NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR

CURRICULUM

OF

BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND ENGINEERING

2017 ONWARD UNDERGRADUATE ADMISSION BATCH

V0:

Resolution of 50th Senate	18-05-2018	ltem no: 50.7
Resolution of 51st Senate	04-10-2018	ltem no: 51.2
Resolution of UGAC meeting	10-05-2019	
Final approval in 53rd Senate	13-05-2019	ltem no: 52.3
Publication date	30-05-2019	
Resolution of 51st Senate Resolution of UGAC meeting Final approval in 53rd Senate Publication date	04-10-2018 10-05-2019 13-05-2019 30-05-2019	Item no: 51.2 Item no: 52.3

V1:

Incorporation of new elective subjects	27-06-2019
--	------------

V2:

Rectification of minor errors	UGAC 31-08-2022

Final Approval in 67th Senate dated 20/09/2022 vide Item no: # 67.3

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Program Name: Bachelor of Technology in Computer Science & Engineering

DETAILED CURRICULUM

CURRICULUM OF 2021 ONWARD UNDERGRADUATE ADMISSION BATCH FOR COMPUTER SCIENCE & ENGINEERING- B.TECH.

L= Lecture hour/ week; T= Tutorial hour/ week; S= Sessional/ practical hour/ week

C= Subject credit point; H= Subject contact hour/ week.

Se	mester - I						
SI. No	Code	Subject	L	т	S	с	н
1	MAC01	Mathematics - I	3	1	0	4.0	4
2	PHC01	Engineering Physics	2	1	0	3.0	3
3	CYC01	Engineering Chemistry	2	1	0	3.0	3
4	XEC01	Engineering Mechanics	2	1	0	3.0	3
5	ESC01	Environmental Science	2	0	0	2.0	2
6	XES51	Engineering Graphics	1	0	3	2.5	4
7	HSS51	Professional Communication Laboratory	1	0	2	2.0	3
8	PHS51	Physics Laboratory	0	0	2	1.0	2
9	CYS51	Chemistry Laboratory	0	0	2	1.0	2
10	WSS51	Workshop Practice	0	0	3	1.5	3
11	XXS51	Co-curricular Activities - I	0	0	2	1.0	2
		TOTAL	13	4	14	24.0	31
Sei	mester - II						
SI. No	Code	Subject	L	т	S	С	н
1	MAC02	Mathematics - II	3	1	0	4.0	4
2	CSC01	Introduction to Computing	2	1	0	3.0	3
3	ECC01	Basic Electronics	2	1	0	3.0	3
4	EEC01	Electrical Technology	2	1	0	3.0	3
5	BTC01	Life Science	2	0	0	2.0	2
6	XXC01	Constitution of India and Civic Norms	1	0	0	1.0	1
7	XES52	Graphical Analysis using CAD	0	0	2	1.0	2
8	CSS51	Computing Laboratory	0	0	2	1.0	2
9	ECS51	Basic Electronics Laboratory	0	0	2	1.0	2
10	EES51	Electrical Technology Laboratory	0	0	2	1.0	2
10 11	EES51 XXS52	Electrical Technology Laboratory Co-curricular Activities - II	0	0 0	2 2	1.0 1.0	2

Sem	ester - III						
SI.	Code	Subject	L	Т	S	С	Н
1	MAC331	Mathematics - III	3	1	0	4	4
2	CSC301	Discrete Mathematics	3	0	0	3	3
3	CSC302	Digital Logic Design	3	0	0	3	3
4	CSC303	Data Structures and Algorithms	3	1	0	4	4
5	PHC331	Physics of Semiconductor Devices	3	0	0	3	3
6	PHS381	Semiconductor Devices Laboratory	0	0	3	1.5	3
7	CSS351	Digital Logic Design Laboratory	0	0	3	1.5	3
8	CSS352	Data Structures and Algorithms Laboratory	0	0	4	2	4
9	XXS381	Co-curricular Activities - III (Optional)	0	0	0	0	0
		TOTAL	15	2	10	22	27
Sem	ester - IV				I	I	
SI.	Code	Subject	L	Т	S	С	Н
1	CSC401	Computer Organization and Architecture	3	1	0	4	4
2	CSC402	Theory of Computation	3	0	0	3	3
3	CSC403	Design and Analysis of Algorithms	3	1	0	4	4
4	CSC404	Object Oriented Programming	2	1	0	3	3
5	CSC405	Signals and Systems	3	0	0	3	3
6	YYO44*	Open Elective - 1	3	0	0	3	3
7	CSS451	Computer Organization Laboratory	0	0	3	1.5	3
8	CSS452	Object Oriented Programming Laboratory	0	0	3	1.5	3
9	CSS453	Signal Processing Laboratory	0	0	3	1.5	3
	XXS481	Co-curricular Activities - IV (Optional)	0	0	0	0	0
		TOTAL	17	3	9	24.5	29
Sem	nester - V						
SI.	Code	Subject	L	Т	S	C	Н
1	CSC501	Operating Systems	3	0	0	3	3
2	CSC502	Database Management System	3	1	0	4	4
3	CSC503	Compiler Design	3	0	0	3	3
4	CSC504	Embedded Systems	3	0	0	3	3
5	YYO54*	Open Elective - 2	3	0	0	3	3
6	CSS551	Design and Analysis of Algorithms Laboratory	0	0	3	1.5	3
7	CSS552	Embedded Systems Laboratory	0	0	3	1.5	3
8	CSS553	Operating Systems Laboratory	0	0	3	1.5	3
9	XXS581	Co-curricular Activities - V (Optional)	0	0	0	0	0
		TOTAL	15	1	9	20.5	25

Sem	ester - VI						
SI.	Code	Subject	L	Т	S	С	Н
1	HSC631	Economics and Management Accountancy	3	0	0	3	3
2	CSC601	Software Engineering	3	0	0	3	3
2	CSC602	Data Communication and Computer	3	1	0	4	4
5		Networks		Ţ	0		
4	CSE610	Depth Elective - 1	3	0	0	3	3
5	CSE610	Depth Elective - 2	3	0	0	3	3
6	CSS651	Compiler Laboratory	0	0	3	1.5	3
7	CSS652	Data Communication and Computer	0	0	2	1.5	З
/		Networks Laboratory		0	ר		
8	CSS653	Database Management System Laboratory	0	0	З	1.5	З
9	XXS681	Co-curricular Activities - VI (Optional)	0	0	0	0	0
		TOTAL	15	1	9	20.5	25
Sen	nester - VII			F	F		
SI.	Code	Subject	L	т	S	С	н
1	MSC731	Principles of Management	3	0	0	3	3
2	CSE710	Denth Elective – 3	3	0	0	3	י ר
2	CSE710	Depth Elective - 4	3	0	0	3	3
4	CSE710	Depth Elective - 5	3	0	0	3	3
5	YY074*	Open Elective - 3	3	0	0	3	3
6	CSS751	Software Engineering Laboratory	0	0	3	1.5	3
7	CSS752	Modelling and Simulation Laboratory	0	1	3	2.5	4
	CSS753	Vocational Training /	0			1	2
8		Summer Internship and Seminar		0	2		
9	CSS754	Project - I	0	0	3	1	3
		TOTAL	15	1	11	21	27
Sen	nester - VIII						
SI. No	Code	Subject	L	т	S	с	н
1	CSE810	Depth Elective - 6	3	0	0	3	3
2	YYO84*	Open Elective - 4	3	0	0	3	3
3	YYO85*	Open Elective - 5	3	0	0	3	3
4	CSS851	Project - II	0	0	15	5	15
5	CSS852	Project Seminar	0	0	0	1.5	0
6	CSS853	Viva Voce	0	0	0	1	0
		TOTAL	9	0	15	16.5	24

CREDIT UNIT OF THE PROGRAM:

Semester	1+11	111	IV	V	VI	VII	VIII	TOTAL
Credit	45	22	24.5	20.5	20.5	21	16.5	170
Unit								

DEPTH ELECTIVE COURSE BASKETS

THE STUDENTS PRIMARILY WILL OPT FROM THE DEPTH ELECTIVE SUBJECT(S) THAT ARE OFFERED IN A PARTICULAR SEMESTER BY HIS/ HER OWN DEPARTMENT. HOWEVER, A STUDENT CAN OPT FOR DEPTH ELECTIVE SUBJECT(S) THAT ARE OFFERED BY OTHER DEPARTMENT IN A PARTICULAR SEMESTER, WITH THE PERMISSION/ CONSENT FROM HIS/ HER HEAD OF THE DEPARTMENT AND THE CONCERNED TEACHER OF THAT SUBJECT.

6th Semester

	DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
CSE612	System Software
CSE613	Internet and Web Technologies
CSE614	Advanced Computer Architecture
CSE615	Optimization Techniques
CSE616	Artificial Intelligence
CSE617	Advanced Algorithms
CSE618	Information Coding Theory
CSE619	Computer Graphics
CSE620	Game Theory and its Applications
CSE621	Digital Systems Testing
CSE622	Soft Computing
CSE623	Advanced Database Systems

7th Semester

	DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
CSE710	Machine Learning
CSE711	Graph Theory
CSE712	Electronic Design Automation
CSE713	Natural Language Processing
CSE714	Data Warehousing and Data Mining
CSE715	Digital Image Processing
CSE716	Data Analytics
CSE717	Biometrics
CSE718	Cryptography and Network Security
CSE719	Multimedia Information Systems

CSE720	Cellular Automata and its Application
CSE721	Computational Geometry
CSE722	Complex Network Theory
CSE723	Pattern Recognition
CSE724	Semantic Web Technology
CSE725	Human Computer Interaction
CSE726	Incentive Mechanism in Computer Science

8th Semester

	DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
CSE811	Distributed Systems
CSE812	Computer Vision
CSE813	Optical Networks
CSE814	Internet of Things
CSE815	Cloud Computing
CSE816	Mobile Computing
CSE817	Expert Systems
CSE818	Ethics Society and Computer Science
CSE819	Knowledge Management

Sen	nester - I						
SI. No	Code	Subject	L	Т	S	С	H
1	MAC01	Mathematics - I	3	1	0	4.0	4
2	PHC01	Engineering Physics	2	1	0	3.0	3
3	CYC01	Engineering Chemistry	2	1	0	3.0	3
4	XEC01	Engineering Mechanics		1	0	3.0	З
5	ESC01	Environmental Science		0	0	2.0	2
6	XES51	Engineering Graphics	1	0	З	2.5	4
7	HSS51	Professional Communication Laboratory	1	0	2	2.0	З
8	PHS51	Physics Laboratory	0	0	2	1.0	2
9	CYS51	Chemistry Laboratory	0	0	2	1.0	2
10	WSS51	Workshop Practice	0	0	З	1.5	3
11	XXS51	Co-curricular Activities - I	0	0	2	1.0	2
		TOTAL	13	4	14	24.0	31

DETAILED SYLLABUS

FIRST SEMESTER

		Department of I	Mathemat	ics						
Course	Title of the course	Program	Tota	l Number c	of contact he	ours	Credit			
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total				
		Electives	(L)	(T)	(P)	Hours				
		(PEL)								
MAC 01	MATHEMATICS - I	PCR	3	1	0	4	4			
P	re-requisites	Course Assess	Course Assessment methods (Continuous (CT), mid-term (MT)							
		and end asses	sment (EA))						
Basic conc	epts of function, limit,	f function, limit, CT+MT+EA								
differentia	ation, and integration.									
Course	CO1: To introdu	ice the fundame	entals of d	ifferential o	alculus of s	ingle and	several			
Outcomes	s variables	variables								
	CO2: To devel	op the basic c	oncepts c	of integral	calculus in	cluding i	multiple			
	integrals and it	s application in	finding a	rea, volum	e, centre of	⁼ mass, ce	entre of			
	gravity etc.									
	CO3: To introdu	ice the fundame	ental conce	epts of vect	or calculus					
	CO4: To develop	o the concept o	f converge	nce						
Topics	Functions of Single	Variable: Rolle	e's Theorer	n and Lagra	ange's Mea	n Value T	heorem			
Covered	(MVT), Cauchy's N	IVT, Taylor's a	nd Maclau	urin's serie	s, Asympto	tes & Ci	urvature			
	(Cartesian, Polar fo	rm).	(8)							
	Functions of seve	ral variables: F	unction o	f two varia	ables, Limit	, Continu	ity and			
	Differentiability, F	Partial derivati	ves, Parti	al derivat	ives of in	nplicit f	unction,			
	Homogeneous fur	iction, Euler's	theorem	and its c	onverse, Ex	kact diffe	erential,			
	Jacobian, Taylor's	& Maclaurin's	series, N	Maxima ar	d Minima,	Necessa	ary and			
	sufficient conditio	icient condition for maxima and minima (no proof), Stationary points,								
	Lagrange's method	of multipliers.		(10)						

	Sequences and Series: Sequences, Limit of a Sequence and its properties, Series of
	positive terms, Necessary condition for convergence, Comparison test, D Alembert's
	ratio test, Cauchy's root test, Alternating series, Leibnitz's rule, Absolute and
	conditional convergence. (6)
	Integral Calculus: Mean value theorems of integral calculus, Improper integral and
	it classifications, Beta and Gamma functions, Area and length in Cartesian and polar
	co-ordinates, Volume and surface area of solids of revolution in Cartesian and polar
	forms. (12)
	Multiple Integrals: Double integrals, Evaluation of double integrals, Evaluation of
	triple integrals, change of order of integration, Change of variables, Area and
	volume by double integration, Volume as a triple integral. (10)
	Vector Calculus: Vector valued functions and its differentiability, Line integral,
	Surface integral, Volume integral, Gradient, Curl, Divergence, Green's theorem in the
	plane (including vector form), Stokes' theorem, Gauss's divergence theorem and
	their applications. (10)
Text Books,	Text Books:
and/or	1. E. Kreyszig, Advanced Engineering Mathematics: 10th ed., Wiley India Ed. (2010).
reference	2. Daniel A. Murray, Differential, and Integral Calculus, Fb & c Limited, 2018.
material	3. Marsden, J. E; Tromba, A. J.; Weinstein: Basic Multivariable Calculus, Springer,
	2014.
	Reference Books:
	1. Tom Apostal, Calculus-Vol-I & II, Wiley Student Edition, 2011.
	2. Thomas and Finny: Calculus and Analytic Geometry, 11th Ed., Addison Wesley.

	r			(/	- (0.1				
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
MAC01	CO1	2	3	2	3	1	1	-	-	1	1	1	2
	CO2	2	3	2	3	-	1	-	-	1	1	2	2
	CO3	2	3	2	3	-	1	1	-	-	2	2	2
	CO4	3	3	2	3	1	1	-	1	-	2	1	2

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Total Nur	nber of con	tact hours		Credit		
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total			
		Electives	(L)	(T)	(P)	Hour			
		(PEL)				S			
PHC01	Engineering	PCR	2	1	0	3	3		
	Physics								
Pre-requi	sites:	Course Assessment methods: (Continuous (CT), mid-term (MT) and							
		end assessment (EA))							
NIL		CT+MT+EA							
Course	CO1: To realize a	and apply the fu	the fundamental concepts of physics such as superpos						
Outcomes	s principle, simple	harmonic motion to real world problems.							

