	ontact hours		Credi				
Code	course	(PCR) /	Lectur	Tutoria	Practical	Total	t				
		Electives (PEL)	e (L)	I (T)	(P)	Hour					
						S					
MEE 612	Mechanics of	PEL	3	0	0	3	3				
	Forming and										
	Press Working										
Pre-requisit	es	Course Assessme	ent metho	ds (Continu	ious (CT) an	d end					
		assessment (EA))									
MEC 402		CT+EA									
Course	CO1: Detaile	ed and in depth an	alysis of th	e forming	processes.						
Outcomes	CO2: Specia	lized techniques in	i forming p	racticed in	industry.						
Topics	Module 1:										
Covered	Stress-strain re	lationship:true str	ess true s	train, elast	ticity, anela	sticity, pl	asticity,				
	work hardening	, work done or st	rain energ	y. Comple	x Stress Sys	stem, cor	ncept of				
		num shearing stre	•		•		ensional				
		nd Mohr's circle for	-								
		tion and Yield Cri									
		's maximum shear									
	energy theory, relation between tensile yield stress and shear yield stress, yielding										
		in Graphical repre									
		ging: processes and its classification- drop forging and press forging, open die,									
	impression die, closed die and precision forging processes. Grain flow in a forged										
	product. Forging die materials, lubrication, forging defects, forgeability of metals,										
		die-manufacturing methods. Analysis of forging load: Low friction or sliding friction									
		condition (as in cold forming); high friction condition; and, combined slipping and									
	sticking friction	sticking friction condition.									

	Rolling: strip rolling- recrystallization and process details, conditions for biting, role of friction in rolling. Rolling mills, ring rolling, gear and thread rolling, various rolled sections, defects in rolled products. Determination of roll pressure: pressure distribution in rolling, determination of neutral point, front tension and back tension, force and power calculation. Roll deflections and roll flattening, spreading, methods of reduction of rolling force, roll materials, various rolled sections. Drawing: drawing terms and their definitions, circular drawing die, drawing of wire and rod (homogeneous deformation), maximum possible reduction in a single pass, analysis of strip drawing, calculation of force and power. Extrusion: processes- direct and indirect extrusion, impact and hydrostatic
	extrusion, metal extrusion practice, metal flow during extrusion.
	Module 2:
	Sheet metal forming: characteristics; parameters affecting sheet metal forming
	process such as, yield point elongation, anisotropy, grain size, residual stresses,
	spring back, wrinkling, coated sheet. 1
	Shearing, punching and blanking: punch force; shearing operations like, die cutting,
	fine blanking, slitting, steel rules, nibbling; Shearing dies: Punch and die shapes, compound dies, progressive dies, transfer dies, tool and die materials. 5
	Bending of sheets and plates: minimum bend radius, factors affecting bendability,
	spring back, compensation for spring back, common bending operations. 3
	Deep drawing: Characteristics of deep drawing, formability of sheet metal, design considerations
	Miscellaneous forming processes: stretch forming, bulging, hydroforming, various
	spinning operations. 3
	High energy rate forming: Explosive forming, electrohydraulic forming, magnetic
	pulse forming, superplastic forming etc. 3
Text Books,	Text Books:
and/or	1. Manufacturing Processes for Engg. Materials - Kalpakjian
reference	Production Technology (vol I & II)—R. K. Jain and S.C. Gupta
material	3. Manufacturing Processes: H. S. Shan, Vol. 1
	4. A textbook of Production Engineering – P. C. Sharma
	Reference Books:
	1) Manufacturing Science A. Ghosh, A.K.Mallik

		Department of Mech	anical Engi	ineering			
Course	Title of the	Program Core	Total Nu	imber of co	ontact hours	5	Credi
Code	course	(PCR) /	Lectur	Tutori	Practical	Total	t
		Electives (PEL)	e (L)	al (T)	(P)	Hour	
						S	
MEE 613	Advanced	PEL	3	0	0	3	3
	Solids						
	Mechanics						
Pre-requisi	tes	Course Assessm	ent metho	ds (Contin	uous (CT) an	id end	
assessment ()				

MEC301 (Strer	ngth of CT+EA
Material)	
Course	CO1: Three dimensional stress and strain analysis.
Outcomes	CO2: Development of solution procedures using energy method
	CO3: Analysis of non-circular shafts and thick cylinders.
Topics	Mathematical preliminaries: Vector, Matrix, Index notation. 4
Covered	Analysis of stress: Three dimensional state of stresses, Equation of equilibrium in
	cartesian and cylindrical coordinate system and equality of cross shear, plane
	state of stress, Principal stresses, Stress Invariants, Mohr's circles, Mohr's
	stress plane, Octahedral stresses. 10
	Analysis of strain: State of strain, Green-Lagrange and infinitesimal strain in
	cartesian and cylindrical coordinate system, Principal strain, Compatibility
	conditions, Airy's stress function. 10
	Energy methods: Elastic strain-energy for axial force, shear force, bending
	moment and torque, Theorem of virtual work and its application to derive governing equation of beam, Castigliano's theorems. 10
	Torsion of non-circular bar: Torsion of circular and elliptical bars, Torsion of
	rectangular bars. 8
	Thick cylinders: Axisymmetric problems, Thick cylinder subjected to internal
	and external pressure, Composite cylinder. 6
Text Books,	Suggested Text Books:
and/or	1. Theory of elasticity By Timoshenko and Goodier (Mc Graw Hill)
reference	2. Advanced Mechanics of Solids by L. S. Srinath
material	Suggested Reference Books:
	3. Elasticity theory, applications and numerics by M. H. Sadd (Academic Press)
	4. Advanced mechanics of solids By O. T. Bruhns (Springer)
	5. A treaties on the mathematical theory of elasticity A. E. H. Love (Dover
	Publications)

	De	partment of Mech	anical Engi	ineering				
Course	Title of the	Program Core	Program Core Total Number of contact hours Cred					
Code	course	(PCR) /	Lectur	Tutori	Practical	Total	t	
		Electives (PEL)	e (L)	al (T)	(P)	Hour		
						S		
MEE 614	Advanced	PEL	3	0	0	3	3	
	Machining and							
	CNC Machine							
	Tools							
Pre-requisit	es	Course Assessme	ent methods (Continuous (CT) and end					
		assessment (EA)	assessment (EA))					
MEC 402	CT+EA							

	g					
Introduction: Characteristics and development of tool materials, cutting tool						
inserts and its geometry, cutting fluids 3						
Mechanics of Metal Cutting, Shear angle relationships and Lee and Shaffer's						
Theory, Work hardening and Chip breakers. 3						
Stress distribution on rake face of the tool	1					
Thermal aspects of machining. 2						
Mechanisms of tool wear, Surface Finish and Effects of cutting parameters and						
tool geometry on tool life. 4						
Economics of machining.	1					
Drilling: Geometry of drilling tools and mechanics of drilling. 3						
Milling: Geometry of milling tools and mechanics of plain milling	4					
Module 2 : CNC Machine Tools 21						
CNC machine tools, constructional features,	2					
Drives and controls, stepper motors, servo motors, hydraulic systems, 4						
Feed back devices, 1						
Counting devices, 1						
	ues					
2						
CNC part programming, post processors. 5						
4. COMPUTER AIGEN MANUACTING A RAD. N TEWALT. T.N. KUNDLA						
Reference Books:						
	Mechanics of Metal Cutting, Shear angle relationships and Lee and Shaffer's Theory, Work hardening and Chip breakers.3Stress distribution on rake face of the toolThermal aspects of machining.2Mechanisms of tool wear, Surface Finish and Effects of cutting parameters and tool geometry on tool life.4Economics of machining.0Drilling: Geometry of drilling tools and mechanics of drilling.3Milling: Geometry of milling tools and mechanics of plain milling3Module 2 : CNC Machine Tools 212CNC machine tools, constructional features, Drives and controls, stepper motors, servo motors, hydraulic systems, 14Feed back devices, Counting devices, 11Interpolators- linear, circular interpolation and other emerging techniq 25					

Course	Title of the	partment of Mech Program Core	Total Number of contact hours Cr						
Code	course	(PCR) /	Lectur	Tutori	Practical	Total	t		
couc	course	Electives (PEL)	e (L)	al (T)	(P)	Hour			
MEE 615	Operations Research	PEL	3	0	0	3	3		
Pre-requisit	es	Course Assessm assessment (EA)		ds (Contin	uous (CT) an	id end			
NIL		CT+EA							
Course	CO1: Students	will be able to c	liscuss the	history, o	concepts, fo	ormulatio	ons an		
Outcomes		ns of operations re							
		s will be able t							
		ed linear optimiz	ation pro	blems ha	iving single	e and i	multipl		
	objectives						<i>.</i>		
		will be able to appl	y integer, c	iynamic pr	ogramming	method	s for		
Tanian		evant problems.		d					
Topics Covered		n, definition, metho mming, Mathema	• ·	••		and of S	alutio		
Covereu	•	0,		ening, Gra	pilical meti		olutio		
	Sensitivity Analysis. 8 Simplex Method, Big M and 2-Phase Methods, Duality in LP. 7								
	Transportation problem. 3								
		Assignment Problem 3							
	-	Sequencing problem. 2							
	Queuing mod	Queuing model and Simulation. 3							
	Competitive D	ecision Making, Ga	ame Theor	y. 4					
		y and Sensitivity Ar							
	0 0	Integer Programming, Binary Integer Programming. 4							
	Dynamic Prog	ramming. 3							
Text Books,	Text Books:			.					
and/or		Fredrick S. and Lie		Gerald J.,	Introduction	n to Ope	eratior		
reference		h, 7th Edition, TMI	•	noration	Docoarch fo	r Enging	orc 2		
material		K., Pal, D. K., Ba		•		i ciigiile	ers, z		
	Edition, Oxford & IBH Publishing Co. Pvt. Ltd., 1998 3. Taha, H. A., Operation Research, McMillan Publishing Co., London, 1982.								
		Reference Books:							
		1. Churchman, C. M., Ackoff, R. L., Arnoff, E.L., Introduction to Operation							
		Research, Asia Publishing o., 1962							
	2. Hanssm	ann, F., Operation	s Research	in Produc	tion and In	ventory	Contro		
		ley & Sons, Inc., Lo	ndon 106	`					

	De	partment of Mech	anical Engi	ineering				
Course	Title of the	Program Core	Total Nu	imber of c	ontact hours	5	Credi	
Code	course	(PCR) / Electives (PEL)	Lectur e (L)	Tutori al (T)	Practical (P)	Total Hour s	t	
MEE 616	Mechanical Equipment Design	PEL	3	0	0	3	3	
Pre-requisite		Course Assessm assessment (EA)		ds (Contin	uous (CT) an	d end		
MEC 401 - D Elements & Machine De		CT+EA						
Course Outcomes	procedur CO2: Ability to c CO3: Understan	 CO1: Exposure to various types of mechanical elements and their design procedure. CO2: Ability to design different mechanical systems independently. CO3: Understand the working of various types of drive systems. 						
Topics Covered	Chain Drive 4 Rope Drive 4 Spiral Bevel Gea CVT Mechanism Design of Pulley Design of Worm Cam Mechanism Disc Brakes 4	Rope Drive 4 Spiral Bevel Gear Drive 4 CVT Mechanism 4 Design of Pulley and Idlers 5 Design of Worm Gears 4 Cam Mechanisms 4 Disc Brakes 4 Selection of Single-Phase Induction Motors 3						
Text Books, and/or reference material	USA, 1973. 2. 2. Phelan R. Reference Boo 1. Burr, Arthu Prentice Ha	dams, Machine D M., Fundamentals ks: r H., and Cheath I, USA,1995 , Machine Design	of Mechai am, John	nical Desig B., Mech	n, TMH, 201 anical Analy	.5.		

Department of Mechanical Engineering								
Course	Title of the	Program Core	Total Nu	imber of co	ontact hours	5	Credi	
Code	course	(PCR) / Electives (PEL)	Lectur e (L)	Tutori al (T)	Practical (P)	Total Hour s	t	
MEE 620	Advanced Foundry Engineering	PEL	3	0	0	3	3	

77 | Page

Pre-requisites		Course Assessment methods (Continuous (CT) and end assessment (EA))		
MEC402 (Cast and Welding)	ting, Forming	CT+EA		
Course Outcomes	 CO1 At the end of the course student will be able to get the knowle about various aspects of casting processes and the underlying scien CO2 : various types of casting methods CO3 : Application fields of various casting processes 			
Topics Covered	Casting Process mould casting making materia Solidification of short and long microstructure. Sand Casting I measurement. Investment cas gravity flow-pre casting, semisol Family of cast in Casting defects testing of castin ultrasonic testin	 classification, characteristics of sand casting processes, metal process, Pattern materials, types of patterns, Mould and core Is and their characteristics. (12) metals: Nucleation and grain growth, solidification of pure metals, freezing range alloys, Rate of solidification, macrostructure and Solidification Contraction, Grain refinement (6) Design: Gating and risering design calculations, Fluidity and its (6) ting, shell moulding, squeeze casting, vacuum casting, counteressure casting, Directional and monocrystal solidification, squeeze id metal casting, rheocasting. (8) on – Ductile Iron, Malleable Cast Iron, (3) inspection and testing, analysis of casting defects, nondestructive ng- dye penetrant testing, magnetic flaw detection, radiography, ng, etc. (4) e casting processes, Modern foundry practices and special casting 		
Text Books, and/or reference material	Text Books: 1. John Campbe 2. Scrope Kalpa Materials",Add 3. P.C. Mukherj 4. Beely, Found Reference Boo 1. Casting prop	ell, "Casting Practice" Elsevier Science Publishing Co.,2004 Ikjian, "Manufacturing processes for Engineering ision, Wesley, 1997. jee, Fundamentals of metal casting technology - Oxford and IBH Iry Technology, Newnes-Butterworths, 1979		

	Department of Mechanical Engineering							
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit	
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
MEE 621	Mechanics of	PEL	3	0	0	3	3	
	Composite and							
	Functionally							
	Graded							
	Materials							
Pre-requisit	es	Course Assessme	ent metho	ds (Continuo	ous (CT) an	d end		
		assessment (EA))					

78 | Page

Engineering Mechanics, Strength of Materials		CT+EA				
Course		pt of orthotropic materials				
Outcomes	CO2:Analysis of composite structures					
	CO3:Conce	•				
Topics	•	rious reinforcement and matrix materials. 3				
Covered		notropic, transversely isotropic material, stress-strain relation for				
	-	transversely isotropic material. Engineering constants for these				
	materials. Trans	formation of stress and strain. 8				
	Micromechanic	al behavior of lamina. 6				
	Macro mechanical behavior of lamina, Classical lamination theory, Laminate					
	stiffness of a few cases, Stress strain variation in a laminate. 8					
	Equation of equilibrium for laminated plates for bending, Solution technique for					
	bending of simply supported laminated plates under uniformly distribute					
	transverse load	. 8				
	Failure criterion	of composites. 4				
	Introduction to	FGM. 5				
Text Books,	Text Books:					
and/or	1. Mechanics of	of composite materials By R. M. Jones (Taylor and Francis)				
reference	2. Engineering	g mechanics of composite materials By I. M. Daniel , O. Ishai				
material	(OxfordUniv	versity Press)				
	Reference Boo	ks:				
	1. Mechanics o	f laminated composites plates and shells By J. N. Reddy (CRC Press)				
	2. The behavio	r of structures composed of composite materials By Jack R. Vinson				
	and Robert	L. Sierakowski				

Department of Mechanical Engineering								
Course	Title of the	Program Core	Program Core Total Number of contact hours Credit					
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
MEE 622	Engineering	PEL	3	0	0	3	3	
	Optimization							
Pre-requisit	es	Course Assessme	nent methods (Continuous (CT) and end					
		assessment (EA))					
NIL		CT+EA						
	CO1: Students v	vill be able to desc	ribe and fo	rmulate op	timization	problem	S	
Course	CO2: Students v	vill be able to apply	y knowledg	ge of differe	nt optimiza	ation me	thods	
Outcomes	for solving	engineering probl	ems					
	CO3: Students v	vill be able to diffe	rentiate be	etween opti	mization m	ethods a	and	
	suggest a s	suitable technique	applicable	for a specif	ic problem	•		

Topics	Introduction: Engineering Application, Statement and Classification of the					
Covered	Optimization Problem, Classification, formulation procedures. 4					
	Classical Methods: Single Variable Optimization; Multivariable Optimization					
	without any Constraints with Equality and Inequality Constraints, Kuhn–Tucker					
	Conditions; Linear Optimization Methods, One-Dimensional Minimization Method.					
	Unimodal Function. 6					
	Elimination Methods: Exhaustive search, Fibonocci and Golden Method. 3					
	Interpolation Method – Quadratic and Cubic Interpolation Method. 2					
	Unconstrained Minimization Method Univariate, Conjugate Directions, Steepest					
	Descent (Cauchy) Method, Newton's Method, Marguardt Method, Quasi-Newton					
	Method. 6					
	Constrained Minimization Method, Random Search Methods, Sequential					
	Quadratic Programming. Basic Approach of the Penalty Function Method, Interior					
	Penalty Function Method, Exterior Penalty Function Method. 5					
	Non-traditional Optimization Techniques - Genetic Algorithms. Simulated					
	annealing. Particle swarm optimization. Ant Colony Optimization. Tabu search. 11					
	Reduction of size of an optimization problem. Scaling of design variables and					
	constraints. 3					
	Introduction to optimization Toolbox in MATLAB. 2					
Text Books,	Text Books:					
and/or	1. S.S. Rao, Engineering Optimization, Theory and Practics, 3rd Enlarged Edition,					
reference	New Age International Publishers, New Delhi, 2010.					
material	2. Ashok D. Belegundu and Tirupathi R Chandrupatla, Optimization Concepts and					
	Applications in Engineering, Pearson Education 1999, First India Reprint, 2002.					
	Reference Books:					
	1. G. N. Vanderplaats, Numerical Optimization Techniques for Engineering Design					
	with Applications, McGraw-Hill, New York, 1984.					
	2. R. L. Fox, Optimization Methods for Engineering Design, Addison- Wesley,					
	Reading, Mass, 1971.					

Department of Mechanical Engineering							
Course	Title of the	Program Core	Program Core Total Number of contact hours Credi				Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
MEE 623	Multi Phase	PEL 3 0 0 3					3
	Flow and Heat						
	Transfer						
Pre-requisit	es	Course Assessme	ent metho	ds (Continuo	ous (CT) an	d end	
assessment (EA)))					
MEC303, M	MEC303, MEC403 CT+EA						

Course	CO1: Leads students toward a clear understanding and firm grasp of the basic						
Outcomes	principles of multi phase flow and heat transfer.						
	CO2: Understands the fluid-dynamic involved in convection and multi-phase heat transfer.						
	CO3: Performs elementary analysis of most gas-liquid two-phase systems and						
	prepares to use more advanced models.						
	CO4: Equips the student with the analytical model to apply the fundamentals to a						
	wide variety of complex engineering problems, formulate them and interpret						
	the results.						
	CO5: Student can analyze Hydrodynamics of three phase flows and compare two						
	phase flow situations.						
Topics	Introduction, Flow Regimes, 5						
Covered	Homogeneous Flow, Separated Flow 4						
	Condensation,2						
	One dimensional steady separated flow model,6						
	Flow in which inertia effects dominate, energy equations,3						
	The separated flow model for stratified and annular flow,2						
	General theory of drift flux model,3						
	Application of drift flux model to bubbly and slug flow, 4						
	Hydrodynamics of solid-liquid and gas-solid flow,4						
	An introduction to three phase flow,3						
	Fluid-Population Balance Technique, Volume of Fluid Method, Lattice Boltzmann						
	Model.6						
Text Books,	Text Books:						
and/or	1. Ghiaasiaan, S. M., Two-Phase flow, Boiling, and Condensation, Cambridge						
reference	University Press.						
material	2. Brennen, C.E., Fundamentals of Multiphase Flow, Cambridge University						
	Press						
	Collier, J. G. and Thome, J. R., Convective Boiling and Condensation, 3rd						
	ed., Oxford University Press						
	 Wallis, G.B., One Dimensional Two Phase Flow, McGraw Hill Higher Education. 						
	5. Govier, G.W., and Aziz, k., Flow of Complex Mixtures.						
	6. Hetsroni, G., Handbook of Multiphase systems.						

