NATIONAL INSTITUTE OF TECHNOLOGY, DURGAPUR DEPARTMENT OF PHYSICS

Revised Curriculum and Syllabi for the Degree of 2 Yr. M. Sc. in PHYSICS

(To be effective from the batches admitted in the Academic Session 2020-2021 Onwards) Revision Approved in PGAC meeting on 28/08/2020

Date: 28th August, 2020

TABLE OF CONTENTS

	Page No.
E OBJECTIVES	4
F FIRST & SECOND SEMESTER COURSES	5
F THIRD & FOURTH SEMESTER COURSES AND	6
E PAPERS WITH DEVELOPERS	7
CTIVE PAPERS WITH DEVELOPERS	8
ORATORY & SESSIONAL PAPERS WITH	8
S	
JECT/DISSERTATION/SEMINAR PAPERS	8
YLLABI FOR ALL THE PAPERS WITH CO-PO	9-65
PAPER NAME	
MATHEMATICAL METHODS OF PHYSICS	9-10
CLASSICAL MECHANICS	11-12
QUANTUM MECHANICS –I	13-14
CONDENSED MATTER PHYSICS-I	15-16
ELECTRONICS	17-18
GENERAL PHYSICS LAB	19-20
CONDENSED MATTER PHYSICS LAB	21-22
ELECTRODYNAMICS	23-24
NUCLEAR AND PARTICLE PHYSICS	25-26
QUANTUM MECHANICS –II	27-28
CONDENSED MATTER PHYSICS II	29-30
	F FIRST & SECOND SEMESTER COURSES F THIRD & FOURTH SEMESTER COURSES AND E PAPERS WITH DEVELOPERS CTIVE PAPERS WITH DEVELOPERS ORATORY & SESSIONAL PAPERS WITH S JECT/DISSERTATION/SEMINAR PAPERS VILABI FOR ALL THE PAPERS WITH CO-PO PAPER NAME MATHEMATICAL METHODS OF PHYSICS CLASSICAL MECHANICS QUANTUM MECHANICS –I CONDENSED MATTER PHYSICS-I ELECTRONICS GENERAL PHYSICS LAB CONDENSED MATTER PHYSICS LAB ELECTRODYNAMICS NUCLEAR AND PARTICLE PHYSICS QUANTUM MECHANICS –II

PH2105	PHOTONICS	31-32
PH2151	ELECTRONICS LAB	33
PH2152	NUCLEAR PHYSICS LAB	34
PH3101	STATISTICAL MECHANICS	35-36
PH3102	NUMERICAL AND NONLINEAR ANALYSIS	37-38
PH3103	GENERAL THEORY OF RELATIVITY AND	39-40
	COSMOLOGY	
PH3151	DISSERTATION-I	41
PH3152	SEMINAR NON PROJECT	42
PH3153	OPTOELECTRONICS LAB	43
PH3153	ADVANCED CONDENSED MATTER PHYSICS LAB	44-45
PH4101	ATOMIC AND MOLECULAR SPECTROSCOPY	46-47
PH4151	DISSERTATION – II WITH SEMINAR	48
PH4152	GRAND VIVA	49
PH9111	CONDENSED MATTER PHYSICS-III	50-51
PH9121	OPTOELECTRONICS	52-53
PH9112	PHYSICS OF NANOMATERIALS	54-55
PH9122	CIRCUIT ANALYSIS AND INTEGRATED CIRCUITS	56-57
PH9113	INTRODUCTORY MATERIALS SCIENCE	58-59
PH9123	NONLINEAR OPTICS	60-61
PH9114	X- RAYS IN CONDENSED MATTER PHYSICS	62-63
PH9124	COMMUNICATION TECHNOLOGY	64-65

PROGRAM OBJECTIVES*

PO1: Ability to independently carry out research/investigation and development work to solve scientific problems.

PO2: Ability to communicate effectively, i.e., write and present a substantial scientific report/document.

PO3: Ability to demonstrate a degree of mastery in the field of Physics at a level higher than that for a bachelor program.

PO4: Ability to solve scientific (experimental and theoretical) tasks both as a member of a team and as a leader of the team.

PO5: Ability to identify and use the appropriate knowledge, skills, and tools to offer scientific solutions to physics problems.

*The POs have been prepared in accordance with the Self Assessment Report (SAR) format of the National Board of Accreditation (NBA)

L-T-P Sub. Code Credits Sl. No Subject 1 PH1101 MATHEMATICAL METHODS OF PHYSICS 4 3-1-0 2 PH1102 CLASSICAL MECHANICS 2-1-0 3 3 **QUANTUM MECHANICS-I** 4 PH1103 3-1-0 4 PH1104 CONDENSED MATTER PHYSICS-I 3-1-0 4 5 PH1105 ELECTRONICS 2-1-0 3 PH1151 GENERAL PHYSICS LAB 6 0-0-6 4 7 PH1152 CONDENSED MATTER PHYSICS LAB 0-0-3 2 TOTAL 24

FIRST SEMESTER COURSES

SECOND SEMESTER COURSES

Sl. No	Sub. Code	Subject	L-T-P	Credits
1	PH2101	ELECTRODYNAMICS	2-1-0	3
2	PH2102	NUCLEAR AND PARTICLE PHYSICS	3-1-0	4
3	PH2103	QUANTUM MECHANICS- II	3-1-0	4
4	PH2104	CONDENSED MATTER PHYSICS-II	3-1-0	4
5	PH2105	PHOTONICS	2-1-0	3
6	PH2151	ELECTRONICS LAB	0-0-6	4
7	PH2152	NUCLEAR PHYSICS LAB	0-0-3	2
-		TOTAL		24

NB: L= Lecture, T = Tutorial, P = Practical

THIRD SEMESTER COURSES

Sl. No	Sub. Code	Subject	L-T-P	Credits
1	PH3101	STATISTICAL MECHANICS	2-1-0	3
2	PH3102	NUMERICAL AND NONLINEAR ANALYSIS	2-1-0	3
3	PH3103	GENERAL THEORY OF RELATIVITY AND COSMOLOGY	2-1-0	3
4	PH91XX	ELECTIVE - I	2-1-0	3
5	PH91XX	ELECTIVE - II	2-1-0	3
6	PH3151	DISSERTATION - I	0-0-2	2
7	PH3152	SEMINAR NON PROJECT	0-0-1	1
8	PH3153	OPTOELECTRONICS LAB / ADVANCED CONDENSED MATTER PHYSICS LAB	0-0-6	4
	•	TOTAL		22

FOURTH SEMESTER COURSES

Sl. No	Sub. Code	Subject	L-T-P	Credits
1	PH4101	ATOMIC AND MOLECULAR SPECTROSCOPY	2-1-0	3
2	PH91XX	ELECTIVE - III	2-1-0	3
3	PH91XX	ELECTIVE - IV	2-1-0	3
4	PH4151	DISSERTATION – II WITH SEMINAR	0-0-9	9
5	PH4152	GRAND VIVA		2
TOTAL				20

LIST OF ELECTIVE PAPERS

ELECTIVE PAPERS	Group-I: Specializa	Condensed Matter Physics tion	Group-II: Opto-Electronics Specialization		
	Paper code	Name of the Paper	Paper code	Name of the Paper	
Elective-I	PH9111	CONDENSED MATTER PHYSICS-III	PH9121	OPTOELECTRONICS	
Elective-II	PH9112	PHYSICS OF NANOMATERIALS	PH9122	CIRCUIT ANALYSIS AND INTEGRATED CIRCUITS	
Elective-III	PH9113	INTRODUCTORY MATERIALS SCIENCE	PH9123	NONLINEAR OPTICS	
Elective-IV	PH9114	X-RAYS IN CONDENSED MATTER PHYSICS	PH9124	COMMUNICATION TECHNOLOGIES	

LIST OF CORE PAPERS WITH THEIR DEVELOPERS' NAMES

SUBJECT CODE	SUBJECT	L-T-P	CREDIT	DEVELOPER
PH1101	MATHEMATICAL METHODS OF PHYSICS	3-1-0	4	Dr. S. Basu
PH1102	CLASSICAL MECHANICS	2-1-0	3	Prof. A. K. Meikap, Dr. A. Mondal
PH1103	QUANTUM MECHANICS- I	3-1-0	4	Dr. S. Sahoo, Dr. S. Das
PH1104	CONDENSED MATTER PHYSICS-I	3-1-0	4	Prof. P. Kumbhakar, Dr. A. Mondal, Dr. H. Subramanian
PH1105	ELECTRONICS	2-1-0	3	Dr. M. K. Mandal, Dr. H. Chaudhuri, Dr. A. Ghosh
PH2101	ELECTRODYNAMICS	2-1-0	3	Dr. S. Basu
PH2102	NUCLEAR AND PARTICLE PHYSICS	3-1-0	4	Prof. A. K. Chakraborty, Dr. S. Das
PH2103	QUANTUM MECHANICS- II	3-1-0	4	Dr. S. Sahoo, Dr. S. Das
PH2104	CONDENSED MATTER PHYSICS-II	3-1-0	4	Prof. A. K. Meikap
PH2105	PHOTONICS	2-1-0	3	Prof. P. Kumbhakar, Dr. A. Mondal
PH3101	STATISTICAL MECHANICS	2-1-0	3	Prof. A. K. Meikap
PH3102	NUMERICAL AND NONLINEAR ANALYSIS	2-1-0	3	Dr. M. K. Mandal, Dr. H. Chaudhuri, Dr. S. Ghosh
PH3103	GENERAL THEORY OF RELATIVITY AND COSMOLOGY	2-1-0	3	Dr. S. Sahoo
PH4101	ATOMIC AND MOLECULAR SPECTROSCOPY	2-1-0	3	Dr. S. Basu

LIST OF ELECTIVE PAPERS WITH THEIR DEVELOPERS' NAMES

SUBJECT CODE	SUBJECT	L-T-P	CREDIT	DEVELOPER(s)
PH9111	CONDENSED MATTER PHYSICS-III	2-1-0	3	Dr. S. Basu, Dr. H. Chaudhury
PH9112	PHYSICS OF NANOMATERIALS	2-1-0	3	Prof. A. K. Chakraborty
PH9113	INTRODUCTORY MATERIALS SCIENCE	2-1-0	3	Prof. A. K. Chakraborty
PH9114	X-RAYS IN CONDENSED MATTER PHYSICS	2-1-0	3	Dr. H. Chaudhuri, Prof. A. K. Chakraborty
PH9121	OPTOELECTRONICS	2-1-0	3	Prof. P. Kumbhakar Dr. A. Ghosh
PH9122	CIRCUIT ANALYSIS AND INTEGRATED CIRCUITS	2-1-0	3	Dr. M. K. Mandal
PH9123	NONLINEAR OPTICS	2-1-0	3	Prof. P. Kumbhakar
PH9124	COMMUNICATION TECHNOLOGIES	2-1-0	3	Dr. M. K. Mandal

LIST OF LABORATORY & SESSIONAL PAPERS WITH DEVELOPERS' NAMES

SUBJECT CODE	SUBJECT	L-T-P	CREDIT	DEVELOPER(s)
PH1151	GENERAL PHYSICS LAB	0-0-6	4	Dr. H. Chaudhuri Dr. S. Ghosh
PH1152	CONDENSED MATTER PHYSICS LAB	0-0-3	2	Dr. S. Basu Dr. H. Subramanian
PH2151	ELECTRONICS LAB	0-0-6	4	Dr. M. K. Mandal Dr. A. Ghosh
PH2152	NUCLEAR PHYSICS LAB	0-0-3	2	Dr. S. Sahoo Dr. S. Das
PH3153	OPTOELECTRONICS LAB OR	0-0-6	4	Prof. P. Kumbhakar Dr. M. K. Mandal Dr. A. Ghosh
	ADVANCED CONDENSED MATTER PHYSICS LAB			OR Prof. A. K. Chakraborty Dr. A. Mondal

LIST OF PROJECT/DISSERTATION/SEMINAR PAPERS WITH DEVELOPERS' NAMES.						
SUBJECT	SUBJECT	L-T-P	CREDIT	DEVELOPER(s)		
CODE						
PH3151	DISSERTATION - I	0-0-2	2	All Faculty Members		
PH3152	SEMINAR NON PROJECT	0-0-1	1	All Faculty Members		
PH4151	DISSERTATION – II WITH SEMINAR	0-0-9	9	All Faculty Members		
PH4152	GRAND VIVA		2	All Faculty Members		

		Departm	ent of Phy	sics			
Course	Title of the course	Program			ntact hours		Credit
Code		Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives					
		(PEL)					
PH1101	MATHEMATICAL	PCR	3	1	0	4	4
	METHODS OF						
	PHYSICS						
Pre-requi	sites			ethods (As	per PG regul	ation)	
NIL		As per PG	regulation				
Course	On completion of t	he course the	learner sha	all be able to):		
Outcomes	• CO1: Identify	basic mathen	natical tools	s to solve ph	ysics problem	ms.	
	CO2: Apply th	e mathematio	cal tools, su	ch as integr	al transforms	s and Mati	ix
	diagonalization	n, for solving	fundament	al and appli	ed physics p	roblems.	
	CO3: Formula	te new mathe	matical app	proaches to a	analytically s	solve new	and
	existing physic	es problems.					
Topics	Complex variable	•		•	-		
Covered	complex plane, Ca						
	expansion, singula						
	Riemann's sheets.						
	and the summation						
	Fourier and Lapla						
	convolution theore	m, solution of	f ordinary a	nd partial di	fferential equ	ation by t	ransform
	method. [10]	-					
	Theory of ordin			_		•	-
	differential equati						
	associated Legendr		a their recu	rrence relati	ons. Integral	represent	ation and
	orthogonality. [15]		nd Voltom	aquations	of first and a	acond lin	1e [Q]
	Integral equations Vector space: Li			-			
	dimension. Linear		1 ,	1 '	1	,	
	of matrices, specia		· · ·		-		0
	eigenvectors of n						
	diagonalisation of						
Text	TEXT BOOKS:			, and princip	and while that is	- stinution	· [**]
Books,		Academic Pr	ess). Mathe	ematical Me	thods for Phy	vsicists	
and/or		and A. Krzy	, .		•	•	vsicists
reference			· - (P		,, <u></u>	······································	,
material	REFERENCE BO	DOKS:					
		and R. I. Wa	lker (Benja	.min), Mathe	ematical Met	hods of P	hysics
		i (Wiley East					-

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	2	1	2	2	3
CO2	3	1	2	3	3
CO3	3	1	3	2	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

		Departn	nent of Phy				1			
Course	Title of the	Program			ntact hours		Credit			
Code	course	Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours				
PH1102	CLASSICAL MECHANICS	PCR	2	1	0	3	3			
Pre-requise NIL		Course Assess AS PER PG R			PG regulation	n)	I			
Course Outcomes	 CO1: to solv CO2: using CO3: 	AS PER POR on of the course t Demonstrate know we the classical n Analyze classic advanced mathe Formulate specia ngian formalism	he learner s owledge of nechanical j problems, s matical app al Theory o	hall be able Lagrangian problems. uch as the h roaches.	and Hamilto	illator pro	blem,			
Topics Covered	Review: Ha	milton's Princip n and Hamilton'	ole and La							
	invariant of H equations of	Canonical Transformations: The equations of canonical transformations. Integral invariant of Poincare. Lagrange and Poisson brackets as canonical invariants. The equations of motion in the Poisson bracket formulation. Infinitesimal contact transformations and conservation theorems. [8]								
	oscillator. Ac	Hamilton–Jacobi Theory: Hamilton-Jacobi equation and application to harmonic oscillator. Action-angle variables. The Kepler problem. H-J theory. Geometrical optics and wave mechanics.[6]								
	from a discre system. The	Lagrangian and Hamiltonian formulations for continuous systems: Transition from a discrete to a continuous system. Lagrangian formulation for continuous system. The stress – energy tensor and conservation theorems. Hamiltonian formulation.[6]								
	Cayley-Klein Angular mon tensor and m free motion o Special Theo formulations. mechanics.	y motion: The independent co-ordinates of a rigid body. Euler angle in parameters. Euler's theorem. Infinitesimal rotations, coriolis force. comentum and kinetic energy of motion of a rotating body. The iner moment of inertia. Principal axis transformation, Euler equation, torq of rigid body.[8] eory of Relativity in Classical Mechanics: Covariant four dimension is. Minkowski's space. Force and energy equations in relativis Lagrangian formulation of relativistic mechanics. Hamiltoni of relativistic mechanics. Covariant Lagrangian and Hamiltoni								
Text Bool and/or reference material	1.H. Go2.Rana REFERENC 1.Corbe	ldstein, Classica & Jog, Classical	Mechanics ical Mechar							