	CO2: Learn about the quantum phenomenon of subatomic particles and its applications
	to the practical field.
	CO3: Gain an integrative overview and applications of fundamental optical phenomena
	Such as interference, diffraction and polarization.
	ropagation through ontical fibers
Topics	Harmonic Oscillations - Linear superposition principle Superposition of two
Covered	nerpendicular oscillations beying same and different frequencies and phases. Free
covered	Damped and forced vibrations Equation of motion Amplitude resonance Velocity
	resonance Quality factor sharpness of resonance etc. [8]
	Wave Motion - Wave equation, Longitudinal waves, Transverse waves, Electro-magnetic
	waves. [3]
	Introductory Quantum Mechanics - Inadequacy of classical mechanics, Blackbody
	radiation, Planck's quantum hypothesis, de Broglie's hypothesis, Heisenberg's
	uncertainty principle and applications, Schrodinger's wave equation and applications to
	simple problems: Particle in a one-dimensional box, Simple harmonic oscillator,
	Tunnelling effect. [8]
	Interference & Diffraction - Huygens' principle, Young's experiment, Superposition of
	waves, Conditions of sustained Interference, Concepts of coherent sources, Interference
	by division of wavefront, Interference by division of amplitude with examples, The
	Michelson interferometer and some problems; Fraunhofer diffraction, Single slit,
	Multiple slits, Resolving power of grating. [13]
	Polarisation - Polarisation, Qualitative discussion on Plane, Circularly and elliptically
	polarized light, Malus law, Brewster's law, Double refraction (birefringence) - Ordinary
	and extra-ordinary rays, Optic axis etc.; Polaroid, Nicol prism, Retardation plates and
	analysis of polarized lights. [5]
	inversion Einstein's A & B so officient. Ontical resonator and numning methods. He No
	lasor Optical Eibro- Core and cladding. Total internal reflection. Calculation of numerical
	and another and accentance angle Applications [5]
Text	TEXT BOOKS:
Books,	1. The Physics of Vibrations and Waves, H. John Pain, Willy and Sons
and/or	2. A Text Book of Oscillations and Waves, M. Goswami and S. Sahoo, Scitech
reference	Publications
material	3. Engineering Physics, H. K. Malik and A. K. Singh, McGraw-Hill.
	REFERENCE BOOKS:
	1. Vibrations and Waves in Physics, Iain G. Main, Cambridge University Press
	2. Quantum Physics, R. Eisberg and R. Resnick, John Wiley and Sons
	3. Fundamental of Optics, Jankins and White, McGraw-Hill
	4. Optics, A. K. Ghatak, Tata McGraw-Hill
	5. Waves and Oscillations, N. K. Bajaj, Tata McGraw-Hill
	6. Lasers and Non-linear Optics, B. B. Laud , New Age International Pvt Lt

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
PHC01	CO1	3	2	1	1	1	-	-	1	-	-	-	1
	CO2	3	2	-	2	-	-	-	-	-	-	-	1
	CO3	3	2	2	2	1	1	1	1	1	-	1	1
	CO4	3	2	2	2	1	1	1	-	1	-	1	1

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program Core	Total	Number o	of contact ho	ours	Credit					
Code	course	(PCR) /	Lecture	Tutori	Practical	Total						
		Electives (PEL)	(L)	al (T)	(P)	Hours						
CYC 01	Engineering	PCR	2	1	0	3	3					
	Chemistry											
Pr	e-requisites	Course Assessn	nent metho	ds (Contin	uous (CT), m	id-term (MT) and					
			end	assessme	nt (EA))							
	None		CT+MT+EA									
Course	CO1: Intro	duced to chemi	cal thermo	odynamics	s, kinetics,	electroo	hemistry,					
Outcome	s absorption,	and catalytic proce	sses for eng	ineering a	pplications							
	CO2: To lear	rn fundamentals of	polymer che	emistry an	id petroleum	n enginee	ring.					
	CO3: Introd	uced to basic spect	roscopic tec	hniques f	or structure	determin	ation and					
	characteriza	ntion.										
	CO4: To stu	dy few inorganic an	d bioinorga	nic compo	unds of indu	ustrial imp	ortance.					
Topics	ORGANIC CHEN	RGANIC CHEMISTRY										
Covered	i. Fundame	i. Fundamentals of organic reaction mechanisms; Few important reactions and										
	their m	echanism along	with their	r applica	tions; Rob	inson ar	nnulation,					
	Hydrobo	ration reaction, Org	ganometallio	c reagents	(Gilman rea	agents), N	1etathesis					
	using Gru	ubb's catalyst and V	Vittig reactio	on. (3)		. .						
	II. Fundame	ental concept on s	tereochemi	stry and a	application:	Conform	ation and					
	configura	ation of organic (compounds,	Diastere	eo-selective,	enantio	-selective,					
	regio-sei	ective, stereo-speci	fic, and ster	eo-selecti origat Fur	ve reactions	. (3) anaant ar	nalumar					
	III. Polymer	chemistry and poly	mer engine	important		oncept of	nd plactic					
	matorial	y, synthesis and ap	plication of (2)	ппроглап	t polymers,	Rubber, a	nu plastic					
	iv Dotrolou	m Engineering polyn	d oil rofin	ony: origin	a of minor	al oile e	oparation					
	nrinciplo	and tochniques of	distillation	of crudo	oil Usos of	difforant	fractions					
	octane n	umber cetane num	ulstillation ber Knocki	ng anti-k	nock compo	unde and						
	(2)	uniber, cetane nun				unus, and	i bio i uci.					
	v Structure	elucidation of org	anic comno	unds hv m	nodern snec	trosconic	methods					
	Applicati	on of UV-Visible and	d FT-IR spec	troscopy.	(3)	cioscopic	methods,					
	INORGANIC CHE	MISTRY			(-)							
	i. Coordina	ation Chemistry: C	rystal Field	Theory	of octahedr	al and te	trahedral					
	complexe	es, colour and mag	netic proper	ties, Jahn	-Teller disto	rtion, pse	udo Jahn-					
L		,		,		. , , , , , , , , , , , , , , , , , , ,						

	Teller distortion, Isomerism, and stereochemistry. (5)
	ii. Bioinorganic Chemistry: Heme and non-heme O ₂ transport protein
	(Haemoglobin, Myoglobin), Chlorophyll and photosynthesis. (3)
	iii. Inorganic Materials: Introduction towards industrially important inorganic
	materials like cementing material, refractory material, fertiliser, inorganic
	polymer. (2)
	iv. Organometallic Chemistry: π -acid ligands, stabilization of metal low oxidation
	state and 18 electron rules, metal carbonyls and nitrosyls, metal-alkene
	complexes. (4)
	PHYSICAL CHEMISTRY
	i. Thermodynamics: 2nd law of thermodynamics, entropy, free energy, Gibbs
	Helmholtz equation, change of phase. Cryogenics: joule Thomson experiment.
	II. Chemical Kinetics: 2nd and 3rd order rate expression, Reversible reaction, Chain
	reaction, Consecutive reaction, Temp effect on reaction rate. (4)
	formation on ENAL of evidation (reduction processes (2))
	iv Abcorntion: Physical and Chamical abcorntion. Abcorntion isotherms. (1)
	v. Catalysis: Types of catalysis Bate expression for Catalysed reaction. Acid-base
	and Enzyme catalysis (2)
Tovt	Suggested Text Books:
Books	(i) Physical Chemistry by P. Atkins, Oxford
and/or	(ii) A guidebook to mechanism in Organic chemistry: Peter Sykes: Pearson Edu
reference	(iii) Inorganic Chemistry Part-I & II. R. L. Dutta. The new book stall
material	Suggested Reference Books:
	Organic Chemistry:
	(i) Basic stereochemistry of organic molecules: S. Sengupta; Oxford University press
	(ii) Engineering Chemistry: Wiley
	(iii) Elementary Organic Spectroscopy: William Kemp, ELBS with Macmillan
	Inorganic Chemistry:
	(i) Inorganic Chemistry: Principle structure and reactivity, J. E. Huheey, E. A. Keiter and
	R. L. Keiter, Pearson Education
	(ii) Bioinorganic Chemistry Inorganic Elements in the Chemistry of Life: An
	Introductionand Guide, 2nd Edition, Wolfgang Kaim, Brigitte Schwederski, Axel Klein.
	(iii) Inorganic Chemistry Fourth Edition, Shriver & Atkins, Oxford
	Physical Chemistry:
	(i) Physical Chemistry by G.W Castellan
	(ii) Physical Chemistry by P. C. Rakshit

	wapping of CO (Course outcome) and PO (Programme Outcome)													
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
	CO1	1	2	-	-	-	-	-	-	-	-	-	-	
	CO2	1	-	-	-	-	-	2	-	-	-	-	-	
CYCUI	CO3	1	2	1	1	1	-	-	-	-	-	-	-	
	CO4	-	1	-	-	2	-	1	-	-	-	-	-	

ΝЛ. nnina outco <u>،</u> ۱ Outo ۰.

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program Total Number of contact hours Credit									
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total					
		Electives	(L)	(T)	(P) [#]	Hours					
		(PEL)									
XEC01	ENGINEERING	PCR	2	1	0	3	3				
	MECHANICS										
Pr	e-requisites	Course Asse	essment m	ethods (Cor	ntinuous (C	Г) <i>,</i> mid-te	rm (MT)				
		and end assessment (EA))									
				CT+MT-	⊦EA						
Course	• CO1: Acqu	ire knowledge o	f mechanio	s and abilit	y to draw fi	ree body	diagrams.				
Outcome	es • CO2: Apply	• CO2: Apply knowledge of mechanics for solving special problems like truss and									
	frame anal	ysis.		U							
	CO3: Abilit	, y to calculate ce	entroid, mo	ments of ir	nertia for va	rious sha	pes.				
	CO4: Learn	, momentum an	d energy p	rinciples.			•				
	CO5: Know	ledge on virtual	Work Prin	ciple and it	s applicatio	n					
Topics	Engineering Me	ngineering Mechanics; measurement and SI units. [1]									
Covered	d Vectors and fo	/ectors and force as a vector; Resultant of a system of forces on a particle; free									
	body diagram	pody diagram and conditions of equilibrium of a particle; problems on particles;									
	equilibrium of	equilibrium of particles in space [2]									
	Resultant of a	system of fo	rces and	couples or	h a rigid b	odv: con	ditions of				
	equilibrium of	a rigid hody:	free hody	diagrams	of rigid h	ndies sub	niected to				
	different types	of constraints.	simple space	e nrohlem	s of rigid ho	dies [4]					
	Coefficients of	static and kine	tic friction	· nrohlems	involving f	riction t	heories of				
	friction on squa	are threaded no	wer screw	and flat he	lt [5]	fiction, t					
	Simple trusses	analysis of trus	ses hv met	hod of ioint	ts and meth	od of sec	tions [5]				
	Centre of grav	ity and centre	of mass of	entroids o	f lines curv	ves and a	areas: first				
	moment of ar	ea: second mo	ment of a	rea: nolar	moment o	f inertia:	radius of				
	gyration of an a	area: narallel avi	s theorem	· mass mon	nent of iner	tia [4]					
	Path velocity	acceleration: re	stilinear an	d curviline:	ar motion · r	notion of	system of				
	narticles: intro	duction to the c	ncent of r	lane kinem	natics of rigi	d hodies	[6]				
	Newton's seco	nd law of motic	n. dvnami	c equilibriu	im and D'Al	lemhert's	nrincinle				
	linear momen	tum: angular	momentu	n∙ rectilin	ear and c	urvilinea	r motion				
	nrinciples of w	principles of work-operational impulse-momentum; impact of system of particles:									
	introduction to	the concept of	nlane kinet	tics of rigid	hodies [12]	1	r particles,				
		tual Work Solu	ition of Pi	ohlems on	Mechanica	j s using Pi	rincinle of				
	Virtual Work [2					, using F					
Text Boo	ks 1) S P Timoshov	u ako and D H Vou	ing Engino	oring Mock	anics 5th E	dition					
and/or	\cdot 2) Moriam a	nd I G Kraige F	ngineering	Mechanica	5 th Edition	Wilov In	dia				
reference	\sim (3) F P Roor and	F R Johnston V	ector Meel	hanics for F	ngineers	, whey in					
matoria	A = A = A		color Meth		Ingine CIS						
materia	ii 4) i fi Shames,										

				1			· · · · · ·	- 1	0				
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
XEC01	CO1	1	-	-	-	-	-	-	-	-	-	-	1
	CO2	1	1	1	1	-	-	-	-	-	-	-	1
	CO3	1	1	-	-	-	-	-	-	-	-	-	1
	CO4	1	2	-	-	-	-	-	-	-	-	-	1
	CO5	-	2	2	2	2	1	-	-	-	1	-	1

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program	Tota	l Number o	of contact ho	ours	Credit			
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total				
		Electives	(L)	(T)	(P)#	Hours				
		(PEL)								
ESC01	Environmental	PCR	2	0	0	2	2			
	Science									
Pr	e-requisites	Course Asse	essment m	ethods (Cor	ntinuous (C	Г), mid-te	rm (MT)			
			and	end assess	ment (EA))					
		CT+MT+EA								
Course	• CO1: Unde	CO1: Understand the importance of environment and ecosystem.								
Outcome	es 🔹 CO2: Und	erstand the fu	indamenta	l aspect o	of pollutant	trackin	g and its			
	implement	ation in natura	al and ant	hropogeni	c pollution	of air a	and water			
	system.									
	CO3: Unde	rstand the scien	tific basis o	of local and	as well as g	lobal issu	ies.			
	CO4: Apply	CO4: Apply of knowledge to develop sustainable solution.								
Topics	Introduction:	Introduction: Multidisciplinary nature of Environmental Studies; Basic issues in								
Covered	d Environmental	Studies. [2]		[4]						
	Human popula	tion and the Env	vironment.	[1]						
	Social issues an	nd the Environm	ent.	[1] • • • • • • • • • • • • • • • • • • •	Deserves					
	Constituents of	or our Environi	nent & tr	ie Natural	Resources	: Atmos	pnere– its			
	Hydrosphoro	lts constituents	Ocoops G	roundwate	etion, Aciu	alli, etc.	[5] /drological			
		its constituents,	Oceans, G	Tounuwate	i, Suitace w	aters, m	ululugical			
	Lithosphere -	constituents of	f lithosnhe	re Rock	and Minera	al resour	ces: Plate			
	Tectonic Conce	opt and its impor	tance.	[5]		in resour				
	Biosphere- its	components: Ec	osvstems a	ind Ecology	: Biodiversit	tv: Biome	s. [5]			
	Natural disast	er and their	manageme	ent – Earl	, hquakes, I	-loods, L	andslides,			
	Cyclones. [3]		U		, ,		,			
	Pollution: Poll	Pollution: Pollutants and their role in air and water pollution. [2]								
Text Boo	ks, 1. Environmen	tal Studies – Ben	ny Joseph	– Tata Mcg	rawHill-200	5				
and/or	2.Environment	al Studies – Dr. I	D.L. Manju	nath, Pears	on Educatio	n-2006.				
referenc	ce 3.Principles of	Environmental S	cience and	Engineerir	ng – P. V. Ra	o <i>,</i> PHI.				
materia	l 4. Environmen	tal Science and E	Engineering	g – Meenak	shi, Prentice	e Hall Ind	ia.			
	5.Environment	al studies – R. Ra	ajagopalan	– Oxford P	ublication -	2005.				
	6. Text book of	Environmental	Science & ⁻	Fechnology	– M. A. Red	ddy – BS I	Pub.			