	Department of Mechanical Engineering							
Course	Title of the	Program Core	Program Core Total Number of contact hours					
Code	course	(PCR) /	CR) / Lecture Tutorial Practical Total					
		Electives (PEL)	L) (L) (T) (P) Hours					
MEE 624	Tribology	PEL	3	0	0	3	3	
Pre-requisit	Pre-requisites Course Assessme assessment (EA)			ds (Continuc	ous (CT) an	d end		
MEC 301, MEC 502, MEC 504 CT+EA		CT+EA						

Course	CO1: To learn the basic knowledge of surface topography and contact between
Outcomes	engineering surfaces.
Outcomes	CO2: To learn the basic theory and application of friction and wear for different materials
	CO3: To learn about lubricants and lubrication for different bearings
	CO4: Introduced to Bio-tribology of human joints
	CO5: Introduced to Micro-tribology for MEMS applications
Topics Covered	Surface topography: Measurement of surface topography; Quantifying surface roughness; The topography of engineering surfaces. 3
covered	Contact between surfaces: Hertzian contact – sphere on sphere contact and
	cylinder on cylinder contact; Contact between rough surfaces. 6
	Friction and Wear of contact surfaces: Laws and Theories of friction and wear;
	Friction and Wear of different materials; Application to friction materials.
	12
	Lubricant and lubrication: Viscosity of lubricants; Composition and properties of oils and greases; Reynolds equation; Type of lubrications - Hydrostatic lubrication, Hydrodynamic lubrication; Elasto hydrodynamic lubrication; Boundary lubrication, and application to bearings. 12
	Microtribology: Surface forces and adhesion; Atomic force microscopy (AFM);
	Friction, wear and lubrication on atomic level; Applications to MEMS 7
	Biotribology: Natural human joints; Structure and properties of articular cartilage;
	Mechanism of synovial lubrication: Mechanism of articular cartilage damage;
	Artificial joint replacements 8
Text Books,	Text Books:
and/or	1. Engineering Tribology, Dr. Prasanta Sahoo
reference	2. Introduction to Tribology of Bearings B.C.Majumder
material	3. Principles of Tribology J.Halling
	4. Basic Lubrication Theory, Alastair Cameron

	De	partment of Mech	anical Engi	neering				
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit	
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
MEE 625	Computer Aided	PEL	3	0	0	3	3	
	Design and							
	Manufacturing							
Pre-requisi	Pre-requisites Course Assessm			ds (Continuo	ous (CT) an	d end		
	assessment (EA)))				
Machine D	esign, Engineering	CT+EA						
Mathemat	ics, Machine Tool							
Course	CO1: Able to ur	nderstand scope ar	nd applicat	ion of CAD/	CAM tools	in indust	ry	
Outcomes	CO2: Able to le	arn geometric moo	delling and	computer g	raphics co	ncept in	CAD	
	tools							
	CO3: Able to ur	nderstand the diffe	erent desigi	n analysis ai	nd optimiza	ation too	ls in	
	CAD.							
	CO4: Able to ur	nderstand the fund	lamentals o	of Additive r	manufactu	ring, CNC	2	
	machine	tools, Part program	mming, FM	S etc.				

Topics	Introduction: Current trends in Design & Manufacturing, Fundamental concept of
Covered	CAD-CAM-CAE, Product Life-cycle, Overview of CAD-CAM system. 3
covered	Computer Graphics: Fundamentals of Geometric transformations, Graphics
	standards, CAD-CAM Data Exchange 4
	Geometric Modeling: Basics of Wire-frame entities, curve representation methods
	Surface entities, Solid modeling & concepts of B-rep and CSG representation
	scheme 5
	55555555555555555555555555555555555555
	Introduction to design optimization tools. 8
	Virtual Prototyping & Rapid Prototyping: Introduction to Virtual Prototyping and
	its applications in Mechanical Engineering, Principles & applications of Additive
	manufacturing technologies. 5
	Industrial Robotics: Classification, definition of industrial robot, Robot anatomy,
	Configuration of robots, Application of robot, Robotic end-effector, Robot
	programming language. 3
	CNC Machine tools & CNC Programming: Structure of CNC machine tool &
	functional units, Designation of axes, Drives & actuation systems, Feedback
	devices, Automatic tool changer, Part programming fundamentals, Computer
	Aided Part Programming, APT language structure, CAD interface. 7
	Group Technology: Part family, part classification and coding, benefits of group
	technology 3
	Introduction to FMS & CIM: Introduction to FMS, Components of FMS,
	Fundamentals of CAPP, Introduction to Computer Integrated Manufacturing. 4
Text Books,	Text Books:
and/or	1. CAD/CAM: Theory & Practice by I.Zeid
reference	2. CAD/CAM by P.N.Rao
material	3. Principles of Computer-Aided Design and Manufacturing by Farid Amirouche
	4. Computer Graphics by Roy A Plastock
	Reference Books:
	1. Mastering CAD/CAM by I.Zeid
	2. Robotics by Fu, Gonzalez, Lee
	3. Finite Element Method by J.N.Reddy

	D	epartment of Mech	anical Engi	neering				
Course	Title of the	Program Core Total Number of contact hours C				Credit		
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
MES 651	Engineering	PCR	0	0	3	3	1.5	
	Measurement							
	Laboratory							
Pre-requis	ites	Course Assessm	sessment methods (Continuous (CT) and end					
		assessment (EA)	assessment (EA))					
MEC 501		CT+EA						
Course	CO1: Work	orkshop and precision engineering measurement methods.						
Outcomes	CO2: Expos	CO2: Exposure to measuring instruments and their use.						

Topics	Use of different basic measuring instruments.
Covered	Measurement of external and internal radius.
	Measurement of external and internal taper.
	Measurement of bore diameter.
	Measurement of chordal gear tooth thickness.
	Measurement of angle of an angle plate.
	Measurement of diameters of a screw thread.
	Measurement of error of surface roughness using Talysurf.
	Measurement of different thread elements using optical projector.
	Measurement of composite error of gears using Roll Gear Tester.
Text Books,	Hands out for each experiment.
and/or	User manual for the instruments.
reference	
material	

	De	partment of Mech	anical Engi	neering				
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit	
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
MES 652	Power	PCR	0	0	3	3	1.5	
	Generation							
	Laboratory							
Pre-requis	Pre-requisites Course			ds (Continuc	ous (CT) an	d end		
	assessment (EA))							
MEC 304,	MEC 304, MEC 403, MEC 502 CT+EA							
Course	CO1: Experime	ntation of refrigera	ating syste	ms				
Outcomes	CO2: Experime	CO2: Experimentation on steam generators						
	CO3: Study of s	steam turbines						
	CO4: Test on di	-	-					
	•	ntation on steam r						
Topics	-	nd air-conditioning	-	=			-	
Covered	-	oncept of air condi	itioning. Ty	pes of air c	onditionin	g system	s and	
	their application							
	-	ors: Fundamental c	• • •	pes, applica	tion and pe	erforman	ce	
		eam for power gen						
		oncept and function	n of Turbin	es.				
	Study of-							
		fire tube and wate		er.				
	-	ding of fire tube bo						
	Construction of	vapour compression	on refrigera	ator unit.				

	Experiments on-						
	Determination of dryness fraction of steam.						
	Efficiency test of a boiler.						
	Performance test of diesel engine using mechanical type dynamometer under						
	variable speed conditions.						
	Determination of critical pressure ratio of a steam nozzle.						
	Effect of humidity and outside air temperature on cooling load of air conditioning						
	machine.						
	Determination of output and back-work ratio of a gas turbine unit under var						
	load condition.						
Text Books,	Text Books:						
and/or	1. Refrigeration and Air-conditioning W. F. Stoecker, J. W. Jones						
reference	2. Refrigeration and Air-conditioning C. P. Arora						
material	3. Power Plant Engineering P. K. Nag						
	4. Power Plant Engineering F. T. Morse						
	5. Steam Turbine Design and Practice Kaerton						
	Reference Books:						
	1. Jeffrey M Gordon, Kim Choon Ng, Cool Thermodynamics, Viva Books,						
	2008.						
	2. Refrigeration and Air-conditioning R. C. Jordon, G. B. Priester						
	3. Modern Air-conditioning, Heating and Ventilation W. H. Carrier, R. E.						
	Cherne						

Department of Mechanical Engineering								
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit	
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
MES 653	Machine Design	PCR	0	0	3	3	1.5	
	Sessional - I							
Pre-requisi	ites	Course Assessme	ent metho	ds (Continuc	ous (CT) an	d end		
		assessment (EA))					
MEC 401, MEC 503 CT+EA								
Course	CO1: Acquire	CO1: Acquire basic idea about making the design and production drawing for				on drawing for		
Outcomes	simple	simple and common mechanical assembly.						
	CO2: To unde	rstand the method	d of implen	nentation of	f engineeri	ng tolera	inces.	
	CO3: To ident	ify the importance	e of using tl	he standard	s and use o	of catalo	gues in	
	making	the design.						
Topics	Design and Dra	wing of Machine E	lements: C	otter joint,	Flexible Co	upling, S	crew	
Covered	Jack. (36)							
	Problems as ass	igned by the conce	erned teach	ner (6)				
Text Books	, Text Books:							
and/or	1. Design of Ma	achine Elements – '	V.B. Bhand	ari				
reference	2. Design of Ma	2. Design of Machine Elements – M.F. Spotts						
material	3. Design Data	Book – P.S.G. Colle	ege of Tech	nology, Coir	mbatore.			

Reference Books:

- 1. Mechanical Engineering Design J.E. Shigley
- 2. Fundamentals of Mechanical Design R.M. Phelan

		partment of Mech	-				-				
Course	Title of the	Program Core		mber of cor			Credit				
Code	course	(PCR) /	Lecture	Tutorial	Practical						
		Electives (PEL)	(L)	(T)	(P)	Hours	1.5				
MES 654	Manufacturing Laboratory	PCR	0 0 3 3								
Pre-requis	ites	Course Assessment methods (Continuous (CT) and end assessment (EA))									
WSS51, M	EC 402	CT+EA									
Course	CO1: Hands on	practice on differe	ent job mai	nufacturing	by milling	machine					
Outcomes	CO2: Understa	nding power trans					ine,				
	-	achine etc.									
		to grinding machin	-	•							
		to NC/CNC machir				ractice					
Topics		ice in nonconvention general features		<u> </u>		nicm of	nowo				
Covered	transmissions.	general leatures	s, parts a		is, ivieciia		powe				
covered		ns - straight tane	r and ecce	ntric turnin	g thread	cutting	drilling				
		Lathe operations - straight, taper and eccentric turning, thread cutting, drilling boring, profile turning, knurling.									
	•	Boring, profile turning, knurling. Horizontal and Vertical milling machine – Spindle drives and feed motion -									
		Milling cutters – indexing head – Simple, compound and differential indexing,									
	Shaping machir	Shaping machine – cutting motion and feed motion, slotting machine,									
	Grinding machi	ne – Cutting variat	oles - selec	tion of spee	ds, feeds a	and dept	h of cu				
		g fluids - Method	s of holdir	ng work. Gr	inding ma	chine –	Surfac				
	grinding										
	Unconventiona	•									
	•	NC/CNC machine.									
		Exercises:									
		Shaping and slotting Exercises -Flat and bevel surfaces, grooves, Slots, guide ways									
		key ways etc. Exercises in horizontal and -surface, slot, key way and gear milling Vertical milling machine. Grinding Exercises.									
	0	Non – traditional Machining,									
		NC/CNC Machining.									
Text Book	s, Text Books:										
and/or	1. Manufact	uring Processes for	Engg. Mat	erials - Kalp	akjian						
reference	2. Productio	n Technology (vol I	& II)—R. K	. Jain and S.	.C. Gupta						
material	3. A Course i	3. A Course in Workshop Technology (vol I & II) B.S.Raghuwanshi									
		Reference Books:									
		0 , ,									
	2. Principles of	of Foundry Technol	ogy P.L.Ja	ain							

SEVENTH SEMESTER

Course	Title of the	partment of M Program	_		ntact hours		Credit			
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total				
		/ Electives	(L)	(T)	(P)	Hours				
		(PEL)		. ,	· · /					
MSC731	PRINCIPLES OF	PCR	3	0	0	3	3			
	MANAGEMENT	PCN	5	0	0	5	5			
Pre-requisit	es	Course Asses	sment me	thods (Con	tinuous (CT)), mid-ter	m (MT)			
		and end asse	essment (E/	4))						
		CT+MT+EA								
Course	 CO1:To ma 	ake budding en	gineers aw	are of vario	ous manage	ment fun	ctions			
Outcomes		or any organiza								
		part knowledge		is tools and	techniques	applied l	by the			
		of an organiza		_						
		ake potential er	-		nagerial fun	ction so t	hat it			
		o for their profe								
		part knowledge	e on organ	izational ac	tivities opei	rational a	nd			
	0	oth in nature	<i></i>				1:1			
		part knowledg				-				
	decision so	, Finance, Beha	vioral scie	nce and Qu	antitative	ecnnique	s anu			
Topics	UNIT I: Manage		c and Ducir	acc Enviro	nmont: Ruci	inocc				
Covered	environment- n									
covered	Management fu						nent			
	Planning- Steps									
	BCG matrix in o	-				, -				
	UNIT II: Quanti	• • • •	technique	s used in m	anagement	t: Forecas	ting			
	techniques, Dec	cision analysis,	PERT & CP	M as contr	olling techn	ique (7)	-			
	UNIT III: Creatin	ng and deliverir	ng superior	customer	value:Basic	understar	nding of			
	marketing, Con	UNIT III: Creating and delivering superior customer value:Basic understanding of marketing, Consumer behavior-fundamentals, Segmentation, Targeting &								
	Positioning, Pro	Positioning, Product Life cycle. (8)								
	UNIT IV: Behav	ioral managem	ent of indiv	/idual: Mot	ivation, Lea	dership,				
	•	Perception, Learning. (8)								
	UNIT V: Finance		-		-					
	. .	organization, Preparation of Final Accounts, Analysis of Financial statements, Cost								
		Volume Profit (CVP) Analysis, An overview of financial market with special								
	reference to Inc									
Text Books,	Suggested Text		4 4 L - L -		1					
and/or		I Management			• ·	-				
reference		2. Marketing Management 15th Edition, Philip Kotler and Kelvin Keller								
material		Pearson India								
	-	 Management Principles, Processes and practice, first edition, Anil Bhat and Arya Kumar, Oxford Higher education 								
		a Kumar, Oxfor ational Behavi	-		tanhan n	Dabbias	Deeve			
							יחרכע			

Prentice hall India

5. Operations Management, 7th edition (Quality control, Forecasting), Buffa&Sarin, Willey

Suggested Reference Books:

Mapping of CO (Course Outcome) and PO (Programme Outcome):

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1									3	2	2	
CO2				2					2	2		
CO3				2					3	2		
CO4							1		3			
CO5				2					2	2	2	

	De	epartment of Me	echanical E	Ingineering			
Course	Title of the	Program	Total Nu	mber of co	ntact hours	5	Credit
Code	course	Core (PCR) /	Lectur	Tutoria	Practica	Total	
		Electives	e (L)	I (T)	l (P)#	Hour	
		(PEL)				S	
MEE 710	Finite Element	PEL	3	0	0	3	3
	Method						
Pre-requisit	es	Corse Assessn	nent meth	ods (Contin	iuous (CT) a	nd end a	issessment
		(EA))					
MEC 301 (So	olid Mechanics,)	CT+EA					
Basic Engine	-						
Mathematic	CS						
Course		n an understand	•				
Outcomes		op the ability to	-	-	ing FE equa	tions for	systems
	0	d by partial diffe					
		rstand the use o	f the basic	finite elen	nents for an	alysis of	bar, truss,
	beam et						
Topics		n Methods for	r solving	Differentia	al Equation	ns, weak	c form of
Covered	differential eq		_				
		nal FE formulati					
		n of truss and fra					
		ional FE form	nulation,	Plane str	ess/ plane	e strain	problem,
	Axisymmetric	•	.				
		n for bending of					
		of bar and bear		'I'			
	Concept of co	ntinuity and cor	ivergence	criteria. 4			

Text Books,	Text Books:
and/or	1. Text book of Finite Element Analysis by P. Sesu (PHI)
reference	2. Introduction to Finite Elements in Engineering by T. R. Chandrupatla, A. D.
material	Belegundu (Prentice- Hall)
	3. An Introduction to the Finite Element Method by J. N. Reddy (Tata McGraw Hill)
	Reference Books:
	1. Finite Element Procedures by K. J. Bathe (Prentice Hall)
	2. Finite Element analysis Theory and Programming by C. S. Krishnamoorthy (Tata
	McGraw Hill)
	3. Concepts and applications of finite element analysis by R. D. Cook, D. S. Malkus
	etc. (Wiley)

		De	epartment of Mech	nanical Eng	ineering					
Course	Tit	tle of the	Program Core	Total Nu	mber of cor	ntact hours	5	Credi		
Code	со	urse	(PCR) /	Lectur	Tutorial	Practic	Total	t		
			Electives (PEL)	e (L)	(T)	al (P)	Hours			
MEE711	Co	omputational	PEL	3	0	0	3	3		
	Flu	uid Dynamics								
	-	nd Heat								
		ansfer								
Pre-requis	sites	i i i i i i i i i i i i i i i i i i i	Course Assessme	ent metho	ds (Continuo	ous (CT) ar	id end			
)						
•		d Mechanics) &	CT+EA							
MEC304(1	Ther	modynamics)								
Course			o model a physical Fluid Mechanical and Heat Transfer problem							
Outcomes	S	•	ninar & Turbulent Flow) mathematically in terms of PDEs.							
			liscretization of the PDEs using Finite Difference and Finite Volume							
		Methods		_						
			R-K4 method to solve ODEs and Techniques to solve PDEs. to solve simple Heat transfer Problems and Viscous Incompressible							
			•				•	ssible		
			w problems using N		-	ecking the	same by			
			n using ANSYS-Flu							
Topics			quations of fluid fl							
Covered			um (NS-equation),	• ·						
			Inction- Vorticity n							
			ermal Boundary lay							
		<i>,</i> ,	s, Initial and Boundary value problems, some examples. Numerical							
			acobi Iteration, (2)Point Gauss Siedel iteration (3), Line Gauss Siedel pint Successive over / under relaxation method and (5) TDMA using							
		Thomas Algorith		i / unuer	9	ietiiou dii		A USING		
L					5					