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	2	1	3	3	2
CO2	2	1	2	3	2
CO3	2	1	3	1	2

Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

		Departi	nent of Phy	vsics							
Course	Title of the	Program	Total Nu	mber of co	ntact hours		Credit				
Code	course	Core	Lecture	Tutorial	Practical	Total					
		(PCR) /	(L)	(T)	(P) [#]	Hours					
		Electives									
		(PEL)									
PH1103	QUANTUM	PCR	3	1	0	4	4				
	MECHANICS –										
-	I	~	<u> </u>	1 (2)							
Pre-requ	isites	Course Asses		ods: (Contin	nuous evalua	tion (CE)	and end				
		assessment (EA))								
NIL		CE+EA									
C		6.4	.1 1	1 11 1 1 1							
Course	-	n of the course									
Outcome	e e niinpi	lain the fundame	-	-							
	CO2: Solv	ve different prob	olems related	d to the dyna	amics of suba	atomic par	rticles.				
		ımmarize diffe	erent appro	ximation 1	nethods for	r solving	quantum				
		al problems.									
Topics	General Prin	nciples of Qua	ntum Mec	hanics: Lin	ear vector s	pace, ket	and bra				
Covered	vectors. Scale	vectors. Scalar product of vectors and their properties. Linear operators, Adjoint									
	operators, Ur	operators, Unitary operators, Hermitian operators, Eigen values and eigenvectors.									
	-	Degeneracy. Schmidt method of orthogonalization. Expansion theorem.									
	Completeness	Completeness and Closure property of the basis set. Representation of ket and bra									
	-	vectors and operators in the matrix form. Unitary transformations of basis vectors and									
	operators.										
	operators.										
	Quantum Dy	ynamics: Time	evolution o	f quantum s	states. Time	evolution	operator				
	and its prope	and its properties. Schroedinger picture, Heisenberg picture, Interaction picture.									
	Equations of	Equations of motion. Operator method solution of Harmonic oscillator, Matrix									
	representation	n and time eval	uation of cr	eation and	annihilation	operators	. Density				
	matrix.	representation and time evaluation of creation and annihilation operators. Density matrix. [10]									
	_										
		Rotation and OrbitalAngular Momentum: Angular momentum operators as the									
		generators of rotation, rotation matrix. L_x , L_y , L_z , and L^2 and their commutator									
	relations. Rai	relations. Raising and lowering operators. L_x , L_y , L_z , and L^2 in spherical polar co-									
	ordinates.										
		Spin Angular Momentum: Spin – ¹ / ₂ particles, Pauli spin matrices and their									
			-	-	-						
	properties. Ei	gen values and	Eigen funct	ions. Spinor	r transformat	10n under	rotation.				
		[4]									
	Addition of A	Angular Mome	ntum: Total	angular me	mentum I	Addition o	f angular				
		C. G. coefficier		-			-				
			-	momentuill	510105 101 00	inposite s	•				
	the angular m	omenta $(\frac{1}{2}, \frac{1}{2})$	anu (1, ½).				[4]				
	Motion in a S	Spherically Syn	nmetric Fiel	d: Hydroge	n atom. Redu	iction to e	quivalent				
		oblem. Radial					-				
		radial probabili	-			-					
	degeneracy,	adiai probabili	iy distributi	on. Free p	article probl	em mcon	ining and				

	outgoing spherical waves, expansion of plane waves in terms of spherical waves.Bound states of a 3-D square well, particle in a sphere.[8]
	WKB Approximation and Variational Method: The WKB approximation, Connection formulae, Bohr Sommerfeld quantization rule, Harmonic oscillator and cold emission. [6]
	The variational method and its application to simple problems (Ground state of the Hydrogen atom, He-atom, Harmonic oscillator, Hydrogen molecule etc.). [6]
Text Books,	SUGGESTED BOOKS:
and/or	1. S. Gasiorowicz, Quantum Physics
reference	2. David J. Griffiths, Introduction to Quantum Mechanics
material	REFERENCE:
	1. J. L. Powell and B. Craseman, Quantum Mechanics
	2. L. I. Shiff, Quantum Mechanics
	3. J. J. Sakurai, Modern Quantum Mechanics
	4. P.A.M. Dirac, The Principles of Quantum Mechanics
	5. S. Erkoc, Fundamentals of Quantum Mechanics

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	3	1	3	2	3
CO2	3	1	3	2	2
CO3	2	1	2	2	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

		Departn	nent of Phy	sics						
Course	Title of the	Program			ntact hours		Credit			
Code	course	Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours				
PH1104	CONDENSED	PCR	3	1	0	4	4			
	MATTER									
<u> </u>	PHYSICS-I			1 / 4						
Pre-requis	sites	Course Asses			PG regulation	on)				
NIL										
Course Outcomes	 CO1: free e conde CO2: solid s CO3: 	n of the course t Demonstrate kno lectron theory a nsed matter syste Analyze and so state physics. Develop metho etism and superc	owledge of v and Somme ems. Nve simple ods to stud	various early erfeld theory problems ro y correlated	y semi-classion y, to unders elated to fun	tand prop Idamental	erties of ideas of			
Topics Covered	interaction, el of quantum H Structure a	 Free electron model: Heat capacity; Transport properties; Electron-electron interaction, electron-phonon interactions, Polarons, Hall Effect; Elementary concepts of quantum Hall effect. [8] Structure and Scattering: Crystalline solids, liquids and liquid crystals, Nanostructures, Bucky balls. [8] 								
	Tight-binding Concept of h	Electrons in a periodic potential: Bloch's theorem; Nearly free electron Model, Tight-binding model; Motion of an electron in a dc electric field, Effective Mass, Concept of holes, Energy band structure of solids, Energy band properties of semiconductors. [10]								
	•	Crystal Binding : Types of solids, Van der Waals solids, Ionic and Covalent solids, Metallic bonding, calculation of cohesive energy. [8]								
		Lattice Vibrations : Lattice vibrations, Adiabatic & harmonic approximations. Vibrations of mono and diatomic lattices, Lattice Heat Capacity, Einstein and Debye models. [6]								
	effect, Londo theory, Ginz	Superconductivity: Properties of Superconductors, Experimental Survey, Meissner effect, London's equation, Thermodynamics of superconductors, Cooper pair, BCS theory, Ginzburg-Landau theory, Flux quantization, Magnetism; Exchange interaction. [7]								
	&Ferrimagne	Magnetism: Diamagnetism, paramagnetism, Ferromagnetism, anti-ferromagnetism & Ferrimagnetism, Hund's rules, Pauli paramagnetism, Heisenberg model, Mean field theory, spin waves, Giant and Colossal magnetoresistance. [9]								
Text Bool and/or reference material	1. M. Al 2. C. Kit	TEXT BOOKS: 1. M. Ali Omar, Elementary Solid State Physics (Addison-Wesley) 2. C. Kittel, Solid State Physics (Wiley Eastern)								

RE	FERENCE BOOKS:
1.	Christman, Solid State Physics (Academic press)

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	3	1	2	2	3
CO2	3	1	3	3	3
CO3	3	1	3	2	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

Course CodeTitle of the courseProgram Core (PCR) / Electives (PEL)Total Number of contact hoursPH1105ELECTRONICSPCR1(L)(T)(P)HoursPH1105ELECTRONICSPCR2103Pre-requisitesCourse Assessment methods (As per PG regulation)NILAS PER PG REGULATIONCourseOn completion of the course the learner shall be able to:•CO1: Illustrate the basic concepts and applications of different modelectronic devices.Outcomes•CO2: Apply fundamental concepts of digital electronics for construlogic circuits.•CO3: Design different active and passive electronic circuits such as amplifiers and oscillators.Topics CoveredSemiconductor Devices: Bipolar devices- Junction diode, bipolar transistor, Heterojunction devices. Unipolar devices- Metal-semiconductor JFET, MOSFET [8]Active Circuits: Amplifiers- Discrete component transistor amplifier design consolications.	3 dern action of								
PH1105ELECTRONICSPCR21(P)HoursPH1105ELECTRONICSPCR2103Pre-requisitesCourse Assessment methods (As per PG regulation)AS PER PG REGULATION3NILAS PER PG REGULATIONOn completion of the course the learner shall be able to:0OutcomesOn completion of the course the basic concepts and applications of different modelectronic devices.0OutcomesOn completion of the course the learner shall be able to:0OutcomesOn completion of the course the learner shall be able to:0OutcomesOn completion of the course the learner shall be able to:0OutcomesOn completion of the course the learner shall be able to:0OutcomesOn completion of the course the learner shall be able to:0OutcomesOn completion of the course the learner shall be able to:0OutcomesOn completion of the course the learner shall be able to:0OutcomesOn completion of the course the learner shall be able to:0OutcomesOn completion of the course the learner shall be able to:0OutcomesOn completion of the course the learner shall be able to:0OutcomesOn completion of the course the learner shall be able to:0OutcomesOn completion of the course00OutcomesCO3: Design different active and passive electronic circuits such as amplifiers and oscillators.0TopicsSemiconductor Devices: Bipolar devices- Junction diode, bipolar transistor	3 dern action of								
Electives (PEL) Image: Construct of the construction of the course of the course of the course the learner shall be able to: 0 3 Pre-requisites Course Assessment methods (As per PG regulation) NIL AS PER PG REGULATION Course Outcomes On completion of the course the learner shall be able to: 0 0 Outcomes On completion of the course the learner shall be able to: 0 0 Outcomes On completion of the course the learner shall be able to: 0 0 Outcomes On completion of the course the learner shall be able to: 0 0 Outcomes On completion of the course the learner shall be able to: 0 0 Outcomes On completion of the course the learner shall be able to: 0 0 Outcomes On completion of the course the learner shall be able to: 0 0 0 Outcomes On completion of the course the basic concepts and applications of different mode electronic devices. 0 CO2: Apply fundamental concepts of digital electronics for constructing to circuits. 0 CO3: Design different active and passive electronic circuits such as amplifiers and oscillators. Topics Semiconductor Devices: Bipolar devices- Junction diode, bipolar transistor, Heterojunction devices. Unipolar devices- Meta	3 dern action of								
PH1105 ELECTRONICS PCR 2 1 0 3 Pre-requisites Course Assessment methods (As per PG regulation) NIL AS PER PG REGULATION Course On completion of the course the learner shall be able to: Outcomes On completion of the course the learner shall be able to: Outcomes CO2: Apply fundamental concepts and applications of different modelectronic devices. • CO2: Apply fundamental concepts of digital electronics for construit logic circuits. • CO3: Design different active and passive electronic circuits such as amplifiers and oscillators. Topics Covered Semiconductor Devices: Bipolar devices- Junction diode, bipolar transistor, Heterojunction devices. Unipolar devices- Metal-semiconductor JFET, MOSFET [8] Active Circuits: Amplifiers- Discrete component transistor amplifier design construction query. Video amplifiers, RF amplifiers, Power amplifier design construction devices.	dern dern of								
PH1105ELECTRONICSPCR2103Pre-requisitesCourse Assessment methods (As per PG regulation)NILAS PER PG REGULATIONCourseOn completion of the course the learner shall be able to:OutcomesOn completion of the course the learner shall be able to:CO1: Illustrate the basic concepts and applications of different modelectronic devices.•CO2: Apply fundamental concepts of digital electronics for construit logic circuits.•CO3: Design different active and passive electronic circuits such as amplifiers and oscillators.TopicsSemiconductor Devices: Bipolar devices- Junction diode, bipolar transistor, Heterojunction devices. Unipolar devices- Metal-semiconductor JFET, MOSFET [8]Active Circuits: Amplifiers- Discrete component transistor amplifier design construited and passive applifier design construction divides applifier design construction divides applifier design construction divides applifier design construction devices.	dern dern of								
Pre-requisites Course Assessment methods (As per PG regulation) NIL AS PER PG REGULATION Course On completion of the course the learner shall be able to: Outcomes • CO1: Illustrate the basic concepts and applications of different modelectronic devices. • CO2: Apply fundamental concepts of digital electronics for construit logic circuits. • CO3: Design different active and passive electronic circuits such as amplifiers and oscillators. Topics Semiconductor Devices: Bipolar devices- Junction diode, bipolar transistor, Heterojunction devices. Unipolar devices- Metal-semiconductor JFET, MOSFET [8] Active Circuits: Amplifiers- Discrete component transistor amplifier design construited on the component transistor amplifier design construction the	dern dern of								
NIL AS PER PG REGULATION Course On completion of the course the learner shall be able to: Outcomes • CO1: Illustrate the basic concepts and applications of different modelectronic devices. • CO2: Apply fundamental concepts of digital electronics for construing circuits. • CO3: Design different active and passive electronic circuits such as amplifiers and oscillators. Topics Covered Semiconductor Devices: Bipolar devices- JFET, MOSFET [8] Active Circuits: Amplifiers- Discrete Circuits: Amplifiers, RF amplifiers, Power amplifier design construction	action of								
NIL AS PER PG REGULATION Course On completion of the course the learner shall be able to: Outcomes • CO1: Illustrate the basic concepts and applications of different modelectronic devices. • CO2: Apply fundamental concepts of digital electronics for construing circuits. • CO3: Design different active and passive electronic circuits such as amplifiers and oscillators. Topics Covered Semiconductor Devices: Bipolar devices- JFET, MOSFET [8] Active Circuits: Amplifiers- Discrete Circuits: Amplifiers, RF amplifiers, Power amplifier design construction	action of								
Course OutcomesOn completion of the course the learner shall be able to: • CO1: Illustrate the basic concepts and applications of different mode electronic devices. • CO2: Apply fundamental concepts of digital electronics for constru- logic circuits. • CO3: Design different active and passive electronic circuits such as amplifiers and oscillators.Topics CoveredSemiconductor Devices: Bipolar devices- Junction diode, bipolar transistor, Heterojunction devices. Unipolar devices- Metal-semiconductor JFET, MOSFET [8]Active Circuits: Active amplifiers, RF amplifiers, Power amplifier design const	action of								
Outcomes • CO1: Illustrate the basic concepts and applications of different modelectronic devices. • CO2: Apply fundamental concepts of digital electronics for construit logic circuits. • CO3: Design different active and passive electronic circuits such as amplifiers and oscillators. Topics Covered Semiconductor Devices: Bipolar devices- Junction diode, bipolar transistor, Heterojunction devices. Unipolar devices- Metal-semiconductor JFET, MOSFET [8] Active Circuits: Amplifiers- Discrete component transistor amplifier design construited.	action of								
 electronic devices. CO2: Apply fundamental concepts of digital electronics for construlogic circuits. CO3: Design different active and passive electronic circuits such as amplifiers and oscillators. Topics Semiconductor Devices: Bipolar devices- Junction diode, bipolar transistor, Heterojunction devices. Unipolar devices- Metal-semiconductor JFET, MOSFET [8] Active Circuits: Amplifiers- Discrete component transistor amplifier design construction devices. 	action of								
 CO2: Apply fundamental concepts of digital electronics for constru- logic circuits. CO3: Design different active and passive electronic circuits such as amplifiers and oscillators. Semiconductor Devices: Bipolar devices- Junction diode, bipolar transistor, Heterojunction devices. Unipolar devices- Metal-semiconductor JFET, MOSFET [8] Active Circuits: Amplifiers- Discrete component transistor amplifier technique. Video amplifiers, RF amplifiers, Power amplifier design construction 									
logic circuits. • CO3: Design different active and passive electronic circuits such as amplifiers and oscillators. Topics Covered Semiconductor Devices: Bipolar devices- Junction diode, bipolar transistor, Heterojunction devices. Unipolar devices- Metal-semiconductor JFET, MOSFET [8] Active Circuits: Amplifiers- Discrete component transistor amplifier technique. Video amplifiers, RF amplifiers, Power amplifier design construction									
 CO3: Design different active and passive electronic circuits such as amplifiers and oscillators. Topics Covered Semiconductor Devices: Bipolar devices- Junction diode, bipolar transistor, Heterojunction devices. Unipolar devices- Metal-semiconductor JFET, MOSFET [8] Active Circuits: Amplifiers- Discrete component transistor amplifier technique. Video amplifiers, RF amplifiers, Power amplifier design constructions 	3								
amplifiers and oscillators.Topics CoveredSemiconductor Devices: Bipolar devices- Junction diode, bipolar transistor, Heterojunction devices. Unipolar devices- Metal-semiconductor JFET, MOSFET [8]Active Circuits: technique. Video amplifiers, RF amplifiers, Power amplifier design const	S								
Topics CoveredSemiconductor Devices: Bipolar devices- Junction diode, bipolar transistor, Heterojunction devices. Unipolar devices- Metal-semiconductor JFET, MOSFET [8]Active Circuits: Amplifiers- Discrete component transistor amplifier 									
Coveredtransistor, Heterojunction devices. Unipolar devices- Metal-semiconductorJFET, MOSFET [8]Active Circuits: Amplifiers- Discrete component transistor amplifier technique. Video amplifiers, RF amplifiers, Power amplifier design const	in ation								
JFET, MOSFET [8] Active Circuits: Amplifiers- Discrete component transistor amplifier technique. Video amplifiers, RF amplifiers, Power amplifier design cons	•								
Active Circuits: Amplifiers- Discrete component transistor amplification technique. Video amplifiers, RF amplifiers, Power amplifier design const	contacts,								
technique. Video amplifiers, RF amplifiers, Power amplifier design cons									
Oscillators- Feedback principle, OF-Amp based R-C phase shift, wi									
oggillators OD Amp singuits. A stive filters, Dytter worth filter [10]									
oscillators. OP-Amp circuits- Active filters, Butter worth filter.[10]									
Passive Networks and Transmission Line: Prototype LC frequency									
networks HF transmission lines Primary and secondary line constant impedance VSWP. Distortion of a manual in practical lines. Fault h	-								
impedance, VSWR, Distortion of e. m. wave in practical lines, Fault le	ocation in								
•	cal line. [6]								
	Digital Electronic Circuits: Logic Circuits- Classification, Logic simplification,								
	SOP and POS design of combinational circuits. Sequential Circuit- Flip-flops,								
	Counters and Registers. Arithmetic Circuit- RCA, CLA, BCD adders, multipliers.								
	[10] Communication: Classification of modulation AM EM and DM and Commercial								
	Communication: Classification of modulation- AM, FM, and PM and Comparative								
	merits in the context of transmission bandwidth, Power utilization. AM and FM								
	modulators and demodulators. Effect of Noise on Communication System-								
	Characteristics of additive noise, Performance of AM, FM receivers in the face of noise.[8]								
Text Books, TEXT BOOKS :									
and/or 1. S. M. Sze, Physics of semiconductor devices.									
reference 2. J. Millman& Grable, Microelectronics.									
material 3. Fraser, Telecommunications.									
4. Malvino and Leach, Digital Principles & Applications									
5. V.C. Hamacher et. al. Computer organisation.									
REFERENCE BOOKS :									
 S. Soclof, Applications of analog integrated circuits. 	1. J. D. Ryder, Electronic fundamental and applications.								
 J.D. Ryder, Networks lines and fields. 									

