SLURM User Guide for CPU & GPU Servers

SLURM (Simple Linux Utility for Resource Management) is an open-source workload
manager and job scheduler designed for high-performance computing (HPC) clusters.

o Developed by Lawrence Livermore National Laboratory (LLNL)

e Widely used in High-Performance Computing (HPC) environments

o Capable of managing workloads on systems ranging from modest clusters to the
most powerful computing servers.

Why SLURM?
« Efficient resource allocation
e Fair job scheduling
e Supports CPU, GPU, and memory management
e Open-source and highly configurable

SLURM Architecture
o Controller (slurmctld): Manages resources and job scheduling
o Compute Nodes (slurmd): Executes jobs
« Database (slurmdbd): Stores accounting info (optional)
e User Commands: Submit and manage jobs

Compute node daemons

Job

Submission and Management on

CPU & GPU Servers with SLURM

1. Basic SLURM Commands

Command Description

sinfo View available nodes and their states.
squeue Check the job queue and running jobs.
sbatch job.sh Submit a job script to SLURM.

scancel <jobid> Cancel a running or pending job.

sacct Check job accounting information.
srun Used to submit a job for execution or

initiate job steps in real time.

2. Workflow for job submission

Create job script

Submit the job script with sbatch command

If job submission is successful, you will see a job ID printed on the
command line. Else, check the script and submit again

Check job status with squeue command

Use sacct, seff commands to check job information, if needed

3. Submitting a CPU Job

To run a job on CPU nodes, request CPU resources explicitly. Below is an example job script
(cpu_job.sh):

#!/bin/bash

#SBATCH --job-name=cpu_test
#SBATCH --partition=cpu

#SBATCH --time=01:00:00 # 1 hour job
#SBATCH --ntasks=1

#SBATCH --cpus-per-task=4

#SBATCH --mem=8G

#SBATCH --output=cpu_output.txt

python3 my_program.py

3. Submitting a GPU Job

To submit a job on GPU nodes, request GPU resources explicitly. Example (gpu_job.sh):
#!/bin/bash

#SBATCH --job-name=gpu_test

#SBATCH --partition=gpu

#SBATCH --gres=gpu:1

#SBATCH --time=01:00:00

#SBATCH --ntasks=1

#SBATCH --cpus-per-task=4

#SBATCH --mem=16G

#SBATCH --output=gpu_output.txt

module load cuda/11.8
python3 train_model.py4. Interactive Jobs

For debugging or testing, request an interactive session:

For CPU interactive session
srun --partition=cpu --ntasks=1 --cpus-per-task=2 --mem=4G --
time=01:00:00 --pty bash

For GPU interactive session
srun --partition=gpu --gres=gpu:1 --cpus-per-task=4 --mem=16G --
time=01:00:00 --pty bas

5. Monitoring Jobs

- Use “squeue -u <username>" to check your jobs.

- Use ‘sacct -j <jobid>" to see detailed job statistics.

- Job output and error files will be written as specified by “--output’ and *--error" options.

6. Best Practices

- Always request only the resources you need (GPUs, CPUs, memory).
- Use *--time" to specify realistic job duration.

- Run short test jobs before submitting long training jobs.

- Store output files in your home or project directory.