Text Book and/or reference material	model and (c) A Numerical Simu Discretization to Finite Difference uniform and r Convergence a Discretization a Diffusion proble Finite volume Central differen schemes and Po Kinetics(QUICK) Numerical meth Runge-Kutta m (Blasius equatio function- Vortic solve Viscous in s, Text Books: 1. Pradip N Computa 2. H. K. Ver Fluid Dyn 3. P.S. Gho Reference Bool 1. Tannehi Mechan Patanka Delhi, 19 2. Blazek, Edition, 3. Chung, 2003.	nods for Viscous In ethods and its app on for flat plate) ity method, MAC compressible fluid eogy, S. K. Chakrak ational Fluid Dynan steeg. and W. Mal namics: The Finite shdastidar: Compu- shdastidar: Compu-shdastidar: Compu- shdastidar: Compu-shdastidar: Compu- shdastidar: Compu-shdastidar: Compu- shdastidar: Compu-shdastidar: Compu- shdastidar: Compu-shdastidar: Compu- shdastidar: Compu-shdastidar: Compu-shdastidar: Compu- shdastidar: Compu-shdastidar: Compu	ge eddy Si and conce ral, Forwar finite d g Matlab -Diffusion vativeness owind diffi Quadratic and Therr algorithm, flow. 14 porty and I nics; alasekera f Volume M tational Fl dtational Fl tational Fl fluid Dyna Fluid Dyna Technolog nal Fluid I manical Eng	mulation (Cepts). 5 rd and Back al errors a ifference s coding of k problems. Boundedrie erencing sci Upstream I ible Fluid Fle solve Viscou nal bounda SIPLE, SIM M. K. Laha: I An Introduc ethod. uid Dynamic d Pletcher, w Hill, 2002 insfer and F amics: Princ y, 2006. Dynamics, C ineering	concept or concept or	erencing for acy; Consi Grid gene dy and Un Transporti ybrid diffe on for Con 14 ry layer eq equations. PLEC and I on to omputation t Transfer. mputationa , Ane Boo Application University) Direct or both stency, eration, insteady veness, rencing vective uations Stream PISO to nal al Fluid ks-New ins, 2nd press,
Course	 Title of the	Program Core		mber of cor	tact hours	5	Credi
Code	course	(PCR) /	Lectur	Tutorial	Practic	Total	t
		Electives (PEL)	e (L)	(T)	al (P)	Hours	
MEE	Design and	PEL	3	0	0	3	3
712	Optimization of						
	Thermal Systems						
Pre-requis	sites	Course Assessme		ds (Continuc	ous (CT) ar	nd end	
		assessment (EA))					
MEC 304,	MEC 403, MEC 502	CT+EA					

Course	CO1: Latest methodologies for the design of thermal system
Outcomes	CO2: Use of economics, system simulation and optimization method for thermal
	system
	CO3: Will learn exergy analysis and its application for thermal system
	CO4: Use of thermo-ecological parameters to assess various thermal system
	CO5: Modeling of energy system
Topics	1. Introduction to Thermal System Design
Covered	Introduction, Life cycle design
covered	Thermal system design aspects
	Computer aided thermal system design
	2. Thermodynamics, Modelling, and Design Analysis
	Basic concepts and definition
	Control volume aspects
	Property relations
	Reacting mixtures and combustion
	Modelling and design of piping systems
	3. Thermodynamic Modelling of Polygeneration System
	Modelling of Power Generation
	Modelling of Cogeneration
	Modelling of Polygeneration
	4. Exergy Analysis
	Why exergy and energy analysis
	Balances for mass, energy and entropy
	Physical exergy, Chemical exergy
	Exergy for systems and flows
	Exergy balance
	Reference environment
	Applications
	5. Applications with Thermodynamics and Heat and Fluid Flow
	Heat transfer, Heat exchangers
	Trade-off between thermal and fluid flow irreversibility
	Application to power generation and refrigeration
	6. Economic Analysis
	Estimation of capital investment
	Principles of economic evaluation
	Cost of utility
	Profitability evaluation
	7. Thermoeconomic Analysis and Evaluation
Text Books,	Text Books:
and/or	1. Bejan A., Tsatsaronis G., Moran M.; Thermal design and optimization. Wiley.
reference	2. Jaluria Y., Design and optimization of thermal system. CRC Press.
material	3. Szargut J., Exergy method: Technical and ecological applications. WIT Press.
	4. Dincer I., Rosen MA., Exergy: Energy, environment and sustainable
	development. Elsevier.

	De	partment of Mech	anical Engi	ineering							
Course	Title of the	Program Core	Total Nu	imber of c	ontact hours	5	Credi				
Code	course	(PCR) / Electives (PEL)	Lectur e (L)	Tutori al (T)	Practical (P)	Total Hour s	t				
MEE 713	Non-	PEL	3	0	0	3	3				
	conventional										
	Machining										
Pre-requisit	es	Course Assessm	ent metho	ds (Contin	uous (CT) ar	id end					
		assessment (EA))								
MEC 402		CT+EA									
Course	CO1: Cuttin	g edge technology	for noncor	nventional	/ precision r	nachinin	g.				
Outcomes	CO2: Emerg	CO2: Emerging trend of metal removal process									
Topics	Introduction						1				
Covered	•	Principle; ECM Ma			•		•				
		applications; ECG-	0	• •							
	performances;	•	mitations	• •	plications;	Electroc	hemica				
	• •	e), Shaped Tube El		-							
		AJM, Water Jet Machining and Abrasive Water Jet Machining 8 USM: Working Principles, USM Machine Tool, Mechanics of cutting, Process									
	-					cutting,	Process				
	•	vantages, limitatio									
	-	Principles, Machin	e 1001, ľ	viechanish	n of mater	al remo	val and				
	surface modific		lachina Ta	al David	r Cupply D	iolootrio	Custom				
	-	Principles, EDM N /o-system, Pulse g					•				
	and Proces		-	Electrical	Discharg		rinding				
	4		LICS, L		Discharge	je u	mung				
	-	Working Principl	es FDM M	Machine T	ool Proces	s Variah	les and				
	Process Charact			videnine		5 Variab					
		n of LASERs, Worl	king Princir	oles of I BI	M. Types of	LASERs.	Process				
	characteristics,	Advantages	• .	itations	and		cations				
	3		,				cations				
	EBM: Production of Electron Beam, Working Principles of EBM, Focusing and										
	control of electron beam, Process characteristics, Advantages, Limitations and										
	Applications. 3										
		ining, Micro fabrica	ation and N	Aicromach	nining						
Text Books,		.			<u>v</u>						
and/or		ntional Machining	Process: V.	K. Jain							
reference		chining Processes									
	Reference Boo		•								
material	Reference boo	KS:									
material		кs: ring Science: Ghosł	h and malli	k							

Course	Title of the	Program Core	Total Nu	umber of co	ntact hours		Cre			
Code	course	(PCR) /	Lectur	Tutorial	Practica	Total	t			
		Electives	e (L)	(T)	l (P)	Hour				
		(PEL)	- ()	· · /	()	S				
MEE714	Advanced Welding		3	0	0	3	3			
	Technology									
Pre-requisi	tes	Course Assessment methods (Continuous (CT) and end								
		assessment (EA))								
MEC402 (C Welding)	asting, Forming and	CT+EA								
Course	• CO1 : To	o get the knowle	dge about	newly deve	eloped weld	ing proce	ess an			
Outcomes	its parar	neters								
		n various noncon		-						
		n various applica								
Topics	•	ition, requireme	nts, Condi	tions for ide	eal weld, Cla	assificatio	on of			
Covered	welding process	. ,	- ·		_					
	-	rc Initiation, Arc	•							
		outy Cycle, SMAW	v, GMAW,	GIAW, SA	N, ESW, EG	W, PAW,	AHW			
	(10)			ada Na si	a alations . El	- ام مطلقه				
		ctrode Classificat					امملا -			
	•	•	e of differe	ent element	s, Coating F	actor, se	electio			
		composition, Basicity Index, Role of different elements, Coating Factor, Selection of electrodes (3)								
			nbols	(5)						
	Weld design an Shielding Gases Weld Metallurg Distortion, Resid	d associated syn : Types, roles, fe gy: Zones in a we dual Stresses – th ding Processes –	atures, Se ld, HAZ an neir causes	d its calcula s, identifica	tion and rer	nedy (3)			
	Weld design an Shielding Gases Weld Metallurg Distortion, Resid Solid State weld Friction Stir We	d associated syn : Types, roles, fe gy: Zones in a we dual Stresses – th ding Processes –	atures, Se Id, HAZ an neir cause: Forge We	lection (1) d its calcula s, identifica lding, Cold	tion and rer Welding, Fri	nedy (3) iction We)			
	Weld design an Shielding Gases Weld Metallurg Distortion, Resid Solid State weld Friction Stir We Thermo- Chemi Radiant Energy	d associated syn : Types, roles, fe :y : Zones in a we dual Stresses – th ding Processes – lding (6)	atures, Se Id, HAZ an neir causes Forge We cesses – Tl s es – Elect	lection (1) d its calcula s, identifica lding, Cold hermite we	tion and rer Welding, Fri Iding, etc (nedy (3 iction We 3))			
	Weld design an Shielding Gases Weld Metallurg Distortion, Resid Solid State weld Friction Stir We Thermo- Chemi Radiant Energy Welding, Ultras	d associated syn s: Types, roles, fe gy: Zones in a we dual Stresses – th ding Processes – Iding (6) ical Welding Process	atures, Se Id, HAZ an heir causes Forge We cesses – Tl s es – Electa	lection (1) d its calcula s, identifica lding, Cold hermite we	tion and rer Welding, Fri Iding, etc (nedy (3 iction We 3))			
	Weld design an Shielding Gases Weld Metallurg Distortion, Resid Solid State weld Friction Stir We Thermo- Chemi Radiant Energy Welding, Ultras Welding at Mic Automation in	d associated syn Types, roles, fe Types, roles, fe Types, roles, fe Sy: Zones in a we dual Stresses – th ding Processes – Iding (6) ical Welding Process onic Welding (5 ro and Nano Sca	atures, Se Id, HAZ an heir causes Forge We cesses – Tl s es – Electa	lection (1) d its calcula s, identifica lding, Cold hermite we	tion and rer Welding, Fri Iding, etc (nedy (3 iction We 3))			
Text Books	Weld design an Shielding Gases Weld Metallurg Distortion, Resid Solid State weld Friction Stir We Thermo- Chemi Radiant Energy Welding, Ultras Welding at Mic Automation in	d associated syn Types, roles, fe Types, roles, roles, fe Types, roles, fe Types	atures, Se Id, HAZ an heir causes Forge We cesses – Tl ces – Elect 5) Ie (3) Ie (3)	lection (1) d its calcula s, identificat lding, Cold hermite we ron Beam V	tion and rer Welding, Fri Iding, etc (Velding, Las	nedy (3 iction We 3) er Beam) elding			
Text Books and/or reference material	Weld design an Shielding Gases Weld Metallurg Distortion, Resid Solid State weld Friction Stir We Thermo- Chemi Radiant Energy Welding, Ultras Welding at Mic Automation in Text Books: 1) Richard L. Lit	d associated syn Types, roles, fe Types, roles, fe Types, roles, fe Sy: Zones in a we dual Stresses – th ding Processes – Iding (6) ical Welding Process onic Welding (5 ro and Nano Sca	atures, Se Id, HAZ an heir causes Forge We cesses – Tl ses – Elect 5) Ie (3) Ie (3) (2) Welding T	lection (1) d its calcula s, identificat lding, Cold hermite we ron Beam W	tion and rer Welding, Fri Iding, etc (Velding, Las Tata McGra	nedy (3 iction We 3) er Beam) elding,			
and/or reference	Weld design an Shielding Gases Weld Metallurg Distortion, Resid Solid State weld Friction Stir We Thermo- Chemi Radiant Energy Welding, Ultras Welding at Mic Automation in Text Books: 1) Richard L. Litt 2) J.F.Lancaster Reference Boo	d associated syn Types, roles, fe gy: Zones in a we dual Stresses – th ding Processes – Iding (6) ical Welding Process onic Welding (5 ro and Nano Sca Welding tle, Welding and , Metallurgy of w	atures, Se Id, HAZ an heir causes Forge We cesses – Tl ces – Elect b) Ie (3) Ie (3) (2) Welding T elding, All	lection (1) d its calcula s, identificat lding, Cold hermite we ron Beam V	tion and rer Welding, Fri Iding, etc (Velding, Las Tata McGra n, London, 1	nedy (3 iction We 3) er Beam aw Hill, 2 980) elding			

Course	Title of the	Program Core	Total Nu	mber of c	ontact hour	s	Crea
Code	course	(PCR) / Electives (PEL)	Lectur e (L)	Tutori al (T)	Practica I (P)	Total Hour	t
MEE 715	Robotics	PEL	3	0	0	s 3	3
Pre-requisit	es	Course Assessm assessment (EA)		ods (Contii	nuous (CT) a	ind end	<u> </u>
Knowledge	on Mechanisms	CT+EA					
Course	CO1: Students	will be able to dis	cuss the h	istory, cor	ncepts and I	key comp	onen
Outcomes		s technologies. (a,			•	, ,	
		will be able to ana	•	olve prob	lems spatial	transfor	matio
		nd inverse kinema	•	-			
		larities, joint trajeo					
	-	will be able to des	•	•			s,
		ctuators and cont		-			,
Topics		o Robotics: Defi		•			. Wo
Covered		ic structure, classif		•			,
	•	ematics: Frame tr		•			/entio
		verse kinematics o					
		ular Velocity of Lir		•		lator: lac	obian
	Singularities.6					iacon sac	o bran
	-	Dynamics of Seria	d Manipula	ators lag	range-Fuler	formulat	ion 5
		nning of Manipu	-	-	-		
	scheme. 5			ine space	Scheme, V	curtesiun	i spa
		Contact type, nor	n-contact t	vna intar	rnal sonsor	Evtornal	conco
		Proximity sense					
	Encoders, etc. 7	=	n, touch	501501,		torque	Jenje
	Robot Grippers						
	Robot Controll						
Text Books,							
and/or		zalez, R. and Lee,		ohotics. (ontrol Son	ising Vic	ion ar
reference		e, McGraw- Hill, 19			Sontrol, Sen	5115, 13	
material	-	Introduction to f		Mechanico	s and Contr	ol 2nd	Editio
material	_	esley, 1989.				01, 211U	Lunio
		, Introduction to	Robotics		lishing Com	nany Ita	
	Delhi, 2008		Robotics,		lishing con		<i>,</i> nc
		K., Fundamentals	of Robotic	· Narosa	Publishing I	House In	dia
	2017.	K., Fundamentais		<i>s,</i> narosa	i ublishing i	iouse, in	ula,
	Reference Boo	ke					
			ontal Can	conte and	Analysis O	vford Un	ivorci
		Robotics: Fundam		cepts and	Analysis, U		iversi
		reprint, 2008.	nd Viduas	agar M I	Dobot Mode	ling and	
	Z. Spong, IVI. V	V., Hutchison, S., a	ma viayas	agar, IVI., I	KUDUL IVIODE	ang and	
	• •		16: 200C				
	• •	ley India, New Del	lhi <i>,</i> 2006.				

		De	partment of Mech	anical Engi	ineering					
	Course	Title of the	Program Core	Tota	l Number o	of contact h	ours	Credit		
	Code	course	(PCR) /	Lecture	Tutorial	Practical	Total			
			Electives (PEL)	(L)	(T)	(P)	Hours			
	MEE	Mechanical	PEL	3	0	0	3	3		
	716	Equipment Design								
	Pre-requis	ites	Course Assessment methods (Continuous (CT) and end							
			assessment (EA))						
		Design of Machine	CT+EA							
		& MEC 503								
	Machine D									
	Course		to various type	es of med	chanical e	lements ar	nd their	design		
	Outcomes	•								
			design different m				ly.			
			-	I the working of various types of drive systems. h the case studies help develop self-confidence.						
			ith the case studie	s help dev		onfidence.				
	Topics	Chain Drive			4					
	Covered	Rope Drive				4				
		Spiral Bevel Ge CVT Mechanisn				4				
						4	5			
		Design of Puller Design of Worr				4	5			
		Cam Mechanisi				4		4		
		Disc Brakes	115					4		
			gle-Phase Inductio	n Motors			3	7		
		Case Studies				6	5			
$\left \right $	Text Book					-				
	and/or		dams, Machine D	esign. McG	Graw Hill E	Book Compa	anv Priva	te Ltd		
	reference	USA, 1973.						,		
	material	,	, Fundamentals of	Mechanic	al Design.	TMH, 2015.				
		Reference Boo								
		1. Burr, Arthu	^r H., and Cheatha	am, John I	B., Mecha	nical Analy	sis and	Design,		
			ill, USA,1995							
		2. Norton, R.L.	, Machine Design:	An Integra	ated Appro	bach				

Department of Mechanical Engineering								
Course	Title of the	Program Core	Total Number of contact hours Cred				Credit	
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
MEE 717	Control	PEL	3	0	0	3	3	
	Systems							
Pre-requisit	es	Course Assessm	ent methods (Continuous (CT) and end					
assessment (EA))					
MEC 302, MEC 502 CT+EA								

Course	CO1: Will get exposure to the block diagram based formulations, behavior of linear							
Outcomes	time continuous control systems.							
Outcomes	CO2: Ability to analyze the system performance and relative stability information.							
	CO3: Understand the relevance of characteristic roots in the behavior of various							
	dynamic systems.							
	CO4: Ability to design simple controllers for analog systems.							
	CO5: To study and analyze state space methods, controllability and observability							
	of control systems.							
Topics	Introduction to Control, Systems and Elements, Transducers, Feedbacks,							
Covered	Classification of systems3							
	Mathematical modelling, Block Diagram and Transfer Functions 4							
	Analysis of Response of simple feedback control systems 5							
	Structure of Control systems and Control Laws 4							
	Root locus plot and analysis 5							
	Stability analysis by frequency response methods – Nyquist and Bode diagrams 5							
	State-space representations 5							
	PID controllers – Analysis and design 5							
	Digital Control Methods.2							
	Design of Control Systems in Matlab Simulink Environment.2							
	Examples of Control Systems, Laboratory Exercises.2							
Text Books,	Text Books:							
and/or	1. Kuo, B. C., Automatic Control System, 3 rd Edition, Prentice Hall Inc., New Jarsey,							
reference	1975.							
material	2. Nise, N. N., Control Systems Engineering, 6 th Edition, John Wiley & Sons, Inc.,							
	USA, 2011.							
	Reference Books:							
	1. Raven, F. H., Automatic Control Engineering, McGraw Hill Book Company							
	Private Ltd., USA, 1961.							

	De	partment of Mech	anical Engi	neering					
Course	Title of the	Program Core	Total Nu	Credit					
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
MEE 718	Fundamentals	PEL	3	0	0	3	3		
	of Combustion								
Pre-requisit	es	Course Assessme	ent methods (Continuous (CT) and end						
		assessment (EA))							
MEC 304, N	IEC 403, MEC 502	CT+EA							
Course	CO1: To underst	tand the physical p	rocess invo	olved in con	nbustion				
Outcomes	CO2: To be able	to model a proces	s involving	combustio	n.				
	CO3: To acquire	an in-depth idea a	about lamir	nar flames.					
	CO4: To unders	tand partially prem	ixed flame	s.					
	CO5: To learn th	ne intricacies of tur	bulent flan	nes.					