	-	
	1	D. Doddy and I. Coolan Electronic communication
	4.	R. Roddy and J. Coolen, Electronic communication.

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	2	1	3	2	2
CO2	3	1	2	2	3
CO3	3	1	2	3	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

		Departn	nent of Phy								
Course	Title of the	Program	Total Nu	mber of co	ntact hours		Credit				
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total					
		/ Electives	(L)	(T)	(P) [#]	Hours					
		(PEL)									
PH1151	GENERAL	PCR	0	0	6	6	4				
	PHYSICS LAB										
Pre-requ	isites	Course Assess	sment method	ods: (Contin	uous evaluat	ion (CE)	and end				
		assessment (E	A))								
NIL		CE+EA									
Course	-	on of the course the	he learner s	hall be able	to:						
Outcome	s CO1: Der	nonstrate practic	al knowledg	ge by applyi	ng the experi	mental m	ethods to				
	correlate	with the General	Physics the	eory.							
	CO2: Use	e various electrica	al and optic	al instrumen	nts for releva	nt measur	ements.				
			-								
		CO3: Learn advanced analytical techniques and graphical analysis to investigate and represent experimental findings.									
	-	CO4: Develop intellectual communication skills to discuss scientific concepts in									
	a group.	stop intercetual communication skins to discuss scientific concepts in									
Topics		ion of Planck's c	onstant wit	h a Photocel	1						
Covered		ition of quantization of energy by Franck-Hertz experiment.									
covereu		3 Determination of thermoelectric power of thermocouple.									
		4 Digital-to-analog and analog-to-digital conversion.									
		5 Determination of the g-factor using ESR spectrometer.									
		6 Measurement of the particle size of a given sample by method of diffraction using									
	laser.										
	7 Study of Ga	7 Study of Gaussian beam distribution by laser									
	8 Study of Re	efractive index of	f liquid sam	ple by Abbe	Refractrom	eter.					
			-								
Text Boo	ks, SUGGESTI	ED BOOKS:									
and/or	1. Advanced	1. Advanced Practical Physics for Students / B.L. Worsnop and H.T. Flint. /									
reference	Publisher: Me	Publisher: Methuen									
material											
		2. An Advanced Course in Practical Physics/ by D. Chattopadhyay and P. C. Rakshit									
	/ Publisher: N	/ Publisher: New Central Book Agency									
	REFERENC	REFERENCE:									
		1. Advanced Practical Physics / Basudev Ghosh and K G Mazumdar, / Publisher: Sreedhar Publishers									
	Sreedhar Pub	lishers					151101.				

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	1		1		1
CO2	1		1	1	1
CO3	1	2	1	1	1
CO4		2	1	2	

Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

		Departn	nent of Phy	sics			
Course	Title of the	Program	Total Nu	mber of co	ntact hours		Credit
Code	course	Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P) [#]	Total Hours	
PH1152	CONDENSED MATTER PHYSICS LAB	ATTER					
Pre-requ		Course Asses assessment (I		ods: (Conti	nuous evalua	tion (CE)	and end
NIL		CE+EA					
Course Outcome	s CO1: des condensed CO2: acqu CO3:apply achieve ad	n of the course t ign a complet matter physics ires basic skills the acquired vanced capabili	e experime experiment to critically knowledge	ental appar s. v elaborate a through h	atus to imj nd interpret ands-on labo	experimer oratory tra	ntal data aining to
Topics Covered	 Determinati Measureme Study of Hy Study of Ma Study of Ele Measureme 	 solving Determination of band gap of a given sample by four probe method. Measurement of Hall coefficient of a semiconductor material Study of Hysteresis Loop of a Ferromagnetic material using an Oscillosco Study of Magneto-resistance of n-type Ge crystal. Study of Electrolytic conduction in ionic crystals. Measurement of dielectric constant of a given sample. Measuring the diameter of Human Hair by laser light diffraction method. 					
Text Boo and/or reference material	 Buildin Westvi Physic Bristol REFERENCI A Tex 2011,K 	ng scientific app ew Press al methods for r	naterial cha ctical Physi	racterization	n P.Flewitt, sh & Rama	R.Wild , I krishna, 1	OP

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	3	1	2	3	2
CO2	3	2	3	2	2
CO3	3	1	3	3	2

Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

			Department	t of Physics	s			
Course	Title	e of the course	Program			ontact hou	rs	Credit
Code			Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	
PH2101	ELE	CTRODYNAMICS	PCR	2	1	0	3	3
Pre-requi	Pre-requisites Course Assessment methods (As per PG regulation)							
NIL				G REGUL		1 .	<u> </u>	
Course Outcomes On completion of the course the student shall be able to: • CO1: Interpret the physical origins of the Maxwell's equation their symmetry and transformation properties, domain or limitations • CO2: Describe the formulae for the electromagnetic fields for charge and current distributions using electrodynamic potentia • CO3: Develop electromagnetic equations in a relativistically control four-dimensional space-time							of valid from very als	ity, and general
Topics Covered		Electrostatic and a reciprocation theore of Laplaces' equat potential, use of vec Propagation of P electromagnetic wa electromagnetic wa conducting media a Reflection and refra Greens function. Se Gauge invariance. I dispersion character medium. Kramer–K Wave Guides and I in a rectangular wav Radiation, Scatter oscillating source. dielectric sphere formulation of diffrent Radiation by Movi charge. Total power Scattering. [6] Electrodynamics & Transformation, The How the field trans-	em, solution l ion. Magnet ctor potential lane Electr aves in free ves in matte and conduct action at a pla olution of M Linear and Ci eristics of c Gronig relation Resonant Ca ve guide. Rese ring and D Electric dip in long wa action by a c ing Charges radiated by K Relativity: e structure o asform, The	by Green's ic circuits in solution omagnetic e space. F r. Plane ele ing media. ane bounda laxwell's e rcular pola lielectrics ons. [6] ovities: Cyl sonant cavi Diffraction bole fields avelength ircular ape : Lienard–V an accelerat	function, s Magnetic of field pr Waves: Poynting v ectromagnet Poynting ry. [6] equations. 1 rizations. 2 and condu- lindrical cav ties. [4] Fields a and Radia limit. Raj rture. [6] Wiechert p ated charge	olution by it columns. [8] Maxwell's ector for f etic wave pr vector in c Lorentz and toke's paran actors. Way vities and way nd radiatio ation. Scatt yleigh scat otentials and Larmor's f ativity an Information	nversion, cential an equation free spac copagation conducting l Coulom meters. Fin ves in d ave guide n of a ering by tering. H d fields for formula. T	Solution d vector s, Plane e. Plane n in non- g media, b gauge. requency ispersive s. Modes localised a small Kirchoffs or a point Thomson n, Lorenz momena,

Text Books,	TEXT BOOKS:
and/or	1. J. D. Jackson, <i>Classical Electrodynamics</i>
reference material	2. D. J. Griffiths, <i>Electrodynamics</i>
	REFERENCE BOOKS:
	1. M. Born and E. Wolf, <i>Principles of Optics</i>
	2. J. R. Reitz, F. J. Milford & R. W. Christy, Foundations of Electromagnetic
	Theory
	3. Panofsky & Phillips, Classical <i>Electricity & Magnetism</i>

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5
C01	2	1	3	2	3
CO2	2	1	2	2	3
CO3	3	1	3	3	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

		Departn	nent of Phy	sics					
Course	Title of the	Program			ntact hours	-	Credit		
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total			
		/ Electives	(L)	(T)	(P) [#]	Hours			
		(PEL)							
PH2102	NUCLEAR	PCR	3	1	0	4	4		
	AND								
	PARTICLE								
Pre-requ	PHYSICS	Course Assess	mont moth	ada: (Contin	uous ovoluot	ion (CE)	and and		
rie-iequ	151105	assessment (E		Jus. (Contin	uous evaluat	1011 (CE)	and end		
NIL		CE+EA	(())						
Course	On completio	n of the course the	he learner s	hall be able	to:				
Outcome	-	Describe the prop				uents.			
-		Explain the basic					actions.		
		Interpret the fund							
Topics		perties of Nucl				-			
Covered	0 1	eriment, basic nu	1 1		· 1 ·		,		
		ng energy, cha	-	-					
		s, forms of nucleon-nucleon potential, charge independence and charge							
	symmetry of I	symmetry of nuclear forces.[12]							
		ear models: Liquid drop model, semi-empirical mass formula, Single particle model and its validity and limitation, explanation of magic nuclei. [12]							
	Nuclear radi								
		diations: Theories of alpha, beta and gamma decays, selections rules, pothesis, nuclear isomers, energy loss by charged particles and gamma							
	rays. [10]	filesis, nuclear i	somers, en	cigy 1033 by	enarged pa	iticies and	a gamma		
		actions: Review of nuclear reactions, types of nuclear reactions, nuclear							
		fusion, reactions cross-section and yield, conservation rules, energy and ution in nuclear reactions, threshold energy of nuclear reaction, reaction							
		, Compound nucleus hypothesis and direct reactions. [10]							
	Elementary	Elementary Particle Physics: Classification of fundamental forces, elementary							
		particles and their quantum numbers (charge, spin, parity, isospin, strangeness, etc.),							
		shijima formula,							
		guments in part	ticle reaction	ons, Parity	violation in	weak int	teraction,		
	Kelativistic ki	nematics. [12]							
Text Boo	ks, SUGGESTE	D BOOKS <u>:</u>							
and/or		al, Atomic & Nu	uclear Phys	ics					
reference	2. D. C. Tuyu	l, Nuclear Physic							
material	3. V. K. Mith Physics	al, R. C. Verm	a, S. C. Gi	upta, Introdu	uction to Nu	clear and	Particle		
	1 11 9 51 6 5								
	REFERENC	E:							
		fiths, Introductio	n to Eleme	ntary Particl	es				
		an, Nuclear Phy		•					
	3. B. L. Coher	n, Concepts of N	luclear Phys	sics					

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	1	1	3	2	2
CO2	1	1	3	2	2
CO3	1	1	3	3	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

		Departn	nent of Phy	vsics					
Course	Title of the	Program	Total Nu	mber of co	ntact hours		Credit		
Code	course	Core	Lecture	Tutorial	Practical	Total			
		(PCR) /	(L)	(T)	(P) [#]	Hours			
		Electives							
		(PEL)							
PH2103	QUANTUM	PCR	3	1	0	4	4		
	MECHANICS –								
	II								
Pre-requ	isites	Course Asses		ods: (Contin	nuous evalua	tion (CE)	and end		
		assessment (I	EA))						
PH1103		CE+EA							
Course	On completion	n of the course t	he learner s	hall be able	to:				
Outcome	-	Describe pertu				o solve	allantum		
Jucome		nical problems.		a scattering		5 50170	Yuunun		
		lemonstrate fun		nowledge of	relativistic o	uantum m	echanics		
		antum field the		is mease of	renun vibue y	suntain il			
		Develop second		n method fo	r free fields				
			1						
Topics	Perturbation	Theory: Time	-independe	nt perturbat	ion theory f	for non-de	egenerate		
Covered		-	-	-	•		-		
	-	and degenerate states. First and second order perturbation, Applications to anharmonic oscillator, He atom, Linear and quadratic Stark effect, Normal and							
		anomalous Zeeman effect. [8]							
	-	dependent perturbation theory, transition probability, constant and harmonic pation, Fermi golden rule, Electric dipole radiation and selection rules. [8]							
	_	-		-					
	-	cattering amplit				-	-		
		nd Screened Co							
		ering, optical th			-	ering from	n a hard		
	sphere, Reson	ance scattering	from a squa	re-well pote	ntial. [1	2]			
	Relativistic O	Relativistic Quantum Mechanics: Klein-Gordon equation and its drawbacks, Dirac							
	-	perties of Dira		-					
		e particle soluti							
	-	on, projection		-		-			
	Dirac equation		[8]	n energy al	ia spill, Lolo				
		1.	լօյ						
	Bilinear covar	riant in Dirac t	heory, Dira	c operators	in Heisenbe	erg repres	sentation,		
	Constants of	the motion, Zi	tterbewegur	ng and nega	ative-energy	solutions	, Klein's		
		theory and c							
	-	Dirac equation		_ • •					
		-		с · ·		<i>.</i> •			
	-	of free field					•		
		d Hamiltonian f			•				
	-	zation, quantiz				nd electro	magnetic		
	field. Electron	nagnetic interac	tion and gau	ige invarian	ce. [12]				

Text Books,	SUGGESTED BOOKS:
and/or reference material	 S.Gasiorowicz, Quantum Physics David J. Griffiths, Introduction to Quantum Mechanics J. J. Sakurai, Advanced Quantum Mechanics F. Mandal and G. Shaw, Quantum Field Theory
	 REFERENCE BOOKS: J. L. Powell and B. Craseman, Quantum Mechanics L. I. Shiff, Quantum Mechanics J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory L. H. Ryder, Quantum Field Theory

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	2	1	3	2	3
CO2	2	1	3	1	2
CO3	2	1	3	2	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

]Departr	nent of Phy	ysics			
Course	Title of the	Program	Total Nu	mber of co	ntact hours		Credit
Code	course	Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives					
		(PEL)			-		
PH2104	CONDENSED	PCR	3	1	0	4	4
	MATTER						
Dro roquisi	PHYSICS II Course Assessment methods (As per PG regulation)						
Pre-requisi PH1104	les	AS PER PG		· •	er PG regulat	1011)	
ГП1104		AS FER FU	KEGULAI	IION			
Course	On completion of	the course the	student sha	ll be able to	•		
Outcomes	-	rpret the symm				en Crysta	lline and
		stalline solids.	ouly operation				
		lain different d	efects in cry	vstal lattice	of the materia	al.	
		ply the knowle					analyse
	structure		- •				
Topics	Topic-1: Symmet	ry operations a	nd their clas	sifications,	Macroscopic	Symmetr	y, Mirror
Covered	plane, Rotation	axis, Centre c	of symmetr	y, Roto In	version sym	metries a	and their
	examples, 32 Poin		•	-	•		
	Tania 2. Desusia	T attiona damai	e af a a lin	~ Mianaaaa	nia Carrana atu		ta Canarra
	Topic-2: Bravais		• •	-		•	
	axis and Glide pla	-		-			-
	introduction to the						
	Reciprocal lattice		with direct	l lattice. In	iportance of	reciproca	li lattice,
	Ewald's sphere. [C (C (1	4 1	1 /1 *
	Topic-3: Deviat	-	•	•		•	
	classifications. Po						-
	Differences betw		-	•			
	properties and						
	introduction to t	-		from perfec	et poly cryst	tallinity, I	Preferrea
	orientations and t		-				
	Topic-4: Phase tr					ss transfoi	mations,
	Time - temperatur			1		1 C 1	1 .
	Topic-5: Non-cry						11 0
	mechanism, shor	t range and lo	ong range	order, struc	ture of amo	orpnous si	tate-Mott
	transition. [8]		C	 .			C
	Topic-6: Quasi C	•		•			
	Different classifie	-	-	-	operties. App	olications	of liquid
m	crystals in display	devices. Plast	ic crystals.	[8]			
Text	TEXT BOOKS:						
Books,		roff, Introducti					
and/or reference		lips, An introdu	•	0 1 1		a	
material		tterjee, X-ray di	ijjraction it.	s ineory and	applications	8	
material	REFERENCE B		uoturo caral	vaia			
	-	ger, Crystal stri	•	ysis			
	2. B. D. Cull	ity, X-ray diffr	исноп				

		diffraction	n, <i>X-ra</i>	B. E. Warr	3.	

