NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR

Department of Chemistry

The Syllabus of the Chemistry for the admission tests to be conducted for admission to the PhD programme for ODD SEM 2021-2022.

Part A (Compulsory area):

1. Chemical and Statistical Thermodynamics

Second law and thermodynamic relations; third law of classical thermodynamics and their applications; Thermodynamics of ideal and non ideal binary solutions; Gibbs-Duhem equation, Duhem- Margules equation, equilibrium constant, temperature dependent equilibrium constant; Thermodynamic excess functions. Experimental determination of activity coefficient of electrolytes and non electrolytes; Statistical Thermodynamics

2. Chemical Kinetics and Catalysis

Rate process approach towards complex reactions including Opposing reaction, parallel reaction, consecutive reactions chain reacions; Pseudo first order reactions; Determination of order of a reaction by half-life and differential method; temperature dependence of rate constant; Lindemann theory of unimolecular reaction and collision theory; transition State theory; effect of ionic strength (primary and secondary salt effect), dielectric constant and pressure on rate; Catalysis: rate expressions for homogeneous and heterogeneous catalytic reactions including acid-base and enzyme catalyzed reactions

3. Coordination Chemistry

Bloomstantrand-Jorgensen's chain theory; Warner's theory; perfect and imperfect complexes, detection and evidence of complex formation in solution; classification of ligands; inner-metallic complex; Poly nuclear or bridged complexes; Nomenclature of coordination compounds; Electronic spectra of transition metal complexes; Electronic spectra of lanthanide and actinide complexes,; Spectroscopic term symbols, Orgel diagram, Tanabe Sagano diagram,

4. Acid-base

Theories, general trends, hard and soft acid and bases, superacids, factor influencing acidity and basicity, the Lux concept

5. Organic Synthesis

Planning Organic Syntheses (Strategy and Control); Making Carbon-carbon single and double bonds; Functional group interconversions and Retrosynthetic analysis; Asymmetric synthesis

6. Organic Spectroscopy

Mass Spectroscopy :Generation of ions and detection; EI, CI, FD, FAB, plasma desorption; fragmentation pattern in EI, GC-MS, MS-MS, LC-MS. Application of UV, IR, NMR and MS in structure elucidation

NMR Spectroscopy:

PMR spectroscopy: Long-range spin-spin interaction. Interpretation of non-first order NMR; double resonance, Lanthanide shift reagent, spin-tickling, INDOR, NOE, effect of solvents (aliphatic and aromatic), preliminary idea on ¹⁹F, ³¹P, ¹⁴N, ¹⁵N, ¹⁷O. NMR of solids, NMR imaging; ¹³C NMR Spectroscopy

Part B (Optional area):

1. Electrochemistry

Concepts on conductance, EMF of cells, laws of electrolysis, Ion-solvent interaction, effect of nonelectrolyte on ion-solvent interaction, Debye-Huckel-Onsagar theory of inter-ionic interaction, thickness of ionic atmosphere, rate process approach towards ionic

2. Chemical bonding

Molecular shape, Valence Bond Theory, VSEPR theory, Molecular Orbital Theory and their applications

3. Stereochemistry

Configuration and conformations, relative and absolute stereochemistry, optical rotation, symmetry elements, dynamic stereochemistry, effect of stereoelectronic factors on reaction rates, Horeaus rule, Prelog's rule, Cram's rule; Optical rotation and optical rotatory dispersion: circular birefringence; and circular; Cotton effect; ORD of ketones and Octant rule.

(HOD, Chemistry)