Topics	Review of thermodynamics, Chemical kinetics, Mass transfer definitions: Fick's								
Covered	law								
	Equations of conservation of species mass, momentum, and energy; multi- component diffusion equation								
	Schvab-Zel'dovich formulation, Rankine-Hugoniot relations.								
	Laminar premixed flames: Flame speed, flammability limits, flame stabilization,								
	ignition and quenching.								
	Laminar diffusion flames: Burke-Schumann problem and droplet burning.								
	Partially premixed flames								
Text Books,	Text Books:								
and/or	1. Principles of Combustion – K. K. Kuo								
reference	2. An introduction to combustion – S. R. Turns								
material	Reference Books:								
	Combustion physics – C. K. Law								

	Department of Mechanical Engineering							
Course	Title of the	Program Core	Total Nu	mber of cor	itact hours		Credit	
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
MEE 719	Modeling and	PEL	3	0	0	3	3	
	Simulation of							
	Dynamic							
	Systems							
Pre-requisit	es	Course Assessme	ent metho	ds (Continuc	ous (CT) an	d end		
		assessment (EA)						
0 0	Mechanics,	CT+EA						
Strength of								
Dynamics of								
Course	CO1 By the end of the course students are able to know the fundamental					ental of		
Outcomes	-	nd simulation and its usefulness.						
		of various modelin	ng software	e and its use	etulness in	develop	ment of	
		ical model.						
		g concept for el	lectro-mec	nanical, m	echatronic	s syster	ns and	
	feedback o				£			
Tanias		tion of simulation		diagnosis o	or systems.			
Topics		system modelling			a:		Dand	
Covered		modeling with exa	• •			, MATLA	B and	
	,	graph and Adams n namic systems 6	nuiti-body	Simulation t	0015.			
	3 ,	dynamic systems	with avam	nles hand	granh mor	holing c	ucality	
		system equations,		•		-		
	-	echanical systems.			e nona el		ueis Ul	
		tems (fundamenta		R				
				,				

	 Fundamental models of mechanical, electrical, hydraulic, pneumatic and thermal systems, hydraulic and thermal system modeling, examples of fundamental systems such as two-tank system, thermal damping, compressor-reservoir system, etc. Modeling of systems (as a combination of subsystems) 10 Linear and nonlinear systems, modeling of systems: a combination of translational and rotational systems, hydro-mechanical systems and electro-mechanical systems, modeling of mechatronic systems and feedback control of mechanical systems. Simulation and its applications 10 Simulation using Simulink, bond graph and Adams, simulation of simple and compound pendulum, simulation of planar mechanisms, validation of simulation results with examples.
Text Books, and/or	Text Books: 1. Bond graph in modeling simulation and fault identification, Amalendu
reference	Mukherjee, Arun Kumar Samantaray, and Ranjit Karmakar, CRC Press.
material	2. MATLAB for mechanical engineers, Rao V. Dukkipati, New age International.
	Reference Books:
	1. Measurements, Modelling and Simulation of Dynamic Systems, Edward
	Layer, Krzystof Tomczyk, Springer-Verlag Berlin and Heidelberg GmbH & Co. KG.
	 Modelling and simulation Exploring Dynamic System Behavior, Louis G. Birta, Gilbert Arbez, Springer London Ltd

	Department of Mechanical Engineering									
Course	Title of the	Program Core	Total Number of contact hours Cre							
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
MEE 720	Non-Linear	PEL	3	0	0	З	3			
	Vibration									
Pre-requisit	Pre-requisites Course Asse			ourse Assessment methods (Continuous (CT) and end						
		assessment (EA))								
MEC 301, N	1EC 302, MEC 504	CT+EA								
Course	CO1: Underst	anding the various	character	istics of non	linear dyna	amic syst	tem.			
Outcomes	CO2: Develop	ment of solution p	rocedures	employing	approxima	te metho	ods.			
	CO3: Develop	the concept of sta	ability and	different me	ethods for	stability	and			
	bifurcat	tion analysis.								
	CO4: Analysis	of nonlinear syste	m employi	ng numeric	al techniqu	ues and				
	compar	ing the results witl	h approxim	nate method	ls.					

Topics	Introduction:
Covered	linear and nonlinear systems, conservative and non-conservativesystems; potential well, Phase planes, types of forces and responses, fixedpoints, periodic, quasi-periodic and chaotic responses; Local and globalstability; commonly observed nonlinear phenomena: multiple response, bifurcations, jump phenomena. 9 Analytical solution methods:
	Harmonic balance, perturbation techniques (Linstedt-Poincare', method of
	Multiple Scales, Averaging method) 6
	Stability and bifurcation analysis:
	static and dynamic bifurcations of fixed pointand periodic response, different routes to chaotic response. 6
	Numerical techniques:
	Time response, phase portrait, FFT, Poincare' maps, point attractors, limit cycles and their numerical computation, strange attractor sand chaos; Lyapunov exponents and their determination, basin of attraction: point to point mapping and cell to cell mapping, fractal dimension. 9
	Applications:
	Single degree of freedom systems: Free vibration-Duffing'soscillator; primary-, secondary-and multiple- resonances; Forced oscillations: Van der Pol's oscillator; parametric excitation: Mathieu's and Hill's equations, Floquet theory; effects of damping and nonlinearity. Multi degree of freedom and continuous systems. 10
Text Books,	Text Books:
and/or reference	 Nayfeh, A. H., and Mook, D. T., Nonlinear Oscillations, Wiley-Interscience, 1979. Hayashi, C. Nonlinear Oscillations in Physical Systems, McGraw-Hill, 1964.
material	Reference Books:
	 Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers, D. Jordon and P. Smith, Oxford
	2. Evan-Ivanowski, R. M., Resonance Oscillations in Mechanical Systems, Elsevier.
	3. Nayfeh, A. H., and Balachandran, B., Applied Nonlinear Dynamics, Wiley.
	 A. Seydel, R., From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis, Elsevier.

	De	partment of Mech	anical Engi	neering			
Course	Title of the	Program Core	Total Number of contact hours				Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
MEE 721	Convective	PEL	3	0	0	З	3
	Heat and Mass						
	Transfer						
Pre-requisit	es	Course Assessme	nent methods (Continuous (CT) and end				
assessment (assessment (EA))				
MEC 303, MEC 304, MEC 403 CT+EA							

Course		e an idea about coi		-					
Outcomes		he basics of conve			ansfer				
	CO3: To learn a	bout internal and	external co	nvection					
	CO4: To learn a	bout forced and n	atural conv	vections					
	CO5: To learn a	bout heat transfer	in phase c	hange					
Topics	Fundamental p	orinciples: Basic law	vs of fluid n	nechanics a	nd thermo	dynamic	s, scale		
Covered	analysis						4		
	Laminar Bound	lary Layer: Concept	t of velocit	y and temp	erature bo	undary la	iyers,		
	integral solution	ons, similarity solut	ions, differ	ent wall hea	ating condi	itions.	4		
	Laminar Duct F	low: Heat transfer	to develop	bed and dev	eloping du	ct flows.	4		
	External natura	al convection.					4		
	Internal natura	l convection.			4				
	Turbulent bou	ndary layer flow an	id turbulen	t duct flow			5		
	Free turbulent	flows: shear layer	, jets and p	lumes.			4		
	Convection wit	h change of phase		6					
	Mass transfer.		7						
Text Books,	Text Books:								
and/or	1. Convection H	leat Transfer – A. E	Bejan						
reference	2. Convective H	leat Transfer L.C.	. Burmeiste	er					
material	3. Convective Heat and Mass Transfer – Kays and Crawford								
	Reference Books:								
	1. Principles of	1. Principles of Convective Heat Transfer – M. Kaviany							
	2. Convective Heat and Mass Transfer – S. M. Ghiaasiaan								
	3. Heat Convec	tion – L. M. Jiji							
	_								
		partment of Mech					o		
Course	Title of the	Program Core		mber of cor			Credit		
Code	course	(PCR) /	Lecture	Tutorial	Practical				
		Electives (PEL)	(L)	(T)	(P)	Hours			
MEE 722	Additive	PEL	3	0	0	3	3		
	Manufacturing		_	•	_		3		
MEE 722 Pre-requisit	Manufacturing	Course Assessme	ent method	•	_		3		
Pre-requisit	Manufacturing es	Course Assessme assessment (EA)	ent method	•	_		3		
Pre-requisite Manufactur	Manufacturing es ing Technology,	Course Assessme	ent method	•	_		3		
Pre-requisite Manufactur Machine To	Manufacturing es ing Technology, ol	Course Assessme assessment (EA) CT+EA	ent method)	ds (Continuo	ous (CT) an	d end			
Pre-requisite Manufactur Machine To Course	Manufacturing es ing Technology, ol CO1: Able to u	Course Assessme assessment (EA)	ent method)	ds (Continuo	ous (CT) an	d end			
Pre-requisite Manufactur Machine To	Manufacturing es ing Technology, ol CO1: Able to un processes	Course Assessme assessment (EA) CT+EA nderstand the princ	ent method) ciples of dif	ds (Continuc	bus (CT) an	d end			
Pre-requisite Manufactur Machine To Course	Manufacturing es ing Technology, ol CO1: Able to un processes CO2: Able to le	Course Assessme assessment (EA) CT+EA nderstand the princ arn software's for a	ent method) ciples of dif	ds (Continuc fferent addi anufacturin	bus (CT) an tive manuf	d end			
Pre-requisite Manufactur Machine To Course	Manufacturing es ing Technology, ol CO1: Able to un processes CO2: Able to le CO3: Able to ex	Course Assessme assessment (EA) CT+EA nderstand the princ arn software's for a spose materials for	ent method) ciples of dif additive ma Additive N	ds (Continuc fferent addi anufacturin Janufacturi	bus (CT) an tive manuf g ng and it's	d end facturing selectior	1		
Pre-requisite Manufactur Machine To Course	Manufacturing es ing Technology, ol CO1: Able to un processes CO2: Able to le CO3: Able to ex CO4: Able to kr	Course Assessme assessment (EA) CT+EA nderstand the princ arn software's for a	ent method) ciples of dif additive ma Additive N	ds (Continuc fferent addi anufacturin Janufacturi	bus (CT) an tive manuf g ng and it's	d end facturing selectior	1		

Topics	Introduction to Additive Manufacturing (AM), Overview, History, Need,
Covered	Classification, Additive Manufacturing Technology in product development2
	CAD & Reverse Engineering, CAD model preparation – Part Orientation and
	support generation, Model Slicing, Tool path Generation, Software's for Additive
	Manufacturing Technology, Model Reconstruction – Data Processing for Additive
	Manufacturing Technology, Reverse engineering 6
	Materials for Additive Manufacturing Technology 4
	Different AM processes and relevant process physics, AM process chain 8
	Sheet Lamination Processes1
	Photo-polymerization Processes2
	Extrusion-Based Systems1
	Powder Bed Fusion Processes3
	Binder jetting 1
	Material jetting 2
	Directed Energy Deposition Processes3
	Micro & Nano additive manufacturing processes 4
	Design for Additive Manufacturing3
	Applications of Additive Manufacturing 2
Text Books,	Text Books:
and/or	1. Ian Gibson, David W. Rosen and Brent Stucker, Additive manufacturing
reference	technologies: rapid prototyping to direct digital manufacturing, Springer.
material	2. C.K. Chua, K.F. Leong and C.S. Lim, 3D Printing and Additive Manufacturing:
	Principles and Applications, World Scientific.
	Reference Books:
	1. Andreas Gebhardt, Understanding additive manufacturing: rapid prototyping,
	rapid tooling, rapid manufacturing, Hanser Publishers.

Department of Mechanical Engineering									
Course	Title of the	Program Core	rogram Core Total Number of contact hours Cr						
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
MEE 723	Energy	PEL	3	0	0	3	3		
	Conversion								
	Systems								
Pre-requisit	es	Course Assessment methods (Continuous (CT) and end							
		assessment (EA)	assessment (EA))						
MEC601 (Po	ower Plant	CT+EA							
Engineering)								
Course	CO1: Acquire a	n idea about differ	ent energy	/ conversior	n technolog	gies			
Outcomes	CO2: To learn	the energy efficien	it, econom	ically viable	, and envir	onmenta	al		
	friendly p	ower generation t	technologi	es					
	CO3: To learn a	bout different con	ventional	and non-coi	nventional	power			
	generatio	generation systems.							
	CO4: Introduce	d to different dire	ct energy c	onversion s	ystems				

Topics	Global and Indian Energy Scenario	3
Covered	Advanced Coal Technologies	6
	Advanced Power generation Cycles-Supercritical Power plant, Cogeneration	,
	Combined cycle power plants 7	
	Fluidized bed combustion	5
	Gasification, Integrated Gasification Combined Cycle (IGCC)	6
	Direct Energy Conversion: Fuel Cells: Proton Exchange Membrane (PEM) Fu	el
	cells, Solid Oxide Fuel Cells (SOFC), Magneto-Hydro-Dynamic (MHD) System	s 7
	Biomass based energy conversion	3
	Nuclear Power generation	5
Text Books,	Text Books:	
and/or	1. Principles of Energy Conversion-Archie W. Culp	
reference	2. Power Plant Engineering-P.K. Nag	
material	Reference Books:	
	1. Fluidized Bed Technology-J.R. Howard	
	2. PEM Fuel Cells: Theory and Practice- Frano Barbir	

	Department of Mechanical Engineering							
Course	Title of the	Program Core	Total Nu	Credit				
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
MEE 724	Hydraulic	PEL	3	0	0	3	3	
	Machines							
Pre-requis	ites	Course Assessm	ent metho	ds (Continue	ous (CT) ar	nd end		
		assessment (EA))					
MEC303		CT+EA						
Course	CO1: To acq	uire an in depth kno	owledge of	hydraulic m	nachines u	sed in th	e	
Outcomes	Indus	try						
	CO2: To lear	n the basic design p	orocedure	for different	t hydraulic	machine	es	
Topics	Principles of Si	nilarity, Specific Sp	eed and U	nit Quantitie	es (4)			
Covered	General classif	cation of hydraulic	machines	- basic prir	nciples, tor	que, pov	wer and	
	efficiency. (2)							
		ction of 2 D Cascad	e Theory fo	or Rotodyna	imic Machi	nes (4)		
	Hydraulic Turb							
		nd types of Turbin	•					
		cis, Propeller and	•					
		Force, Torque,		•	•		-	
		nilarity; Specific sp			-		-	
		ge tanks; Performa		teristics cur	ves; Select	ion of ty	pes and	
	speeds of turbi	nes; Governing of t	urbines.					

	Pumps: (12) Pumps: Classification ; Rotodynamic pumps:- Centrifugal and Axial
	flow pumps ; Torque, Power, Efficiency and Operation; Performance
	Characteristics; Principles of Similarity and Specific speed; Energy losses in pumps;
	Cavitation; Priming; Power requirements; Homologous operation; Series and
	Parallel operation; Multistage pumps; Selection and installation of pumps of
	various duties; Testing of pumps. Cavitation and setting height of turbo machines
	Reciprocating pumps:- Types; Working principle; Instantaneous discharge and
	average discharge; Slip; Negative slip, Coefficient of discharge and volumetric
	efficiency; Work done and overall efficiency; Indicator diagram:- effect of inertia
	and friction on suction and delivery pipes; Separation head; Effect of bend on
	delivery pipe; Air vessels; Power saved by air vessels in overcoming pipe friction;
	Discharge in and out of air vessel. Hydraulic coupling; Torque converter (2)
Text Books,	Text Books:
and/or	1. Mechanics of Fluids: Massey, B. S.
reference	2. Introduction to Fluid Mechanics and Fluid Machines- S.K. Som, et al.
material	3. Hydraulic Machinery - Jagdish Lal
material	Striyuradic Machinery Sabalsh Edi

Cauraa		Department of Me				_	Creatit	
Course	Title of the	Program Core			ntact hours		Credit	
Code	course	(PCR) /	Lecture	Tutorial		Total		
		Electives (PEL)	(L)	(T)	l (P)	Hours	_	
MEE725	Introduction to	PEL	3	0	0	3	3	
	Aerospace							
	Engineering							
Pre-requi								
MAC301,	PHC01	CT+EA						
Course	CO1: Understand	l basics of aerospa	ce enginee	ring				
Outcom	CO2: Apply the c	oncept of static sta	ability to flig	ght vehicle	es			
es	CO3: Describe th	e concepts of stre	ess, strain,	Young's m	nodulus, Po	isson's ra	tio, yielo	
	strength							
	CO4: Demonstra	te understanding o	of basic kno	wledge of	propulsive	devices a	nd basic	
	knowledge of dy	namics relevant to	orbital me	chanics				
Topics	Unit 1: Aero/Hyd	lrodynamics						
Covered	Introduction and	Historical Develo	opment of	flights, st	andard atr	nosphere	, variou	
	altitude definition	ns, Define pressu	re, tempera	ature and	density of	altitude.	Viscosity	
	and its implication	ons, shear stress,	the Lagran	gian and E	Eulerian vie	wpoints o	of a flow	
	field, concept	of a streamline,	Conserva	tion Equa	ations, Be	rnoulli's	equatior	
	Introduction to c	ompressible flow ((CO1)					
	Unit 2: Wing Geo	ometry						
	Common aircraft	terminology and	geometry,	Identify ba	asic aircraft	types and	d discuss	
	their features,	Ning Loading and	d Thrust Lo	oading, Ba	asic Desigr	ı - Lift aı	nd Drag	
	Calculation of the lift and drag coefficients using NACA data.(CO1)							
		Unit 3: Performance and Propulsion						
		nce and Propulsion	n					
	Unit 3: Performa	nce and Propulsion of Propulsion, Hi		ickground,	Classificat	ion of p	ropulsive	
	Unit 3: Performa Basic principles	•	istorical ba	•			•	

	pressure drag components on a body, flow separation, types of aerodynamic drag, lift and drag calculations on aircraft. (CO4)
	Unit 4: Aircraft Stability
	Six degrees of freedom of aircraft motions, Stable, unstable and neutral stability,
	Difference between static and dynamic stability, Static longitudinal stability for
	aircraft, Coupling in lateral and directional stability.(CO2)
	Unit 5:Aircraft Structure
	Primary load carrying members, perform a spar cap sizing example and understand
	the basic V-n diagram. (CO3)
	Unit 6: Space Applications
	History of space research, Orbital motion including typical spacecraft trajectories and
	basic orbital maneuvers, Six orbital elements, Kelper's laws of orbits, Newton's law of
	gravitation.(CO4)
Text	1. John D. Anderson, Introduction to Flight, 8th Edition, McGraw-Hill Education,
Books,	New York, 2015.
and/or	2. Manuel SolerArnedo, Fundamentals of Aerospace Engineering, Second Edition,
referenc	Creative Commons Attributes- Share Alike 3.0,2017.
е	
material	

	De	epartment of Mech	anical Engi	neering			
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
MES 751	Hydraulic	PCR	0	0	3	3	1.5
	Machine						
	Laboratory						
Pre-requis	ites	Course Assessm	ent metho	ds (Continuo	ous (CT) an	d end	
		assessment (EA))				
Fluid Mech	nanics	CT+EA					
Course	CO1: To un	derstand the princi	ole of linea	r momentu	m		
Outcomes	omes CO2: To understand the performance characteristics of various pump					pumps.	
	CO3: To un	derstand the perfo	rmance cha	aracteristics	of various	turbines	j.
Topics	Performance of	of Centrifugal Pump					
Covered	Performance T	est of Reciprocatin	g pump.				
	Performance 1	est of Pelton Whee	el.				
	Performance 1	est of Kaplan Turbi	ne.				
	Performance	Test of Francis Turb	ine.				
Text Books	5, Text Books:						
and/or	1. Mechanics	of Fluids: Massey,	B. S.				
reference	2. Fluid Mech	anics – J. F. Dougla	as, J. M. Ga	siorek, J. A.	Swaffied, I	. B. Jack	
material	3. Introductio	on to Fluid Mechani	cs and Flui	d Machines	- S.K. Som,	et al.	
	4. Hydraulic	Machinery - Jagdisł	n Lal				
	Reference Boo	oks:					
	1. Fluid Mech	anics—F. M. White	2				

	D	epartment of Mech	anical Engi	neering				
Course	Title of the	Program Core	Program Core Total Number of contact hours					
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
MES 752	Machine Design	PCR	0	0	3	3	1.5	
	Sessional - II							
Pre-requis	ites	Course Assessm	ent metho	ds (Continuo	ous (CT) an	d end		
		assessment (EA))					
MEC 503		CT+EA						
Course	CO1: Acquire	basic idea about ma	aking the de	esign and pr	roduction c	Irawing f	or	
Outcomes	relative	ely complicated mechanical systems for example gear boxes.						
	CO2: To unde	rstand the method	of impleme	entation of e	engineering	g toleran	ces.	
	CO3: To learn	about economic design procedures.						
Topics	Design and Dr	awing of Gear Box	(36)					
Covered	Problems as as	signed by the conce	erned teach	ner (6)				
Text Book	s, Text Books:							
and/or	1. Design of N	lachine Elements –	V.B. Bhand	lari				
reference	2. Design of N	lachine Elements –	M.F. Spotts	S				
material	3. Machine De	esign: P. H. Black an	d O. E. Ada	ms				
	4. Design Data	gn Data Book – P.S.G. College of Technology, Coimbatore.						
	Reference Bo	oks:						
	1. Mechanical	Engineering Desigr	n – J.E. Shig	ley				
	2. Fundament	als of Mechanical D	esign – R.N	/I. Phelan				
	3. Machine D	esign: An Integrate	d Approach	n – R.L. Nort	on			

	De	partment of Med	chanical Ei	ngineering				
Course	Title of the	Program	Total Nu	Total Number of contact hours				
Code	course	Core (PCR) /	Lectur	Tutori	Practica	Total		
		Electives	e (L)	al (T)	l (P)#	Hour		
		(PEL)				S		
MEO 741	Non-	PEL	3	0	0	3	3	
	conventional							
	Energy Systems							
Pre-requisit	Pre-requisites Course Assessment methods (Continuous (CT) and				and end	ł		
		assessment (E	A))					
NA		CT+EA						
Course	CO1: Identify an	d explain the us	e of non-c	onvention	al energy sy	/stems.		
Outcomes	CO2: Develop a	an understandin	g that so	lutions to	energy-rel	ated pro	blems are	
	complex	involving socio	logical, e	economic,	political	and tee	chnological	
	considerat	ions, decisions a	nd develo	pment.				
	CO3: Gain insig	ht into the issu	es surrou	nding nor	-conventio	nal ener	gy sources	
	developme	ent and use.						
	CO4: Become	knowledgeable	about ap	plications	of non-co	onventio	nal energy	
	systems as	they apply to co	ommercial	, residenti	al and indu	strial ma	rkets.	