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	2	1	3	2	3
CO2	2	1	3	2	3
CO3	2	2	2	3	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

		Departmen	t of Physi	CS					
Course	Title of the	Program	•		ontact hou	rs	Credit		
Code	course	Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours			
PH2105	PHOTONICS	PCR	2	1	0	3	3		
Pre-requisi	tes	Course Assess	ment meth	ods (As pe	r PG regulat	ion)			
NIL	ites Course Assessment methods (As per PG regulation) AS PER PG REGULATION								
Course Outcomes	 CO1: Classify modulation to CO2: Illustra and optical fi 	te the basic conce	f laser, exp pts and app	plain their l	asing action f different p	hotonic d	evices		
Topics Covered	Properties of Laser Radiation, Basic components of Laser, Classifications of Lasers Spontaneous and stimulated emission. Einstein's coefficients and their relations conditions of population inversion. Absorption and amplification of light in a medium population inversion and threshold condition for a laser, gain coefficient. Laser Rate Equations, 2-level laser, 3-level and 4-level lasers. Line broadening mechanisms— (spontaneous transition, collision broadening and Doppler broadening).[11] Modulation Techniques:								
	Propagation of EM waves in anisotropic dielectric medium, dielectric Tensor, Index ellipsoid. Electro-optic effect, electro-optic phase retardation, electro-optic amplitude modulation, phase-modulation of light.[6]								
	Photonic devices: Light Emitting Diode (LED), quantum efficiencies (internal and external), responsivities, Characteristics and applications of various kinds of LEDs dome type LED, homojunction LED, heterojunction LED, guided wave LED, edge emitting LED, quantum cascaded LED, quantum dot LED, operational circuit and modulation of LEDs. Different types of coupling procedure of LED with optical fiber Coupling coefficients and coupling loss. Photo diode, quantum efficiencies (internal and external), responsivities, Characteristics and applications of various kinds of photodetectors, P-I-N photodiode, Avalanche photodiode, Metal–Semiconductor-Meta (M-S-M) photodiode, quantum well photodetector, multiquantum well photodetector infrared photodetector etc. Photomultipliers tubes. Charge coupled devices (CCD) solar cell.[14]								
	Fiber Optics: Rectangular and cylindrical waveguides, propagation of radiation in dielectric waveguides. Step index and graded index fiber, modes in fiber, dispersion in multimode & single mode fiber, attenuation mechanisms in fibers, signal distortion mode coupling, power launching and coupling, fiber parameter specifications. [8]								
	Holography : Basics of holography, On-axis and off-axis hologram recording and reconstruction, transmission and reflection holograms, Amplitude and phase holograms Thick and thin holograms, Recording materials, Applications of Holography.[3]								

Text	TEXT BOOKS:
Books,	1. A. Ghatak, K. Thyagarajan, Optical Electronics, Cambridge
and/or	2. S. M. Sze, <i>Physics of semiconductor devices</i> .
reference	3. O. Svelto, Principles of Lasers
material	4. Franz and Jain, <i>Optical communication systems</i>
	5. R.J.Collier, An Optical holography, Academic Press.
	REFERENCE BOOKS:
	1. P. Bhattacharya, Semiconductor opto-electronic devices.
	2. W. Koechner, Solid State Laser Engineering
	3. J. M. Senior, <i>Optical fiber communications principles and practice</i>
	4. S.O. Kasap, Optoelectronics and Photonics principles and practices
	5. Martin A Green, Solar Cells: Operating Principles, Technology, and System
	Applications

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	2	1	2	2	3
CO2	2	1	3	2	3
CO3	2	1	2	2	2

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

		Departn	nent of Phy	vsics				
Course	Title of the	Program	Total Nu	mber of co	ntact hours		Credit	
Code	course	Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P) [#]	Total Hours		
PH2151	ELECTRONICS LAB	PCR	0	0	6	6	4	
Pre-requ	isites	Course Asse assessment (hods: (Conti	nuous evalua	ation (CE)	and end	
NIL		CE+EA						
Outcome	 CO1: E generate CO2: D CO3: E 	earn how to ha or, Spectrum a esign different xamine the out	ndle electro nalyzer, etc. electronic o	nic equipme	ent such as D study their p	erformanc	es.	
Topics Covered	1.To str2.To str3.To str4.To str5.To mgates	 To study the frequency response of BJT amplifier in CE configuration to investigate different related properties with and without feedback To study and design an R-C phase-shift oscillator. To study the frequency response of two-port Network. To make truth table for different gates using minimum number of N gates. 						
Text Boo and/or reference material	1. Microelectro	nics by Jacob				kwad		

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5
C01	2	2	3	2	3
CO2	2	2	3	3	3
CO3	2	2	3	2	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

		Departn	nent of Phy	sics					
Course	Title of the	Program	Total Nu	mber of co	ntact hours		Credit		
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total			
		/ Electives (PEL)	(L)	(T)	(P) [#]	Hours			
PH2152	NUCLEAR	PCR	3	3	2				
	PHYSICS LAB		-	-	-	_			
Pre-requi	isites	Course Assess	ment meth	ods: (Contin	uous evaluat	ion (CE)	and end		
		assessment (E	A))						
NIL		CE+EA							
Course	On completio	n of the course t	ha laarnar s	hall be able	to:				
Outcome	-	On completion of the course the learner shall be able to: CO1: Study the operation and characteristics of a detector							
outcome	001.50					otive cour	200		
	CO2: Understand the nature of radiation emitting from radio CO3: Realize the randomness and properties of data								
	experiment		ancess and	i properties	01 uata 0	otamed 1	ioni ule		
Topics	1	rmine the operat	ing plateau	for the Geig	er tube				
Covered		sure Half - life o		-					
		y inverse square	-						
		mine the distribu	-			analysis fo	or given		
	beta sou					•	U		
	5. To obse	erve Gamma ray	spectrum of	f a given sou	ırce				
Text Boo	ks, SUGGESTH	ED BOOKS/MA	NUALS:						
and/or		1. Radiation Detection & Measurement, G. F. Knoll, John Willey & Sons							
reference	2. Nuclear Ph	2. Nuclear Physics, S. N. Ghosal, S. Chand & Company Ltd.							
material	3. GSPEC Se	3. GSPEC Series Instruction Manual, Version 2.5x							
	4. Laboratory	investigations in	n Nuclear S	Science by J	erome L. Du	ıggan, De	partment		
	•	niversity of Nort		•			-		
		-							

POs COs	PO1	PO2	PO3	PO4	PO5
C01	2	1	3	2	3
CO2	2	1	3	2	3
CO3	2	2	2	3	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

		Departn	nent of Phy	vsics						
Course	Title of the	Program	Total Nu	mber of Co	ontact Hours	5	Credit			
Code	course	Core	Lecture	Tutorial	Practical	Total				
		(PCR) /	(L)	(T)	(P)	Hours				
		Electives								
		(PEL)								
PH3101	STATISTICAL	PCR	2	1	0	3	3			
	MECHANICS	~ .								
Pre-requis	ites	Course Asse		· •	r PG regulati	ion)				
NIL		AS PER PG	REGULAT	ION						
Course	On successful co	ompletion of thi	s course stu	dents will b	e able to:					
Outcomes	• CO1: Expla	in the theoretica	al concepts	used in Stati	istical mecha	inics.				
	CO2: Const	ruct partition fu	nctions for	different ens	embles and a	apply them	n to solve			
	different sta	tistical physics	problems.							
		ate different pa	-	uch as, magi	netization an	d suscepti	bility) of			
		using statistica		-			·····j/ ···			
			in projence ve	0151						
Topics	Scope and aim	of Statistical	Mechanic	s. Phase Sr	pace Phase	Points E	nsemble			
Covered	Density of Pha			-						
0010104	•			-	•					
	Canonical, Cano				_		-			
	of Ideal System:	-		-						
	Fermi – Direct		-	-			quantum			
	systems, Propert	ies of ideal Bos	se - gas, Bos	se – Einstein	condensatio	on.				
	[12]									
	Density Matrix	· Statistical and	Ouantum r	nechanics a	nnroaches P	roperties	of mixed			
	and Pure states,		-			-				
	in a box, an elec	-		-			-			
	construction of	-		-		-				
	polarization vec	-	A TOT UNIT	spin spin s	states and v	uluului				
	Statistical mech		acting syste	e ms : Cluster	r expansion	for a class	sical oas			
	Virial expansion				-		-			
	treatment of the	-					to, Exert			
	Strong Interac			-	-		and the			
	-		-		-					
	Heisenberg Hamiltonian, Ising Hamiltonian as a truncated Heisenberg Hamiltonian.									
		[5] Phase Transitions : General remarks, Phase transition and critical phenomena, critical								
					-	menomena	a, cinicai			
indices, Landau's order parameter theory of phase transition. [6] Fluctuations: Fluctuations of fundamental thermodynamic quar							ations of			
	fluctuations in s			thermodyna	anne quantiti	les. Conei	ations of			
Text	TEXT BOOKS		.							
Books,		• hria, <i>Statistical</i>	Mochanics							
and/or		g, Statistical Me								
reference	2. 13. 11uall	, <i>Statisticat</i> 1410	Similo							
material	REFERENCE	BOOKS:								
		nden, E. M. Lif	shitz and P	Pilaevskii	Statistical Pl	ivsics (Pt	- I)			
						1,5105 (1 1.	-)			
	2. R. P. Feynaman, <i>Statistical Mechanics, A set of lectures</i>									

3.	S. K. Ma, Statistical Physics
4.	A Ishihara, Statistical Physics
5.	M. Teda, R. Kubo, and N. Satto, Statistical Mechanics

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	2	1	3	2	1
CO2	2	1	3	2	2
CO3	2	1	3	3	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

		Departn	nent of Phy	sics				
Course	Title of the	Program	Total Nu	mber of co	ntact hours		Credit	
Code	course	Core	Lecture	Tutorial	Practical	Total		
		(PCR) /	(L)	(T)	(P)	Hours		
		Electives (DEL)						
PH3102	NUMERICAL	(PEL) PCR	2	1	0	3	3	
1113102	AND	ICK	2	1	0	5	5	
	NONLINEAR							
	ANALYSIS							
Pre-requis	sites	Course Asses		_	PG regulati	on)		
NIL		AS PER PG	REGULAT	ION				
Course	-	n of the course t	he learner s	hall be able	to:			
Outcomes	001120	monstrate under	0				•	
		o obtain approx	timate solut	ions to othe	erwise intract	able math	ematical	
	problems.		ath a day 1	toin	···· • • • • • • • • • • • • • • • • •	no.4	ama (1 1	
		ply numerical m	ethods to of	otain approx	imate solutio	ns to matr	iematical	
		rical problems.	wara lika N		r formulatin	a and col	ving rool	
		e scientific soft					vilig ieai	
 life problems related to the properties of materials and applications. CO4: Acquire knowledge on different tools for analyzing and interpretir 						ing data		
Topics		nalysis: Numer					-	
Covered		the following						
	-	(iii) Numerical	-			-		
	-	cond order diffe	-					
		ast squares, etc.	-		5	1	, , ,	
		to nonlinear		ntroduction	to dynamic	al system	ns; basic	
	concepts of ne	onlinear dynam	ics using th	e simple pe	endulum, exa	amples of	linearity	
	and nonlinear	ity in physics a	nd other sc	iences – ele	ectronics, LA	ASER, geo	ophysics,	
		ce & economics						
		equations with	-	-		-		
		e space; period		onlinear osc	cillators and	their app	lications;	
		d physical exam	·					
		Chaos: Dynam	•		· •			
		al dimension -		-				
		alysis (MFDFA						
		ge attractors; E		phase space	e volume in	chaotic a	and non-	
		n; Chaotic time : nalysis: Concer		cy domain	and time don	nain for ar	alveie of	
	Time series analysis: Concept of frequency domain and time domain for analy time series data, Continuous and discrete time series; Stationary and non-static data; Periodic and non-periodic signals; Frequency analysis of time series; Fo							
		ourier Transform	-		•			
		FT), Power law;			,			
		ess – concept of						
		ckages for the	-		-	-		
	Introduction t	o software pack	ages which	are widely	used in the	study of 1	nonlinear	
	systems – M	lathematica; M	atlab. Metl	nods and A	Applications	of DFT	& FFT	

	algorithms; estimation of Hurst exponent using power law slope, R/S method. Methods and Applications of MFDFA algorithms. Analysis of Chaotic time series, estimation of Lyapunov exponent. [6]
Text Books, and/or reference material	 J H Mathews & K D Fink, Numerical Methods Using Matlab (ISBN 81-203-2765-9). S. H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry and Engineering, Perseus Books Publishing, 2000. REFERENCE BOOKS: A Stevens & Clayton Walnum, C++ Programming Bible (ISBN 81-265-0005-0) H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, CUP 1998, 2nd edition

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	1		2		
CO2	1		2	2	
CO3	1		2	1	2
CO4	2		2	2	2

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

		Departn	nent of Phy	sics			
Course	Title of the	Program	Total Nu	mber of co	ntact hours	-	Credit
Code	course	Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P) [#]	Hours	
		Electives					
		(PEL)					
PH3103	GENERAL	PCR	3	0	0	3	3
	THEORY OF						
	RELATIVITY AND						
	COSMOLOGY						
Pre-requisi		Course Ass	essment me	ethods: (Cor	l tinuous eval	uation (C)	F) and
11e-requisi	.105	end assessn		lindus. (Con			
NIL		CE+EA					
Course	On completion of t	he course the	learner sha	ll be able to	:		
Outcomes	CO1: Explain t					smology.	
	CO2: Describe	the fundament	ntals of GT	R and discus	ss different s	tages of st	ars, and
	gravitational w						
	CO3: Apply the	e cosmologic	al concepts	to understar	nd the origin	and evolu	tion of
	the universe.	<u> </u>	• ,		• • •		<u>c1 · 1</u>
Topics Covered	Tensor analysis:						0
Covered	rank, Tensor algeb		-				-
	rank tensors & fur				-	-	
	Riemann-Christoff	el curvature t	ensor, Ricci	tensor, scal	ar curvature,	Bianchi i	dentities.
	[14]						
	Gravitation: State	ment of the I	Principle of	Equivalenc	e Gravitatio	nal force	Relation
	between $g_{\mu\nu}$ and 1		-	-			
	Einstein field equa	•					
	energy, momentun			-			-
	general theory of r	-		-	-		
	[14]				U		
	Cosmology: The	cosmological	principle,	Newtonian	cosmology,	Einstein	universe,
	Expanding univers	-					
	distance, red-shift	-	-				
	universe, matter			•	-		-
	background, Eleme	entary idea ab	out dark m	atter and dar	rk energy. [1	4]	
Text	TEXT BOOKS:						
Books,	1. S. Weinberg– C	Travitation or	nd Cosmolo	ov Principl	es and Annli	cations of	the
and/or	General Theory			sy. i incipi	co una Appli		
reference material	2. J. V. Narlikar– A			ology			
	REFEREN	ICE BOOKS	5:				
	1. J. V. Narlik	ar –An Introd	duction to R	Relativity			
	2. T. Padmana			•	d Frontiers		
	2. T. Padmana	abhan – Grav	itation: Fou	ndations and	d Frontiers		

3. J. B. Hartle – Gravity: An Introduction to Einstein's General Relativity
4. Ta-Pei Cheng – Relativity, Gravitation and Cosmology: A Basic Introduction
5. Relativity, Gravitation and Cosmology: A Basic Introduction – Ta-Pei Cheng

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	2	2	3	2	2
CO2	2	1	2	2	2
CO3	2	1	3	2	2

