(19) INDIA

(22) Date of filing of Application :20/06/2025

(43) Publication Date: 04/07/2025

(54) Title of the invention: A Lead-Free Cs3Bi2I9-Based Resistive Switching Memory Device Fabricated Using a Sequential Spin-Coating Method

(51) International classification	:H10N0070000000, H10N0070200000, B82Y0010000000, H10B0063000000,	(71)Name of Applicant: 1)National Institute of Technology Durgapur Address of Applicant: M G Avenue, Durgapur, West Bengal, 713209 Durgapur
(86) International Application No Filing Date (87) International Publication No (61) Patent of Addition to Application Number Filing Date (62) Divisional to Application Number Filing Date	H01L0029660000 :NA	Address of Applicant: NA (72)Name of Inventor:
	:NA	1)Subhasish Chanda
	: NA	Address of Applicant :National Institute of Technology Durgapur, M G Avenue, A-Zone, Durgapur, West Bengal, PIN- 713209, India Durgapur
	:NA :NA	2)Iman Biswas Address of Applicant :National Institute of Technology Durgapur, M G Avenue, A-Zone, Durgapur, West Bengal, PIN- 713209, India Durgapur 3)Rabindra Nath Barman
	:NA :NA	Address of Applicant :National Institute of Technology Durgapur, M G Avenue, A-Zone, Durgapur, West Bengal, PIN- 713209, India Durgapur

(57) Abstract:

A Lead-Free Cs₃Bi₂I₃-Based Resistive Switching Memory Device Fabricated Using a Sequential Spin-Coating Method The present invention (200) is a lead-free resistive switching memory device utilizing Cs₃Bi₂I₃ (107), an inorganic halide perovskite, fabricated via a cost-effective sequential spin-coating technique. The present deposition method employs two distinct precursor solutions to precisely control iodine vacancy distribution, leading to ultra-low operating voltage at 0.28V and enhanced device stability. The fabricated device exhibits bipolar resistive switching behaviour, reliably transitioning between high-resistance and low-resistance states, making it ideal for non-volatile memory applications. It demonstrates excellent endurance, retaining 36.35% of its original memory after 100 cycles, ensuring reliable performance for long-term data storage. Figure 1 and Figure 2

No. of Pages: 20 No. of Claims: 7