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	3	-	-	-	-	-	2	-	-	-	-	-
ESC01	CO2	1	-	-	-	-	-	2	-	-	-	-	-
	CO3	2	-	-	-	-	-	2	-	-	-	-	-
	CO4	1	-	3	-	-	2	1	-	-	-	-	-

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Tota	l Number o	of contact ho	ours	Credit					
Code		(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives (PEL)	(L)	(T)	(P)	Hours						
XES51	ENGINEERING GRAPHICS	PCR	1	0	3	4	2.5					
Pr	re-requisites	Course As	sessment n	nethods (Co	ontinuous ((CT) and ei	nd					
			as	sessment (EA))							
	NIL	CT+EA										
Course	• CO1: Ability c	of mental visualization of different objects										
Outcome	es •CO2: Theore	cical knowledge of orthographic projection to solve problems on										
	one/two/thre	ee dimensional obj	ects									
	•CO3: Able to	read/interpret ind	ustrial drav	wing and to	o communic	ate with I	relevant					
	people											
Topics	Graphics as lang	guage of communi	cation; tec	hnical drav	ving tools a	nd their u	ıp-keep;					
Covered	d types of lines; c	ypes of lines; construction of geometrical figures; lettering and dimensioning. [
	Construction ar	id use of scales; c	constructio	n of curves	s of engine	ering imp	ortance					
	such as curves	of conic section;	spirais, cy	CIOIDS, INV	olutes and	different	IOCI OT					
	points; use of ed	quations for drawi	ng some cu	irves. [9]	f orthogra	nhia nra	io ation .					
	borizontal and	eometry: necessity and importance of orthographic projection;										
	nroiection of no	vertical Telefen	ated in diff	erent quad	lrants viz 1	st 2nd 2rd	^d and 4 th					
	guadrants: trace	es of lines. First an	ngle and th	ird angle p	roiection of	lines and	planes:					
	views from top	. front and left (c	or right): tr	ue length	and true in	clination	of lines					
	with planes of	projections; prima	ry auxiliary	projection	of points,	lines and	planes;					
	auxiliary plan ar	nd auxiliary elevati	on. [9]		• •		•					
	Projection of si	mple regular solic	ls, viz. pris	ms, cubes,	cylinders,	pyramids	, cones,					
	tetrahedrons, s	oheres, hemi-sphe	res etc. [6]									
	Section of solid	s; section by perp	endicular	planes; sec	tional view:	s; true sh	apes of					
	sections. [6]											
	Dimensional teo	hniques; internati	onal and n	ational star	ndards (ISO	and BIS).	[3]					
	Freehand graph	ics. [3]										
Text and/	or 1) Engineering	Drawing and Gra	phics – K V	enugopal								
reterenc	e 2) Engineering	Drawing – N D Bh) Bhat									
materia	ii 3) Practical Ge	eometry and Engin	eering Gra	pnics – W A	JJOCC							

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	1	-	-	-	-	-	-	-	-	-	-	-
XES51	CO2	1	1	-	-	-	-	-	-	-	-	-	-
	CO3	1	-	1	-	-	-	-	-	-	-	-	-

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

Course	Tit	itle of the Program Total Number of contact hours Credit											
Code	c	ourse	Core (PCR) /	Lecture	Tutorial	Practical	Total						
			Electives	(L)	(T)	(P)	Hours						
			(PEL)										
HSS51	Prof	essional	PCR	1	0	2	3	2					
	Comm	nunication											
		Lab											
Pr	e-requis	sites	Course Assessr	nent metho	ods (Continu	uous (CT) an	d end ass	essment					
					(EA))								
	None				CT+EA								
Course	•	CO1: Impr	ovement in lingu	istic proficie	ency of the	learners							
Outcom	es •	CO2: Impr	ovement in comr	nunicative	ability of th	e learners							
	•	CO3: Impr	ovement in socia	l connectivi	ty skill								
Topics		1. Professi	onal Communica	tion: Introd	uction (1)								
Covered	d	 Technical Writing: Basic Concepts (2) Style in Technical Writing (3) 											
		3. Style in Technical Writing (3)											
		4. Technical Report (2)											
		5. Recomm	nendation Report	t (2)									
		6. Progres	5. Progress Report (1)										
		7. Technic	al Proposal (3)										
		8. Busines	s Letters (3)	<i>4</i> -									
		9. Letters	of Job Application	n (2)									
		10. Writing	Scientific and Eng	gineering Pa	apers (3)								
		11. Effective	e Use of Graphic	Aids (2)									
		12. Present	ation Techniques	(6)									
		13. Group L	Discussion (6)										
	_	14. Intervie	w Techniques (6)										
lext	Ie	Text Book:											
BOOKS,		1. English for Engineers –Sudharshana& Savitha (Cambridge UP)											
and/or	Ke	1 English for Engineers -Sudharshana & Savitha (Cambridge LIP)											
materia		1. Eligibili for Eligneers -Sublia shalla & Savina (Cambridge Or)											
materia	II 2.	Poforoncor			- rizvi (ivicu SM/AVANA		ucation)						
	5.	Instructor		L, IVIOUC, S		Juises ne gr	ven by the	:					
		instructor											

				1				1					
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	1	_		1	_	1	_	1	2	3	1	_
пэээт	CO2	1	_	-	1	-	2	_	2	2	3	2	_
	CO3				1		3		3	3	3	2	

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Title of the	Program	Total Nur	nber of cont	tact hours		Credit			
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total				
		/ Electives	(L)	(T)	(P)	Hours				
		(PEL)								
PHS51	Physics	PCR	0	0	2	2	1			
	Laboratory									
Pre-requ	isites	Course Asse	ssment met	hods: (Cont	inuous evalua	ation (CE)	and end			
		assessment	(EA))							
NIL		CE+EA								
Course	CO1: To rea	lize and apply	different teo	hniques for	measuring re	efractive ir	ndices of			
Outcome	es different ma	aterials.								
	CO2: To rea	CO2: To realize different types of waveforms in electrical signals using CRO.								
	CO3: To und	CO3: To understand charging and discharging mechanism of a capacitor.								
	CO4: To und	derstand interf	erence, diffi	action and I	polarization r	elated opt	ical			
	phenomena	I.								
	CO5: To acc	uire basic knowledge of light propagation through fibers.								
Topics	1. Find the	refractive index	k of a liquid	by a travelli	ng microscop	e.				
Covered	2. Determir	e the refractiv	e index of tl	ne material o	of prism using	g spectrom	ieter.			
	3. Determir	ation of ampli	tude and fre	equency of e	lectrical signa	als by oscil	loscope.			
	4. To study	the characteris	tics of RC ci	rcuits.						
	5. To study	Brewster's law	/Malus' law	using laser	light.					
	6. To study	the diffraction	of light by a	grating.						
	7. To study	the interference	ce of light by	/ Newton's r	ing apparatu	S.				
	8. To deterr	nine numerica	l aperture o	f optical fibe	er.					
	9. Determin	ation of Planck	constant.							
lext and	or SUGGESTED	BOOKS:				I-				
reference	e 1) A lext Bo	ok on Practica	I Physics – K	. G. Mazum	dar and B. Gh	iosh				
material	2) Practical	Physics – Wors	snop and Flu	าซ						

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	3	2	1	-	-	-	-	-	2	1	-	1
	CO2	3	2	1	-	-	1	-	-	2	1	-	1
PHS51	CO3	3	1	-	-	-	-	-	-	2	1	-	1
	CO4	3	2	-	1	-	1	1	-	2	1	-	1
	CO5	3	2	1	-	1	1	1	-	2	1	-	1

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Course	Tit	le of the	Program Core	Tota	l Number c	of contact ho	ours	Credit			
Code	C	course	(PCR) /	Lecture	Tutorial	Practical	Total				
			Electives (PEL)	(L)	(T)	(P)	Hours				
CYS51	CH	EMISTRY	PCR	0	0	2	2	1			
	LAB	ORATORY									
Pr	e-requis	sites	Course As	sessment n	nethods (C	ontinuous ((CT) and e	nd			
				as	sessment ((EA))					
	None				CT+EA						
Course	•	CO1: To lea	arn basic analytica	l technique	es useful fo	r engg appli	cations.				
Outcome	es •	CO2: Syntł	nesis and charact	erization m	nethods of	few organ	ic, inorga	inic and			
		polymer co	mpounds of indus	strial impoi	rtance.						
	•	CO3: Learr	n chromatographi	c separatio	n methods						
	•	CO4: Appli	cations of spectro	scopic mea	asurement	S.					
Topics	i.	Experime	nts based on pH n	netry: Dete	ermination	of dissociati	ion const	ant of we			
Covered	d	acids by p	H meter.								
	ii.	Experime	nts based on co	nductivity	measurem	ent: Deterr	nination	of amou			
		of HCl by	conductometric ti	tration wit	h NaOH.						
	iii.	Estimatio	n of metal ion: Est	imation of	Fe ²⁺ by per	rmangnome	entry				
	IV.	Estimation	n of metal ion: De	term. of to	tal hardnes	s of water b	by EDIA t	itration.			
	V.	Synthesis	and characterizat		ganic comp	lexes: e. g. l	vin(acac)	3, Fe(acac			
			cinato)copper (II)	mononya	rate and t	neir characi	terization	by m. p			
	vi	Synthosis	and charact of or	anic com	nounds: o d	Dibonzulid	onoacoto	20			
	vi. vii	Synthesis	of polymer: polyn	nothylmoth	pounus. e.e nacrvlata	s.Dibenzynu	eneaceto	ne.			
	viii	Verificatio	on of Beer-Lamber	ts law and	determina	tion of amo	unt of irc	n prese			
	• • • •	in a suppl	ied solution.		acterinia			n prese			
	ix.	Chromato	graphy: Separation	on of two a	mino acids	by paper cl	hromatog	raphy			
	x.	Determina	ation of saponifica	ation value	of fat/ veg	etable oil					
-	Su	uggested Text	t Books:								
	1.	Vogel's Qua	ntitative Chemical	Analysis (6	Sth Edition)	Prentice Ha	all				
	2.	Advanced Pl	lvanced Physical Chemistry Experiments: By Gurtu&Gurtu								
	3.	Comprehens	nsive Practical Organic Chemistry: Qualitative Analysis By V. K.								
	Ał	nluwalia and	and S. Dhingra								
	<u>S</u>	uggested Refe	erence Books:								
	1.	Practical Che	emistry By R.C. Bł	nattacharya	a						
	2.	Selected exp	periments in Physi	cal Chemis	try By N. G	. Mukherjee	2				

		mapp	1115 01				j unu i	0 (110	5141111		come		
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	1	-	1	-	-	-	-	-	-	-	-
	CO2	-	1	-	1	1	2	-	-	-	-	-	-
C1351	CO3	2	-	-	1	1	-	-	-	-	-	-	-
	CO4	-	1	-	1	1	-	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	of the urseProgramTotal Number of contact hoursCreditCore (PCR)LectureTutorialPracticalTotal													
Code	course	Core (PCR)	Lecture	Tutorial	Practical	Total									
		/ Electives	(L)	(T)	(P) [#]	Hours									
		(PEL)													
WSS51	WORKSHOP	PCR	0	0	3	3	1.5								
	PRACTICE	<u> </u>													
Pre	e-requisites	Course Asses	ssment met	nods (Contir (EA))	nuous (CT) an	a ena asso	essment								
	NIL			CT+E/	4										
Course	• CO1: 9	Study and pract	ice on mach	nine tools an	id their opera	ntions									
Outcome	es • CO2:	Practice on m	anufacturin	g of compo	onents using	worksho	p trades								
	includ	ing fitting, carp	entry, foun	dry and weld	ding										
	• CO3:	Identify and a	pply suitabl	e tools for	machining p	rocesses i	ncluding								
	turnin	g, facing, threa	d cutting an	d tapping											
	• CO4:	Develop basic	electrical	engineering	knowledge	for hous	e wiring								
	practi	се													
Topics	M/c shop & C	Carpentry shop		3X3= 9hrs	5.										
Covered	d • Introd	luction on mach	nining proce	SS.											
	Introd	luction to mach	ine tools- La	athe, Shapei	r, Milling and	Drill mach	nine.								
	Introd	action to woods- Types, structure, disease and defect of wood.													
	Introd	Iction to wood working machines and tools.													
		g of dovetail joint and bridle joint.													
	weiding Sho	o & Sneet meta		37	(3= 9nrs.	_									
	• Introd	luction to weld	ing.Satety al	nd precautic	ons in weiding	5.									
	Forma	ation of weld be		/v on mild si	eernat.	flat									
	Forma		edu by Oxy-i • Motol worl		on mild steel	lidi.									
		and Machines	used in shee	t motal wor	kc										
	 Tools Conco 	and Machines (useu III shee oont markir	a out of mo	KS. tal choots										
	Cuttin	a and joining of	f motal shor	te out of me	tal sheets.										
	Cuttin Safety	ng and joining o	f metal sheets.												
	Black smithy	& Foundry		3)	(3= 9hrs	1001.									
	• Introd	luction Smithir	ng and For	ging- Tools	Machines	Furnaces	and its								
	access	sories, fuels.		5115 10015	, 101000111003,	i unidees									
	Safety	and precautio	ns in blacksi	nithv.											
	 Makin 	g of bars of dif	ferent cross	-sections.											
	Makin	g of hexagonal	headed bol	ts.											
	Forge	welding.													
	 Introd 	luction to Foun	dry Technol	ogy.											
	 Prepa 	ration of sand mould using Solid/Split Pattern.													
	Fitting & Elec	trical shop 3X3= 9hrs.													
	 Introd and th 	luction to hand	l metal cutt	ing tools wi	th specification	ons, nome	enclature								
	 Marki 	ng tools, meası	uring tools a	nd their use											
	• Fitting	of joints of mi	ld steel flats												
		, ,					 Fitting of joints of mild steel flats. 								

	 Introduction to electrical hazards and safety precaution.
	 Wire jointing and soldering.
	 PVC Conduit Wiring controlled by separate single way switches.
	 PVC Cashing Capping Wiring for two-way switches.
	 Conduit wiring for the connection of a Calling Bell with In& Out Indicators.
	 Batten Wiring and Cleat Wiring.
	Tube Light Connection.
	 Insulation Resistance Testing of 1ph / 3ph Motor and House Wiring.
	Earth Resistance Testing.
	DOL Starter Connection.
	Viva voce 1X3= 3hrs.
Text Books,	1. Workshop Technology Part I and Part II by W. A. J. Chapman
and/or	2. Elements of Workshop Technology S. K. Hazra Chowdhury, A. K. Hazra
reference	Chowdhury and Nirjhar Roy
material	3. Mechanical Workshop Practice by K. C. John

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	2	-	-	-	-	1	-	-	-	1	-	-
	CO2	1	-	1	-	-	1	-	-	-	1	-	-
VV3331	CO3	1	-	2	-	-	1	-	-	-	1	-	-
	CO4	1	-	-	-	-	2	-	-	-	1	-	-