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

			Departme	ent of Physic	ics				
Course	Titl	e of the course	Program	Total Nu	mber of co	ntact hours		Credit	
Code			Core	Lecture	Tutorial	Practical	Total		
			(PCR) /	(L)	(T)	(P) [#]	Hours		
			Electives						
			(PEL)						
PH3151	DIS	SERTATION-I	PCR	0	0	2	2	2	
Pre-requ	isites			Assessment methods: (Continuous evaluation (CE) and essment (EA))					
NIL	CE+EA								
Course		On completion of t	he course the	e learner sh	all be able to	o:			
Outcome	S	CO1: Identify, summarize and critically evaluate relevant literature and write						d write a	
		review.							
		CO2: Undertak	e problem id	entificatior	and formul	ation.			
		CO3: Effective	1				orical sem	ience	
			iy write seler		155 m u sysu		Sieur sequ	ienee.	
Topics		To be notified sepa	arately.						
Covered			•						
Text Boo	ks,	To be notified sepa	arately.						
and/or			-						
reference	•								
material									

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	2	2	2	2	2
CO2	2	2	2	2	2
CO3	3	3	3	3	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

			Departme	nt of Physi	ics				
Course	Titl	e of the course	Program	Total Nu	mber of co	ntact hours		Credit	
Code			Core	Lecture	Tutorial	Practical	Total		
			(PCR) /	(L)	(T)	(P) [#]	Hours		
			Electives						
			(PEL)						
PH3152	SEN	/INAR NON	PCR	0	0	1	1	1	
	PRO	DJECT							
Pre-requi	isites		Course As	sessment m	ethods: (Co	ntinuous eva	luation (C	E) and	
			end assessi	ment (EA))					
NIL CE+EA									
Course		On completion of t	he course the	e learner sha	all be able to):			
Outcome	S	CO1: Effective	rely present the knowledge gain on a specific scientific topic through						
		critical thinking	5.						
		CO2: Develop	oral skill for	scientific c	ommunicati	ion and prese	entation		
		CO3: Develop				1			
			r •						
Topics		To be notified sepa	rately.						
Covered		-	-						
Text Boo	ks,	To be notified sepa	rately.						
and/or		-							
reference	•								
material									

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	2	3	2	2	3
CO2	2	3	2	2	3
CO3	3	3	2	3	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

			Departme	nt of Physi	cs			
Course	Titl	e of the course	Program	Total Nu	mber of con	ntact hours		Credit
Code			Core	Lecture	Tutorial	Practical	Total	
			(PCR) /	(L)	(T)	(P) [#]	Hours	
			Electives					
			(PEL)					
PH3153		FOELECTRONICS	PCR	0	0	6	6	4
	LA	В						
Pre-requi	isites				ethods: (Co	ntinuous eva	luation (C	E) and
				ment (EA))				
NIL			CE+EA					
Course		On completion of th					_	
Outcome	S	CO1: Verify var		-				
		CO2: Measure	the fundam	iental para	meters and	the perform	nance of	practical
		optoelectronic d	levices.					
		CO3: Design some logic gates and filter circuits.						
Topics		e e	study the EC		U			
Covered		e e	LL and study					
		U	study of activ	-	s filter.			
		-	ssor program	-				
		5. Determinati 6. Measuremen			•	organce and	L Coursia	n chana
			cs of laser ra	-	Dealli uiv	ergence and	i Gaussia	in snape
					nce of He	-Ne laser u	ising Mia	helson's
		Interferome		fur concre		ite luber e	15111 <u>5</u> 1111	
		8. Collimation		g Shear Inte	rferometrv.			
				-	•	a pair of circ	ular apert	tures and
		-	ir separation		1	1	1	
Text Boo	ks.	SUGGESTED BC	OKS:					
and/or		1. Microelectronics		illman and	Arvin Grabe]		
reference)	2. Microprocessor a	•				8085 hv I	R S
material		Gaonkar.		Programmin	15 und appli		5005 Uy 1	
		3. Fiber optics and	optoelectroni	ics by R. P.	Khare			
			ruuun					
		(Course Outcome)						

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	2	2	3	3	2
CO2	2	2	3	3	3
CO3	2	2	3	3	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

		Departi	nent of Phy	sics			
Course	Title of the	Program	Total Nu	mber of co	ntact hours		Credit
Code	course	Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P) [#]	Total Hours	
PH3153	ADVANCED CONDENSED MATER PHYSICS LAB	VANCED PCR 0 0 6 6 NDENSED TER 0 0					4
Pre-requi	isites	Course Asses assessment (ods: (Contin	nuous evalua	tion (CE)	and End
NIL		CE+EA					
Course Outcome	s CO1: Syn popular lo CO2: Det interaction CO3: Dete crystallinit	ect the appro	and semicors and gap of le light be, size, thic	a semicon kness, etc. o	ostructures a ductor nanc of the particl	omaterial les as wel	from its l as their
Topics Covered	 Synthermethod Determethod Determ	sis of a semico sis of a metalli d nination of the onductor nanom nination of the ng Electron Mi nination of the diffraction nination of the Atomic Force M nination of the a etrical transport nination of the S) of the semico	c thin film l optical abso aterial by T particle/gra croscopy microstruct thickness ar ficroscopy activation en properties applied-bia	by a physical orption prop auc method in shape an ure and crys nd roughnes ergy of a ser as photon-to	al (sputter/the perties and the ad size of the stallinity of the s of a nanos miconductor	ermal) eva ne band ga le nanoma he nanoma tructured nanomate	ap of the aterial by aterial by thin film erial from
Text Boo and/or Reference material	ks, SUGGESTE 1. Nanomate Dieter Vo 2. Materials		duction to S	ynthesis, Pro	-		

	Electronic Processes in Non-Crystalline Materials. N. F. Mott and E. A. Davis. Oxford University Press CFERENCES:
5.	Optical properties and electronic structure of amorphous Ge and Si, J. Tauc, Materials Research Bulletin Vol 3: 37–46 (1968). Introduction to Condensed matter physics, Vol 1, Feng Duan & Jin Guojun (https://doi.org/10.1142/9789812569226_0009) Semiconducting materials for photoelectrochemical energy conversion, Kevin Sivula & Roel van de Krol, Nature Reviews Materials 1, 15010 (2016)

Mapping of CO (Course	Outcome) and PO (Prog	ramme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5
C01	2	1	3	3	2
CO2	2	1	3	3	2
CO3	2	1	3	3	2
CO4	3	1	3	2	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

			Departm	ent of Phys	sics			
Course	Titl	le of the Program Total Number of contact hours						Credit
Code	cou	rse	Core	Lecture	Tutorial	Practical	Total	
			(PCR) /	(L)	(T)	(P)	Hours	
			Electives					
PH4101		OMIC AND	(PEL) PCR	3	1	0	4	4
РП4101		LECULAR	FCK	3	1	0	4	4
		ECTROSCOPY						
Pre-requis			Course Asso	essment me	thods (As p	er PG regula	tion)	
NIL			AS PER PC			C		
Course		On completion	of the course t	the student	shall be able	e to:		
Outcomes	5	-	cribe the atomi				ectron atom	ms
			lain the change	-				
		magnetic f	ield.					
		• CO3: Inte	erpret rotation	onal, vibrat	ional, elect	ronic and H	Raman sp	bectra of
		molecules						
Tonica			ogooner Tat	hadio - 4-	40 min 4		a des ati a se d	
Topics Covered		Atomic Spectr						
Covereu		quantum mecha			-			
		atoms with elec	-					
		Interaction of o		om s with e	xternal elect	tric and magi	netic field	s. Two
		electrons atoms			- ·			
		Introduction t			•		-	
		spin resonance			-		-	
		Born-Oppenhei			-		nd nuclear	motion
		in molecules. B	and structure	of molecula	r spectra. [4	4]		
		Microwave an in rigid and no Rotational spec and asymmetric Near Infrared harmonic and a energy of diato Isotope effect. Electronic spec Vibrational ban O-O and other vibronic bands structure of elec	nrigid rotator etra of polyator e top molecule spectroscopy nharmonic oso mic molecule. [5] ctra of diaton d structure of bands. Determ b. P, Q and H ctronic bonds.	mode. Sele mic molecu s). Isotope of Vibrationa cillator mode Selection r hic molecul electronic s ination of r branches. Frank-Con	ction rules. Iles (spheric effect. [4] al spectra of lel. Morse p ules. Rotation es: pectra, Desl nolecular co . Intensity don Principl	Determinationally symmet diatomic model otential and of onal–Vibrational andre's table onstants. Rota distributionale. [5]	on of bon ric, symm blecules in dissociatio onal spect e. Isotopic ational str in the vi	d length. netric top n on ra. shifts of ucture of brational
		Raman Spectr and polarization Spin Resonand Electron spin re	n of light and l ce spectroscop	Raman effe y:Nuclecar	ct. [5] magnetic r			-

Text Books, and/or reference material	 TEXT BOOKS: 1. Bransden and Joachin, <i>Physics</i> of <i>Atoms and Molecules</i> 2. Banwell and McCash, <i>Fundamentals of Molecular Spectroscopy</i> 3. Walter S Struve <i>Fundamentals of Molecular Spectroscopy</i>
	REFERENCE BOOKS:
	 G. Herzberg, Spectra of Diatomic molecules, Dores, NY G. M. Barrow, Molecular Spectroscopy G. Herzberg, Raman and Infrared Spectra van-Norstrand, NY

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	2	1	3	2	3
CO2	2	1	2	2	3
CO3	3	1	3	3	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

			Departme	ent of Physi	ics			
Course	Titl	e of the course	Program	Total Nu	mber of co	ntact hours		Credit
Code			Core	Lecture	Tutorial	Practical	Total	
			(PCR) /	(L)	(T)	(P) [#]	Hours	
			Electives					
			(PEL)					
PH4151		SERTATION – II	PCR	0	0	9	9	9
		TH SEMINAR						
Pre-requ	isites					per PG regul	lation)	
NIL		1		PG REGUL				
Course		On completion of t	he course the	e learner sh	all be able to	D:		
Outcome	S	CO1: Underta	ke problem	identifica	tion, formu	ulation and	solution	through
		scientific obser	vation.					
		CO2: Analyze	and synthesi	ze research	findings an	d demonstrat	e canabili	tv of
		independent re	•		8		· · · · · · · · · ·	.,
		CO3: Effective		present sci	entific findi	ngs in a syst	ematic an	d logical
		sequence.	j	I		8		
		sequence.						
Topics		Topics will be prov	vided					
Covered			1					
Text Boo	ks.	To be notified sepa	rately					
and/or	1139	10 00 notified sept	in and i y .					
reference								
material	•							
mattial								

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	2	2
CO2	3	3	3	3	2
CO3	3	3	3	3	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

			Departme	ent of Physi	ics			
Course	Titl	e of the course	Program	Total Nu	mber of co	ntact hours		Credit
Code			Core	Lecture	Tutorial	Practical	Total	
			(PCR) /	(L)	(T)	(P) [#]	Hours	
			Electives					
			(PEL)					
PH4152	GR/	AND VIVA	PCR					2
Pre-requi	e-requisites					per PG regul	lation)	
NIL			AS PER F	PG REGUL	ATION			
Course		On completion of the	he course the	e learner sha	all be able to	D:		
Outcomes	5	CO1: Ability to	defend their	r knowledg	e to an expe	rt committee		
		CO2: Develop	skill for pres	sentation of	overall scie	entific knowl	edge gain	ed in the
		course of study					00	
		CO3: Develop		king on the	r feet and to	answer rani	d fire que	stions
		COS. Develop	SKIII IOI UIIII	king on the		answer rapi	u me que	500115.
Topics								
Covered								
Text Book	ks,							
and/or	,							
reference								
material								

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	2	3	3	2	2
CO2	2	3	3	3	3
CO3	2	3	3	2	2

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

		Departn	nent of Phy	sics			
Course	Title of the	Program			ntact hours		Credit
Code	course	Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives					
		(PEL)					
PH91XX	ELECTIVE – I	PCR	2	1	0	3	3
PH9111	CONDENSED						
	MATTER						
Dra raquisi	PHYSICS-III	Course Aces	acmont mot	hoda (Aana	$\mathbf{D}\mathbf{C}$ means let	ion)	
Pre-requisi NIL	les	AS PER PG		· ·	er PG regulat	1011)	
Course	-	n of the course					
Outcomes		arn the basics	-		0	quantum	systems,
	U	field theory, so	-	-			1
		plain the conce	pt of energy	y bands and	effect of the	same on o	electrical
	properties				faalida and		
		dict electrical a				-	U
		evelop an abi d matter physic	•	nully, lorini	mate, and s	orve prot	siems in
Topics		ity: Generalized		w elastic stif	fness and cor	nnliance co	efficient
Covered	-	d order elastic c		w, clastic stil	incess and con		Jennerent,
	 cyclic condition and neutrons b Thermodynami Electronic energy solids, Approx Hartree-Fock ap Electronic and equation in present 	tics: Theory of a n, phonon freque by phonons, Del c functions and ergy band theo imation method pproximations for I magnetic prop sence of magnetic to magnetoresistan	ency distribu bye Waller relations for ry: Recapitul s for calcula or exchange perties of so tic field, cyc field. Landau	tion, dispersi factor, Moss a crystal. [9 lation of the ation of ener and correlation lids:Boltzma lotron resona	on relations, o bauer effect a fundamentals gy bands, Ma on energies. [diffraction and its app s of band any-electro 12] Equation, evels and o	of X-rays blications. theory of on theory, Transport density of
Text Books	5, TEXT BOOK	KS:					
and/or		nd Huang, Dyr			al lattice		
reference	0	ski & Palmer, S		•			
material	3. Ashcra	aft &Mermin, S	Solid State F	Physics			
		E DOORG					
	REFERENC		1 .	C 1			
		Wallace, <i>Thern</i>			nustall:	da	
		lu, Intermediat Elementary ex		• •	ysiaiine soli	uus	
	5. Pines,	Elementary ex	cuations in	sonas			
N/ · · · ·	CO (Course Out			0.1	<u> </u>		

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	2	2	3	2	2
CO2	2	1	2	2	3
CO3	2	2	3	2	2
CO4	3	1	3	3	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