105 | Page

Tanias	Traditional energy systems, Courses, Fostures and shows staristics, anylications?				
Topics Covered	Traditional energy systems, Sources, Features and characteristics, applications2 Component of solar energy systems, Collector types and performances, Radiation and meteorological data processing, Long term conversion factors, System conversion and system design procedures, Solar power generation, Solar heating and cooling, Solar passive systems: Solar still, Pond, Greenhouse, Dryer, Trombe wall, Overhangs and Wing walls. 13				
	Wind energy conversion systems, Estimate of wind energy potential, Aerodynamic and mechanical aspects of wind machine design.				
	Principles and applications of wave energy, Shoreline systems, Near shore systems, Off shore systems 3				
	Tidal energy, Biomass energy, Operating principle, Wood gassifier, Pyrolysis, Applications, 4				
	Geothermal energy and OTEC. 4				
	Fuel cell: Types and technology status.3Hydel Power Plant: Introduction to hydro-electric power generation, Types of Hydel turbines, Layout and selection of turbines and installation, Geographic limitations, Turbine performance, Comparative analysis between thermal and hydel plants.3				
Text Books,	Suggested Text Books:				
and/or reference material	1) Solar Energy Fundamentals and Applications Garg and Prakash 2) Solar Energy S. P. Sukhatme				
	Suggested reference books:				
	1) Fundamentals of Renewable Energy Systems D. Mukherjee and S. Chakrabarti				
	2) Non-conventional Energy Sources D. S. Chauhan and S. K. Srivastava				

EIGHTH SEMESTER

	De	partment of Me	chanical Er	ngineering						
Course	Title of the	Program	Total Nu	umber of c	ontact hou	rs	Credit			
Code	course	Core (PCR) /	Lectur	Tutori	Practica	Total				
		Electives	e (L)	al (T)	l (P)#	Hour				
		(PEL)				S				
MEE 810	Solar Energy	PEL	3	0	0	3	3			
Pre-requisit	es	Course Assess		hods (Cont	inuous (CT)) and end				
		assessment (E	A))							
MEC 304, N MEC 601	IEC403, MEC 502,	CT+EA								
Course		id explain the us								
Outcomes		an understandin								
		involving socio	-		political	and teo	chnologica			
		ions, decisions a		•		· ·				
	-	nt into the issues		-	• ·					
		knowledgeable a and industrial n		ilications a	as they ap	ριγ το co	ommercial			
Topics		and Measureme					7			
Topics Covered				damontal	of color ra	diation	-			
Covereu	Solar energy option - an overview, Fundamentals of solar radiation, Basic Earth									
	-	sun- angles, Solar time and equation of time, measurements, Empirical								
		equations for predicting the availability of solar radiation, Computation of radiation on a surface								
		Liquid Flat Plate Collectors: 8								
		plate collector	design.	Ffficiency	of flat pla	ate colle				
	performance	=	0.001811)	Lineicitey	or nat pr					
	Flat plate s	Flat plate solar air heaters, Other types of solar air heaters, some novel designs, Performance analysis and testing procedures.								
	Solar Concentric Collectors: 6									
	Cylindrical p	parabolic collect	ors, Perfo	rmance ai	nalysis of c	ylindrica	l parabolio			
		ompound parab			-	-	-			
	of compoun	of compound parabolic concentrating collectors, Paraboloid dish collectors.								
	Solar Thermal Energy Storage system: 5									
	Need of thermal energy storage, Size and duration of storage, Sensible heat									
	storage, Latent heat storage, PCM, Thermo-chemical energy storage.									
	Solar Thermal A	pplications:								
	-	heating, active	-	•	-					
	-	n and air condi	-							
		r ponds and its	thermal p	performan	ce, Solar e	nergy foi	r industria			
	process hea		_							
		lechanical Powe								
	=	f solar engines,				-				
		lar power plants		-	rabolic thro	ough pov	ver plants			
	Central rece	iver power plant	s. Solar fu	rnaces.						

Text Books,	Suggested Text Books:
and/or	1. Sukhatme S. P., "Solar Energy: Principles of Thermal Collection and
reference	Storage," 3 rd Ed., Tata McGraw-Hill Publishing Company Ltd.
material	2. H. P. Garg and J. Prakash, Solar Energy: fundamentals and applications, 1 st
	Ed., Tata McGraw-Hill Publishing Company Ltd.
	Suggested Reference Books:
	1. Solar energy Process – Duffie and Beckman, John Wiley

	De	partment of Mech	anical Engi	neering					
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit		
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
MEE 811	Mechatronics	PEL	3	0	0	3	3		
Pre-requisite	es	Course Assessme	ent metho	ds (Continuo	ous (CT) an	d end			
		assessment (EA))						
MEC 301, M	EC 504	CT+EA							
Course	CO1: Students	will be able to ide	ntify the i	mportance	of amalgai	mation b	etween		
Outcomes	the electr	onics and electro-	mechanica	l systems.					
	CO2: Students	will be able to for	ormulate a	and evaluat	e behavio	r of line	ar time		
		us control systems							
		will be able to f		the proced	ure for co	nverting	analog		
	-	digital form and vi							
		will be able to o	describe si	gnals and	its process	sing by i	modern		
		methods.							
		will be able to iden	•	•			pments		
		ging trends within			•				
Tanias		stems: Introduction							
Topics		nsducers - Brief re	eview, Sim	ple electron	ic element	.s & Ope	rational		
Covered	Amplifiers.4	matic, Hydraulic, I	Electrical 8	Machanica		sustom	Micro		
	actuators.3	iniatic, fryuraulic, i				i system,			
		Simulation of Phys	ical Systen	n. System m	nodels Dvr	namic reg	nonses		
	_	Modelling and Simulation of Physical System: System models, Dynamic responses of the system, System transfer functions.4							
		umber systems, B		ebra. Logic	gates - A	pplicatio	n gate.		
		of digital logic gates	-	,00.0, 208.0	8				
	Microprocessor								
	•	Architecture, Instruction codes, General requirements for implementation issues,							
	Examples. 6	,	•		•		,		
	Programmable	Logic Controllers:	Basic stru	icture, I/O	processing	, Progra	mming,		
	Timer, Inter rela	iys and Counters.6			_				
	Signal condition	ing & Digital comr	nunication	system: Ba	sics of sign	nal condi	tioning,		
	Filtering, Data a	cquisition and Digi	ital signal p	processing,	Digital com	nmunicat	ion and		
	Communication	interface. 6							
	Mechatronic Sy	vstems, Case Studie	es.6						

reference		D. G. and Hista ent Systems, McG												
material		Mechatronics, Pe												
		.S., Microprocess				nd Appl	icati							
	with 8085,	Penram Publishers	s India, 6 th E	dition, 2013	3.									
	Reference Boo													
	1. Malvino, A.	P., and Bates, D.	J., Electroni	c Principles,	TMH Publ	lishing Co	omp							
		elhi, 8 th Edition, 2												
		Control Systems I	Engineering,	, 6 th Edition,	John Wile	y & Sons	, Inc							
	USA, 2011.													
		partment of Mecl	-	-			Cre							
Course	Title of the	Program Core												
Code	course	(PCR) /	Lecture	Tutorial	Practical									
		Electives (PEL)	(L)	(T)	(P)	Hours								
MEE 812	Micro and Nano	PEL	3	0	0	3								
Dro roquio	Manufacturing		Course Ac	sessment m	othods (Ca	ntinuou								
Pre-requis	ites			ssessment (•	ontinuou	5 (CI							
MFC402 ((Casting, Forming and	1 Welding)	CT+EA											
•	Machining and Mach	•••	CITLA											
Course		stand the need for	r micro and	nano scale f	abrication									
Outcomes		quainted with diff												
		ies and their chara												
	CO3 : To be abl	e to select a suitat	ole micro or	nano scale	fabricatior	n process	bas							
	upon the	e requirement												
	CO4 : To compa	are and understan	d the differe	ences betwe	en macro	and nan	o sca							
	fabricati	on processes												
Topics		and Nano Scale N		-	•									
Covered		ts being used in												
	micro/nano se	cale components	are bett	ter AFM,	STM, SE	M, TEM	, Х							
	2	a haa a biista viaal wa	rene etine O											
	2 Photo Lithogra	phy : Historical pe	rspective, C)verview, Ele	ectromagn	etic Spec	trur							
	2 Photo Lithogra Clean Room – C	Classes, Features			-									
	2 Photo Lithogra Clean Room – C Photoresist: Po	Classes, Features ositive and Negati	ive Photo r	esists; Glas	s Transitio	n Tempe	eratı							
	2 Photo Lithogra Clean Room – C Photoresist: Po Photoresist de	Classes, Features ositive and Negati position: Spin co	ive Photo r ating, Spray	esists; Glas v coating, E	s Transitio ilectro-dep	n Tempe oosition;	eratı Bak							
	2 Photo Lithogra Clean Room – C Photoresist: Po Photoresist de Masks, Expose	Classes, Features ositive and Negati position: Spin coa ure: Contact Pri	ive Photo r ating, Spray nting, Proj	esists; Glass coating, E ection Prin	s Transitio Electro-dep	n Tempe oosition; ximity F	eratu Bak Printi							
	2 Photo Lithogra Clean Room – C Photoresist: Po Photoresist de Masks, Expose Development, C	Classes, Features ositive and Negati position: Spin coa ure: Contact Pri Critical Dimension	ive Photo r ating, Spray nting, Proj , Overall Re	esists; Glass coating, E ection Prin solution, Lir	s Transitio Electro-dep Iting, Prop Ne Width N	n Tempe position; ximity F 1etrology	eratu Bak Printi 7, Re							
	2 Photo Lithogra Clean Room – C Photoresist: Po Photoresist de Masks, Expose Development, C Profiles, Photo	Classes, Features ositive and Negati position: Spin co ure: Contact Pri Critical Dimension olithography Res	ive Photo r ating, Spray nting, Proj , Overall Res colution En	esists; Glass coating, E ection Prin solution, Lin hancement	s Transitio Electro-dep Iting, Pros Ie Width M Technolo	n Tempe oosition; ximity F 1etrology ogy :	eratu Bak Printi 7, Re throu							
	2 Photo Lithogra Clean Room – C Photoresist: Po Photoresist de Masks, Expose Development, C Profiles, Photo Improved Resi	Classes, Features ositive and Negati position: Spin coa ure: Contact Prin Critical Dimension olithography Res st Performance,	ive Photo r ating, Spray nting, Proj , Overall Res colution En through In	esists; Glass coating, E ection Prin solution, Lir hancement nproved M	s Transitio Electro-dep Iting, Provine Width M Technolo ask Techr	n Tempe position; ximity F 1etrology ogy : 1 nology, 1	eratu Bak Printi 7, Re throu throu							
	2 Photo Lithogra Clean Room – C Photoresist: Po Photoresist de Masks, Expose Development, C Profiles, Photo Improved Resi	Classes, Features ositive and Negati position: Spin coa ure: Contact Pri Critical Dimension olithography Res st Performance, osure Technology	ive Photo r ating, Spray nting, Proj , Overall Res colution En through In	esists; Glass coating, E ection Prin solution, Lir hancement nproved M	s Transitio Electro-dep Iting, Provine Width M Technolo ask Techr	n Tempe position; ximity F 1etrology ogy : 1 nology, 1	eratu Bak Printi 7, Re throu throu							
	2 Photo Lithogra Clean Room – C Photoresist: Po Photoresist de Masks, Expose Development, C Profiles, Photo Improved Resi Improved Expo	Classes, Features ositive and Negati position: Spin coa ure: Contact Pri Critical Dimension olithography Res st Performance, osure Technology	ive Photo r ating, Spray nting, Proj , Overall Res colution En through In	esists; Glass coating, E ection Prin solution, Lir hancement nproved M	s Transitio Electro-dep Iting, Provine Width M Technolo ask Techr	n Tempe position; ximity F 1etrology ogy : 1 nology, 1	eratu Baki Printi 7, Re throu throu							
	2 Photo Lithogra Clean Room – C Photoresist: Po Photoresist de Masks, Expose Development, C Profiles, Photo Improved Resi Improved Expo photolithograp	Classes, Features ositive and Negati position: Spin coa ure: Contact Pri Critical Dimension olithography Res st Performance, osure Technology	ive Photo r ating, Spray nting, Proj , Overall Res olution En through In Reducing	esists; Glass coating, E ection Prin solution, Lir hancement nproved M	s Transitio Electro-dep Iting, Provine Width M Technolo ask Techr	n Tempe position; ximity F 1etrology ogy : 1 nology, 1	eratu Baki Printi 7, Re throu throu							
	2 Photo Lithogra Clean Room – C Photoresist: Po Photoresist de Masks, Expose Development, C Profiles, Photo Improved Resi Improved Expo photolithograp Examples Dry Etching	Classes, Features ositive and Negati position: Spin coa ure: Contact Pri Critical Dimension olithography Res st Performance, osure Technology	ive Photo re ating, Spray nting, Proj , Overall Res olution En through In Reducing 10	esists; Glass coating, E ection Prin solution, Lin hancement nproved M the minimu	s Transitio Electro-dep Iting, Proz Ne Width M Technolo ask Techr um featur	n Tempe position; ximity F 1etrology ogy : 1 nology, 1 e dimen	eratu Baki Printi /, Re throu throu ision							

	Wet EtchingChemical Milling, Photochemical Milling, Wet Isotropic and Anisotropic Etching, Etch Stop Techniques, 3Moore's Law , Need for pushing the feature sizes to lower levels, Next Generation Lithographic Techniques : EUV , XRL, LIGA, EBL : EBL Resists, electron emission, Ion Beam Lithography, Nano Imprint Lithography, Lithographic techniques still in research and developmental state Examples 12Physical VaporDeposition: Thermal evaporation, Sputtering— DC and RF Sputtering, Pulsed Laser Deposition — Laser sputtering, Aerosol Deposition Examples 4Chemical Vapor Deposition: Overview, description, PVD vs CVD, APCVD, LPCVD, PECVD, ALD, Examples 4
Text Books, and/or reference material	 Text Books: Fundamental of Microfabrication and Nanotechnology Volume 2, by Prof Marc J Madou, CRC Press, Taylor and Francis Group Micro and Nanomanufacturing, Mark J Jackson, Springerlink Micro and Nanomanufacturing Volume 2, Mark J Jackson, Springerlink Reference Books: Micro/Nano Manufacturing, Hans Nørgaard Hansen and Guido Tosello, MDPI Publishing (for application examples)

Department of Mechanical Engineering											
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit				
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives (PEL)	(L)	(T)	(P)	Hours					
MEE 813	Microfluidics	PEL	3	0	0	3	3				
Pre-requisit	es		Course Assessment methods (Continue								
			(CT) a	nd end asse	ssment (E/	4))					
MEC303 Flu	id Mechanics		CT+EA	۹.							
MEC304 Eng	gineering Thermod	ynamics									
MEC403Hea	it and Mass Transf	er									
PHC01 Engir	neering Physics CY	C01 Engineering									
Chemistry, E	3TC01 Life Science										
Course	CO1: To lea	rn micro channel fl	ows with h	eat transfer							
Outcomes	CO2: To lea	rn Surface Tension	Driven Flov	ws with real	l life applic	ations.					
	CO3: To lea	rn Electro-hydro-dy	/namics fur	ndamentals							
	CO4: To lea	rn Molecular Dynai	mics Simula	ations							
Topics	Introduction to	Microfluidics: Orig	gin, Definit	ion, Benefit	s, Challeng	ges, Com	mercial				
Covered	activities, Physi	cs of miniaturization	on, Scaling	laws, Interr	nolecular t	forces, St	tates of				
	matter, Continu	um assumption, G	overning e	quations, Co	onstitutive	relations	s1				
	Microfluidics- S	ome Application E	xamples: D	orug deliver	y, Diagnos	tics, Bio-	sensing				
	1										
	Equations of Co	onservation					1				