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the		Program Core	Total	Number o	f contact ho	ours				
Code	nue c		(PCR) /	Lecture	Tutorial	Practical	Total	Credit			
Coue	cou	150	Electives (PEL)	(L)	(T)	(P)	Hours				
	Co-curricular		DCP	0	0	2	2	1			
~~~51	Activ	ities	FCK	U	U	2	2	Ŧ			
Pre-requ	isites	Cour	se Assessment n	nethods (C	ontinuous	(CT) and end	d assessn	nent (EA))			
NIL					CT+EA						
Course	•	<ul> <li>CO1: Social Interaction: Through the medium of sports</li> </ul>									
Outcomes	•	CO2: Ethics: Recognize different value systems including your owr									
		underst	and the mor	al dimens	sions of	your decis	sions, ai	nd accept			
		respons	sibility for them								
	•	CO3: Se	elf-directed and	Life-long Learning: Acquire the ability to engage in							
		indeper	ndent and life	long lea	rning in	the broade	est cont	ext socio-			
		technol	ogical changes.								
	•	CO4: Pe	ersonality develo	pment thr	ough comn	nunity enga	gement				
	•	CO5: Ex	posure to social	service							
Topics	YOGA										
Covered	•	Introdu	ction of Yoga.								
	•	Sitting I	Posture/Asanas-	Padmasan	a, Vajrasar	ia, Ardhakui	rmasana,	Ustrasana,			
		Bakrasa	ina, Sasankasana	a, Janusirsh	asana, Sur	yanamaskar		-			

	Mudra- Gyana mudra, Chin mudra, Shuni mudra, Prana mudra, Adi mudra, Anjali mudra.
	Laving Posture/Asanas- PayanaMuktasana UttanaPadasana Sarnasana
	Bhujangasana (Cobra Pose). Eka Pada Śalabhāsana. Dhanurasana
	Chakrasana, Viparitkarani.
	<ul> <li>Meditation- Yognidra, Om chant, Pray chant.</li> </ul>
	Standing Posture/Asanas-Tadasana (Mountain Pose) Vrikshasana (Tree
	Pose) Ardhachandrasana Trikonasana Utkatasana Padahastasana
	Pranavama- Deep breathing AnulomVilom Survabhedi Chandrabhedi
	Kriva- Kanalbhati Trataka
	ATHLETICS
	Introduction of Athletic.
	<ul> <li>Starting Technique for Track events- Standing start. Crouch &amp; Block start.</li> </ul>
	Finishing Techniques.
	<ul> <li>Relay Race- 4×100m, 4×400m &amp; Baton Exchange Technique &amp; Rules.</li> </ul>
	• Track Marking with Fundamentals- 200m, 400m and Diagonal Distance
	Radius, Straight Distance, Staggers of Different Lanes & Curve Distance.
	BASKETBALL
	<ul> <li>Introduction and Players stance and ball handling.</li> </ul>
	• Passing- Two hand chest pass, two hand bounce pass, One hand baseball
	pass, Side arm pass, Overhead pass, Hook pass.
	• Receiving- Two hand receiving, one hand receiving, receiving in stationary
	position, Receiving while jumping and Receiving while running.
	• Dribbling- Dribble, High dribble, Low dribble, Reverse dribble, Rolling
	dribble.
	Rules of Basketball.
	Basketball game.
	VOLLEYBALL
	Introduction of Volleyball
	• Service- Underarm service, Sidearm service, Tennis service, Floating service,
	Jump service.
	Pass: Underarm pass- Ready position, Teaching stage of underarm pass and
	Upper hand pass- Volley pass, Back pass, Short set, Jump set & Underarm
	set.
	Rules and their interpretation.
	FOOTBALL
	Introduction of Football
	Push pass- Instep inside, Instep outer side.
	Kicking- Spot kick, Instep kick, Lofted kick.
	Dribbling- One leg, Both legs, Instep.
	• Trapping- Rolling ball sole trapping, High ball sole trapping, High ball chest
	trapping, High ball thigh trapping.
	Throwing- Standing throw, Running throw, Seating throw.
	Goal Keeping- Griping the ball, Full volley, Half volley, Drop Kick.
	Rules and their interpretation.
12 2 2 2	

•	Introduction of Cricket
•	Batting gripping & Stance, Bowling gripping technique.
•	Batting front foot defense& Drive.
•	Batting Back foot defense& Drive.
•	Batting Square cut.
٠	Bowling medium pace, Bowling off break.
•	Fielding drill, Catching (Short & High).
•	Rules & Regulation.
BADM	IINTON
٠	Basic introduction about Badminton and Badminton court.
٠	Racket parts, Racket Grip, Shuttle Grip.
•	Basic stance, Basic Footwork, Shadow practice (Full court movement).
•	Strokes services: Forehand- Overhead & Underarm, Backhand- Overhead &
	Underarm.
•	Match practice (Single & Double).
•	Rules & Regulation.
TABLE	TENNIS
•	Introduction of Table Tennis.
•	Basic Stance and Grip (Shake hand & Pen hold).
٠	Service Basic.
٠	Stroke: Backhand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick,
	Block, Smash.
٠	Stroke: Forehand- Push, Deep Push, Chop, Rally, Drive, Drop Shot, Flick,
	Block, Smash.
•	Rules and their interpretations.
٠	Table Tennis Match (Singles & Doubles).
NCC	
٠	FD-1 General Introduction and words of command.
٠	FD-2 Attention, Stand at ease and Stand easy, Turning and inclining at the
	halt.
٠	FD-3 Sizing, Forming up in three Ranks Numbering, Open and Close order
	March and Dressing.
٠	FD-4 Saluting at the halt, Getting on parade, Dismissing and falling out.
٠	FD-5 Marching, Length of pace and Time of Marching in quick time and Halt,
	Slow March and Halt.
•	FD-7 Turning on the March and Wheeling.
•	FD-12 Parade practice.
ΤΑΕΚν	vondo
•	Introduction about Taekwondo- Meaning of Taekwondo, Korean language
	of dress, Fighting area, Punch, Block, Kicks etc.
•	Stance- Ready stance, Walking stance, Fighting stance, Front stance. Back
	stance, Cat stance etc.
•	Punch Technique- Front fist punch, Rear fist punch, Double fist punch. With
	stance etc. Blocks- Upper blocks. Middle block. Side block. Suto etc.
•	Foot Technique (Balgisul)- Standing kick (Saseochagi), Front kick (Abchagi).

Doliyo (Chagi), Abdalchagi (Butterfly kick), Back kick etc.

#### NSS

- Swachha Bharat Mission
- Free Medical Camp
- Sanitation drive in and around the campus.
- Unnat Bharat Abhiyaan
- MatribhashaSaptah celebration

### Mapping of CO (Course outcome) and PO (Programme Outcome)

												-		
Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
XXS51	CO1	-	-	-	-	-	2	-	-	3	-	-	-	
	CO2	-	-	-	-	-	-	-	2	-	-	-	-	
	CO3	-	-	-	-	-	-	1	-	-	-	-	3	
	CO4	-	-	-	-	-	-	-	-	2	2	-	-	
	CO5	-	-	-	-	-	3	1	-	-	-	-	-	

#### Correlation levels 1, 2 or 3 as defined below:

SI. No	Code	Subject	L	т	S	С	н
1	MAC02	Mathematics - II	3	1	0	4.0	4
2	CSC01	Introduction to Computing	2	1	0	3.0	3
3	ECC01	Basic Electronics	2	1	0	3.0	3
4	EEC01	Electrical Technology	2	1	0	3.0	З
5	BTC01	Life Science	2	0	0	2.0	2
6	XXC01	The Constitution of India and Civic Norms	1	0	0	1.0	1
7	XES52	Graphical Analysis using CAD	0	0	2	1.0	2
8	CSS51	Computing Laboratory	0	0	2	1.0	2
9	ECS51	Basic Electronics Laboratory	0	0	2	1.0	2
10	EES51	Electrical Technology Laboratory	0	0	2	1.0	2
11	XXS52	Co-curricular Activities - II	0	0	2	1.0	2
		TOTAL	12	4	10	21.0	26

#### SECOND SEMESTER

		Department of I	Mathemat	ics						
Course	Title of the course	Program	Tota	l Number c	of contact ho	ours	Credit			
Code		Core (PCR) /	Lecture	Tutorial	Practical	Total				
		Electives	(L)	(T)	(P)	Hours				
		(PEL)								
MAC 02	MATHEMATICS - II	PCR	3	1	0	4	4			
P	re-requisites	Course Assess	ment meth	nods (Conti	nuous (CT),	mid-term	n (MT)			
		and end assess	sment (EA)							
Basic cor	ncepts of set theory,	CT+MT+EA								
differer	itial equations, and									
	probability.									
Course	CO1: Develop	the concept of t	basic linea	r algebra ai	nd matrix e	quations	so as to			
Outcomes	apply mathema	atical methods	involving a	arithmetic,	algebra, ge	eometry	to solve			
	problems.	wa tha hadia aa								
	CO2: To acqui	ife the basic co	hions	quired to t	inderstand,	construc	t, solve			
		the concents of	Lionis. Laniaco tr	ancformati	on & Equriq	r trancfo	rmation			
	• COS. Develop	ty to solve ordi	inany diffo	rontial agu	on & roune		niation			
	conditions which	ty to solve ord	all engined	aring & ras	acions with	given bu	Junuary			
	CO4: To grash	the basic concer	an engine ats of prob	ahility theo	rv					
Topics	Flementary algebra	aic structures: (	Group suł	ngroun rin	g suhring	integral	domain			
Covered	and field.	(5)	croup, sur	56100p, 111	5, 5051115,	incegran .	aomani,			
corerea	Linear Algebra: Veg	ctor space. Subs	spaces. Lin	ear depen	dence and i	independ	ence of			
	vectors, Linear spa	n, Basis and d	imension	of a vecto	or space. Ra	ank of a	matrix.			
	Elementary transfo	ormations, Ma	trix invers	sion, Solu	tion of sy	stem of	Linear			
	equations, Eigen	values and	Eigen	vectors, (	, Cayley-Ham	ilton Tl	neorem,			
	Diagonalization of n	natrices.	- (1	5)						

	Ordinary Differential Equations: Existence and uniqueness of solutions of ODE (Statement Only), Equations of first order but higher degree, Clairaut's equation, Second order differential equations, Linear dependence of solutions, Wronskian determinant, Method of variation of parameters, Solution of simultaneous equations. (12) Fourier series: Basic properties, Dirichlet conditions, Sine series, Cosine series,
	Convergence. (4)
	<ul> <li>Laplace and Fourier Transforms: Laplace transforms, Inverse Laplace transforms, Convolution theorem, Applications to Ordinary differential equations.</li> <li>Fourier transforms, Inverse Fourier transform, Fourier sine and cosine transforms and their inversion, Properties of Fourier transforms, Convolution. (10)</li> <li>Probability: Historical development of the subject and basic concepts, Axiomatic definition of probability, Examples to calculate probability, Random numbers. Random variables and probability distributions, Binomial distribution, Normal distribution. (10)</li> </ul>
Text Books, and/or reference material	<ol> <li>Text Books:         <ol> <li>E. Kreyszig, Advanced Engineering Mathematics: 10thed, Wiley India Ed. (2010).</li> <li>Gilbert Strang, Linear algebra and its applications (4th Ed), Thomson (2006).</li> <li>Shepley L. Ross, Differential Equations, 3rd Edition, Wiley Student Ed (2017).</li> </ol> </li> <li>Reference Books:         <ol> <li>S. Kumaresan, Linear algebra - A Geometric approach, PHI (2000).</li> <li>C. Grinstead, J. L. Snell, Introduction to Probability, American Math. Society.</li> </ol> </li> </ol>

### Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
MAC02	CO1	3	3	2	1	2	-	2	-	-	-	1	2
	CO2	3	3	2	2	2	-	2	-	-	1	-	2
	CO3	3	3	2	2	3	1	1	-	1	1	1	2
	CO4	3	2	1	3	2	1	1	1	1	-	_	2

### Correlation levels 1, 2 or 3 as defined below:

Course	Tit	le of the course	Program Core	Tota	l Number o	of contact ho	ours	Credit			
Code			(PCR) /	Lecture	Tutorial	Practical	Total				
			Electives	(L)	(T)	(P)	Hours				
			(PEL)								
CSC01	IN T(	ITRODUCTION	PCR	2	1	0	3	3			
Р	're-re	quisites	Course Assessm	ourse Assessment methods (Continuous (CT), mid-term (MT) and							
			end assessment	end assessment (EA))							
Basic know	wledg	ge of computer.	CT+MT+EA								
Course	50	CO1: Recognize	CO1: Recognize the changes in hardware and software technologies with respect to								
Outcom	es	the evolution	of computers a	nd describ	e the fun	ction of sy	vstem so	ftware's			

	(operating Systems) and application software's, languages, number system, logic
	gates.
	C programs using operators.
	CO3: Develop conditional and iterative statements to write C programs.
	CO4: Exercise user defined functions to solve real time problems
	CO5: Inscribe C programs that use Pointers to access arrays, strings and functions.
	CO6: Exercise user defined data types including structures and unions to solve
	problems.
Topics	Fundamentals of Computer: History of Computer, Generation of Computer,
Covered	Classification of Computers 2L Basic Anatomy of Computer System, Primary &
	Secondary Memory, Processing Unit, Input & Output devices. [2]
	Languages: Assembly language, high level language, compiler, and assembler (basic
	Binary & Allied number systems representation of signed and unsigned numbers
	BCD ASII Binary Arithmetic & logic gates [2]
	Basic concepts of operating systems like MS DOS, MS WINDOW, UNIX, Algorithm &
	flow chart. [1]
	C Fundamentals: The C character set identifiers and keywords, data type & sizes,
	variable names, declaration, statements. [2]
	Operators & Expressions: Arithmetic operators, relational and logical operators,
	type, conversion, increment and decrement operators, bit wise operators,
	assignment operators and expressions, precedence, and order of evaluation. Input
	and Output: Standard input and output, formatted output printf, formatted input
	scanf. [8]
	Flow of Control: Statement and blocks, if - else, switch, loops - while, for do while,
	break and continue, go to and labels. [5]
	Fundamentals and Program Structures: Basic of functions, function types, functions
	returning values, functions not returning values, auto, external, static and register
	line arguments [5]
	Arrays and Pointers: One-dimensional two-dimensional arrays pointers and
	functions, multi-dimensional arrays. [10]
	Structures Union and File: Structure, union, structures and functions, arrays of
	structures, file read, file write.[5]
Text Books,	Text Books:
and/or	1. Let us C by Kanetkar
reference	2. C Programming by Gottfried
material	3. Introduction to Computing by Balaguruswamy
	4. The C-programming language by Dennis Ritchie
	Reference Books:
	1. Computer fundamental and programming in C by P Dey and M. Ghosh
	2. Computer fundamental and programming in C by Reema Thareja
	3. programming with C by Schaum Series

Mapping of CO (Cours	e outcome) and PO	) (Programme	Outcome)
----------------------	-------------------	--------------	----------

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CSC01	CO1	3	1	2	1	-	-	-	-	-	-	-	-
	CO2	-	2	1	2	1	-	-	-	-	-	-	-
	CO3	1	2	-	-	3	-	-	-	-	-	-	-
	CO4	1	3	1	2	3	-	-	-	-	-	-	1
	CO5	2	1	-	-	3	-	-	-	-	-	-	-
	CO6	2	-	3	-	1	-	-	-	-	-	-	-

#### Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program Core	To	tal Numbe	r of contact	hours	Credit				
Code	course	(PCR) /	Lectur	Tutoria	Practical	Total					
		Electives (PEL)	e (L)	I (T)	(P)	Hours					
ECC01	Basic	PCR	2	1	0	3	3				
	Electronics										
	Pre-requis	ites	Course Assessment methods (Continuous (CT), mid-								
			term (MT) and end assessment (EA))								
(10+2)	level mathema	tics and physics			CT+MT+	EA					
Cours	e • CO1:	Knowledge of Sem	niconduct	or physics	and devices	•					
Outcom	nes • CO2:	Have an in depth	understa	nding of ba	asic electror	nic circuit, c	onstruction,				
	oper	ation.									
	• CO3:	Ability to make pr	oper des	igns using	these circui	t elements t	for different				
	appli	cations.									
	• CO4:	Learn to analyze t	the circuit	ts and to fi	nd out rela	tion betwee	en input and				
	outp	ut.									
Topic	s 1. <b>Se</b>	emiconductors									
Covere	ed 1.1. Co	oncept of band for	ormation	in solids;	Fermi-Dira	c distributio	on function,				
	concept	of Fermi level, in	variance	of Fermi	level in a	system und	der thermal				
	equilibriu	m									
	1.2. Defi	nitions of insulator	, conduct	or and sem	niconductor	using band	diagram				
	1.3. Crys	talline structure of	semicon	ductor							