Course		Departme	nt of Physi	CS							
	Title of the course	Program	Total Nu	mber of co	ntact hours		Credit				
Code	ode		Lecture	Tutorial	Practical	Total					
		(PCR) /	(L)	(T)	(P)	Hours					
		Electives									
		(PEL)									
PH91XX	ELECTIVE – I	PCR	2	1	0	3	3				
DII0101											
PH9121	OPTOELECTRONICS										
Pre-requisi	ites				per PG regul	lation)					
NIL		AS PER F	PG REGUL	ATION							
Course	On completion of the	course the le	earner shall	be able to:							
Outcomes	• CO1: Calculate th	e condition of	stability of c	optical resona	tor and analys	se the propa	agation of				
	beam within reson	• •									
	• CO2: Describe th	• •	•	and applicat	ions of differ	ent (solid s	state, gas,				
	liquid and semicor	• •									
	CO3: Illustrate the			-			-				
Topics	Resonator: Optical b			_	-						
Covered	and properties of Gau	ussian beam,	Fundamen	tal Gaussian	n beam in a	lens like	medium-				
	ABCD Law, Gaussian	n beam focus	ing, stabilit	y of resonat	ors, g parame	eters, vario	ous types				
	of resonators. [9]										
	Different types of la	sers: Gas La	sers, He-Ne	e, CO ₂ laser	s. Solid-state	e laser, Ru	by laser,				
	Nd lasers, Ti:sapphire	e lasers. Liqu	id laser, Dy	ve laser. Sen	niconductor l	asers etc.	[9]				
	Characteristics of la	ser radiatio	n and tech	niques for	generation	of Pulsed	Lasers:				
	Radiometry and mean			Characteristics of laser radiation and techniques for generation of Pulsed Lasers:							
		surement or	electromagi	netic radiati	on, spatial ei	nergy dist					
	•		-		-	••	ributions				
	at the laser output, l	aser beam d	ivergence a	nd focussin	g capability	. Pulsed r	ributions adiation,				
	at the laser output, l special mechanisms for	aser beam d	ivergence a ilses, "Q-sw	nd focussin vitching & m	g capability	. Pulsed r , different	ributions adiation, methods				
	at the laser output, l special mechanisms for of Q-switching, mech	aser beam d or creating pu anisms and t	ivergence a ilses, "Q-sw heir compa	nd focussin vitching & n rison, metho	g capability node-locking ods of mode-	. Pulsed r , different locking.	ributions adiation, methods [9]				
	at the laser output, l special mechanisms for of Q-switching, mech Laser Applications:	aser beam d or creating pu anisms and t Optical Metr	ivergence a ilses, "Q-sw heir compa ology- Surf	nd focussin vitching & n rison, metho face profile a	ng capability node-locking ods of mode- and dimensio	. Pulsed r , different locking. nal measu	ributions adiation, methods [9] rements.				
	at the laser output, l special mechanisms for of Q-switching, mech Laser Applications: Laser Microscopy-E	aser beam d or creating pu anisms and t Optical Metr Digital Holog	ivergence a ilses, "Q-sw heir compa ology- Surf raphic micro	nd focussin vitching & m rison, metho face profile a oscopy. Lase	ng capability node-locking ods of mode- and dimensio er Spectrosco	. Pulsed r , different locking. nal measu opy- Laser	ributions adiation, methods [9] rements. -induced				
	at the laser output, 1 special mechanisms for of Q-switching, mech Laser Applications: Laser Microscopy – D breakdown spectrosc	aser beam d or creating pu anisms and t Optical Metr Digital Holog opy, Optoga	ivergence a ilses, "Q-sw heir compa ology- Surf raphic micro lvanic Spec	nd focussin vitching & n rison, metho ace profile a oscopy. Lase ctroscopy. I	ng capability node-locking ods of mode- and dimensio er Spectrosco Medical App	. Pulsed r , different locking. nal measu py- Laser plication -	ributions adiation, methods [9] rements. -induced				
	at the laser output, l special mechanisms for of Q-switching, mech Laser Applications: Laser Microscopy – D breakdown spectrosc coherence tomograph	aser beam d or creating pu anisms and t Optical Metr Digital Holog opy, Optoga	ivergence a ilses, "Q-sw heir compa ology- Surf raphic micro lvanic Spec	nd focussin vitching & n rison, metho ace profile a oscopy. Lase ctroscopy. I	ng capability node-locking ods of mode- and dimensio er Spectrosco Medical App	. Pulsed r , different locking. nal measu py- Laser plication -	ributions adiation, methods [9] rements. -induced				
Text Book	at the laser output, 1 special mechanisms for of Q-switching, mech Laser Applications: Laser Microscopy – D breakdown spectrosc coherence tomograph	aser beam d or creating pu anisms and t Optical Metr Digital Hologi opy, Optoga y. Defensive	ivergence a ilses, "Q-sw heir compa ology- Surf raphic micro lvanic Spec Applicatio	nd focussin vitching & n rison, metho ace profile a oscopy. Lase ctroscopy. I	ng capability node-locking ods of mode- and dimensio er Spectrosco Medical App	. Pulsed r , different locking. nal measu py- Laser plication -	ributions adiation, methods [9] rements. -induced				
and/or	at the laser output, 1 special mechanisms for of Q-switching, mech Laser Applications: Laser Microscopy – D breakdown spectrosc coherence tomograph ts, TEXT BOOKS: 1. O. Svelto, Pri	aser beam d or creating pu anisms and t Optical Metr Digital Hologi opy, Optoga y. Defensive	ivergence a ilses, "Q-sw heir compa ology- Surf raphic micro lvanic Spec Applicatio	nd focussin vitching & m rison, metho ace profile a oscopy. Lase ctroscopy. I n - Holograj	ng capability node-locking ods of mode- and dimensio er Spectrosco Medical App phic weapon	. Pulsed r , different locking. nal measu opy- Laser olication – sight.[9]	ributions adiation, methods [9] rements. -induced - Optical				
and/or reference	at the laser output, 1 special mechanisms for of Q-switching, mech Laser Applications: Laser Microscopy – E breakdown spectrosc coherence tomograph ts, TEXT BOOKS: 1. O. Svelto, <i>Pri</i> 2. A Ghatak and	aser beam d or creating pu anisms and t Optical Metr Digital Hologi opy, Optoga y. Defensive	ivergence a ilses, "Q-sw heir compa ology- Surf raphic micro lvanic Spec Applicatio	nd focussin vitching & m rison, metho ace profile a oscopy. Lase ctroscopy. I n - Holograj	ng capability node-locking ods of mode- and dimensio er Spectrosco Medical App phic weapon	. Pulsed r , different locking. nal measu opy- Laser olication – sight.[9]	ributions adiation, methods [9] rements. -induced - Optical				
and/or	at the laser output, 1 special mechanisms for of Q-switching, mech Laser Applications: Laser Microscopy – E breakdown spectrosc coherence tomograph ss, TEXT BOOKS: 1. O. Svelto, <i>Pri</i> 2. A Ghatak and (2003)	aser beam d or creating pu- anisms and t Optical Metr Digital Hologi opy, Optoga y. Defensive <i>nciples of La</i> K. Thyagara	ivergence a ilses, "Q-sw heir compa ology- Surf raphic micro lvanic Spec Applicatio sers ajan, Optica	nd focussin vitching & m rison, metho ace profile a oscopy. Lase ctroscopy. I n - Holograj	ng capability node-locking ods of mode- and dimensio er Spectrosco Medical App phic weapon	. Pulsed r , different locking. nal measu opy- Laser olication – sight.[9]	ributions adiation, methods [9] rements. -induced - Optical				
and/or reference	at the laser output, 1 special mechanisms for of Q-switching, mech Laser Applications: Laser Microscopy – D breakdown spectrosc coherence tomograph (2003) 3. A Yariv, Quant	aser beam d or creating pu- anisms and t Optical Metr Digital Hologi opy, Optoga y. Defensive <i>nciples of La</i> K. Thyagara um Electroni	ivergence a ilses, "Q-sw heir compa ology- Surf raphic micro lvanic Spec Applicatio sers ajan, Optica	ind focussin vitching & m rison, metho face profile a oscopy. Lase ctroscopy. I n - Holograj	g capability node-locking ods of mode- and dimensio er Spectrosco Medical App phic weapon	. Pulsed r , different locking. nal measu opy- Laser olication – sight.[9]	ributions adiation, methods [9] rements. -induced - Optical				
and/or reference	at the laser output, 1 special mechanisms for of Q-switching, mech Laser Applications: Laser Microscopy – E breakdown spectrosc coherence tomograph ts, TEXT BOOKS: 1. O. Svelto, <i>Pri</i> 2. A Ghatak and (2003) 3. A Yariv, Quant 4. K. Thyagarajan	aser beam d or creating pu- anisms and t Optical Metr Digital Hologr opy, Optoga y. Defensive <i>nciples of La</i> K. Thyagara um Electroni and A Ghata	ivergence a ilses, "Q-sw heir compa ology- Surf raphic micro lvanic Spec Applicatio sers ajan, Optica	ind focussin vitching & m rison, metho face profile a oscopy. Lase ctroscopy. I n - Holograj	g capability node-locking ods of mode- and dimensio er Spectrosco Medical App phic weapon	. Pulsed r , different locking. nal measu opy- Laser olication – sight.[9]	ributions adiation, methods [9] rements. -induced - Optical				
and/or reference	at the laser output, 1 special mechanisms for of Q-switching, mech Laser Applications: Laser Microscopy – E breakdown spectrosc coherence tomograph as, TEXT BOOKS: 1. O. Svelto, <i>Pri</i> 2. A Ghatak and (2003) 3. A Yariv, Quant 4. K. Thyagarajan REFERENCE BOO	aser beam d or creating pu- anisms and t Optical Metr Digital Hologi opy, Optoga y. Defensive <i>nciples of La</i> K. Thyagara um Electroni and A Ghata KS:	ivergence a ilses, "Q-sw heir compa ology- Surf raphic micro lvanic Spec Applicatio sers ajan, Optica cs ak, Lasers	ind focussin vitching & m rison, metho face profile a oscopy. Lase ctroscopy. I n - Holograp al Electronic Fundamento	g capability node-locking ods of mode- and dimensio er Spectrosco Medical App phic weapon	. Pulsed r , different locking. nal measu opy- Laser olication – sight.[9]	ributions adiation, methods [9] rements. -induced - Optical				
and/or reference	at the laser output, 1 special mechanisms for of Q-switching, mech Laser Applications: Laser Microscopy – D breakdown spectrosc coherence tomograph (2003) 3. A Yariv, Quant 4. K. Thyagarajan REFERENCE BOO 1. W. Koechner, S	aser beam d or creating pu- anisms and t Optical Metr Digital Hologi opy, Optoga y. Defensive <i>nciples of La</i> K. Thyagara um Electroni and A Ghata KS: Solid State La	ivergence a ilses, "Q-sw heir compa ology- Surf raphic micro lvanic Spec Applicatio sers ajan, Optica cs ak, Lasers aser Engine	ind focussin vitching & m rison, metho face profile a oscopy. Lase ctroscopy. I n - Holograp al Electronic Fundamenta ering	ng capability node-locking ods of mode- and dimensio er Spectrosco Medical App phic weapon	Pulsed r , different locking. nal measu opy- Laser olication – sight.[9]	ributions adiation, methods [9] rements. -induced - Optical				
and/or reference	at the laser output, 1 special mechanisms for of Q-switching, mech Laser Applications: Laser Microscopy – E breakdown spectrosc coherence tomograph (2003) 3. A Yariv, Quant 4. K. Thyagarajan REFERENCE BOO 1. W. Koechner, S 2. J. Wilson and J	aser beam d or creating pu- lanisms and t Optical Metr Digital Hologi opy, Optoga y. Defensive <i>nciples of La</i> K. Thyagara um Electroni and A Ghata KS: Solid State La . F. B. Hawk	ivergence a ilses, "Q-sw heir compa ology- Surf raphic micro lvanic Spec Applicatio sers ajan, Optica cs ak, Lasers aser Engine es, Optoele	ind focussin vitching & m rison, metho face profile a oscopy. Lase ctroscopy. I n - Holograp al Electronic Fundamenta ering	ng capability node-locking ods of mode- and dimensio er Spectrosco Medical App phic weapon	Pulsed r , different locking. nal measu opy- Laser olication – sight.[9]	ributions adiation, methods [9] rements. -induced - Optical				
and/or reference	at the laser output, 1 special mechanisms for of Q-switching, mech Laser Applications: Laser Microscopy – D breakdown spectrosc coherence tomograph (2003) 3. A Yariv, Quant 4. K. Thyagarajan REFERENCE BOO 1. W. Koechner, S	aser beam d or creating pu- anisms and t Optical Metr Digital Hologi opy, Optoga y. Defensive <i>nciples of La</i> K. Thyagara um Electroni and A Ghata KS: Solid State La . F. B. Hawk Pvt. Ltd., 2nd	ivergence a ilses, "Q-sw heir compa ology- Surf raphic micro lvanic Spec Applicatio sers ajan, Optica cs ak, Lasers aser Engine es, Optoeled ed2004	ind focussin vitching & m rison, metho face profile a oscopy. Lase ctroscopy. I n - Holograj al Electronic Fundamento ering ctronics: An	g capability, node-locking ods of mode- and dimensio er Spectrosco Medical App phic weapon <i>cs, Cambridg</i> als and Appli	. Pulsed r , different locking. nal measu opy- Laser olication – sight.[9] <i>The Univers</i> <i>Cations</i>	ributions adiation, methods [9] rements. -induced - Optical				

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	2	1	3	2	2
CO2	2	1	3	2	2
CO3	3	1	3	2	2

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

		Departm	ent of Phys	ics			
Course	Title of the course	Program	Total Nu	mber of co	ntact hours		Credit
Code		Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives					
		(PEL)		1	0	2	2
PH91XX	ELECTIVE – II	PCR	2	1	0	3	3
PH9112	PHYSICS OF NANOMATERIALS						
Pre-requisi	ites				per PG regul	lation)	
NIL		AS PER F	PG REGUL	ATION			
Course Outcomes	1				naterials easuring		
Topics	Introduction to	nanomateri	ials: What a	are nanomat	terials, how t	heir prope	erties are
Covered	Synthesis of nationdown vs. bottomThermal evaporaChemical vapoutmolecular beametc. [12]CharacterizationSpectroscopy: USpecial nanomaApplications o	 Introduction to nanomaterials: What are nanomaterials, how their properties altered from bulk solids, evolution of nanoscience and nanotechnology. [4] Synthesis of nanomaterials: Classification of different methods of synthesis. T down vs. bottom up methods. Mechanical method, planetary ball-mill. Melt mix Thermal evaporation, Sputter deposition, physical vapour deposition, laser abla Chemical vapour deposition (CVD), Electric Arc deposition, ion-beam deposi molecular beam epitaxy. Chemical methods - Sol-gel, hydrothermal, self-assem etc. [12] Characterization of nanomaterials: Microscopy: SEM, TEM, STM, A Spectroscopy: UV-Vis, IR, Raman, NMR, XPS, EDX, etc.[12] Special nanomaterials: Fullerenes, carbon nanotubes, and graphene [6] Applications of nanomaterials: Sensors, energy, medicines, electronics, nanocomposites, etc. [4] 					sis. Top- t mixing. ablation, position, ssembly, I, AFM.
Text Book and/or reference material	 Introduct A. N. Ba Robert W and Tech Graphen Applicat Materials 	 TEXT BOOKS: 1. Introduction to Nanoscience and Nanotechnology, K. K. Chattopadhy A. N. Banerjee, 1. Robert W. Kelsall , Ian W. Tlamley, Mark Geoghegan; Nanoscale Sc and Technology 2. Graphene, Carbon Nanotubes, and Nanostructures: Techniques Applications, James E. Morris, Krzysztof Iniewski ,. 1. Materials Characterization: Introduction to Microscopic and Spectros Methods, Yang Leng 					Science
	REFERENCE						
	2. Nanocry	stalline Mater	rials- S. C. '	Tjong			

4.	Handbook of Nanomaterials- Vajtai (editor) Materials Characterization Techniques- Sam Zhang, Lin Li, Ashok Kumar
2.	Nanomaterials from Research to Applications- Hoshino & Mishima

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	1	1	3	1	2
CO2	1	2	3	1	3
CO3	2	3	3	3	3
CO4	1	1	3	1	2

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

		Departn	nent of Phy	vsics			
Course	Title of the	Program			ontact Hours	5	Credit
Code	course	Core (PCR) /	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	
		Electives		(-)	(-)		
PH91XX	ELECTIVE – II	(PEL) PCR	2	1	0	3	3
PH9122	CIRCUIT ANALYSIS AND INTEGRATED CIRCUITS						
Pre-requisi		Course Ass	essment me	thods (As pe	er PG regulat	tion)	
NIL		AS PER PC		· •	n i o ieguiu		
Course	On completion	n of the course			e to:		
Outcomes	-	the different				lity semic	onductor
Outcomes	materials.	the unrerent		Ji producing	g device qua	inty serific	onductor
		ADC, DAC,	PLL etc. r	using discre	te electronic	s compon	ents and
		r application ir				s compon	und und
		e the working		•		ogic gets a	nd apply
						, Bro Bots a	ing appro
		them to design different digital logic circuits. CO4: Explain the internal structure of 8085µP and assembly language programm					ramming
	and interfacin	σ.		oopi und u	seniory rang	uuge prog	i u i i i i i i i i i i i i i i i i i i
Topics		etworks and s	vstems: Sai	mple data sy	stem z-trans	forms and	Laplace
Covered	transforms. [8		0	1 ,			1
	_	y: Semicondu	ctor materia	l, Crystal gro	owing techno	ology- Czo	chralski,
	Epitaxial. [6]				U	0.	
	Analog Inte	grated Circu	its: Voltag	ge regulator	s. DAC ar	nd ADC	circuits.
	Differential an	nplifier, PLL	[6]	, C			
	Digital Integ	grated Circui	ts: Logic	families -7	TTL, ECL,	MOS; d	esign of
	combinational	and seque	ntial circu	uits, regist	ers, counte	rs, gate	arrays;
	programmable	e logic devices	, Programm	able gate ar	rays. Memor	ries Seque	ntial and
		ss memories; I	-			ynamic m	emories;
		e memories PR					
	-	sor and their					
	· · · ·	rocessors; add	0				0
— –		5. 8086 machin	e cycles and	d their timin	g diagrams, a	and Interfa	acing. [8]
Text Book							
and/or		Sze, Physics of		ctor devices	•		
reference	-	oulis, Signal ar	•	· .	1	1 • •	
material	-	nd Meyer, Ana	•	-			
		Gaonkar, Micro	processor a	acintecture,	programmin	ig and app	meations
	with 8085/80	δ3A(2 [™] Eα.)					
	DEFEDENC	E DOOVS-					
			a lines and	fields			
		lyder, Network erman, Electro			na		
		; Allen and Str				alog and a	dioital
	J. Ucigei	, Anon and Su		ucsign teell	inques ioi all	andg and (urgitai

ircuits.	
S. Soclof, Applications of analog integrated circuits.	
A P. Mathur, Microprocessor.	
5. D. V. Hall, Microprocessor and interfacing.	
Liu and Gibson, Microprocessor.	