Navier Stokes Equation2Energy Equation2Pressure –driven Micro flows: Exact solutions, Couette flow, Poiseuille flow5Some Examples of Unsteady Flows: Hydraulic resistance and Circuit analysisStraight channel of different cross-sections, Channels in series and paralle3Stokes Drag on a Sphere: Stokes drag on a sphere, Time-dependent flows, Twophase flows2Lubrication Theory2Boundary Condition in Fluid Mechanics - Slip or No-slip: Gas and liquid flowsBoundary conditions, Slip theory, Transition to turbulence, Low Re flows, Entranceeffects	
Pressure –driven Micro flows: Exact solutions, Couette flow, Poiseuille flow5Some Examples of Unsteady Flows: Hydraulic resistance and Circuit analysisStraight channel of different cross-sections, Channels in series and paralle3Stokes Drag on a Sphere: Stokes drag on a sphere, Time-dependent flows, Twophase flows2Lubrication Theory2Boundary Condition in Fluid Mechanics - Slip or No-slip: Gas and liquid flowsBoundary conditions, Slip theory, Transition to turbulence, Low Re flows, Entrance	
5 Some Examples of Unsteady Flows: Hydraulic resistance and Circuit analysis Straight channel of different cross-sections, Channels in series and paralle 3 Stokes Drag on a Sphere: Stokes drag on a sphere, Time-dependent flows, Two phase flows 2 Lubrication Theory 2 Boundary Condition in Fluid Mechanics - Slip or No-slip: Gas and liquid flows Boundary conditions, Slip theory, Transition to turbulence, Low Re flows, Entrance	
Some Examples of Unsteady Flows: Hydraulic resistance and Circuit analysis Straight channel of different cross-sections, Channels in series and paralle 3 Stokes Drag on a Sphere: Stokes drag on a sphere, Time-dependent flows, Two phase flows 2 Lubrication Theory 2 Boundary Condition in Fluid Mechanics - Slip or No-slip: Gas and liquid flows Boundary conditions, Slip theory, Transition to turbulence, Low Re flows, Entrance	
Straight channel of different cross-sections, Channels in series and paralle3Stokes Drag on a Sphere: Stokes drag on a sphere, Time-dependent flows, Two phase flows2Lubrication Theory8Boundary Condition in Fluid Mechanics - Slip or No-slip: Gas and liquid flows Boundary conditions, Slip theory, Transition to turbulence, Low Re flows, Entrance	
3 Stokes Drag on a Sphere: Stokes drag on a sphere, Time-dependent flows, Two phase flows 2 Lubrication Theory 2 Boundary Condition in Fluid Mechanics - Slip or No-slip: Gas and liquid flows Boundary conditions, Slip theory, Transition to turbulence, Low Re flows, Entrance	
Stokes Drag on a Sphere: Stokes drag on a sphere, Time-dependent flows, Two phase flows 2 Lubrication Theory 2 Boundary Condition in Fluid Mechanics - Slip or No-slip: Gas and liquid flows Boundary conditions, Slip theory, Transition to turbulence, Low Re flows, Entrance	
phase flows 2 Lubrication Theory 2 Boundary Condition in Fluid Mechanics - Slip or No-slip: Gas and liquid flows Boundary conditions, Slip theory, Transition to turbulence, Low Re flows, Entrance	
Lubrication Theory 2 Boundary Condition in Fluid Mechanics - Slip or No-slip: Gas and liquid flows Boundary conditions, Slip theory, Transition to turbulence, Low Re flows, Entrance	
Boundary Condition in Fluid Mechanics - Slip or No-slip: Gas and liquid flows Boundary conditions, Slip theory, Transition to turbulence, Low Re flows, Entranc	
Boundary conditions, Slip theory, Transition to turbulence, Low Re flows, Entranc	
Surface Tension Driven Flows: Surface tension and interfacial energy, Young	
Laplace equation, Contact angle, Capillary length and capillary rise, Interfacia	
boundary conditions, Marangoni effect 6	
Thin Film Dynamics 4	
Introduction to Micro-fabrication: Materials, Clean room, Silicon crystallography	
Miller indices. Oxidation, photolithography-mask, spin coating, exposure an	
development, Etching, Bulk and Surface micromachining, Wafer bonding. Polyme	
micro fabrication, PMMA/COC/PDMS substrates, micro molding, hot embossing	
fluidic interconnections. Electrokinetics: Electrohydrodynamics fundamentals.	
Electro-osmosis, Debye layer, Thin EDL limit, Ideal electro-osmotic flow, Ideal EO	
with back pressure, Cascade electro-osmotic micro pump, EOF of power-law fluids	
Electrophoresis of particles, Electrophoretic mobility, Electrophoretic velocit	
dependence on particle size.	
Dielectrophoresis, Induced polarization and DEP, Point dipole in a dielectric fluid	
DEP force on a dielectric sphere, DEP particle trapping, AC DEP force on	
dielectric sphere.	
Electro-capillary effects, Continuous electro-wetting, Direct electro-wetting	
Electro-wetting on dielectric 4	
Dispersion, Introduction to Nano fluidics, Introduction to Molecular Dynamic	
Simulations, Bio microfluidics, Nano fluidic Energy Conversion4	
Text Books, Text Books:	Text Books,
and/or 1) Microfluidics -Stéphane Colin	
reference 2) Micro- and Nanoscale Fluid Mechanics, Transport in Microfluidic Devices-	
material Brian Kirby, Cambridge University Press .	material
Reference Books:	
1) Theoretical Microfluidics-Henrik Bruus , Oxford University Press.	
2) Fundamentals and Applications of Microfluidics: Nam- Trung Nguyen and	
Steven T. Wereley	

	De	partment of Mech	anical Engi	ineering			
Course	Title of the	Program Core	Total Nu	mber of c	ontact hours	5	Credi
Code	course	(PCR) / Electives (PEL)	Lectur e (L)	Tutori al (T)	Practical (P)	Total Hour s	t
MEE 814	Machine Tool Engineering and Automation	PEL	3	0	0	3	3
Pre-requis		Course Assessm assessment (EA)		ds (Contin	uous (CT) an	id end	
ME402		CT+EA					
Course Outcomes		tudy of mechanica on to machine too			truction and	design.	
Topics Covered	2 Design of speed bound gears. 12 Design of Mach machine tools. Hydrostatic and Stick-slip motion 3 Machine tool rig 4 Machine tool rig 4 Machine tool in 2 Overview on Au Types of autom semi-automatic DNC, adaptive of automation (FM CNC Hardware: machine tools, Machine tool dr	les of Machine Toc and feed gear box ine Tool structures Hydrodynamic luk n in Machine Tool gidity, system com spection, testing a stomation: Definition ation: fixed autom s), Programmable control machines, I S). 5 Constructional fea rives, sensing device part programming	k, Optimun c: beds, slic prication in slide ways. pliance and nd mainter on, applica ation (auto automatio ndustrial re stures, open ces, open a	n design pi les and gu Machine Machine d process of nance. tion, adva omatic mac n (NC, CNC obots, CAE rational ch nd close lo	rinciples for ides, selectio Tool slide w capability of ntages and o chines, trans C and machin D/CAM, CIM naracteristics	using do on of bea ays and (machine disadvan sfer devic ning cent) and flex	uble aring for 3 Guides, tools. tages. ces and cres,
Text Books and/or reference material	1. Principle	es of Machine Tool er Controlled of M					
material	1. Machine	ks: e Tool Engineering cal Control and Cor			acturing – Ki	undra, R	ao and

	De	epartment of Mech	anical Engi	neering									
Course	Title of the	Program Core		mber of cor			Credit						
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total							
		Electives (PEL)	(L)	(T)	(P)	Hours							
MEE 815	Theory of Plates	PEL	3	0	0	3	3						
Pre-requisit	es	Course Assessm	ent metho	ds (Continuo	ous (CT) an	d end							
		assessment (EA))										
Engineering	Mechanics,	CT+EA											
Strength of	Materials												
Course	CO1:Conce	oncept of various plate theory											
Outcomes		Derivation of governing equation using virtual displacement theory											
	CO3: Analy	sis of plates											
	Stress strain re	lations, strain disp	lacement r	elation, equ	ations of e	quilibriu	m,						
Topics	opics virtual work principle, Classical plate theory, FSDT, HSDT. 8												
Covered	-	and cylindrical bend	-	ropic rectan	igular plate	es, Navie	r and						
		of rectangular plat	es. 8										
	Bending of circ	•											
	• •	sis of laminated cor	• •										
		olution methods fo	or plate pro	blems. 6									
	Dynamics of Pl	ates. 6											
Text Books,	Text Books:					,							
and/or		of plates By K. Cha		•		•							
reference		and analysis of ela	•		•								
material	3. Theory Mcgrav	of plates and shell w-Hill)	s By S. P. T	imoshenko	and S. W. K	(rieger(T	ata						
	Reference Boo	oks:											
	1. Theory (Prentic	and analysis of plat e Hall)	es classical	and numer	ical metho	ds By R.	Szilard						

	De	partment of Mech	anical Engi	neering										
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours	5	Credit							
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total								
		Electives (PEL)	(L)	(T)	(P)	Hours								
MEE 816	Advanced	PEL	3	0	0	3	3							
	Mechanical													
	Vibration													
Pre-requisite	es	Course Assessme	ent metho	ds (Continuo	ous (CT) an	d end								
		assessment (EA))											
Fundamenta	als of Vibrations	CT+EA												
Course	CO1: Under	standing the fund	damental	material for	r a moder	n treatn	nent of							
Outcomes	vibrat	ions.												
	CO2: Applica	cation of Lagrange equations for lumped and continuous systems												
	CO3: Unders	standing fundame	ntals of be	am theory;	extensiona	al, torsior	nal, and							
	flexur	al vibrations of bea	ams.											
	CO4: Unders	standing Self-excite	ed vibratio	n, nonlinear	vibration	etc.								
Topics	Review of re	levant mathemati	cs: linear a	lgebra 3										
Covered	Generalized	co-ordinates, Lagr	ange's equ	ations 3										
	-	and multi-DOF vibr	ation 7											
	Vibration Ab													
	Torsional vit													
		itation and Fourier	-	pulse and st	ep respon	se 5								
		continuous system			_									
		vibration, Criterior		y; Effect of	friction 5									
		to nonlinear vibra	ition 7											
Text Books,	Text Books:													
and/or		ical Vibrations, S. S			•	•								
reference		ental of Vibrations					J01							
material		n and Control, D. J.	Inman, Jo	nn Willey &	Sons Inc, 2	2002								
	Reference Boo		madara: 0	Crokers		hounde (- مالية الم							
		Vibrations, S. Tai		Granam S	. Kelly, Scl	naum's C	Jut line							
		Graw Hill Inc, 1998		chinac I C	Doo Tot		ом, ЦШ							
	2. Vibration C 2006.	Condition Monitor	ing of Ma	unnes, J. S	. NdU, Idl		aw ⊓III,							
	2006.													

MAPPING BETWEEN COURSE OUTCOMES AND PROGRAM OUTCOMES, PROGRAM SPECIFIC OUTCOMES

Couse Cod	e and Course Name: MEC301, Solid M	echan	ics			•	-	•			-		•	-	
COs	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	909	P010	P011	P012	PS01	PS02
MEC301.1	Understand the analysis of stress, strains, elasticity properties of materials, strain energy principles	3	3	3	1	1	1	1	-	-	1	-	1	2	1
MEC301.2	Demonstrate the members subjected to shear force, bending moments, flexure loads, torsional loads	3	3	3	1	1	1	1	1	-	1	-	1	2	1
MEC301.3	Calculate deflection of beams	3	3	3	1	1	1	1	1	-	1	-	1	2	1
MEC301.4	Estimate the members subjected to compressive loads.	3	3	3	1	1	1	1	1	-	1	-	1	2	1
Average		3	3	3	1	1	1	1	0.8	-	1	-	1	2	1
Couse Cod	e and Course Name: MEC302, Theory	of Ma	achine	s & M	echan	isms		•							
COs	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	909	P010	P011	P012	PS01	PS02
MEC302.1	Knowledge of dynamics of elementary mechanisms and machines	3	2	-	1	3	-	-	-	1	-	-	2	3	1
MEC302.2	Knowledge of the fundamental of machine design	3	3	-	1	2	-	-	-	1	-	-	1	3	1
Average		3	3	-	1	2.5	-	-	-	1	-	-	1.5	3	1
Course Co	de and Course Name: MEC303, Fluid M	echar	ics												
COs	Statement	P01	P02	PO3	P04	PO5	P06	PO7	P08	60d	P010	P011	P012	PS01	PS02
MEC303.1	To understand the fundamental concepts of fluid mechanics	3	2	2	-	-	2	-	1	-	-	2	-	2	-
MEC303.2	To formulate the fundamental equations in mathematical form to solve the fluid mechanics problems	3	2	2	-	-	-	-	1	-	-	-	2	2	-
MEC303.3	To apply the conservation equations to analyse both viscous and inviscid flow	3	2	2	-	-	2	-	1	-	-	-	2	2	-
Average		3	2	2	-	-	2	-	1	-	-	2	2	2	-

Couse Cod	e and Course Name: MEC304, Engine	ering	Thern	nodyna	amics										
COs	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PS01	PS02
MEC304.1	Enumerate the laws of thermodynamics and systems.	3	3	-	-	-	-	-	-	-	-	-	-		-
MEC304.2	Express the proficiency in handling engineering problems to arrive at substantiated conclusions using laws of thermodynamics.	3	3	2	1	-	-	-	-	-	-	-	-	2	-
MEC304.3	Compute solutions for complex thermodynamic problems.	3	3	3	3	1	-	-	-	-	-	-	-	3	3
MEC304.4	Apply the laws of thermodynamics in different Engineering problems such as heat engines, refrigeration, power cycles, compressors etc.	3	3	3	3	-	-	-	-	-	-	-	3	2	1
MEC304.5	Evaluate the performances of Engineering applications based on thermodynamic laws.	3	3	3	3	-	-	1	-	-	-	1	3	2	2
MEC304.6	Design the Engineering applications based on Thermodynamics.	3	3	3	3	1	-	1	-	-	-	1	3	3	3
Average		3	3	2.3	2.2	0.3	-	0.3	-	-	-	0.3	1.5	2	1.5
Couse Cod	e and Course Name: MAC-331, Mathe	ematio	s-III	1	1			1					-		
COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02
MAC331.1	CO1: Acquire the idea about mathematical formulations of phenomena in physics and engineering.	3	3	3	2	2	1	2	-	-	-	-	2	3	2
MAC331.2	CO2: To understand the common numerical methods to obtain the approximate solutions for the intractable mathematical problems	3	3	2	2	2	1	2	-	-	-	1	2	3	3
MAC331.3	CO3: To understand the basics of complex analysis and its role in modern mathematics and applied contexts.	3	3	2	2	3	-	1	-	-	1	-	2	2	2
MAC331.4	CO4: To understand the optimization methods and algorithms developed for solving various types of optimization	3	2	2	3	2	1	1	-	1	-	-	2	3	2

Average		3	2.8	2.3	2.3	2.3	1	1.5	-	1	1	1	2	2.8	2.3
Couse Cod	e and Course Name: PHC333 Physics	s of Er	nginee	ring M	lateria	ls									
COs	Statement	P01	P02	PO3	P04	PO5	P06	РО7	P08	60d	P010	P011	P012	PS01	PS02
PHC333.1	To understand fundamental theory of metal	3	1	2	3	1	1	2	1	-	1	1	2	-	-
PHC333.2	To comprehend theory and device applications of semiconductor materials	3	3	2	3	-	1	2	1	-	-	-	1	-	-
PHC333.3	To be familiar with fundamental of laser and its applications	3	3	2	3	-	1	2	1	1	1	1	2	2	1
PHC333.4	To know about the super conductivity, dielectric and mechanical properties of material	3	2	2	3	1	1	2	2	1	1	1	1	2	1
Average		3	2	2	3	1	1	2	1	1	1	1	1	1	0.5
Couse Cod	e and Course Name: PHS383 Physics of	of Eng	ineeri	ng Ma	terials	Labo	ratory								
COs	Statement	P01	P02	P03	P04	PO5	P06	РОЛ	P08	60d	P010	P011	P012	PS01	PS02
PHS383.1	To realize and apply different techniques for measuring characteristics of p-n junction and application of Zener diode as voltage regulator	3	2	2	3	2	2	3	2	2	1	3	2	1	-
PHS383.2	To determine the properties (carrier concentration and type) of semiconductor by Hall-effect experiments	3	2	2	2	-	1	2	2	2	1	3	2	1	-
PHS383.3	To apply the knowledge to determine the properties (bandgap and resistivity) of semiconductor materials by four-probe method at different temperatures.	3	1	1	2	-	1	2	2	2	1	3	2	1	1
PHS383.4	To determine the characteristics of solar cell	3	1	3	3	-	3	3	2	2	1	3	2	-	1
Average		3	1	2	2	2	2	2	2	2	1	3	2	0.8	0.8
MEC401 ::	Design of Machine Element														
COs	Statement	P01	P02	P03	P04	PO5	P06	РОЛ	P08	P09	P010	P011	P012	PS01	PS02
MEC401.1	Acquire an idea about engineering materials in machine design	2	2	3	-	-	2	2	1	2	1	-	2	2	-
MEC401.2	To learn the basic design procedure for	3	3	3	1	1	T	2	2	2	1		2	3	1

	different elementary machine elements														
MEC401.3	To learn about design of bolt and welded joints, pressure vessels etc.	3	3	3	1	2	-	2	2	2	1	-	2	3	2
MEC401.4	Introduction to fatigue design	2	3	3	1	-	-	-	1	-	1	-	3	3	-
Average		2.5	2.8	3	0.8	0.8	0.5	1.5	1.5	1.5	1	-	2.3	2.8	0.8
MEC402:	Casting, Forming and Welding					•				•			•	•	
COs	Statement	P01	P02	PO3	P04	PO5	906	P07	P08	909	P010	P011	P012	PS01	PS02
MEC402.1	Learn different types of casting process	3	2	3	1	-	2	1	-	-	2	-	3	2	1
MEC402.2	Select suitable manufacturing process for typical components.	3	2	2	2	-	2	1	-	-	2	-	3	3	1
MEC402.3	Learn the various welding process.	3	2	2	1	-	2	1	-	-	2	-	3	2	1
MEC402.4	Explain the concept of forging, rolling process and drawing.	3	2	3	1	-	2	1	-	-	2	-	3	2	1
Average		3	2	2.5	1.2	-	2	1	-	-	2	-	3	2.2	1
Couse Cod	e and Course Name: MEC403, Heat a	nd Ma	ss Tra	nsfer	-	-	-	-	-	-	-	-	-		
COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	909	P010	P011	P012	PS01	PS02
MEC403.1	Interpret the fundamental of heat and mass transfer	3	3	-	-	-	-	-	-	-	-	-	3	3	3
MEC403.2	Express the proficiency in handling laws of heat transfer	3	3	2	2	-	-	-	-	-	-	-	3	3	3
MEC403.3	Compute solutions for Heat transfer problems.	3	3	3	3	-	-	-	-	-	-	-	3	3	3
MEC403.4	Apply the laws of heat transfer in different Engineering problems.	3	3	3	3	-	-	-	-	-	-	-	3	3	3
MEC403.5	Evaluate the performance of heat transfer equipment.	3	3	3	3	-	-	-	-	-	-	-	3	3	3
MEC403.6	Design the heat exchangers.	3	3	3	3	-	-	-	-	-	-	-	3	3	3
Average		3	3	2.3	2.3	-	-	-	-	-	-	-	3	3	3