	1.3.1. CO	valent bond	مما مامم+								
	1.3.2. Ge	neration of noies a	and electr	ons							
	1.5.5. EII	ect of temperature	eonsenn	conductor							
	1.4 Intrin 1.5 Donin	a and Extrinsic son	niconduct	or							
	1.5 Dopin	ne semiconductor	and han	diagram							
	1.5.1 n T	ne semiconductor	and band	diagram							
	1.5.3 Mas	s-action law of ser	miconductor								
	1.6. Cond	unductor (including mathematical expression)									
	1.7 Carri	er transport pheno	omenon. (03 hrs.)								
	2. <b>D</b> i	odes		- /							
	2.1. Cons	truction									

2.2. Unbiased diode; Depletion layer and Barrier potential; junction capacitance (expression only)

2.3. Principle of operation with forward biasing and reverse biasing

2.4. Characteristics

2.5 Diode's three models/equivalent circuits.(02 hrs.)

3. Diode Circuits

3.1 Diode rectifier

3.1.1 Half wave rectifier

3.1.2 Full wave rectifier:centre tap and bridge rectifier

3.1.3 Capacitive filter and DC power supply (Numerical problems)

3.2 Special Diodes

3.2.1 Zenerdiode: Avalanche breakdown and Zener breakdown and characteristics.

3.2.2 Zener diode as a voltage regulator

3.2.3 Displaydevices: LED and LCD. (03 hrs.)

#### 4. **Bipolar Junction Transistor (BJT)**

4.1 n-p-n and p-n-p transistor and their constructions

4.2 Principle of operation

4.3 Transistor configuration: common base, common emitter, and common collector

4.4 Transistor characteristics: input and output characteristics of CB and CE configurations

4.5 DC load line: quiescent (Q) point; cut-off, active, and saturation region

4.6 Amplifier: Principle of operation

4.7 Transistor as a switch. (04 hrs.)

#### 5. Transistor Biasing

5.1 Need of biasing

5.2 Methods of biasing: base resistor or fixed bias, emitter feedback, voltage divider biasing

(02 hrs.)

5.3 Stability of Q-point (qualitative discussions)

5.4 (Numerical problems).

### 6.Single Stage Amplifier:

classification of amplifiers (voltage amplifier, current amplifier, power amplifier etc.) Class-A CE Amplifier with coupling and bypass capacitors, Qualitative discussions of magnitude characteristics of frequency response (graph only) (02 hrs.)

### 7. Feedback Amplifier

7.1 Positive and negative feedback

7.2 Deduction of gain with negative feedback, explanation of stability of gain with negative feedback, other effects of negative feedback (no deduction), numerical problems. (03 hrs.)

### 8. Other Semiconductor Devices

8.1 JFET: Construction, principle of operation, characteristics

- 8.2 MOSFET: Construction, principle of operation, characteristics
- 8.3 Power Electronic Device-SCR: Brief discussions. (02 hrs.)

### 9. Operational Amplifier

- 9.1 Characteristics of ideal operational amplifier
- 9.2 Pin Configuration of IC 741,

	9.3 Analysis of simple operational amplifier circuits: concept of virtual ground;
	noninverting amplifier and inverting amplifier.
	9.4 Applications: voltage follower, summer, differentiator, integrator, and
	comparator (04 hrs)
	10.Oscillator
	10.1 Positive feedback and condition of oscillation
	10.2 R-C phase-shift oscillator, Wien bridge oscillator.(02 hrs.)
	11.Boolean Algebra
	11.1 Boolean algebra, De Morgan's theorem, simplification of Boolean expressions
	11.2 Number system, range extension of numbers, overflow
	11.3 Different codes: grav code. ASCII code and BCD codes and them
	Applications. (01 hrs.)
	12. Logic Gates
	12.1 NOT, OR, AND, NOR, NAND, EX-OR, EX-NOR gates
	12.2 Simplification of logic functions
	12.3 Realizations of logic expressions using logic gates. (01 hrs.)
	13. CRO and its applications and other test and measurement instruments. (01
	hrs.)
Text Books,	<u>Text Books</u> :
and/or	1. Introduction Electronic Devices & Circuit Theory, 11/e, 2012, Pearson:
reference	Boylestad & Nashelsky
material	2. Electronic Principles, by Albert Paul MalvinoDr. and David J. Bates, 7/e.
	<u>Reference Books</u> :
	1. Integrated Electronics by Millman, Halkias and Parikh, 2/e, McGrawHill.
	2. ELECTRONICS Fundamentals and Applications by Chattopadhyay and
	Rakshit,15/e, New Age Publishers.
	3. The Art of Electronics by Paul Horowitz, Winfield Hill, 2/e, Cambridge
	University.
	4. Electronics - Circuits and Systems by Owen Bishop, 4/e, Elsevier.
	5. Electronics Fundamentals: Circuits, Devices & Applications by Thomas L. Floyd
	& David M. Buchla, 8/e, Pearson Education.

### Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
ECC01	CO1	2	3	2	2	-	1	-	-	-	-	-	1
	CO2	3	2	1	2	2	1	-	2	2	-	-	1
	CO3	3	2	2	2	3	-	-	-	2	-	-	1
	CO4	3	3	2	2	-	-	-	-	2	-	_	1

### Correlation levels 1, 2 or 3 as defined below:

	Dep	partment of Electri	cal Enginee	ering						
Course	Title of the	Program Core	Tota	l Number	of contact h	ours	Credit			
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
EEC01	ELECTRICAL TECHNOLOGY	PCR	3	0	0	3	3			
Pre-	requisites	Course Assessment methods (Continuous (CT), Mid Term (MT), and end assessment (EA))								
	NIL			CT+MT+ E	EA					
Course Outcomes	<ul> <li>Upon successful completion of this course, the student should be able to CO1: learn the fundamentals of Electric Circuits and Network theory and analysis of electrical network based on these concepts.</li> <li>CO2: develop an idea on Magnetic circuits, Electromagnetism and learn the working principles of some fundamental electrical equipment's</li> <li>CO3: learn about single phase and poly-phase AC circuits and analysis such circuits based on these concepts.</li> <li>CO4: introduce the basic concept of single-phase transformer.</li> </ul>									
Topics Covered	Introduction: C Fundamentals and Dependen Network theo Theorem, Max Magnetic circu transformer a coupled circuit Transients with Generation of R.M.S. value, F quantity, Beha circuits. AC N theorem, max sources. (10) Single-Phase T tests (6)	<ul> <li>CO4: introduce the basic concept of single-phase transformer.</li> <li>Introduction: Overview of Electrical power generation systems (2)</li> <li>Fundamentals of Electric Circuits: Ohm's laws, Kirchhoff's laws, Independent and Dependent sources, Analysis of simple circuits. (4)</li> <li>Network theorems: Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem (4)</li> <li>Magnetic circuits: Review of fundamental laws of electromagnetic induction, transformer and rotational emfs, Solution of magnetic circuits. Analysis of coupled circuits (self-inductance, mutual inductance, and dot convention)(8)</li> <li>Transients with D.C. excitation for R-L and R-C circuits. (3)</li> <li>Generation of alternating voltage and current, E.M.F. equation, Average and R.M.S. value, Phase and phase difference, Phasor representation of alternating quantity, Behavior of A.C. circuits, Resonance in series and parallel R-L-C circuits. AC Network: Superposition theorem, Thevenin's theorem, Norton's theorem, maximum power transfer theorem, solution of networks with AC sources. (10)</li> </ul>								
Textbooks/Ref nce materia	ere I Textbooks: 1. Electrical & E Reference Book 1. Advanced Elec 2. Electrical Engi	Textbooks: 1. Electrical & Electronic Technology by Hughes, Pearson Education India Reference Books: 1. Advanced Electrical Technology by H. Cotton, Reem Publication Pvt. Ltd 2. Electrical Engineering fundamentals by Vincent Deltoro, Pearson Edu India								

	mapping of do (course outcome) and to (trogramme outcome)													
POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12		
COs														
CO1	3	3	3	3	3	1	1	1	1	1	1	1		
CO2	3	3	3	3	2	1	2	1	1	1	1	1		
CO3	3	3	3	3	3	2	2	1	1	1	1	1		
CO4	3	3	3	3	3	2	2	1	1	1	1	1		
CO5	3	3	2	2	2	1	1	1	1	1	1	1		

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

#### Correlation levels 1, 2 or 3 as defined below:

2: Moderate (Medium)

1: Slight (Low)

3: Substantial (High)

Course	Title of the	e Program Core	Tota	l Number c	of contact ho	ours	Credit					
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives (PEL)	(L)	(T)	(P)	Hours						
BTC01	LIFE SCIENC	CE PCR	2	0	0	2	2					
Pre	e-requisites	Course Assess	ment meth	nods (Conti	nuous (CT),	mid-term	า (MT)					
			and end assessment (EA))									
			CT+MT+EA									
Course	CO1: Basi	c understanding of bas	sic cellular	organizatio	on of organ	isms and	cellular					
Outcome	es communio	ations, structure and	function	s of the	macromole	cules an	d their					
	biosynthe	biosynthesis and catabolism.										
	CO2: To	give an understanding	g of the k	ey feature	s of the st	ructure,	growth,					
	physiology	and behavior of bacte	ria, viruses	, fungi and	protozoa							
	CO3: To ir	troduce molecular bio	logy to und	derstand bi	ological pro	cesses in	various					
	applicatio	ns.					<i>.</i> .					
	CO4: To p	rovide a foundation in	immunolo	gical proce	sses and an	overviev	w of the					
	interaction	n between the immune	system an	d pathoger	1S.							
	CO5: 10	provide knowledge al	Sout biolo	gical and	biochemica	l process	ses that					
	require er	gineering expertise to	solve them	atan ana	h:							
		provide knowledge at	DOUT DIOIO	gical and	biochemica	r process	ses that					
Topics		lgineering expertise to :	solve them									
Covered		roduction to life scienc	o: nrokarva	tos & ouks	nvotos							
Covered		finition: Difference	e. prokaryt		il yoles							
	b) Int	roduction to cells - Def	ine cell. dif	ferent type	s of cell							
	c) Ce	llular organelles - All or	ganelles ar	nd function	s in brief							
	d) Ce	llular communications	0									
	Ínt	roduction to basic sign	aling; end	ocrine, para	acrine signa	ling; con	cepts of					
	reo	ceptor, ligand, on-off sv	vitch by ph	osphorylat	ion/dephos	phorylatio	on					
	2. Biocher	2. Biochemistry (4)										
	a) Bio	ological function of car	bohydrate	and lipid -	Introductio	on, struct	ure and					
	b) Bio	logical function of nucl	leic acids a	nd protein	- structure a	and funct	ion					
	c) Ca	tabolic pathways of	Macromol	ecules - I	ntroduction	to cata	abolism.					
	hy	drolysis and condensat	tion reaction	ons; Catab	olism of glu	icose- Gl	ycolysis,					

[	
	TCA; overall degradation of proteins and lipids
	d) Biosynthesis of Macromolecules
	Generation of ATP (ETS), Generation of Glucose (Photosynthesis)
	3. Microbiology (5)
	a) Types of microorganisms and their general features - Bacteria, Yeast, Fungi,
	Virus, Protozoa- general introduction with practical significance and
	diseases
	b) Microbial cell organization - Internal and External features of cell- bacterial
	cell wall, viral capsule, pilus etc,
	c) Microbial nutritional requirements and growth - Different Sources of
	energy: growth curve
	d) Basic microbial metabolism - Fermentation, Respiration, Sulfur, N ₂ cycle
	4. Immunology (5)
	a) Basic concept of innate and adaptive immunity - Immunity-innate and
	adaptive differences components of the immune system
	h) Antigen and antibody interaction - Antigen and antibody immunogen
	factors affecting immunogenicity basic antigen-antibody modiated accove
	introduction to monoclonal antibody
	c) Eulertions of R coll - R coll - antibody production momony concretion and
	c) Functions of B cen - B cen, antibody production, memory generation and
	d) Dolo of T coll in coll modiated immunity. Th and To functions of the T coll
	d) Role of 1 cell in cell-mediated initiality - 11 and 1c, functions of the 1 cell
	F. Malagular Biology (5)
	5. Wolecular Biology (5)
	a) Prokaryotic Genomes (Genome organization & structure) - Nucleoid,
	circular or linear
	b) Eukaryotic Genomes (Genome organization & structure) - Intron, exon,
	packaging, chromatin
	c) Central Dogma (Replication, Transcription and Translation)
	d) Applications of Molecular Biology (Diagnostics, DNA-fingerprinting,
	Recombinant products etc.) - Introduction to Recombinant DNA,
	fingerprinting, cloning
	6. Bioprocess Development (5)
	a) Microbial growth kinetics - Batch, fed-batch and continuous systems,
	Monod Equation
	<ul><li>b) Enzyme kinetics, kinetics of enzyme inhibition and deactivation</li></ul>
	Definition of enzymes, activation energy, Concepts of Km, Vmax, Ki
	<ul> <li>c) Microbial sterilization techniques and kinetics</li> </ul>
	Introduction to sterilization, dry and moist sterilization
	d) Thermodynamics of biological system - Concepts of Enthalpy, Entropy,
	favorable reactions, exergonic and endergonic reactions
	e) Material and energy balance for biological reactions - Stoichiometry
Text Books,	1. Biotechnology 01 Edition, authored by U. Satyanarayana, BOOKS & ALLIED (P)
and/or	LTD.
reference	2. Biochemistry by Lehninger. McMillan publishers
material	3. Microbiology by Pelczar, Chan and Krieg, Tata McGraw Hill
	4. Brown, T.A., Genetics a Molecular Approach, 4th Ed. Chapman and Hall. 1992
	5. Kuby J, Thomas J. Kindt, Barbara, A. Osborne Immunology, 6th Edition.
L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

		Freeman, 2002.
	6.	Bioprocess Engineering: Basic Concepts (2nd Ed), Shuler and Kargi, PHI.

### Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	2	1	1	-	1	-	-	-	-	-	-	-
	CO2	2	1	1	-	1	-	1	-	-	-	-	-
BTC01	CO3	2	1	1	-	1	-	-	-	-	-	-	-
	CO4	2	1	1	-	1	-	-	1	-	-	-	1
	CO5	2	1	1	-	1	1	1	-	-	-	-	-

### Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Tota	l Number o	f contact ho	ours	Credit			
Code		(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
	The Constitution									
XXC01	of India and Civic	PCR	1	0	0	1	1			
	Norms									
Pr	e-requisites	Course Assess	ment metl	nods (Conti	nuous (CT),	mid-term	n (MT)			
			and er	nd assessm	ent (EA))					
	NIL			CT+MT+E	4					
Course	CO1: Elementa	ary understanding	of the evol	ution of his	torical ever	its that le	d to			
Outcome	es the making of	of the Indian consti	tution, the	philosoph	ical values, l	oasic stru	cture			
	and fundam	ental concerns ens	hrined in t	he Constitu	tion of India	э.				
	CO2: Aware of	the fundamental	rights and	duties as a	citizen of th	e country	/.			
	CO3: Enable	to know the civic	norms to	be follow	ed accordin	ng to the	e Indian			
	constitution			• • • •						
Topics	<b>1.</b> Historica	al background of the Making of Indian Constitution (1 Hour)								
Covered	d <b>2.</b> Preamb	ble and the Philosophical Values of the Constitution (1 Hour)								
	3. Brief Ov	erview of Salient Features of Indian Constitution (1 Hour)								
	4. Parts I &	د II: Territoriality and Citizenship (1 Hour)								
	5. Part III:	Fundamental Right	S (2 Hours	) ) ) ) (1     0						
	<b>7</b> Dart IV/A	· Eurodamontal Dut		'OIICY (1 110 r)	ur)					
	<b>7.</b> Part IVA	overnment: Presid	ont Drimo	Ninistar a	nd Council c	of Ministe	ars (7			
	B. Union G Hours)	overninent. Fresid	ent, rinne	iviiiiistei a			13 (2			
	9. Parliame	ent: Council of Stat	es and Ho	ise of the F	People (1 Ho	our)				