POs	PO1	PO2	PO3	PO4	PO5
COs					
CO1	1	2	2		
CO2	1	1	2	2	3
CO3	1	2	3	2	3
CO4		2	2	3	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

		Departm	ent of Phys	sics			
Course	Title of the course	Program			ntact hours		Credit
Code		Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives					
		(PEL)	-				
PH91XX	ELECTIVE – III	PCR	2	1	0	3	3
PH9113	INTRODUCTORY						
	MATERIALS						
	SCIENCE						
Pre-requisi	tes				per PG regul	ation)	
NIL		AS PER F	PG REGUL	ATION			
Course	• CO1: Defin	e and classify	y different t	ypes of mat	terials such a	s polymer	s, metals
Outcomes	ceramics and	d their comp	osites based	l on their mo	ost interestin	g properti	es
		ribe the gen			•	different	types of
		ong with thei					
		t the approp					
		a specific ap					
Topics	Introduction to			• •			
Covered	metals, ceramics		composites,	semicondu	ctors, their p	physical pi	operties,
	and selection. [3	-					
	Structural Mat		•		-		
	phase diagrams of	•		non non-fer	rous alloys, F	Eutectic, E	utectoid,
	Peritectic diagra						
	Polymers: Type			-		•	
	addition polyme		0				nducting
	polymers, comm			-	-		
	Ceramics & gla						ic alloys,
	properties of cor	nmon ceram	ics & glasse	es, their com	imon applica	tions. [5]	
	Composites: T	ypes of con	nposites, c	onventional	composites	, fiber re	einforced
	composites, na	nocomposite	es, proper	ty averagi	ng by Ru	ule of	Mixture,
	isostress&isostra	uin loading, I	nterfacial st	trength, med	chanism of re	einforceme	ent. [5]
	Electrical Mate	rials: Condu	uctors, Con	ductivity an	d its temper	ature dep	endency,
	semiconductors,	Supercondu	ctors.[3]				
	Magnetic Mater	r ials : Dia-, P	ara-, Ferro-	, Antiferro-	and Ferimag	netic mate	erials and
	their characteris	tics, Curie T	emperature	, Hysteresis	, Common 1	magnetic	materials
	and their applica	tions. [4]					
	Optical Mater	rials: Optic	al proper	ties, color	, luminesce	ence, ref	lectivity,
	transparency, or	acity, etc., o	optical syst	ems and de	vices, Laser	materials	s, optical
	fibers, liquid cry	stal displays	, photocond	uctors. [4]			
Text Book							
and/or	1. J. F. Shackelf	ord, M. K. M	luralidhara,	Introductio	n to Materia	ls Science	for
reference	Engineers						
material	2. R. Balasubran				0	0	
	3. W.F. Smith, J	. Hashemi, R	. Prakash, <i>l</i>	Materials Sc	cience & Eng	ineering	

4. A. K. Bhargava, Engineering Materials
REFERENCE BOOKS:
1. Rolf E. Hummel, Understanding Materials Science : History, Properties,
Applications
2. John Martin, Materials for Engineering
3. J. Simmons, K Potter, Optical Materials
4. Fuxi Gan, Laser Materials

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	1	1	3	1	1
CO2	1	1	3	2	2
CO3	1	1	2	1	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

		Departn	nent of Phy	sics			
Course	Title of the	Program	Total Nu	mber of Co	ontact Hours	5	Credit
Code	course	Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives					
DII01VV	ELECTIVE –	(PEL)	2	1	0	3	3
PH91XX	ELECTIVE – III	PCR	2	1	0	3	3
PH9123	111						
	NONLINEAR						
	OPTICS						
		~					
Pre-requisi	tes	Course Asses		· 1	r PG regulati	on)	
NIL	L	AS PER PG					
Course	On completion of						
Outcomes	-	re basic knowle	-	-	-		
		e the expressio	-	0	0	0	
	-	y using differen	nt three-wa	ve frequenc	cy mixing ar	id phase-i	matching
	techniques.	•• •• •	1 6		1. 6 . 1		
		ibe the princip					•
		ical parametric					
		ques (namely, s e conjugation) t		-		ical distat	mity and
Topics	Introduction to					atical into	ractions
Covered	nonlinear suscep	-		-	-	-	
covered	equation, sum-fr	-				-	
	amplification, Ma		-	[7]	y generation	n, and pe	uametric
	Phase-matching	•			natching no	ncollinea	· phase-
	matching, noncri	_	-	-	-		-
	matching techniq			Berner Prim	,	una qua	, priese
	Nonlinear optic		s with focu	ised Gauss	ian beams:	Second h	narmonic
	generation, conve						
	conversion and d		• •		0 0	•	· ·
	introductory theo				-	-	
	[7]	•		•		U	
	Nonlinear optica	al materials: O	rganic, inoi	rganic, and o	chalcopyrite	materials	and their
	linear and differe	nt nonlinear op	tical proper	ties. [4]			
	Ultrafast pheno	omena (introd	uctory): S	hort pulsed	laser, Ti:sa	apphire la	iser etc.,
	different techniqu	ues and principl	es for the ge	eneration of	ultrafast lase	r radiation	by Non-
	collinear Optical	parametric amp	olification te	echnique, m	agic phase-m	natching c	ondition.
	[6]						
	Higher order No	onlinear Optica	al Effects: N	Nonlinear op	tical effects	due to the	third and
	higher order non	-	-	-		-	
	intensity for wa		-				
	Conjugation, App	plications of no	nlinear opti	cal effects in	n designing l	ogic gates	etc. [6]

Text	TEXT BOOKS:
Books,	1. Y. R. Shen, The principles of Nonlinear Optics, Wiley, New York, 1984.
and/or	2. R. W. Boyd, Nonlinear Optics Academic Press Inc.
reference	3. F. Zernike and J. E. Midwinter, Applied Nonlinear Optics, Wiley, New York,
material	1973.
	REFERENCE BOOKS:
	1. Edited by C. L. Tang, Methods of Experimental Physics, vol. 15, Quantum
	Electronics, Part-B A Yariv and P. Yeh, Optical waves in crystals.
	2. Femtosecond Laser Pulse, Principles and Experiments, Claude Rulliere (Ed.),
	Springer-Verlag, 1998
	3. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of
	Nonlinear Optical Crystals, 2 nd ed. (Springer-Verlag, Berlin, 1997)
	4. M. Born and Wolf, Principles of Optics, 6 th ed. (Pergamon press, Oxford 1980).

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	3	1	3	1	1
CO2	3	2	3	2	2
CO3	3	2	3	3	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

		Department	of Physics							
Course	Title of the course	Program	Total N	umber of	contact ho	ours	Cred			
Code		Core	Lecture	Tutoria	Practic	Total	it			
		(PCR)/	(L)	1 (T)	al (P)	Hours				
		Electives	· /	~ /						
PH91XX	ELECTIVE – IV	PCR	2	1	0	3	3			
PH9114	X- RAYS IN									
	CONDENSED									
	MATTER PHYSICS									
Pre-requis	sites	Course Asses	sment meth	nods (As p	er PG regu	ulation)				
NIL		AS PER PG	REGULAT	ΓΙΟΝ						
Course	On completion of the c	course the learn	er shall be	able to:						
Outcome			T 7 1'	<u>.</u>		C 1				
S	• CO1: Demonstrat	-	•		-		-			
	materials (crystall	-		-	•					
	CO2: List differen	-	extracting	quantitativ	ve informa	tion about	material			
	structures by x-ray diffraction.									
	• CO3: Develop an	understanding of	of the theor	y of X-ray	diffractio	on and to e	mploy it			
	to study novel mat	erial structures								
Topics	Topic-1: Discovery a	and importance	e of X-ray	vs, X-ray	production	n, origin	of Halc			
Covered	and characteristic spectra, Fine structure of X-ray spectra, Short Wave length									
	limit, Bremsstrahlung and Auger effect, Absorption of X-ray, Absorption edges,									
	Filtering and monochro	-		-	-	-	-			
	Techniques, X-ray cou			,			0 1			
	Topic-2: X-ray Diffra	ction. Bragg's	Law., diffr	action dire	ctions. Di	ffraction r	nethods:			
	Comparison between									
	diffraction techniques									
	Scattering of X-rays by an independent electron. Thomsom scattering expression, Scattering by an atom and atomic scattering factor, Systematic diffraction from different									
	Bravais Lattices and their identification, diffraction pattern from liquids and amorphous									
	solids, crystal structure		, unnacu	on patient	nom nqu		lorphous			
	solids, crystal structure									
	Tonic-3 · Rietveld r	efinement tecl	hnique for	the def	ect analy	cic in cr	vetalling			
	Topic-3 : Rietveld refinement technique for the defect analysis in crystalline									
	materials, Dynamical theory of X-ray diffraction and its application in large perfect crystals, Low angle scattering technique and the application in the study of fibre									
	•	scattering tech	iique and	the applic	ation in t	the study	of fibre			
	materials. [6]									
	Topic-4: X-Ray Diffraction methods (Single & Polycrystalline): Laue									
	method, rotating cr			U	•	•				
		•		•			-			
	dispersive and energy	-	•	•						
	method, Measurement	•	e, crystal s	structure,	autice par	ameter, D	etalls of			
	sample preparation. [8	•]								
	Tonio F. V Derror	vocanica. V	u nh -41.	+++0++	T	/ more £1	00005-			
	Topic 5: X-Ray spectr			-		•				
	X-ray absorption Spec	•••		spectrosco	py, Synch	rotron base	ea X-ray			
	absorption fine structure analysis (XANES).[8]									

Text	TEXT BOOKS:
Books,	1. M. M. Woolfson, An introduction to X-ray crystallography
and/or	2. L. V. Azaroff, <i>Elements of X-ray crystallography</i>
referenc	3. S. K. Chatterjee, <i>X-ray diffraction its theory and applications</i>
e	4. B. K. Agarwal, X-Ray Spectroscopy: An Introduction, Springer
material	REFERENCE BOOKS:
	1. M. J. Burger, X-ray crystallography
	2. B. D. Cullity, <i>X-ray diffraction</i>
	3. H. P. Klug and L. E. Alexander, <i>X-ray diffraction procedure</i>
	4. C. Bonnelle and, C. Mande (Editors), Advances in X-ray Spectroscopy

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5
CO1	3	2	1	1	3
CO2	3	1	2	2	3
CO3	3	1	3	1	3

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)

