
SLURM User Guide for CPU & GPU Servers

SLURM (Simple Linux Utility for Resource Management) is an open-source workload

manager and job scheduler designed for high-performance computing (HPC) clusters.

 Developed by Lawrence Livermore National Laboratory (LLNL)

 Widely used in High-Performance Computing (HPC) environments

 Capable of managing workloads on systems ranging from modest clusters to the

most powerful computing servers.

Why SLURM?

 Efficient resource allocation

 Fair job scheduling

 Supports CPU, GPU, and memory management

 Open-source and highly configurable

SLURM Architecture

 Controller (slurmctld): Manages resources and job scheduling

 Compute Nodes (slurmd): Executes jobs

 Database (slurmdbd): Stores accounting info (optional)

 User Commands: Submit and manage jobs

Job Submission and Management on
CPU & GPU Servers with SLURM

1. Basic SLURM Commands
Command Description

sinfo View available nodes and their states.

squeue Check the job queue and running jobs.

sbatch job.sh Submit a job script to SLURM.

scancel <jobid> Cancel a running or pending job.

sacct

srun

Check job accounting information.

Used to submit a job for execution or

initiate job steps in real time.

2. Workflow for job submission

 Create job script

 Submit the job script with sbatch command

 If job submission is successful, you will see a job ID printed on the

command line. Else, check the script and submit again

 Check job status with squeue command

 Use sacct, seff commands to check job information, if needed

3. Submitting a CPU Job
To run a job on CPU nodes, request CPU resources explicitly. Below is an example job script

(cpu_job.sh):

#!/bin/bash

#SBATCH --job-name=cpu_test

#SBATCH --partition=cpu

#SBATCH --time=01:00:00 # 1 hour job

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=4

#SBATCH --mem=8G

#SBATCH --output=cpu_output.txt

python3 my_program.py

3. Submitting a GPU Job
To submit a job on GPU nodes, request GPU resources explicitly. Example (gpu_job.sh):

#!/bin/bash

#SBATCH --job-name=gpu_test

#SBATCH --partition=gpu

#SBATCH --gres=gpu:1

#SBATCH --time=01:00:00

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=4

#SBATCH --mem=16G

#SBATCH --output=gpu_output.txt

module load cuda/11.8

python3 train_model.py4. Interactive Jobs

For debugging or testing, request an interactive session:

For CPU interactive session

srun --partition=cpu --ntasks=1 --cpus-per-task=2 --mem=4G --

time=01:00:00 --pty bash

For GPU interactive session

srun --partition=gpu --gres=gpu:1 --cpus-per-task=4 --mem=16G --

time=01:00:00 --pty bas

5. Monitoring Jobs
- Use `squeue -u <username>` to check your jobs.

- Use `sacct -j <jobid>` to see detailed job statistics.

- Job output and error files will be written as specified by `--output` and `--error` options.

6. Best Practices
- Always request only the resources you need (GPUs, CPUs, memory).

- Use `--time` to specify realistic job duration.

- Run short test jobs before submitting long training jobs.

- Store output files in your home or project directory.