	<b>10.</b> State Go	overnment: Govern	or. Chief N	Aister and (	Council of M	linisters (	1 Hour)			
	<b>11.</b> State Le	vislature: Legislative Assemblies and Legislative Councils (1 Hour)								
	12. Indian Ju	udiciary: Supreme Court and High Courts (1 Hour)								
	<b>13.</b> Centre-S	re-State Relations (1 Hour)								
	14. Reserva	tion Policy, Langua	ge Policy a	nd Constitu	ution Ameno	dment (1	Hour)			

Text Books,	Primary Readings:								
and/or	1) P. M. Bakshi, The Constitution of India, 18 th ed. (2022)								
reference	2) Durga Das Basu, Introduction to the Constitution of India, 25 th ed. (2021)								
material	3) J.C. Johari, Indian Government and Politics, Vol. II, (2012)								
	Secondary Readings:								
	Granville Austin, The Indian Constitution: Cornerstone of a Nation (1966; paperback								
	ed. 1999); Granville Austin, Working a Democratic Constitution: The Indian								
	Experience (1999; paperback ed. 2003).								

Course	Title of the course	Program Core	Tota	l Number c	of contact ho	ours	Credit			
Code		(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
VECED	GRAPHICAL									
AE352	ANALYSIS USING	PCR	0	0	2	2	1			
	CAD									
Pi	re-requisites	Course As	sessment n	nethods (C	ontinuous ((	CT) and e	nd			
			as	sessment (	EA))					
	NIL			CT+EA						
Course	• CO1: Introduc	ction to graphical s	solution of	mechanics	problems					
Outcom	es •CO2: Knowle	edge on graphica	I solution	methods	for solving	g equilib	rium in			
	coplanar forc	e system								
	•CO3: Introdu	icing Maxwell diagram and solution of plane trusses by graphical								
	method									
	•CO4: Determi	ination of centroid	l of plane fi	igures by gi	raphical met	thod				
	CO5: Exposur	e to AutoCAD soft	ware for co	omputer ai	ded graphic	al solutio	n			
Topics	Graphical ar	nalysis of problem	s on statics	. [14]						
Covered	d • Graphical so	olution of engineer	ring proble	ms using C	AD (with the	e help of				
	"AutoCAD")	"AutoCAD") [14]								
Text and	or 1) Engineering	1) Engineering Drawing and Graphics – K Venugopal								
referenc	ce 2) AutoCAD —	George Omura								
materia	l 3) Practical Ge	ometry and Engin	eering Gra	phics – W A	Abbott					

### Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
XES52	CO1	2	-	-	-	-	-	-	-	-	-	-	-
	CO2	1	2	-	-	-	-	-	-	-	-	-	-
	CO3	2	1	-	-	-	-	-	-	-	-	-	-
	CO4	2	1	-	-	-	-	-	-	-	-	-	-
	CO5	1	-	-	-	2	-	-	-	-	-	-	_

### Correlation levels 1, 2 or 3 as defined below:

Course	Title of the	Program Core	Tota	Credit							
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives (PEL)	(L)	(T)	(P)	Hours					
CSS51	COMPUTING	PCR	0	0	2	2	1				
	LABORATORY		Ŭ	Ŭ	<u> </u>	2	-				
Pr	e-requisites	Course Assessment methods (Continuous (CT) and end									
			as	sessment (	EA))						
	NIL			CT+EA							
Course	•CO1: To und	lerstand the prind	ciple of op	erators, lo	ops, brancl	hing state	ements,				
Outcome	es function, rec	ursion, arrays, poir	nter, param	neter passir	ng technique	es					
	• CO2: To deta	il out the operatio	ns of string	S							
	• CO3: To unde	rstand structure, union									
	• CO4: Applica	tion of C-programr	ning to solv	ve various i	real time pro	oblems					
Topics	List of Experime	ents:									
Covered	d 1. Assignments	on expression eva	luation								
	2. Assignments	on conditional branching, iterations, pattern matching									
	3. Assignments	on function, recursion									
	4. Assignments	on arrays, pointers	s, paramete	er passing							
	5. Assignments	on string using arr	ay and poir	nters							
	6. Assignments	on structures, unio	on								
Text Boo	ks, Text Books:										
and/or	1. Let us C by I	Kanetkar									
referenc	e 2. C Programm	ning by Gottfried									
materia	I 3. Introduction	n to Computing by	Balagurusv	wamy							
	4. The C-progr	amming language	by Dennis I	Ritchie							
	Reference Bool	ks:									
	1. Computer fu	ndamental and pro	gramming	in C by P D	ey and M. G	Shosh					
	2. Computer fu	ndamental and pro	gramming	in C by Ree	ema Thareja						
	3. programming	g with C by Schaum	i Series								

### Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CSS51	CO1	3	-	1	-	-	-	-	-	-	-	-	-
	CO2	-	2	1	3	-	-	-	-	-	-	-	-
	CO3	-	1	-	2	1	-	-	-	-	-	-	-
	CO4	-	-	3	2	-	-	1	-	-	-	2	-

Correlation levels 1, 2 or 3 as defined below:

	<b>T</b> '11 (11	<b>D</b>									
Course	litle of the	Program Core	lota	I Number c	of contact ho	ours	Credit				
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total					
		Electives (PEL)	(L)	(T)	(P)	Hours					
ECS 51 E	Basic electronics	PCR	0	0	2	2	1				
	Lab										
Pre-re	equisites	Course As	sessment n	nethods (C	ontinuous ((	CT) and e	nd				
			as	sessment (	EA))						
	NIL			CT+EA							
Course	CO1: Acqu	ire idea about k	basic elect	ronic com	ponents, id	entificatio	on, and				
Outcomes	behavior.			I	,		,				
	• CO2: To d	etermine IV chara	acteristics	of these C	ircuit eleme	ents for d	lifferent				
	application	IS.									
	• CO3· Learn	n to analyze the (	rircuits and	l observe a	and relate i	nnut and	output				
	signals.						output				
Labs	1. To know y	our laboratory: 1	o identify	and unde	rstand the	use of d	lifferent				
Conducted.	electronic a	nd electrical instruments.									
	2. To identify	and understand name and related terms of various electronics									
	component	s used in electronic circuits.: Identify different terminals of									
	component	ts, fid their values and observe numbering associate with it.									
	3. Use of osc	cilloscope and function generator: Use of oscilloscope to measure									
	voltage, fre	equency/time and Lissajous figures of displayed waveforms.									
	4. Study of ha	alf wave and Full-wave (Bridge) rectifier with and without capacitor									
	filter circuit	t.									
	5. Realization	of basic logic gates: Truth table verification of OR, AND, NOT, NOT									
	and NAND	D logic gates from TTL ICs									
	6. Regulated power supply: study LM78XX and LM79XX voltage regulator ICs										
	7. Transistor	Transistor as a Switch: study and perform transistor as a switch through NOT									
	gate	,					0				
	8. Zenner dio	de as voltage regu	lator								
	9. To study cli	pping and Clampi	ng circuits								
	10. To study di	ifferent hiasing cirtis									
	11. Study of CE	F amplifier and observe its frequency response									
Text Books.	Text Books:										
and/or	1. Experimente	Manual for use with Electronic Principles (Engineering									
reference	Technologies 8	& the Trades) by Albert Paul MalvinoDr David L Bates et al									
material	Reference Boo	ke.									
	1. The Art	rt of Electronics 3e, by Paul Horowitz, Winfield Hill									
	2 Electro	tronic Principles by Albert Paul MalvinoDr, and David L Bates									

### Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	3	2	1	2	2	1	-	-	2	-	-	-
ECS51	CO2	3	2	2	2	3	-	-	-	2	-	-	-
	CO3	3	3	2	2	-	-	-	-	2	-	-	-

### Correlation levels 1, 2 or 3 as defined below:

	Department of Electrical Engineering															
Course		Title of t	he	Program Core Total Number of contact hours												
Code		course	2	(	, PCR)/		Lecture	Tut	orial	Practical	Total					
				Elect	tives (P	EL)	(L)	(	Т)	(P)	Hours	S				
EES51	E	LECTRICA	L			,	( )	,	,	( )						
	TE	CHNOLO	GΥ									1				
	LA	BORATO	RY													
Р	re-re	auisites			Course	- Asses	ssment	metho	ds (Co	ntinuous	(CT) and	end				
		40.00000			assessment (EA))											
	No	one			CT+EA											
Course	<u> </u>	I	Inon su	Incessfi	il comr	letion	of this	COURSE	the s	tudent sh	ould he a	hle to				
Outcom		• CO1. 11	ndersta	and the	nrincir			cition	, the s	tuucht sh						
Outcom	C3	• CO2: 11	ndersta	and the	nrincir	ole of r	navimu	m now	ortra	nsfor						
		• CO2: u	ndorsta	and the	charac	toricti		l inca	ndosco	nt lamn	carbon l	amn				
		• COA: u	ndorsta	and the	calibra	tion o	f onorm	i moto	r	Lint Lamp,	carbonn	amp.				
		• CO5: 11	ndersta	and one	e circu	uit and	short ci	rcuit t	ost of a	single_nha	so trans	former				
		• CO5: u	nalvza I	RIC sor	ios and	l narall		tcuit to				orner.				
		• CO7: 11	ndersta	and thr	ee nhag	se coni	nection	2								
		• CO8: ur	ndersta	nd det	erminat	tion of	B-H cu	rve								
Tonics		List of Fy	nerim	ents.			Bircu	vc								
Covere	d	1 To ver	ify Sup	fy Superposition and Thevenin's Theorem.												
		2 To ver	rify Norton and Maximum power transfer theorem													
		3. Characteristics of fluorescent and compact fluorescent lamp														
		4 Calibra	ation o	n energ	v mete	r ۲	. compa	et nae		it iainp						
		5. To perform the open circuit and short circuit test on single phase transformer														
		6. To stu	dv the	balance	ed thre	e phas	e syster	n for s	tar an	d delta co	nnected	load				
		7. Charao	Characteristics of different types of Incandescent lamps													
		8. Study	of Serie	es and parallel R-L-C circuit												
		9. Deterr	minatio	n of B-	H Curve	e for m	nagnetic	mate	rial							
Textboo	ks.	Textboo	ks:	-			-0		-							
and/o	r	1. Han	dbook	of Labo	oratorv	Experi	iments i	n Elect	tronics	and Elect	rical Eng	ineering				
referen	ce		by A	ΜZι	, Ingeru	(Autho	or), J M	Chuma	a (Auth	nor), H U E	zea (Aut	hor)				
materia	al	2. Labo	ratory	Course	s in Ele	、 ctrical	Engine	ering (!	5 th Edit	tion) by S.	G. Tarne	, kar, P. K.				
		Kha	rbanda	i, S. B. I	Bodhke	, S. D.	Naik, D.	J. Dah	igaonl	kar (S. Cha	nd Publi	cations)				
		Mappin	g of CO	(Cour	se Outo	come)	and PO	(Prog	ramme	Outcom	e)	·				
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
COs																
CO1	3	3	3	3	3	1	1	1	2	2	2	3				
CO2	3	3	3	3	3	1	1	1	2	2	2	3				
CO3	3	3	3	3	3	1	1	1	2	2	2	3				
CO4	3	3	3	3	3	1	1	1	2	2	2	3				
CO5	3	3	3	3	3	1	1	1	2	2	2	3				
CO6	3	3	3	3	3	1	1	1	2	2	2	3				
CO7	3	3	3	3	3	1	1	1	2	2	2	3				
CO8	3	3	3	3	3	1	1	1	2	2	2	3				
### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

- <b>-</b> •	Title of the	Program Coro (PCP)	Tota	urs					
Course Code			Lecture	Tutorial	Practical	Total	Credit		
	course		(L)	(T)	(P) [#]	Hours			
XXS-52	Co-curricular Activities	PCR	0	0	2	2	1		
Pre-requisites	Course asses	ssment methods: (Cont	inuous eva	luation((CE	) and end as	sessment	: (EA)		
NIL			CE + EA						
Course	• CO1: So	cial Interaction: Throug	h the medi	um of sport	ts				
Outcomes	• CO2: Et	hics: Recognize differe	nt value sy	ystems incl	uding your	own, und	lerstand		
	the mor	• CO2: Solf-directed and Life-long Learning: Acquire the ability to opgage in							
	• CUS. St indepen	• COS. Self-directed and Life-long Learning. Acquire the ability to engage in independent and life-long learning in the broadest context socio-technological							
	changes	changes							
	<ul> <li>CO4: Pe</li> </ul>	rsonality development	through co	mmunity ei	ngagement				
	• CO5: Exp	CO5: Exposure to social service							
Topics	YOGA								
Covered	<ul> <li>Sitting</li> </ul>	• Sitting Posture/Asanas- Gomukhasana, Swastikasana, Siddhasana, <u>Ustrasana</u> ,							
	Janusirs	Janusirsasana, ArdhaMatsyendrasana (Half-Spinal Twist Pose),							
	Paschim	iottanasana, Shashanka	isana, Bhac	lrasana.	- Dhainen na				
	Iviudra-	Vayu, Shunya, Prithvi, V Bosturo (Asapas Shal	varuna, Apa abbasana	ana, Hridaya (Locust - Br	a, Bhairav m	uara.	2 (Pow		
	Laying     Posture	Postule/Asalias- Silai ΔrdhaHalasana (Hal	aunasana If Plough	(LUCUSI PI Pose) Sarv	vangasana (	anurasan Shoulder	d (bow Stand)		
	Halasan	a (Plough Pose). M	atsvasana.	SuptaVair	asana. Cha	ikrasana	(Wheel		
	Posture	), Naukasana (Boat Pos	ture), Shava	asana (Rela	xing Pose), N	//akaraasa	ana.		
	<ul> <li>Meditat</li> </ul>	ion- 'Om'meditation, K	undalini or	Chakra Me	ditation, Ma	ntramedi	tation.		
	<ul> <li>Standing</li> </ul>	g Posture/Asanas- Arc	dhaChakrsa	na (Half V	Vheel Postu	ıre), Trik	onasana		
	(Triangle	e Posture), Parshwak	Konasana	(Side Angl	e Posture),	Padaha	stasana,		
	Vrikshas	ana (Tree Pose), Garuc	lasana (Eag	le Pose).					
	Pranaya	ma- Nadisodha, Shitali,	, Ujjayi, Bha	istrika, Bhra	amari. Davalla Ma	h a Davalk			
	Banuna-     Kriva Kri	• Oddiyana Bandna, Mu analahhati Trataka Na	ila Bandha, li	Jalandhara	Banuna, Ma	ina Bandr	1d.		
		apalabilati, Trataka, Na	ull.						
	• Long Ju	mp- Hitch kick. Paddli	ng. Approa	ich run. Ta	ke off. Velo	city. Tecl	nniques.		
	Flight &	Landing		,,	,,	,,			
	Discus t	hrow, Javelin throw a	nd Shot-pu	t- Basic ski	ll & Techniq	jue, Grip,	Stance,		
	Release	& Follow through.							
	Field eve	ents marking.							
	General Rules of Track & Field Events.								
	BASKETBALL								
	Shooting	g- Layup shot, Set shot,	Hook shot	, Jump shot	. Free throw				
	Rebound	aing-Defensive reboun	d, Uttensiv	e rebound.	ا ما باندام م				
	<ul> <li>Individu</li> </ul>	al Detensive- Guarding	the man w	ithout ball a	and with bal	Ι.			

•	Pivoting.
•	Rules of Basketball.
•	Basketball game.
VOLLE	EYBALL
•	Spike- Straight spike, Body turn spike, Tip spike, Back attack, Slide spike, Wipe out
	spike.
•	Block- Single block, Double block, Triple block, Group block.
•	Field Defense- Dig pass, Double pass, Roll pass.
•	Rules and their interpretation.
FOOT	BALL
•	Dribbling- Square pass, Parallel pass, Forward pass.
•	Heading (Standing & Running)- Fore head, Side fore head, Drop heading, Body
	covering during heading.
•	Kicking- Full volley, Half volley, Drop kick, Back volley, Side volley, Chiping (lobe).
•	Tackling: Covering the angle, Chessing time sliding chese, Heading time shoulder
	tackle etc.
•	Feinting- Body movement to misbalance the opponent and find space to go with
	ball.
•	Rules of Football.
CRICK	ΈT
•	Batting straight drive.
•	Batting pull shot.
•	Batting hook shot.
•	Bowling good length, In swing.
•	Bowling out swing, Leg break, Goggle.
•	Fielding drill.
•	Catching (Long & Slip).
•	Wicket keeping technique.
•	Rules & Regulation.
BADN	
•	Net play- Tumbling net shot, Net Kill, and Net Lift.
•	Smashing.
•	Defensive high clear/Lob.
•	Half court toss practice, Cross court toss drop practice, Full court Game practice.
•	Player Positioning, Placements.
•	Rules & Regulation.
•	Doubles & Mixed doubles match practice.
TABLE	
•	Stroke: Backhand- Topspin against push ball, Topspin against deep ball, Topspin
	against raily ball, Lopspin against topspin.
•	Stroke: Forenand- Topspin against push ball, Topspin against deep ball, Topspin
_	against rany pail, Lopspin against topspin.
•	subke- backnand lob with rally, Backnand lob with sidespin, Forenand lob With rally. Forehand lob with sidespin
	זמווע, דטוכוומווע וטא שונוז צועפאווו.

• Service: Backhand/Forehand- Push service, Deep push service, Rally service.