Couse Cod	e and Course Name: MES451, Solid M	echan	ics Lal	borato	ory										
COs	Statement	P01	P02	P03	P04	P05	PO6	РО7	P08	60d	P01 0	P01 1	P01 2	PSO 1	PSO 2
MES451.1	Understand the concept of Mohr's circle for stress and strain, graphically	3	3	3	1	1	1	1	-	2	1	-	1	2	1
MES452.2	Analyze the behavior of the solid bodies subjected to tensile, impact and torsional loads	3	3	3	1	1	1	1	-	1	1	-	1	2	1
Average		3	3	3	1	1	1	1	-	1.5	1	-	1	2	1
Course Co	de and Course Name: MES452, Hydra	ulics I	.ab												
COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PS01	PS02
MEC452.1	To learn fundamentals of fluid mechanics	3	3	1	1	-	-	-	-	2	-	-	3	2	-
MEC452.2	To Measure various quantities viz. Volume flow rate, Cd, Friction factor	3	2	3	1	1	-	-	-	2	-	-	3	2	-
MEC452.3	To Calibrate of various quantities viz Venturimeter, Orificemeter and V-notch.	3	2	3	1	1	-	-	-	2	-	-	3	2	-
Average		3	2.3	2.3	1	1	-	-	-	2	-	-	3	2	I
Couse Cod	e and Course Name: MES453, Mechanism	Labora	tory												
COs	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PS01	PS02
MES453.1	Students will be able to solve kinematics of mechanism by graphical method	3	1	1	-	1	-	-	-	-	-	-	2	2	1
MES453.2	Students will be able to analyze mechanism by computer aided tools	1	2	2	2	3	-	-	1	1	1	-	2	3	3
MES453.3	Students will be able to solve mechanism synthesis problems using computer aided tools	2	3	3	1	3	2	-	1	1	1	-	2	3	3
MES453.4	Students will be able to demonstrate model of few planar mechanisms	-	-	2	3	2	2	-	2	2	1	-	2	2	1
Average		1.5	1.5	2	1.5	2.3	1	-	1	1	0.8	-	2	2.5	2

Couse Cod	e and Course Name: EEC-432, ELECTRICAL	MAC	HINES												
COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PS01	PS02
EEC432.1	Theory of electromechanical energy conversion, the concepts of voltage generation and fundamental torque equation.	3	3	3	3	2	1	1	1	2	3	2	1	-	1
EEC432.2	Basic understanding of the principles of operation and construction of direct and alternating current machines and transformers.	2	2	2	2	3	1	1	1	2	3	2	1	-	1
EEC432.3	A study of theory and concept of Electric Machines (AC & DC).	2	2	2	2	3	1	1	1	2	3	2	1	3	1
EEC432.4	Deriving equivalent circuit of electrical machines.	3	3	3	3	2	1	1	1	2	3	2	1	2	1
EEC432.5	Studying the performance and characteristics of Electrical machines (AC & DC).	3	3	3	3	2	1	1	1	2	3	2	1	1	-
Average		3	3	3	3	2	1	1	1	2	3	2	1	1.2	0.8
Couse Cod	e and Course Name: EES-482, ELECTRICAL	MAC	HINES	LABO	RATO	RY									
COs	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PS01	PS02
EES482.1	Ability to determine the equivalent circuit parameters of a single-phase transformer	3	3	3	3	2	1	1	1	2	3	2	1	1	-
EES482.2	Ability to determine the parameters of single-phase as well as three phase induction motor.	3	3	3	2	3	1	1	1	2	3	2	1	1	2
EES482.3	Ability to determine the characteristics of dc shunt generator and series generator	3	2	2	1	2	1	1	1	2	3	2	1	1	1
EES482.4	Ability to control the speed of a dc shunt motor	3	2	2	1	2	1	1	1	2	3	2	1	1	2
EES482.5	Ability evaluate the voltage regulation of an alternator	3	2	2	1	2	1	1	1	2	3	2	1	1	-
EES482.6	Ability to determine the efficiency of dc machines	3	2	2	1	2	1	1	1	2	3	2	1	1	1
Average		3	2	2	1	2	1	1	1	2	3	2	1	1	1

MEC501: Machining and Machine Tools

	_														
COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PS01	PS02
MEC501.1	Knowledge of fundamental machining processes and the underlying science of machining and the related processes	3	2	1	2	-	-	-	-	-	-	-	2	1	1
MEC501.2	Various machine tools, their operations and the mechanisms in machine tools	1	1	3	3	3	2	2	1	-	-	-	1	3	1
Average		2	1.5	2	2.5	1.5	1	1	0.5	-	-	-	1.5	2	1
Couse Cod	e and Course Name: MEC502, IC Eng	ine an	d Gas	Turbi	nes	1	1	1		1	1	1	1	1	1
COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	909	P010	P011	P012	PS01	PS02
MEC502.1	Interpret the fundamental of IC engines.	1		-	-	-	-	-	-	-	-	-			
MEC502.2	Express the proficiency in handling IC engine operations.	2				-	-		-	-	-	-	1		
MEC502.3	Solve problems of IC engines to new situations by applying acquired knowledge, facts, techniques and rules in a different way.	2	3	2	3	2	-	2	-	-	-	-	2	2	
MEC502.4	Analyze the information by identifying causes, make inferences to support generalizations.	2	3	3	3	-	-		-	2	-	-	2	3	2
MEC502.5	Evaluate the performance of IC engines.	1	2	2		-	-		-	1	-	-	2	1	2
MEC502.6	Design IC engine components.	1	3	3		2	2	2	-	2	-	-	3	2	2
Average		1.5	1.8	1.3	1	0.7	0.3	0.7	-	0.8	-	-	1.7	1.3	1
MEC503 ::	Machine Design	1	r		r	T	r	r	1	1	r	1	r	r —	1
COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PS01	PS02
MEC503.1	Detail analysis of members under fatigue loads.	2	1	3	1	2	3	2		3		-	2	2	
MEC503.2	Design procedures for some machine elements used in mechanical drives	2	2	3	1	2	2	2				-	2	3	2

MEC503.3	Exposed to the importance of engineering tolerances and its use.	2	1	2	2	2	-	-				-	2	2	
MEC503.4	Introduction to different types of bearings and lubrications.	2	1	2	1	2	2	2				-	2	2	
MEC503.5	To understand the basics of gear mechanics.	2	1	3	1	3	3	2				-	2	1	
Average		2	1.2	2.6	1.2	2.2	2.5	1.4		0.6	0	-	2	2	0.4
Course Co	de and Course Name: MEC 504, Dynamics	of Mac	hinery	/											-
COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	909	P010	P011	P012	PS01	PS02
MEC504.1	Knowledge of gyroscopic motion of dynamic mechanical system.	2	2	2	2	1	1	1	-	-	-	-	2	2	2
MEC504.2	Knowledge of balancing of rotating and reciprocating machines.	2	2	2	3	1	1	2	-	-	-	-	2	2	2
MEC504.3	Knowledge of longitudinal, torsional and transverse vibration of mechanical system.	2	2	3	3	2	2	1	-	-	-	-	2	3	3
Average		2	2	2.3	2.7	1.3	1.3	1.3	-	-	-	-	2	2.3	2.3
Course Co	de and Course Name: MES 551, Design and	l Dyna	mics I	abora	tory										
COs	Statement	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02
MES551.1	Acquire basic idea about the machine component drawing, geometric profiles of gears and cams.	1	3	3	2	-	-	-	-	2	-	-	1	2	2
MES551.2	To understand the use of gyroscope and governors.	1	3	3	2	-	-	-	-	2	-	-	1	2	2
	governors.														
MES551.3	Understanding vibratory systems and mass balancing concept.	1	3	3	2	_	-	-	-	2	-	-	1	2	3
	Understanding vibratory systems and mass	1 1	3 3	3 3	2 2	-	-	-	-	2 2	-	-	1 1	2 2	3 2
Average	Understanding vibratory systems and mass	1	3	3	2		-	-	-		_		_	_	•
Average	Understanding vibratory systems and mass balancing concept.	1	3	3	2		- - -		- - 804		_		_	_	•
Average Couse Cod	Understanding vibratory systems and mass balancing concept. le and Course Name: MES 552, Heat 1	1 Transf	3 er Lab	3 orator	2 y	-			- - 804	2	-	-	1	201	2 203

MES552.3	Knowledge on conduction heat transfer	3	2	1	2	-	-	-	-	2	1	-	1	-	1
MES552.4	Knowledge on convection heat transfer	3	2	1	2	-	-	-	-	3	1	-	1	-	1
MES552.5	Knowledge on Radiation heat transfer	3	2	1	2	-	-	-	-	3	1	-	1	-	1
Average		3	2	1	2	-	-	-	-	2.4	1	-	1	-	1
Couse Cod	e and Course Name: MES553, CAD/C	AM Lal	borato	ry											
COs	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PS01	PS02
MES553.1	Able to learn geometric modelling using CAD tools	2	-	3	2	3	-	-	-	2	3	-	3	3	3
MES553.2	Able to use MATLAB for solving computer graphics problem and engineering analysis problem	3	-	2	1	3	-	-	-	2	1	-	2	3	3
MES553.3	Exposed to CNC part programming	1	-	2	-	3	-	-	1	2	1	1	2	2	2
Average		2	-	2.3	1	3	-	-	-	2	1.7	-	2.3	2.7	2.7
Couse Cod	e and Course Name: WSS581, Works	hop Pr	actice	- II											
COs	Statement	P01	P02	PO3	P04	PO5	P06	РО7	80d	60d	P010	P011	P012	PS01	PS02
WSS581.1	Hands-on practice on Foundry	1		2		1	2			3	2		2	1	2
WSS581.2	Hands-on practice on different job manufacturing in machine shop	2		2		2	2			3	2		2	2	3
WSS581.3	Hands-on practice on Pattern Shop	1		2		1	2			3	2		2	1	2
WSS581.4	Hands-on practice on welding Shop	1		2		1	2			3	2		2	1	2
AVERAGE	· · · · · · · · · · · · · · · · · · ·	1.3		2		1.3	2			3	2		2	1.3	2.3
Couse Cod	e and Course Name: HSC631, Econon	nics ar	nd Mar	nagem	ent Ao	count	ancy								
COs	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PS01	PS02
HSC631.1	Learners will be able to review basic economic principles.	-	1	2		-	2			-	-	-	-	1	1
HSC631.2	Learners will be introduced to the basic capital appraisal methods used for carrying out economic analysis of different alternatives of engineering projects or	-	3	2	1	-	-	-	1	1	3	3	2	1	2

	works														
HSC631.3	Learners will gain a good knowledge of financial accounting, enabling them prepare, analyse and interpret financial statements for taking informed decisions.	-	1	1	2	2	1	-	1	3	3	3	2	2	1
AVERAGE		-	1.7	1.7	1	0.7	1	0.7	0.7	1.3	2	2	1.3	1.3	1.3
Couse Cod	e and Course Name: MEC601, Power	Plant	Engin	eering										-	
COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	909	P010	P011	P012	PS01	PS02
MEC601.1	Interpret the fundamental of power plant.	2		-	-	-	-	-	-	-	-	-			
MEC601.2	Express the proficiency in handling power plant equipment.	1				-	-		-		-	-			
MEC601.3	Solve problems of power plant.	3	3	3		-	1	1	-	1	-	1	1	2	1
MEC601.4	Analyze the information by identifying causes of failure, make inferences to support generalizations.	3	3	3	3	-	-	2	-	1	-	1	1	2	1
MEC601.5	Evaluate the performance of power plant.	3	2	2	3	-	-	3	-		-	1	2		1
MEC601.6	Design different power plant equipment	1		2	2	-	2	3	-	2	-	1	2	2	1
Average		2.2	1.3	1.7	1.3	-	0.5	1.5	-	0.7	-	0.7	1	1	0.7
Course Co	de and Course name : MEC602 , Industrial	Engin	eering	and I	Measu	remen	t								
COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	909	P010	P011	P012	PS01	PS02
MEC602.1	Knowledge on the structures of Engineering Organization in general.	2	1	2	1	1	3	-	3	1	3	3	2	2	1
MEC602.2	Planning of manning and production line.	2	3	3	3	1	2	-	1	1	2	3	1	2	2
MEC602.3	Ability for material management.	2	2	3	3	1	1	-	1	2	2	3	2	2	3
MEC602.4	Indian standards of measurement.	2	3	2	2	1	2	-	2	2	2	2	3	2	2
MEC602.5	Techniques of engineering measurements with its application.	2	3	3	3	1	2	-	1	1	2	3	2	3	3
Average		2	2.4	2.6	2.4	1	2	-	1.6	1.4	2.2	2.8	2.2	2.2	2.2
Couse Cod	e and Course Name: MEE 610, Autom	nobile	Engin	eering											
COs	Statement	P01	P02	P03	P04	P05	906	P07	P08	60d	P010	P011	P012	PS01	PS02
MEE610.1	Explain the basic structures and working principles of different automobile	3	-	-	-	-	-	-	-	-	-	-	-	1	-

	components.		1												
MEE610.2	Calculate the power, performance heat transfers from engine.	3	3	2	3	-	-	3	-	-	-	-	-	2	-
MEE610.3	Design different automobile components	3	3	3	3	-	-	3	-	-	-	-	-	2	-
MEE610.4	Analyse the information by identifying causes of failure, make inferences to support generalizations.	3	3	3	3	-	3	3	-	-	-	-	3	3	-
Average		3	2.3	2	2.3	-	0.8	2.3	-	-	-	-	0.8	2	-
Couse Cod	e and Course Name: MEE611, GAS DY	'NAMI	CS and	l PRO	PULSI	ON									
COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PS01	PS02
MEE611.1	To learn compressible flows with constant entropy only, with friction only and with heat transfer only.	1	2	Ι	2	-	-	-	1	-	-	2	1	-	-
MEE611.2	To learn Normal shock, oblique Shock and Prandtl-Meyer Flow with real life applications.	1	-	-	2	3	-	-	1	-	-	2	2	1	2
MEE611.3	To learn Performance analysis of Air Breathing Engines (Ramjet, Turbojet (standard): Fan exhausted turbofan & Fan mixed turbofan and Turbo prop.)	1	-	2	2	3	-		1	-		3	3	1	2
MEE611.4	To learn Performance analysis of Non Air Breathing Engines (Solid Rocket Motors and Liquid Rocket Engines).	1	-	2	2	3	-		1	-		3	3	1	2
Average		1	2	2	2	3	-	-	1	-	-	2.5	2.3	1	2
	MEE612: Mechanics of Forming and Press	s Worl	king												<u> </u>
COs	Statement	P01	P02	PO3	P04	PO5	906	P07	P08	60d	P010	P011	P012	PS01	PS02
MEE612.1	Detailed and in depth analysis of the forming processes	2	3	3	1	2	1	1	-	-	-	-	2	2	-
MEE612.2	Specialized techniques in forming practiced in industry	-	1	3	-	-	2	-	-	-	-	1	-	2	2
Average		1	2	3	0.5	1	1.5	0.5	-	-	-	0.5	1	2	1

Course Na	me and Course Code: MEE613, Advanced	Solids	Mecha	anics											
COs	Statement	P01	P02	PO3	P04	PO5	906	P07	P08	60d	P010	P011	P012	PS01	PS02
MEE 613.1	Extend their knowledge from vector to tensor, and from isotropic to anisotropic materials	2	1	-	2	1	-	-	-	-	-	-	2	-	-
MEE 613.2	Apply the knowledge of 3-D state of stress and strain	2	3	3	3	2	-	-	-	1	-	-	3	3	3
MEE 613.3	Apply the concept of thick cylinder theory	2	1	3	3	1	-	-	-	-	-	-	2	3	3
MEE 613.4	Apply the energy principles	1	3	2	1	1				2	-	-	1	2	2
MEE 613.5	Apply the theory of noncircular shaft	1	1	3	3	1	-	-	-	2	-	-	1	-	-
Average		1.6	1.8	2.2	2.4	1.2	-	-	-	1	-	-	1.8	1.6	1.6
Couse Cod	e and Course Name: MEE615, Operation	ons Re	searc	h	-	-	-		-	-					
COs	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PS01	PS02
MEE615.1	Students will be able to discuss the history, concepts, formulations and applications of operations research.	1	1	2	1	1	1	1	-	-	1	-	1	2	1
MEE615.2	Students will be able to analyze and solve conflicting problems on constrained linear optimization problems having single and multiple objectives.	2	2	3	1	1	1	1	-	-	1	1	1	2	1
MEE615.3	Students will be able to apply integer, dynamic programming methods for solving relevant problems.	3	3	3	1	1	1	1	-	-	1	-	1	2	1
Average		2	2	2.7	1	1	1	1	-	-	1	1	1	2	1
Course Co	de and Course name : MEE620 , Advanced	Found	ry Eng	gineer	ing										
COs	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PS01	PS02
MEE620.1	At the end of the course student will be able to get the knowledge about various aspects of casting processes and the underlying science	2	3	2	2	2	1	1	-	-	2	-	2	2	2

MEE620.2	To learn about various types of casting methods	2	2	3	3	2	1	3	-	-	2	-	3	3	3
MEE620.3	Application fields of various casting processes	2	1	3	2	1	1	1	-	-	-	-	2	2	1
Average		2	2	2.6	2.3	1.6	1	1.6	-	-	2.3	-	2.1	2.3	2
Couse Coo	de and Course Name: MEE622, Enginee	ring O	ptimiz	zation											
COs	Statement	P01	P02	PO3	P04	PO5	P06	РО7	P08	P09	P010	P011	P012	PS01	PS02
MEE622.1	Students will be able to describe and formulate optimization problems	1	1	2	1	1	1	1	-	-	1	-	1	2	1
MEE622.2	Students will be able to apply knowledge of different optimization methods for solving engineering problems	2	3	3	1	1	1	1	-	-	1	-	1	2	1
MEE622.3	Students will be able to differentiate between optimization methods and suggest a suitable technique applicable for a specific problem.	3	3	3	2	1	1	1	-	-	1	-	1	3	2
Average	·	2	2.3	2.7	1.3	1	1	1	-	-	1	-	1	2.3	1.3
Course Co	de and Course Name: MEE623, Multiphase	flow	and he	eat tra	nsfer										
COs	Statement	P01	P02	PO3	P04	PO5	P06	РО7	P08	P09	P010	P011	P012	PS01	PS02
MEE623.1	Understanding the principles of multi-phase flow and heat transfer.	3	2	2	3	3	-	-	-	-	-	-	2	2	3
MEE623.2	Relate the fluid-dynamic involved in convection and multi-phase heat transfer.	3	3	2	3	3	-	-	-	-	-	-	2	2	3
MEE623.3	Plan elementary analysis of most gas-liquid two-phase systems.	3	3	2	2	2	-	-	-	-	-	-	3	2	2
			3	2	2	2	-	-	-	-	-	-	2	2	2
MEE623.4	Analyze the model to a wide variety of complex engineering problems.	3	5												
MEE623.4 MEE623.5		3	3 2.8	2	2 2.4	2 2.4	1	-	-	-	-	-	2 2.2	2	2 2.4

COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	909	P010	P011	P012	PS01	PS02
MEE624.1	To learn the basic knowledge of surface topography and contact between engineering surfaces.	2	2	1			1						2	2	
MEE624.2	To learn the basic theory and application of friction and wear for different materials	2	2	1				1					2	2	
MEE624.3	To learn about lubricants and lubrication for different bearings	1	2	1									1	2	
MEE624.4	Introduced to Bio-tribology of human joints	1	2	2	2		3	2					3	2	2
MEE624.5	Introduced to Micro-tribology for MEMS applications	2	2	1	2		1	2					3	2	2
Average		1.5	2	1.2	0.8		1	1					2.2	2	0.8
MEE625 ::	Computer Aided Design and Manufacturing	g		•			1		1				_		
COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PS01	PS02
MEE625.1	Able to understand scope and application of CAD/CAM tools in industry	1	-	2	-	3	-	-	2	2	1	-	3	3	3
MEE625.2	Able to learn geometric modelling and computer graphics concept in CAD tools	3	2	2	1	3	-	-	-	2	3	-	2	3	3
MEE625.3	Able to understand the different design analysis and optimization tools in CAD	3	3	2	1	3	-	-	-	2	2	-	2	3	3
MEE625.4	Able to understand the fundamentals of Additive manufacturing	1	1	1	-	3	-	1	2	1	-	-	2	3	3
Average		2	1.5	1.8	0.5	3	I	0.3	1	1.8	1.5	-	2.3	З	3
	MES651: Engineering Measurement Labo	ratory	,		•										<u></u>
COs	Statement	P01	P02	P03	P04	PO5	P06	PO7	P08	P09	P01 0	P01 1	P01 2	PSO 1	PSO
MES651.1	Workshop and precision engineering measurement methods	3	1	-	-	2	-	-		3	3	1	2	2	1
MES651.2	Exposure to measuring instruments and their use	3	-	-	2	1	-	-	-	3	2	-	2	2	1
Average		3	0.5	_	1	1.5		_		3	2.5	0.5	2	2	1