Course Code Title of the course (PCR) / Electives (PEL) Total Number of contact hours Lecture (L) Tractical (P) Total Hours Credit PH91XX ELECTIVE – IV PCR 2 1 0 3 3 PH9124 COMMUNICATION TECHNOLOGY PCR 2 1 0 3 3 PH9124 COMMUNICATION TECHNOLOGY Course Assessment methods (As per PG regulation) NIL AS PER PG REGULATION Course Outcomes On completion of the course the learner shall be able to: CO1: Explain signal processing for different communication systems. CO2: Describe different types of computer network and their merits and demerits. CO4: Learn signal and data communication in optical communication system and quantitatively measure the signal losses. Topics Covered Digital Modulation Techniques: ASK, FSK, PSK, Principle, modulators and demodulators. [4] TV Systems: Color TV standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5] RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4] Mobile Communication: Standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5] RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4]				Departme	ent of Phys	ics				
Image: Constraint of the image is a set of the set of the image is a set of the set of	Course	Titl	e of the course	-			ntact hours		Credit	
Electives (PEL) Image: Construct of the systems PH91XX ELECTIVE – IV PCR 2 1 0 3 3 PH9124 COMMUNICATION TECHNOLOGY Course Assessment methods (As per PG regulation) Image: Course Assessment methods (As per PG regulation) NIL AS PER PG REGULATION CO CO: Explain signal processing for different communication systems. CO: Describe the working principle of mobile, radar and colour TV. CO3: Describe the signal losses. CO: Explain signal processing for different types of computer network and their merits and demerits. CO4: Learn signal and data communication in optical communication system and quantitatively measure the signal losses. Topics Covered Digital Modulation Techniques: ASK, FSK, PSK, Principle, modulators and demodulators. [4] TV Systems: Color TV standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5] RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4] Mobile Communication: Concepts of cell and frequency reuse description of cellular communication: Types of networks. Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7] Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, op	Code			Core	Lecture	Tutorial	Practical	Total		
PH91XX ELECTIVE - IV PCR 2 1 0 3 3 PH9124 COMMUNICATION TECHNOLOGY Course Assessment methods (As per PG regulation) Image: Course Assessment methods (As per PG regulation) Image: Course Assessment methods (As per PG regulation) NIL AS PER PG REGULATION Image: Course Assessment methods (As per PG regulation) Image: Course Assessment methods (As per PG regulation) Outcomes On completion of the course the learner shall be able to: COI: Explain signal processing for different communication systems. CO2: Describe the working principle of mobile, radar and colour TV. CO3: Describe different types of computer network and their merits and demerits. CO4: Learn signal and data communication in optical communication system and quantitatively measure the signal losses. Topics Digital Modulation Techniques: ASK, FSK, PSK, Principle, modulators and demodulators. [4] TV Systems: Color TV standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5] RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4] Mobile Communication: Types of networks. Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7] Fiber optic communication systems: I. Reody and J Coolen. Electronic comm					(L)	(T)	(P)	Hours		
PH91XX ELECTIVE – IV PCR 2 1 0 3 3 PH9124 COMMUNICATION TECHNOLOGY Course Assessment methods (As per PG regulation) Image: Course Assessment methods (As per PG regulation) NIL AS PER PG REGULATION As PER PG REGULATION Image: Course Assessment methods (As per PG regulation) Outcomes On completion of the course the learner shall be able to: CO2: CO2: Explain signal processing for different communication systems. CO2: Describe different types of computer network and their merits and demerits. CO3: Describe different types of computer network and their merits and demerits. CO4: Learn signal and data communication in optical communication system and quantitatively measure the signal losses. Digital Modulation Techniques: ASK, FSK, PSK, Principle, modulators and demodulators. [4] TV Systems: Color TV standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5] RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4] Mobile Communication: transponders. [4] Computer communication: transponders. [4] Computer communication: systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiple										
PH9124 COMMUNICATION TECHNOLOGY Course Assessment methods (As per PG regulation) NIL AS PER PG REGULATION Course On completion of the course the learner shall be able to: CO1: Explain signal processing for different communication systems. CO2: Describe the working principle of mobile, radar and colour TV. CO3: Describe different types of computer network and their merits and demerits. CO4: Learn signal and data communication in optical communication system and quantitatively measure the signal losses. Topics Digital Modulation Techniques: ASK, FSK, PSK, Principle, modulators and demodulators. [4] TV Systems: Color TV standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5] RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTT radar. [4] Mobile Communication: Concepts of cell and frequency reuse description of cellular communication: Types of networks- Circuit mesage and packet switched networks, Features of networks. Circuit mesage and packet switched networks, Features of networks. Circuit mesage and packet switched networks, Features of networks. Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12] Text Books, and/or reference material 1. R Roddy and J Coolen, <i>Electronic communication</i> 2. Gulati, <i>Monochrome and color TV</i> 3. Taub and Schilling, <i>Principle of communication systems</i> 2. A Dbakk, <i>Television and video enginee</i>										
TECHNOLOGY Course Assessment methods (As per PG regulation) NIL AS PER PG REGULATION Course On completion of the course the learner shall be able to: Outcomes CO1: Explain signal processing for different communication systems. CO2: Describe different types of computer network and their merits and demerits. CO4: Learn signal and data communication in optical communication system and quantitatively measure the signal losses. Topics Covered Digital Modulation Techniques: ASK, FSK, PSK, Principle, modulators and demodulators. [4] TV Systems: Color TV standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5] RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4] Mobile Communication: Concepts of cell and frequency reuse description of cellular communication standards, Trans-receiver, Introduction to Satellite Communication, transponders. [4] Computer communication: Types of networks. Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7] Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniqu	PH91XX	ELE	ECTIVE – IV	PCR	2	1	0	3	3	
Pre-requisites Course Assessment methods (As per PG regulation) NIL AS PER PG REGULATION Course On completion of the course the learner shall be able to: Outcomes CO1: Explain signal processing for different communication systems. CO2: Describe the working principle of mobile, radar and colour TV. CO3: Describe different types of computer network and their merits and demerits. CO4: Learn signal and data communication in optical communication system and quantitatively measure the signal losses. Topics Digital Modulation Techniques: ASK, FSK, PSK, Principle, modulators and demodulators. [4] TV Systems: Color TV standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5] RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4] Mobile Communication: Concepts of cell and frequency reuse description of cellular communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7] Text Books, and/or reference material 1. R Roddy and J Coolen, Electronic communication 2. Gulati, Monochrome and color TV 3. Taub and Schilling, Principle of communication systems REFERENCE BOOKS: 1. A B Carlson, Communication systems 3. A Dhake, Television and video engineering	PH9124									
NIL AS PER PG REGULATION Course On completion of the course the learner shall be able to: Outcomes CO1: Explain signal processing for different communication systems. CO2: Describe the working principle of mobile, radar and colour TV. CO3: Describe different types of computer network and their merits and demerits. CO4: Learn signal and data communication in optical communication system and quantitatively measure the signal losses. Digital Modulators (4) Topics Covered Digital Modulation Techniques: ASK, FSK, PSK, Principle, modulators and demodulators. [4] TV Systems: Color TV standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5] RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4] Mobile Communication: Concepts of cell and frequency reuse description of cellular communication standards, Trans-receiver, Introduction to Satellite Communication, transponders. [4] Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7] Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12] <										
NIL AS PER PG REGULATION Course On completion of the course the learner shall be able to: Outcomes CO1: Explain signal processing for different communication systems. CO2: Describe the working principle of mobile, radar and colour TV. CO3: Describe different types of computer network and their merits and demerits. CO4: Learn signal and data communication in optical communication system and quantitatively measure the signal losses. Digital Modulators (4) Topics Covered Digital Modulation Techniques: ASK, FSK, PSK, Principle, modulators and demodulators. [4] TV Systems: Color TV standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5] RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4] Mobile Communication: Concepts of cell and frequency reuse description of cellular communication standards, Trans-receiver, Introduction to Satellite Communication, transponders. [4] Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7] Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12] <	Pre-requisi	ites		Course As	sessment m	ethods (As 1	oer PG regula	ation)		
Outcomes C01: Explain signal processing for different communication systems. C02: Describe the working principle of mobile, radar and colour TV. C03: Describe different types of computer network and their merits and demerits. C04: Learn signal and data communication in optical communication system and quantitatively measure the signal losses. Topics Covered Digital Modulation Techniques: ASK, FSK, PSK, Principle, modulators and demodulators. [4] TV Systems: Color TV standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5] RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4] Mobile Communication: Concepts of cell and frequency reuse description of cellular communication standards, Trans-receiver, Introduction to Satellite Communication, transponders. [4] Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7] Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12] Text Books, and/or 1. R Roddy and J Coolen, Electronic communication systems Andvi and Schilling, Principle of communicati							0	,		
Outcomes C01: Explain signal processing for different communication systems. C02: Describe the working principle of mobile, radar and colour TV. C03: Describe different types of computer network and their merits and demerits. C04: Learn signal and data communication in optical communication system and quantitatively measure the signal losses. Topics Covered Digital Modulation Techniques: ASK, FSK, PSK, Principle, modulators and demodulators. [4] TV Systems: Color TV standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5] RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4] Mobile Communication: Concepts of cell and frequency reuse description of cellular communication standards, Trans-receiver, Introduction to Satellite Communication, transponders. [4] Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7] Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12] Text Books, and/or 1. R Roddy and J Coolen, Electronic communication systems Andvi and Schilling, Principle of communicati	Course		On completion o	f the course t	he learner s	shall be able	to:			
CO2: Describe the working principle of mobile, radar and colour TV. CO3: Describe different types of computer network and their merits and demerits. CO4: Learn signal and data communication in optical communication system and quantitatively measure the signal losses. Topics Digital Modulation Techniques: ASK, FSK, PSK, Principle, modulators and demodulators. [4] TV Systems: Color TV standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5] RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4] Mobile Communication: Concepts of cell and frequency reuse description of cellular communication standards, Trans-receiver, Introduction to Satellite Communication, transponders. [4] Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7] Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12] Text Books, and/or 1. R Roddy and J Coolen, <i>Electronic communication</i> reference 2. Gulati, Monochrome and color TV material 3. Taub and Schilling, Principle of communication systems 3. Taub and Schilling, Princ			-					tems.		
CO3: Describe different types of computer network and their merits and demerits. CO4: Learn signal and data communication in optical communication system and quantitatively measure the signal losses. Topics Covered Digital Modulation Techniques: ASK, FSK, PSK, Principle, modulators and demodulators. [4] TV Systems: Color TV standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5] RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4] Mobile Communication: Concepts of cell and frequency reuse description of cellular communication standards, Trans-receiver, Introduction to Satellite Communication, transponders. [4] Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7] Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12] Text Books, and/or 1. R Roddy and J Coolen, <i>Electronic communication systems</i> ad/or 2. Gulati, Monochrome and color TV 3. Taub and Schilling, Principle of communication systems 3. Taub and Schilling, Principle of communication systems 8. KEFERENCE BOO					-		-			
CO4: Learn signal and data communication in optical communication system and quantitatively measure the signal losses. Topics Digital Modulation Techniques: ASK, FSK, PSK, Principle, modulators and demodulators. [4] TV Systems: Color TV standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5] RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4] Mobile Communication: Concepts of cell and frequency reuse description of cellular communication standards, Trans-receiver, Introduction to Satellite Communication, transponders. [4] Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7] Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12] Text Books, and/or 1. R Roddy and J Coolen, <i>Electronic communication</i> reference 2. Gulati, Monochrome and color TV material 3. Taub and Schilling, Principle of communication systems 3. A Dhake, Television and video engineering 3. A Dhake, Television and video engineering				01	1	,			emerits.	
quantitatively measure the signal losses.Topics CoveredDigital Modulation Techniques: ASK, FSK, PSK, Principle, modulators and demodulators. [4]TV Systems: Color TV standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5]RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4]Mobile Communication: Concepts of cell and frequency reuse description of cellular communication standards, Trans-receiver, Introduction to Satellite Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7]Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12]Text Books, and/or reference1. R Roddy and J Coolen, <i>Electronic communication systems</i> 3. Taub and Schilling, <i>Principle of communication systems</i> 3. A Dhake, <i>Television and video engineering</i>				v 1	1					
Covered demodulators. [4] TV Systems: Color TV standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5] RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4] Mobile Communication: Concepts of cell and frequency reuse description of cellular communication standards, Trans-receiver, Introduction to Satellite Communication, transponders. [4] Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7] Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12] Text Books, and/or 1. R Roddy and J Coolen, <i>Electronic communication</i> reference 2. Gulati, Monochrome and color TV material 3. Taub and Schilling, Principle of communication systems REFERENCE BOOKS: 1. A B Carlson, Communication systems 3. A Dhake, Television and video engineering 3. A Dhake, Television and video engineering			_			-		-		
TV Systems: Color TV standards - NTSC, PAL. Transmission format of intensity and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5]RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4]Mobile Communication: Concepts of cell and frequency reuse description of cellular communication standards, Trans-receiver, Introduction to Satellite Communication, transponders. [4]Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7]Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12]Text Books, and/or reference materialTEXT BOOKS: I. R Roddy and J Coolen, <i>Electronic communication</i> Signal to-noise ratio, Basics of coherent techniques in FOC. [12]Text Books, and/or reference materialRefERENCE BOOKS: I. A B Carlson, Communication systems S. A Dhake, Television and video engineering	Topics		Digital Modula	tion Techni	ques: ASk	K, FSK, PS	K, Principle	e, modula	tors and	
and color signal. Transmitter and receiver systems of broadcast TV, Advanced TV, Cable TV. [5] RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4] Mobile Communication: Concepts of cell and frequency reuse description of cellular communication standards, Trans-receiver, Introduction to Satellite Communication, transponders. [4] Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7] Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12] Text Books, and/or 1. R Roddy and J Coolen, <i>Electronic communication</i> reference 2. Gulati, <i>Monochrome and color TV</i> material 3. Taub and Schilling, <i>Principle of communication systems</i> REFERENCE BOOKS: 1. A B Carlson, <i>Communication systems</i> 3. A Dhake, <i>Television and video engineering</i>	Covered		demodulators. [4	l]						
Cable TV. [5]RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4]Mobile Communication: Concepts of cell and frequency reuse description of cellular communication standards, Trans-receiver, Introduction to Satellite Communication, transponders. [4]Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7]Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12]Text Books, and/or reference1. R Roddy and J Coolen, <i>Electronic communication systems</i> Modular, Monochrome and color TV 3. Taub and Schilling, Principle of communication systemsREFERENCE BOOKS: 1. A B Carlson, Communication systems 3. A Dhake, Television and video engineering			•							
RADAR System: Basic pulsed radar system-modulators, duplexer, CW radar, MTI radar. [4]Mobile Communication: Concepts of cell and frequency reuse description of cellular communication standards, Trans-receiver, Introduction to Satellite Communication, transponders. [4]Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7]Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12]Text Books, and/or reference1. R Roddy and J Coolen, <i>Electronic communication</i> 2. Gulati, <i>Monochrome and color TV</i> 3. Taub and Schilling, <i>Principle of communication systems</i> REFERENCE BOOKS: 1. A B Carlson, <i>Communication systems</i> 3. A Dhake, <i>Television and video engineering</i>			-	Transmitter	and receive	er systems o	f broadcast T	rV, Advai	nced TV,	
radar.[4]Mobile Communication: Concepts of cell and frequency reuse description of cellular communication standards, Trans-receiver, Introduction to Satellite Communication, transponders. [4]Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7]Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12]Text Books, and/or reference material1. R Roddy and J Coolen, <i>Electronic communication</i> 2. Gulati, <i>Monochrome and color TV</i> 3. Taub and Schilling, <i>Principle of communication systems</i> 3. A Dhake, <i>Television and video engineering</i>				D 1	1 1			CILL		
Mobile Communication: Concepts of cell and frequency reuse description of cellular communication standards, Trans-receiver, Introduction to Satellite Communication, transponders. [4]Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7]Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12]Text Books, and/or reference materialTEXT BOOKS: 1. R Roddy and J Coolen, <i>Electronic communication</i> 2. Gulati, <i>Monochrome and color TV</i> 3. Taub and Schilling, <i>Principle of communication systems</i> REFERENCE BOOKS: 1. A B Carlson, <i>Communication systems</i> 3. A Dhake, <i>Television and video engineering</i>			•	: Basic pulse	ed radar sys	tem-modula	itors, duplexe	er, CW ra	dar, MTT	
cellular communication standards, Trans-receiver, Introduction to Satellite Communication, transponders. [4]Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7]Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12]Text Books, and/or reference material1. R Roddy and J Coolen, <i>Electronic communication</i> 2. Gulati, <i>Monochrome and color TV</i> 3. Taub and Schilling, <i>Principle of communication systems</i> 2. Kennedy and Davis, <i>Electronic communication systems</i> 3. A Dhake, <i>Television and video engineering</i>				nicotion. C	onconta of	coll and f		un dasar	intion of	
Communication, transponders. [4]Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7]Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12]Text Books, and/or reference materialTEXT BOOKS: 1. R Roddy and J Coolen, <i>Electronic communication</i> 3. Taub and Schilling, <i>Principle of communication systems</i> 2. Kennedy and Davis, <i>Electronic communication systems</i> 3. A Dhake, <i>Television and video engineering</i>					-				-	
Computer communication: Types of networks- Circuit message and packet switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7]Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12]Text Books, and/or reference materialTEXT BOOKS: 1. R Roddy and J Coolen, <i>Electronic communication</i> 2. Gulati, <i>Monochrome and color TV</i> 3. Taub and Schilling, <i>Principle of communication systems</i> REFERENCE BOOKS: 1. A B Carlson, <i>Communication systems</i> 3. A Dhake, <i>Television and video engineering</i>						14115-1000100	i, introduc		Salemie	
switched networks, Features of network, Design and examples ARPANET, LAN, ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7]Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12]Text Books, and/or reference materialTEXT BOOKS: 0. Gulati, Monochrome and color TV 3. Taub and Schilling, Principle of communication systemsREFERENCE BOOKS: 0. Kennedy and Davis, Electronic communication systems 3. A Dhake, Television and video engineering										
ISDN, Medium access techniques- TDMA, FDMA, ALOHA, Slotted ALOHA, Basics of protocol. [7]Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12]Text Books, and/or reference materialTEXT BOOKS: 0. Gulati, Monochrome and color TV 3. Taub and Schilling, Principle of communication systemsREFERENCE BOOKS: 0. Kennedy and Davis, Electronic communication systems 3. A Dhake, Television and video engineering										
Basics of protocol. [7]Fiber optic communication systems: Optical signal propagation in waveguide, signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12]Text Books, and/or TEXT BOOKS: 1. R Roddy and J Coolen, <i>Electronic communication</i> 2. Gulati, <i>Monochrome and color TV</i> 3. Taub and Schilling, <i>Principle of communication systems</i> REFERENCE BOOKS: 1. A B Carlson, <i>Communication systems</i> 2. Kennedy and Davis, <i>Electronic communication systems</i> 3. A Dhake, <i>Television and video engineering</i>										
signal losses and dispersion. Power budget equation, WDM and DWDM Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12]Text Books, and/or reference materialTEXT BOOKS: 1. R Roddy and J Coolen, <i>Electronic communication</i> 2. Gulati, <i>Monochrome and color TV</i> 3. Taub and Schilling, <i>Principle of communication systems</i> REFERENCE BOOKS: 2. Kennedy and Davis, <i>Electronic communication systems</i> 3. A Dhake, <i>Television and video engineering</i>					•					
Multiplexing, optical communication systems and related devices. Incoherent reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12]Text Books, and/or reference TEXT BOOKS: 1. R Roddy and J Coolen, <i>Electronic communication</i> 2. Gulati, <i>Monochrome and color TV</i> 3. Taub and Schilling, <i>Principle of communication systems</i> REFERENCE BOOKS: 1. A B Carlson, <i>Communication systems</i> 2. Kennedy and Davis, <i>Electronic communication systems</i> 3. A Dhake, <i>Television and video engineering</i>			Fiber optic con	munication	systems:	Optical sign	nal propagati	ion in wa	veguide,	
reception, Signal-to-noise ratio, Basics of coherent techniques in FOC. [12] Text Books, and/or TEXT BOOKS: in R Roddy and J Coolen, Electronic communication vertice 2. Gulati, Monochrome and color TV material 3. Taub and Schilling, Principle of communication systems REFERENCE BOOKS: 1. A B Carlson, Communication systems 2. Kennedy and Davis, Electronic communication systems 3. A Dhake, Television and video engineering			signal losses a	nd dispersio	on. Power	budget ec	juation, WI	DM and	DWDM	
Text Books, and/or TEXT BOOKS: reference 1. R Roddy and J Coolen, Electronic communication reference 2. Gulati, Monochrome and color TV material 3. Taub and Schilling, Principle of communication systems REFERENCE BOOKS: 1. A B Carlson, Communication systems 2. Kennedy and Davis, Electronic communication systems 3. A Dhake, Television and video engineering			Multiplexing, op	otical comm	unication	systems and	d related de	evices. In	coherent	
and/or reference material1. R Roddy and J Coolen, Electronic communication 2. Gulati, Monochrome and color TV 3. Taub and Schilling, Principle of communication systems REFERENCE BOOKS: 1. A B Carlson, Communication systems 2. Kennedy and Davis, Electronic communication systems 			reception, Signal	-to-noise rati	o, Basics of	f coherent te	chniques in	FOC. [12	2]	
reference 2. Gulati, Monochrome and color TV material 3. Taub and Schilling, Principle of communication systems REFERENCE BOOKS: 1. A B Carlson, Communication systems 2. Kennedy and Davis, Electronic communication systems 3. A Dhake, Television and video engineering		s,								
material 3. Taub and Schilling, Principle of communication systems REFERENCE BOOKS: 1. A B Carlson, Communication systems 2. Kennedy and Davis, Electronic communication systems 3. A Dhake, Television and video engineering										
 REFERENCE BOOKS: 1. A B Carlson, <i>Communication systems</i> 2. Kennedy and Davis, <i>Electronic communication systems</i> 3. A Dhake, <i>Television and video engineering</i> 										
 A B Carlson, Communication systems Kennedy and Davis, Electronic communication systems A Dhake, Television and video engineering 	material		3. Taub and	Schilling, P	rinciple of a	communicat	ion systems			
 A B Carlson, Communication systems Kennedy and Davis, Electronic communication systems A Dhake, Television and video engineering 			REFERENCE	200880						
 Kennedy and Davis, <i>Electronic communication systems</i> A Dhake, <i>Television and video engineering</i> 					nication sys	tems				
3. A Dhake, Television and video engineering										
			•							
4. J M Senior, Optical fiber communications principles and practice						• •	inciples and	practice		

POs	PO1	PO2	PO3	PO4	PO5
COs					
CO1	1		2		
CO2	1	1	2		
CO3		2	2	2	2
CO4			3	2	3

Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below :

1: Slight (Low)

2: Moderate (Medium)