<ul> <li>Service: Backhand sidespin (Left to right &amp; Right to left).</li> <li>Service: Forehand- High toss backspin service, High toss sidespin service, High t reverse spin service.</li> <li>Rules and their interpretations.</li> <li>Table Tennis Match (Singles &amp; Doubles).</li> <li>NCC</li> <li>FD-6 Side pace, Pace Forward and to the Rear.</li> <li>FD-7 Turning on the March and Wheeling.</li> <li>FD-8 Saluting on the March.</li> <li>FD-9 Marking time, Forward March and Halt in Quick Time.</li> <li>FD-10 Changing step.</li> <li>FD-11 Formation of Squad and Squad Drill.</li> <li>FD-12 Parade practice.</li> <li>TAEKWONDO         <ul> <li>Poomsae (Forms)- Jang, Yi Jang.</li> <li>Self Defense Technique- Self defense from arms, Fist and Punch.</li> <li>Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).</li> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyoka)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> </ul> </li> <li>NSS         <ul> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Anti- Terrorism Day Celebration</li> </ul> </li> </ul>		
<ul> <li>Service: Forehand- High toss backspin service, High toss sidespin service, High t reverse spin service.</li> <li>Rules and their interpretations.</li> <li>Table Tennis Match (Singles &amp; Doubles).</li> <li>NCC <ul> <li>FD-6 Side pace, Pace Forward and to the Rear.</li> <li>FD-7 Turning on the March and Wheeling.</li> <li>FD-8 Saluting on the March.</li> <li>FD-9 Marking time, Forward March and Halt in Quick Time.</li> <li>FD-10 Changing step.</li> <li>FD-11 Formation of Squad and Squad Drill.</li> <li>FD-12 Parade practice.</li> </ul> </li> <li>TAEKWONDO <ul> <li>Poomsae (Forms)- Jang, Yi Jang.</li> <li>Self Defense Technique- Self defense from arms, Fist and Punch.</li> <li>Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).</li> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> </ul> </li> <li>NSS <ul> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> </ul> </li> </ul>		<ul> <li>Service: Backhand sidespin (Left to right &amp; Right to left).</li> </ul>
<ul> <li>reverse spin service.</li> <li>Rules and their interpretations.</li> <li>Table Tennis Match (Singles &amp; Doubles).</li> <li>NCC <ul> <li>FD-6 Side pace, Pace Forward and to the Rear.</li> <li>FD-7 Turning on the March and Wheeling.</li> <li>FD-8 Saluting on the March.</li> <li>FD-9 Marking time, Forward March and Halt in Quick Time.</li> <li>FD-10 Changing step.</li> <li>FD-11 Formation of Squad and Squad Drill.</li> <li>FD-12 Parade practice.</li> </ul> </li> <li>TAEKWONDO <ul> <li>Poomsae (Forms)- Jang, Yi Jang.</li> <li>Self Defense Technique- Self defense from arms, Fist and Punch.</li> <li>Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).</li> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> </ul> </li> <li>NSS <ul> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Out the observation (relebration proposed by Ministry/institute)</li> </ul> </li> </ul>		• Service: Forehand- High toss backspin service, High toss sidespin service, High toss
<ul> <li>Rules and their interpretations.</li> <li>Table Tennis Match (Singles &amp; Doubles).</li> <li>NCC <ul> <li>FD-6 Side pace, Pace Forward and to the Rear.</li> <li>FD-7 Turning on the March and Wheeling.</li> <li>FD-8 Saluting on the March.</li> <li>FD-9 Marking time, Forward March and Halt in Quick Time.</li> <li>FD-10 Changing step.</li> <li>FD-11 Formation of Squad and Squad Drill.</li> <li>FD-12 Parade practice.</li> </ul> </li> <li>TAEKWONDO <ul> <li>Poomsae (Forms)- Jang, Yi Jang.</li> <li>Self Defense Technique- Self defense from arms, Fist and Punch.</li> <li>Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).</li> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> </ul> </li> <li>NSS <ul> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Any other observation (calabration proposed by Minister/institute)</li> </ul> </li> </ul>		reverse spin service.
<ul> <li>Table Tennis Match (Singles &amp; Doubles).</li> <li>NCC <ul> <li>FD-6 Side pace, Pace Forward and to the Rear.</li> <li>FD-7 Turning on the March and Wheeling.</li> <li>FD-8 Saluting on the March.</li> <li>FD-9 Marking time, Forward March and Halt in Quick Time.</li> <li>FD-10 Changing step.</li> <li>FD-11 Formation of Squad and Squad Drill.</li> <li>FD-12 Parade practice.</li> </ul> </li> <li>TAEKWONDO <ul> <li>Poomsae (Forms)- Jang, Yi Jang.</li> <li>Self Defense Technique- Self defense from arms, Fist and Punch.</li> <li>Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).</li> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> </ul> </li> <li>NSS <ul> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Munictar/institute</li> </ul> </li> </ul>		Rules and their interpretations.
<ul> <li>NCC</li> <li>FD-6 Side pace, Pace Forward and to the Rear.</li> <li>FD-7 Turning on the March and Wheeling.</li> <li>FD-8 Saluting on the March.</li> <li>FD-9 Marking time, Forward March and Halt in Quick Time.</li> <li>FD-10 Changing step.</li> <li>FD-11 Formation of Squad and Squad Drill.</li> <li>FD-12 Parade practice.</li> <li>TAEKWONDO <ul> <li>Poomsae (Forms)- Jang, Yi Jang.</li> <li>Self Defense Technique- Self defense from arms, Fist and Punch.</li> <li>Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).</li> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> </ul> </li> <li>NSS <ul> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Any other observation (celebration proposed by Ministry/institute)</li> </ul> </li> </ul>		<ul> <li>Table Tennis Match (Singles &amp; Doubles).</li> </ul>
<ul> <li>FD-6 Side pace, Pace Forward and to the Rear.</li> <li>FD-7 Turning on the March and Wheeling.</li> <li>FD-8 Saluting on the March.</li> <li>FD-9 Marking time, Forward March and Halt in Quick Time.</li> <li>FD-10 Changing step.</li> <li>FD-11 Formation of Squad and Squad Drill.</li> <li>FD-12 Parade practice.</li> </ul> <b>TAEKWONDO</b> <ul> <li>Poomsae (Forms)- Jang, Yi Jang.</li> <li>Self Defense Technique- Self defense from arms, Fist and Punch.</li> <li>Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).</li> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> </ul> NSS <ul> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Any other observation (calebration proposed by Ministry/institute)</li> </ul>	NC	
<ul> <li>FD-7 Turning on the March and Wheeling.</li> <li>FD-8 Saluting on the March.</li> <li>FD-9 Marking time, Forward March and Halt in Quick Time.</li> <li>FD-10 Changing step.</li> <li>FD-11 Formation of Squad and Squad Drill.</li> <li>FD-12 Parade practice.</li> <li>TAEKWONDO <ul> <li>Poomsae (Forms)- Jang, Yi Jang.</li> <li>Self Defense Technique- Self defense from arms, Fist and Punch.</li> <li>Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).</li> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> </ul> </li> <li>NSS <ul> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Any other observation (celebration proposed by Ministry/institute)</li> </ul> </li> </ul>		<ul> <li>FD-6 Side pace, Pace Forward and to the Rear.</li> </ul>
<ul> <li>FD-8 Saluting on the March.</li> <li>FD-9 Marking time, Forward March and Halt in Quick Time.</li> <li>FD-10 Changing step.</li> <li>FD-11 Formation of Squad and Squad Drill.</li> <li>FD-12 Parade practice.</li> </ul> <b>TAEKWONDO</b> <ul> <li>Poomsae (Forms)- Jang, Yi Jang.</li> <li>Self Defense Technique- Self defense from arms, Fist and Punch.</li> <li>Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).</li> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> </ul> <b>NSS</b> <ul> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Any other observation (celebration proposed by Ministry/institute)</li> </ul>		<ul> <li>FD-7 Turning on the March and Wheeling.</li> </ul>
<ul> <li>FD-9 Marking time, Forward March and Halt in Quick Time.</li> <li>FD-10 Changing step.</li> <li>FD-11 Formation of Squad and Squad Drill.</li> <li>FD-12 Parade practice.</li> </ul> <b>TAEKWONDO</b> <ul> <li>Poomsae (Forms)- Jang, Yi Jang.</li> <li>Self Defense Technique- Self defense from arms, Fist and Punch.</li> <li>Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).</li> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> </ul> NSS <ul> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Any other observation (celebration proposed by Ministry/institute)</li> </ul>		• FD-8 Saluting on the March.
<ul> <li>FD-10 Changing step.</li> <li>FD-11 Formation of Squad and Squad Drill.</li> <li>FD-12 Parade practice.</li> <li>TAEKWONDO <ul> <li>Poomsae (Forms)- Jang, Yi Jang.</li> <li>Self Defense Technique- Self defense from arms, Fist and Punch.</li> <li>Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).</li> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> </ul> </li> <li>No Smoking Campaign <ul> <li>Anti- Terrorism Day Celebration</li> <li>Any other observation (celebration proposed by Ministry/institute)</li> </ul> </li> </ul>		<ul> <li>FD-9 Marking time, Forward March and Halt in Quick Time.</li> </ul>
<ul> <li>FD-11 Formation of Squad and Squad Drill.</li> <li>FD-12 Parade practice.</li> <li>TAEKWONDO <ul> <li>Poomsae (Forms)- Jang, Yi Jang.</li> <li>Self Defense Technique- Self defense from arms, Fist and Punch.</li> <li>Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).</li> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> </ul> </li> <li>NSS <ul> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Any other observation (celebration proposed by Ministry (institute)</li> </ul> </li> </ul>		• FD-10 Changing step.
<ul> <li>FD-12 Parade practice.</li> <li>TAEKWONDO         <ul> <li>Poomsae (Forms)- Jang, Yi Jang.</li> <li>Self Defense Technique- Self defense from arms, Fist and Punch.</li> <li>Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).</li> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> </ul> </li> <li>NSS         <ul> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Any other observation (celebration proposed by Ministry/institute)</li> </ul> </li> </ul>		<ul> <li>FD-11 Formation of Squad and Squad Drill.</li> </ul>
<ul> <li>TAEKWONDO <ul> <li>Poomsae (Forms)- Jang, Yi Jang.</li> <li>Self Defense Technique- Self defense from arms, Fist and Punch.</li> <li>Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).</li> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> </ul> </li> <li>NSS <ul> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration proposed by Ministry/institute</li> </ul> </li> </ul>		FD-12 Parade practice.
<ul> <li>Poomsae (Forms)- Jang, Yi Jang.</li> <li>Self Defense Technique- Self defense from arms, Fist and Punch.</li> <li>Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).</li> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> </ul> NSS <ul> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> </ul>	TAE	KWONDO
<ul> <li>Self Defense Technique- Self defense from arms, Fist and Punch.</li> <li>Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).</li> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> </ul> NSS <ul> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Anv other observation/celebration proposed by Ministry/institute</li> </ul>		<ul> <li>Poomsae (Forms)- Jang, Yi Jang.</li> </ul>
<ul> <li>Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).</li> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> <li>NSS</li> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Any other observation (celebration proposed by Ministry/institute)</li> </ul>		<ul> <li>Self Defense Technique- Self defense from arms, Fist and Punch.</li> </ul>
<ul> <li>Combination Technique- Combined kick and punch.</li> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> <li>NSS</li> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Any other observation (celebration proposed by Ministry/institute)</li> </ul>		• Sparring (Kyorugi)- One step sparring, Two step sparring, Fight (Free sparring).
<ul> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> <li>Interpretation Rules above Technique of Taekwondo.</li> <li>NSS</li> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Any other observation (celebration proposed by Ministry/institute)</li> </ul>		<ul> <li>Combination Technique- Combined kick and punch.</li> </ul>
<ul> <li>Interpretation Rules above Technique of Taekwondo.</li> <li>NSS</li> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Any other observation/celebration proposed by Ministry/institute</li> </ul>		<ul> <li>Board Breaking (Kyokpa)- Sheet breaking.</li> </ul>
<ul> <li>NSS</li> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Any other observation (celebration proposed by Ministry/institute)</li> </ul>		<ul> <li>Interpretation Rules above Technique of Taekwondo.</li> </ul>
<ul> <li>No Smoking Campaign</li> <li>Anti- Terrorism Day Celebration</li> <li>Any other observation (celebration proposed by Ministry/institute)</li> </ul>	NSS	6
<ul> <li>Anti- Terrorism Day Celebration</li> <li>Any other observation (celebration proposed by Ministry/institute)</li> </ul>		No Smoking Campaign
<ul> <li>Any other observation/celebration proposed by Ministry/institute</li> </ul>		Anti- Terrorism Day Celebration
- Any other observation/celebration proposed by winnistry/institute		<ul> <li>Any other observation/celebration proposed by Ministry/institute</li> </ul>
Public Speaking		Public Speaking
Discussion on Current Affairs		Discussion on Current Affairs
Viva voce		Viva voce

#### Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	CO1	-	-	-	-	-	2	-	-	3	-	-	-
	CO2	-	-	-	-	-	-	-	2	-	-	-	-
XXS52	CO3	-	-	-	-	-	-	1	-	-	-	-	3
	CO4	-	-	-	-	-	-	-	-	2	2	-	-
	CO5	-	-	-	-	-	3	1	-	-	-	-	-

### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

C331 MAT	HEMATICS-III	3-1-0	4 Credit	41	Hrs					
		Department of N	lathematic	S						
Course	Title of the course	Program Core	Total Nu	mber of co	ntact hours		Cre			
Code		(PCR) /	Lecture	Tutoria	Practical	Total	dit			
		Electives	(L)	I (T)	(P)	Hours				
		(PEL)								
MAC331	MATHEMATICS-III	PCR	3	1	0	4	4			
Pre-requis	ites	Course Assessn	nent metho	ods (Contir	uous Assess	ment (CA	4) <i>,</i>			
		Mid-Term (MT)	, End Term	n (ET))						
Basic know	vledge of topics	CA+ MT + ET [C	:A: 15%, M	T: 25%, ET:	60%]					
included in	n MAC01 & MAC02									
Course	CO1: Acquir	e the idea about	mathem	atical form	ulations of	phenome	ena in			
Outcomes	physics and e	engineering.								
	• CO2: To ur	nderstand the c	ommon r	numerical	methods t	o obtain	n the			
	approximate	solutions for the	intractable	mathema	tical problen	ns.				
	CO3: To und	lerstand the basi	cs of comp	olex analys	sis and its r	ole in mo	odern			
	mathematics	mathematics and applied contexts.								
	CO4: To und	erstand the optir	erstand the optimization methods and algorithms developed							
	for solving	various types	of optim	ization p	roblems.					