Couse Cod	le and Course Name: MES 652, Power	Gene	ration	Labo	ratory	T	1			I		-		-	1
COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PS01	PS02
MES652.1	Experimentation of refrigerating systems	3	3	3	3	-	-	-	-	3	-	-	-	1	1
MES652.2	Experimentation on steam generators	3	3	3	3	-	-	1	-	3	-	-	-	1	1
MES652.3	Study of steam turbines	3	3	3	3	-	-	1	-	3	-	-	-	2	1
MES652.4	Test on diesel engine	3	3	3	3	-	-	-	-	3	-	-	-	2	1
MES652.5	Experimentation on steam nozzle	3	3	3	3	-	-	-	-	3	-	-	-	2	1
Average		3	3	3	3	-	-	-	-	3	-	-	-	1.6	1
Couse Cod	le and Course Name: MES653, Machine	e Desi	gn Se	ssiona	l-I										
COs	Statement	P01	P02	PO3	P04	PO5	P06	РО7	P08	60d	P010	P011	P012	PS01	PS02
MES653.1	Acquire basic idea about making the design and production drawing for simple and common mechanical assembly	2	3	3	-	3	-	1	2	2	3	-	3	3	3
MES653.2	To understand the method of implementation of engineering tolerances	1	2	3	-	2	2	1	2	2	2	-	2	3	1
MES653.3	To identify the importance of using the standards and use of catalogues in making the design	-	-	2	-	2	2	1	1	2	1	-	2	3	2
AVERAGE	•	1	1.7	2.7	-	2.3	1.3	1	1.7	2	2	-	2.3	3	2
Course Co	de and Course name : MES654 , Manufactu	ring L	abora	tory											
COs	Statement	P01	P02	PO3	P04	PO5	P06	РО7	P08	909	P010	P011	P012	PS01	PSO 2
MES654.1	Hands on practice on different job manufacturing by milling machine	3	2	2	2	-	2	-	-	3	2	1	1	3	1
MES654.2	Understanding power transmission mechanism in lathe, drilling machine, Milling machine etc.	3	3	2	1	-	1	-	-	1	2	1	3	3	1
MES654.3	Exposure to grinding machine and job practice	3	2	2	2	-	1	-	-	1	2	2	3	3	1
MES654.4	Exposure to NC/CNC machines, part programming, and job practice	3	2	2	1	-	1	-	-	1	2	2	3	3	3
	Job practice in nonconventional machining,	3	2	2	2	-	2	-	-	3	2	1	1	3	3
MES654.5	ECM, EDM etc.											<u> </u>			

Couse Cod	e and Course Name: MSC731, PRINC	IPLES	OF M	ANAGE	MENT	•									
COs	Statement	P01	P02	PO3	P04	PO5	P06	PO7	P08	60d	P010	P011	P012	PS01	PS02
MSC731.1	To make budding engineers aware of various management functions required for any organization									3	2	2	1	1	
MSC731.2	To impart knowledge on various tools and techniques applied by the executives of an organization				2					2	2		1	2	1
MSC731.3	To make potential engineers aware of managerial function so that it would help for their professional career				2					3	2	2	2	2	1
MSC731.4	To impart knowledge on organizational activities operational and strategic both in nature							1		3	3	1		2	1
MSC731.5	To impart knowledge on each functional area of management like Marketing, Finance, Behavioral Science, Quantitative Techniques and Decision Science				2			1		2	2	3	1	2	2
AVERAGE					1.2			0.4		2.6	2.2	1.4	1	1.8	1
Course Na	me and Course Code: MEE710, Finite Elem	ent Me	ethods	5											
COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PS01	PS02
MEE710.1	To obtain an understanding of the fundamental theory of the FEA method	3	1					2		2			2	1	1
MEE710.2	To develop the ability to generate the governing FE equations for systems governed by partial differential equations	2	1	2	3	1	1	1		2			2	3	2
MEE710.3	To understand the use of the basic finite elements for analysis of bar, truss, beam etc.	2	1	3	3	1	1	1		2			2	3	2
Average		2.3	1	1.7	2	0.7	0.7	1.3	-	2	-	-	2	2.3	1.7

Couse Cod	e and Course Name: MEE711, COMPU	TATIO	NAL F	LUID	DYNA	MICS	and HI	EAT TR	ANSF	ER					
COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	909	P01 0	P01 1	P01 2	PSO 1	PSO
MEE711.1	To learn to model a physical Fluid Mechanical and Heat Transfer problem (both Laminar & Turbulent Flow) mathematically in terms of PDEs.	1	2	-	-	-	-	-	1	-	-	2	1	1	-
MEE711.2	To learn discretization of the PDEs using Finite Difference and Finite Volume Methods	3	-	-	2	-	-	-	1	2	-	-	-	1	-
MEE711.3	To learn R-K4 method to solve ODEs and Techniques to solve PDEs.	3	-	-	2	3	-		1	2		-	-	1	2
MEE711.4	To learn to solve simple Heat transfer Problems and Viscous Incompressible Fluid Flow problems using MATLAB coding and checking the same by simulation using ANSYS-Fluent software	1	2	-	2	3	-		1	-		3	3	1	2
Average		2	2	-	2	3	-	-	1	2	-	2.5	2	1	2
	MEE713: Nonconventional Machining														
COs	Statement	P01	P02	P03	P04	PO5	906	P07	P08	60d	P010	P011	P012	PS01	PS02
MEE713.1	Cutting edge technology for nonconventional/ precision machining	1	3	2	2	1	1	-	-	-	-	-	2	2	1
MEE713.2	Emerging trends of metal removal processes	1	1	3	3	3	2	2	2	-	-	-	2	1	2
Average		1	2	2.5	2.5	2	1.5	1	1	-	-	-	2	1.5	1.5
Course Co	de and Course name : MEE714 , Advanced	Weldi	ng Teo	chnolo	gy										
COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PS01	PS02
MEE714.1	To get the knowledge about newly developed welding process and its parameters	3	3	1	1	2	1	3	-	-	2	-	3	2	2
MEE714.2	To learn various nonconventional welding methods	3	2	3	3	2	1	3	-	I	2	-	3	3	3
MEE714.3	To learn various application fields of various welding processes	3	1	3	2	1	1	1	-	-	-	-	3	2	1
		3	2	2.3	2	1.6	1	2.3			2.3		3	2.3	2

Couse Cod	e and Course Name: MEE715, Robotic	s	-	-			-				-	-	-	-	-
COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PS01	PS02
MEE715.1	Students will be able to discuss the history, concepts and key components of robotics technologies	1	1	2	1	1	1	1	-	-	-	-	1	1	1
MEE715.2	Students will be able to analyse and solve problems spatial transformation, forward and inverse kinematics, dynamics of robot manipulators, jacobian and singularities, joint trajectory for motion planning	2	3	3	1	2	1	1	1	1	1	-	1	2	1
MEE715.3	Students will be able to describe and compare various robot grippers, sensors, actuators and controllers and their perception	1	1	1	1	1	1	1	-	-	1	-	1	1	1
Average		2	2.3	2	1	1.3	1	1	1	1	1	-	1	1.7	1
Couse Cod	le and Course Name: MEE717, Control	Syste	ms												
COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PS01	PS02
MEE717.1	Will get exposure to the block diagram based formulations, behavior of linear time continuous control systems.	1	1	1	1	1	1	1	-	-	-	-	1	1	1
MEE717.2	Ability to analyze the system performance and relative stability information.	2	3	3	1	2	1	1	-	1	1	-	1	2	1
MEE717.3	Understand the relevance of characteristic roots in the behavior of various dynamic systems.	2	3	3	1	2	1	1	-	1	1	-	1	2	1
MEE717.4	Ability to design simple controllers for analog systems.	2	3	3	1	2	1	1		1	1	-	1	2	1
MEE717.5	To study and analyze state space methods, controllability and observability of control systems.	2	3	3	1	2	1	1	-	1	1	-	1	2	1

Couse Cod	le and Course Name: MEE721, Conve	ctive H	leat ai	nd Mas	ss Tra	nsfer									
COs	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	909	P010	P011	P012	PS01	PS02
MEE721.1	To acquire an idea about convective transport mechanism	3	3	2	-	1	1	-	-	-	-	-	-	3	1
MEE721.2	To learn the basics of convective heat and mass transfer	3	3	2	-	2	-	-	-	-	-	-	-	3	1
MEE721.3	To learn about internal and external convection	3	3	3	2	2	-	-	-	-	-	-	2	3	2
MEE721.4	To learn about forced and natural convections	3	3	3	2	2	-	-	-	-	-	-	2	3	2
MEE721.5	To learn about heat transfer in phase change	3	3	2	2	1	1	-	-	-	-	-	2	3	2
Average		3	3	2.4	1.2	1.6	0.4	-	-	-	-	-	1.2	3	1.6
MEE722 ::	Additive Manufacturing														
COs	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PS01	PS02
MEE722.1	Able to understand the principles of different additive manufacturing processes	3	-	2	-	3	-	-	-	-	-	-	3	3	2
MEE722.2	Able to learn softwares for additive manufacturing	2	2	2	2	3	-	-	-	-	-	-	2	3	3
MEE722.3	Able to expose materials for Additive Manufacturing and it's selection	2	-	2	-	-	-	-	-	-	-	-	2	3	2
MEE722.4	Able to know areas of usage, possibilities and limitations of the additive manufacturing technologies	2	2	2	2	2	-	2	1	-	-		2	3	2
Average		2.3	1	2	1	2	-	0.5	0.3	-	-	-	2.3	3	2.3
Course Co	de and Course Name: MEE724, Hydra	aulic M	achin	es											
COs	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PS01	PS02
MEE 724.1	Knowledge of Hydraulic Machines	3	2	1	1	1	1	2	1	1	-	1	2	2	1
MEE 724.2	Selection of Turbines and Pumps	3	3	2	1	1	1	2	1	1	-	1	1	3	1
Average		3	2.5	1.5	1	2	1	2	1	1	-	1	1.5	2.5	1

Course Co	de and Course Name: MES 751, Hydra	ulic M	achin	e Lab											
COs	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PS01	PS02
MEC751.1	To understand the principle of linear momentum	3	2	2	1	-	-	1	1	-	-	-	2	3	-
MEC751.2	To understand the performance characteristics of various pumps.	3	3	2	1	-	-	1	-	2	-	-	2	2	-
MEC751.3	To understand the performance characteristics of various turbines.	3	3	2	1	-	-	1	-	2	-	-	2	2	-
Average		3	2.7	2	1	-	-	1	0.3	1.3	-	-	2	2.3	-
Couse Cod	e and Course Name: MES752, Machin	e Desi	gn Se	ssiona	I-II			•		•			•	•	
COs	Statement	P01	P02	РОЗ	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PS01	PS02
MES752.1	Acquire basic idea about making the design and production drawing for relatively complicated mechanical systems for example gear boxes.	3	3	3	-		1	1	2	2	2	-	3	3	3
MES752.2	To understand the method of implementation of engineering tolerances.	1	2	3	-	1	1	1	2	2	1	-	2	3	1
MES752.3	To learn about economic design procedures.	2	2	3	-	1	1	1	1	2	1	-	2	3	2
AVERAGE		2	2.3	3	-	0.7	1	1	1.7	2	1.3	-	2.3	3	2
Couse Cod	e and Course Name: MES753, Vocation	nal Tr	aining	/Sun	nmer I	ntern	ship a	nd Sei	minar	-			-		
COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	909	P010	P011	P012	PS01	PS02
MES753.1	Exposer to the professional world of engineering and research			1			3		1	3	3		3		
MES753.2	Interaction with the people of related field and community at large	2	2		2		3		1	3	3		3		1
MES753.3	Correlation of the theoretical knowledge with the application	3	3	2	2				1				2	3	2
MES753.4	Learning of technical report writing.				1					2	3		2	2	
MES753.5	Learning the way of oral presentation to audience.						1			2	3		2	1	
AVERAGE		1	1	0.6	1		1.4		0.6	2	3		2.4	1.2	0.0

COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PS01	DSO2
MES754.1	Identification of Industrial/ Academic/ Engineering Problem	3					2	2		3	2			1	
MES754.2	To identify and utilize relevant previous work that supports their selected project problem.	3	3		3					3	2		3	1	1
MES754.3	Identification and application of appropriate methodologies to solve the project problem.		3	3	2	3	1	2	2	3	2	2	2	2	2
MES754.4	Formulation of the problem solution method and timeline.		3	3	2	3		2	2	3	2	1	2	2	3
MES754.5	Meet the relevant field's standards	3				2	2	1	1				3	2	1
MES754.6	Project report writing									3	3	1	2	1	1
AVERAGE		1.5	1.5	1	1.2	1.3	0.8	1.2	0.8	3	1.8	0.7	2	1.5	1.
Couse Cod	le and Course Name: MEE810, Solar En	ergy													
COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	909	P010	P011	P012	PS01	
MEE810.1															
MEE810.2											1				
MEE810.3															
MEE810.4															
Average															
	le and Course Name: MEE811, Mechatr	onics	•												<u></u>
COs	Statement	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PS01	000
MEE811.1	Students will be able to identify the importance of amalgamation between the electronics and electro-mechanical systems.	1	1	1	1	1	1	1	-	-	-	-	1	1	1
MEE811.2	Students will be able to formulate and evaluate behavior of linear time continuous control systems.	2	3	3	1	2	1	1	-	1	1	-	1	2	1
MEE811.3	Students will be able to formulate the procedure for converting analog signals to digital form and vice-versa.	2	2	2	1	1	1	1	-	1	1	-	1	1	1

MEE811.4	Students will be able to describe signals and its processing by modern electronic methods.	2	2	2	1	2	1	1	1	1	1	-	1	1	1
MEE811.5	Students will be able to identify and critically evaluate current developments and emerging trends within the field of mechatronic systems.	1	1	1	1	1	1	1	-	1	1	-	1	1	1
Average		1.6	1.8	1.8	1	1.4	1	1	1	1	1	-	1	1.2	1
Course Co	de and Course name : MEE812 , Micro and	Nano	Manu	factur	ing										
COs	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PS01	PS02
MEE812.1	To understand the need for micro and nano scale fabrication	3	1	1	1	2	3	3	2	-	1	-	3	3	1
MEE812.2	To get acquainted with different micro and nano scale fabrication techniques and their characterization	3	3	3	3	3	2	1	1	-	2	-	3	2	2
MEE812.3	To be able to select a suitable micro or nano scale fabrication process based upon the requirement	3	3	3	3	3	3	3	2	-	3	-	3	3	3
MEE812.4	To compare and understand the differences between macro and nano scale fabrication processes	3	2	2	2	3	3	3	1	-	-	-	3	2	3
Average		3	2.2	2.2	2.2	2.7	2.7	2.5	1.5	-	2.2	-	3	2.5	2.2
Course Co	de and Course Name: MEE813, Microfluidi	cs													
COs	Statement	P01	P02	PO3	P04	P05	P06	P07	P08	60d	P010	P011	P012	PS01	PS02
MEE813.1	To learn micro channel flows with heat transfer.	3	2	2	2	3	3	2	-	2	2	3	2	3	3
MEE813.2	To learn Surface Tension Driven Flows with real life applications.	3	3	2	3	2	3	3	-	2	2	3	3	2	3
MEE813.3	To learn Electro-hydro-dynamics fundamentals	3	3	3	3	2	3	3	-	2	2	3	3	3	3
MEE813.4	To learn Molecular Dynamics Simulations	3	2	2	3	2	2	3	-	2	3	2	3	3	3
Average		3	2.5	2.3	2.8	2.3	2.8	2.8	-	2	2.3	2.8	2.8	2.8	3
	MEE814: Machine Tool Engineering and A	utoma	ation	•	-	•	-	•	I		-		-	-	

COs	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PS01	PS02
MEE814.1	In depth study of mechanical machine tools construction and design	3	2	2	2	1	-	1	1	-	-	-	1	2	1
MEE814.2	Introduction to machine tools automation	2	2	2	3	2	1	2	2	-	-	2	2	3	2
Average		2.5	2	2	2.5	1.5	0.5	1.5	1.5	-	-	1	1.5	2.5	1.5
Course Co	de and Course Name: MEE 816, Advanced I	Mecha	nical	Vibrat											
COs	Statement	PO1	P02	P03	P04	P05	P06	P07	P08	60d	P01 0	P01 1	P01 2	PSO 1	PSO 2
MEC816.1	Understanding the fundamental material for a modern treatment of vibrations.	2	2	1	2	1	1	1	-	I	-	-	2	2	2
MEC816.2	Application of Lagrange equations for lumped and continuous systems	2	2	3	3	2	1	1	-	-	-	-	2	2	3
MEC816.3	Understanding fundamentals of beam theory; extensional, torsional, and flexural vibrations of beams.	2	2	3	2	2	2	1	-	-	-	-	2	3	2
MEC816.4	Understanding Self-excited vibration, nonlinear vibration etc.	2	2	3	3	1	2	1	-	-	-	-	2	3	3
Average		2	2	2.5	2.5	1.5	1.5	1	-	-	-	-	2	2.5	2.5
Couse Cod	le and Course Name: MEO 841, NONLI	T	-	r	1	1		1			T	T			
COs	Statement	P01	P02	P03	P04	P05	90d	P07	80d	60d	P01 0	P01 1	P01 2	PSO 1	PSO 2
MEO 841.1	To learn stability analysis of nonlinear transient problems in all fields.	2	2	-	2	-	-	-	1	2	-	2	1		
MEO 841.2	To learn Chaos of nonlinear transient problems using dynamical behaviors (Bifurcations, FFT, Poincare Maps, Lyapunav exponents, Henon maps and Fractals)	2	-	-	2	-	-	-	1	2	-	2	1		-
Average		2	1	-	2	-	-	-	1	2	-	2	1		-
Couse Cod	le and Course Name: MES851, Project-								~	•					_
COs	Statement	P01	P02	P03	P04	P05	PO6	P07	P08	60d	P01 0	P01 1	P01 2	PSO 1	PSO 2
MES851.1	Review of project-I	2	ļ	2				1		2	1		1	1	
MES851.2	Addition literature survey on selection of the methodology	2	1	2	1		1	1	2	3	1		1	1	

MES851.3	Solution of the selected problem by using soft tools/ simulation/ model making	1	3	3	3	3		1		3	2		2	3	3
MES851.4	To meet the relevant field's standards	3	2	3			2	2	1	1	1	2	2	2	2
MES851.5	Analysis of the solution to arrive at the conclusion	1	3	2	3	2	2	1	2	2	1	2	2	2	3
MES851.6	Thesis writing in standard format.								1	3	3		2	1	1
AVERAGE		1.5	1.5	2	1.2	0.8	0.8	1	1	2.3	1.5	0.7	1.7	1.7	1.5