Topics	Partial Differentia	al Equations (PDE	<u>):</u> Formati	on of PDEs	s; Lagrange	method f	or			
Covered	solution of first or	solution of first order quasilinear PDE; Charpit method for first order nonlinear								
	PDE; Homogenou	PDE; Homogenous and Nonhomogeneous linear PDE with constant coefficients:								
	Complimentary F	Complimentary Function, Particular integral; Classification of second order linear								
	PDE and canonic	PDE and canonical forms; Initial & Boundary Value Problems involving one								
	dimensional wave	e equation, one dimensional heat equation and two dimensional								
	Laplace equation.	on. [14]								
	Numerical Metho	Numerical Methods: Significant digits, Errors; Difference operators; Newton's								
	Forward, Backwa	Forward, Backward and Lagrange's interpolation formulae; Numerical solutions of								
	nonlinear algebra	nonlinear algebraic/transcendental equations by Bisection and Newton-Raphson								
	methods; Trapezo	methods; Trapezoidal and Simpson's 1/3 rule for numerical integration; Euler's								
	method and mod	method and modified Eular's methods for solving first order differential								
	equations.	equations. [14]								
	<b>Complex Analysis</b>	Complex Analysis: Functions of complex variable, Limit, Continuity and								
	Derivative; Analy	Derivative; Analytic function; Harmonic function; Conformal transformation and								
	Bilinear transform	Bilinear transformation; Complex integration; Cauchy's integral theorem;								
	Cauchy's integral	Cauchy's integral formula; Taylor's theorem, Laurent's theorem (Statement only);								
	Singular points ar	Singular points and residues; Cauchy's residue theorem. [17]								
	<b>Optimization:</b>	Optimization:								
		Mathematical Preliminaries: Hyperplanes and Linear Varieties; Convex Sets,								
	Mathematical Pro	eliminaries: Hype	i piùries uri		netics, com	/ex Sets,				
	Mathematical Properties Polytopes and Po	lyhedra.	[2]			/ex Sets,				
	Mathematical Properties of Polytopes and Pol	lyhedra. i <b>ing Problem (LPP</b>	[2] ): Introduc	tion; Form	iulation of li	iex Sets,				
	Mathematical Pro Polytopes and Po Linear Programm programming pro	lyhedra. i <b>ing Problem (LPP</b> blem (LPP); Grap	[2] ): Introduc hical meth	tion; Form od for its s	iulation of lii olution; Sta	vex Sets, near ndard for	m of			

## THIRD SEMESTER

Text Books,	Text Books:
and/or	1. An Elementary Course in Partial Differential Equations-T. Amarnath
reference	2. Numerical Methods for scientific & Engineering Computation- M.K.Jain,
material	S.R.K. Iyengar & R.K.Jain.
	3. Foundations of Complex Analysis- S. Ponnuswami
	4. Operations Research Principles and Practices- Ravindran, Phillips, Solberg
	5. Advanced Engineering Mathematics- E. Kreyszig
	Reference Books:
	1. Complex Analysis-L. V. Ahfors
	2. Elements of partial differential equations- I. N. Sneddon
	3. Operations Research- H. A. Taha
	Mapping of CO (Course outcome) and PO (Programme Outcome)

	mapping of co (course outcome) and to (trogramme outcome)											
COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

## Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

CSC 301 Dis	crete	Mathematics	3-	3-0-0 3 Credits			3 Hours		
		Departm	ent of Computer S	cience and	l Engineeri	ng			
Course	Tit	le of the course	Program Core	Total Nu	mber of co	ontact hours	5	Credi	
Code			(PCR) /	Lectur	Tutori	Practical	Total	t	
			Electives (PEL)	e (L)	al (T)	(P)	Hour		
							S		
CSC 301	Di	screte	PCR	3	0	0	3	3	
	M	athematics							
Pre-requ	isites		Course Assessme	ent metho	ds (Contin	uous Assess	ment (CA	.) <i>,</i> Mid-	
			Term (MT), End	Term (ET))					
			CA+ MT + ET [CA	: 15%, MT	: 25%, ET:	60%]			
Course		<ul> <li>CO1: Rer</li> </ul>	nember the basic t	erms, defi	nitions an	d concepts o	of mathei	matics.	
Outcomes • CO2: St			idents will be abl	e to unde	erstand the	e key conce	epts of d	liscrete	
		mathem	atics such as functional mapping, mathematical logic, counting						
		principle	s, generating functions, algebraic structures and graph theory.						
		• CO3: Stu	dents will be able	to apply t	the learne	d concepts	to solve y	various	
		problem	S.						
		• CO4: Stu	dents will be able	to differer	ntiate or re	elate the va	rious ide	as with	
		respect t	o problems.		¢ ,				
		• CO5:Stud	ients will be able t	o judge th	e formula:	s and ideas	to be app	licable	
<b>T</b>		to a prot	olem.	D'					
Topics		Set Theory: Dei	inition of Sets, Ver	n Diagram	ns, comple	ments, cart	esian pro	ducts,	
Covered		power sets, cou	inting principle, ca	rdinality ai	nd countal	ollity (Count	able and		
		Uncountable se	ts), proots of some	e general li	dentities o	n sets, pigeo	onnole		
		principie.	(3	L)					

	<ul> <li>Relation: Definition, types of relation (reflexive, symmetric, transitive, antisymmetric, Equivalence, partial ordering relations), composition of relations, domain and range of a relation, pictorial representation of relation, properties of relation, Partial Order, Lattice, Hasse Diagram.</li> <li>(6L)</li> <li>Function: Definition and types of function, composition of functions, recursively defined functions, Surjection, Injection, Bijection, Composition of Function, Asymptotic notations: big-Oh, Theta, big-Omega.</li> </ul>
	(4L) <b>Propositional logic:</b> Proposition logic, basic logic, logical connectives, truth tables, tautologies, contradiction, normal forms (conjunctive and disjunctive), modus ponens and modus tollens, validity, predicate logic, universal and existential quantification. Notion of proof: proof by implication, converse, inverse, contrapositive, negation, and contradiction, direct proof, proof by using truth table, Proof by Well ordering principle. (6L)
	<b>Combinatorics:</b> Mathematical induction, recursive mathematical definitions, basics of counting, permutations, combinations, inclusion-exclusion, recurrence relations (nth order recurrence relation with constant coefficients, Homogeneous recurrence relations), generating function (closed form expression, properties of G.F., solution of recurrence relation using G.F, solution of combinatorial problem using G.F.). (8L)
	Algebraic Structure: Binary composition and its properties definition of algebraic structure; Semi group, Monoid, Groups, Abelian Group, properties of groups, Permutation Groups, Sub Group, Cyclic Group. (6L)
	<b>Graphs:</b> Graph terminology, types of graph, connected graphs, components of graph, Euler graph, Hamiltonian path and circuits, Degree Sequence, Radius, Diameter, Center of a graph, Graph coloring, Chromatic number. Planarity of a graph: K(3,3) and K(5). Clique, Independent set, bipartite graph, Tree: Definition, types of tree (rooted, binary), properties of trees. (9L)
Text Books, and/or	<b>Text Books:</b> 1. C. L. Liu, Elements of Discrete Mathematics, Tata McGraw Hill.
reference material	<ol> <li>Norman L. Biggs, Discrete Mathematics, Oxford.</li> <li>Douglas B. West, Introduction to Graph Theory, Prentice Hall, India.</li> </ol>
	<b>Reference Books:</b> 1. Ronald L. Graham, Donald E. Knuth and O. Patashnik, Concrete Mathematics, Pearson Education.

				<i>,</i>	<u> </u>			,				
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
COs										0	1	2
CO1	3	3	2	2	2	-	-	-	-	-	1	2
CO2	3	3	2	2	2	-	-	-	-	-	2	2
CO3	3	3	2	2	2	-	-	-	-	-	2	2
CO4	3	3	2	2	2	-	-	-	-	-	2	2
CO5	3	3	2	2	2	-	-	-	-	-	2	2

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

2: Moderate (Medium) 3: Substantial (High) 1: Slight (Low)

cs	C302 Digit	al Logic Design	3-(	0-0	3 Credi	its 3 Hou	ırs			
		Departm	ent of Computer S	cience and	l Engineeri	ng				
	Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Cred		
	Code		(PCR) /	Lectur	Tutori	Practical	Total	it		
			Electives (PEL)	e (L)	al (T)	(P)	Hour			
							S			
	CSC 302	Digital Logic	PCR	3	0	0	3	3		
		Design								
	Pre-requis	sites:	Course Assessment methods (Continuous Assessment (CA), Mid-							
Ļ			Term (MT), End 1	Term (ET))						
			CA+ MT + ET [CA	: 15%, MT	: 25%, ET:	60%]				
	Course	At the completion	of this course stud	dents will	be able to:					
	Outcomes	• CO1: Real	ize the various log	gic gates a	ind laws o	f Boolean a	lgebra. A	nalyze		
		different t	ypes of digital elec	ctronic circ	cuit using v	various map	ping and	logical		
		tools.								
		CO2: Desig	gn and analyses the	e various c	ombinatio	nal circuits.				
		CO3: Design	and analyze the various sequential circuits.							
		CU4: Design	gn and analyze con	ndinationa	li and sequ	iential logic	circuits ti	nrougn		
			:13. thesis the verieus logic using ASM charts							
-	Topics		Circuite Various logic using Asivi charts.							
	Covorad	Arithmotic of the	<b>E Circuits,</b> various number system and their conversions:							
	Covereu	numbers binary of	se number systems	onrosonta	tion floati	ng noint ron	acion. Dii vrocontat	ion		
		Code and their co	nversions Addition	n and Subt	raction on	Codes Erro	n Dotocti	ion,		
		codes (Hamming	code etc) renreser	ntation of	signed hin:	arv number	in Fixed a	and		
		Floating Points				(51)	in nacu c			
		UNIT-II [®] Boolean	algebra logic gates	s and swit	ching fund	tions truth	tables an	hd		
		switching express	ions minimization	of comple	telv and ir	ncompletely	specifier	1		
		switching function	ns. Karnaugh map a	and Ouine	-McCluske	v method. n	nultiple o	utput		
		minimization. rep	resentation and m	anipulatio	n of functi	ons using BI	DDs. two-	level		
		and multi-level lo	gic circuit synthesis	s.						
				-				(10L)		
		UNIT-III: Combina	ational logic circuits: Realization of Boolean functions using							
		AND/NOR Gates.	, Decoders, multiplexers. Logic design using ROMs. PLAs and							
		FPGAs. Case Stud	ies.	0	0	5 -7	-			
L										

	(8L)
	<b>UNIT-IV</b> : <b>Sequential circuits:</b> Clocks, flip-flops, latches, counters and shift registers, finite-state machine model, synthesis of synchronous sequential circuits, minimization and state assignment, asynchronous sequential circuit synthesis. (12L)
	<b>UNIT-V</b> : FSM and <b>ASM charts</b> : Representation of sequential circuits using FSM and ASM charts, synthesis of output and next state functions, data path control path
	partition-based Design. (7L)
Text	Text Books:
Books, and/or	1. Digital Logic Design, M. Morris Mano, Michael D Cilleti, PHI.
reference	Reference Books:
material	1. Digital Principles & Application, 5th Edition, Leach & Malvino, McGraw Hill Company.
	2. Modern Digital Electronics, 2nd Edition, R.P. Jain. Tata Mc Graw Hill Company Limited.

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	1	2	2	3	-	-	-	-	-	1	2
CO2	3	2	2	3	1	-	-	-	-	-	2	2
CO3	3	2	2	3	1	-	-	-	-	-	2	2
CO4	3	2	2	3	2	-	-	-	1	-	2	2
CO5	3	2	2	3	3	-	-	-	1	-	2	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (	Low)	2: Moderate (	Medium)	3: Substar	ntial (High)
CSC303	Data Structures an	nd Algorithms	3-1-0	4 Credits	4 Hours

	Department of Computer Science and Engineering									
Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Cred			
Code		(PCR) /	Lectur	Tutori	Practical	Total	it			
		Electives (PEL)	e (L)	al (T)	(P)	Hour				
						S				
CSC 303	Data Structures	PCR	3	1	0	4	4			
	and Algorithms									
Pre-requis	sites	Course Assessment methods (Continuous Assessment (CA), Mid-								
		Term (MT), End	Term (ET))							
CSC-01 (Ir	ntroduction to	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]								
Computin	g)									
Course	• CO1: Un	derstanding the f	undament	al concept	ts of data,	data typ	es and			
Outcomes	Outcomes abstract data types.									
	<ul> <li>CO2: Implementation of different abstract data types using different d</li> </ul>									
	structure	es.								
	• CO3: Ap	CO3: Apply different types of data structures to implement different								

	<ul> <li>application problems.</li> <li>CO4: Different searching and sorting techniques.</li> <li>CO5: Analysis of the suitability/compatibility of different data structures based on the types of applications.</li> <li>CO6: Design and development of algorithms for real-life applications.</li> </ul>
Topics Covered	Introduction to problem solving through computer, Design of algorithm to solve a problem, Concept of static and dynamic memory allocation, Algorithms and data structures, Concept of Abstract Data Type (ADT) with examples. (3L)
	Efficiency of an algorithm, Asymptotic notations, Time and space complexities, Analysis of algorithms, Comparing asymptotic running times, Impact of data structure on the performance of an algorithm. (4L)
	Array, Single and multi-dimensional array, Memory representation (row major and column major) of array, Insertion, and deletions in array, Advantages and disadvantages of array
	(3L)
	Linked list as an ADT, Memory allocation and deallocation for a linked list, Linked list versus array, Types of linked lists: singly linked list, doubly linked list and circular linked list, Operations on linked list: creation, display, insertion and deletion (in different positions), summation, average, maximum, minimum etc. Application of linked list: representations and operations on polynomials, sparse matrices. (7L)
	Stack as an ADT, Main operations (push and pop), auxiliary operations and axioms, Array implementation of stack, Limitation of array implementation, Linked list implementation of stack, Applications of stack: Recursion, Function call, Evaluation of postfix expression using stack, Conversion of infix to postfix using stack. (6L)
	Queue as an ADT, Main operations (enqueue and dequeue), Auxiliary operations and axioms, Array implementation of queue, Limitation of array implementation and Circular queue, Linked list implementation of queue, Double ended queue (dequeue) Priority queue and its applications. (5L)
	Binary Tree, Definition and properties, Representation of binary tree in memory: linked representation, array representation, Binary tree traversal, Preorder, Inorder and Postorder, Expression tree, Heap and its applications. (5L)
	Search trees: Binary search tree, Balanced binary search tree, AVL tree, Red Black tree, M-way tree, M-way search tree, B tree, B+ Tree. (7L)

			Sea	rching	: Linea	r searcl	n and b	inary s	earch.		(3L)			
			Sor sor	ting: B t. (7L	ubble, _)	selectio	on, inse	ertion,	Quick s	sort, M	erge sort,	Heap sort	, Radix	
			Gra ma (2L)	Graphs: Mathematical Properties, Degree, Connectedness, Representation using matrix, Adjacency list, Directed Graphs, Directed Acyclic Graph. (2L)										
Hashing: Hash functions. Collision, Collision resolu quadratic probing, double hashing, chaining, Reha (4L)							resolu g, Reha	tion techr shing.	niques: line	ear probing,				
	Text I and/c refere mate	3ooks, or ence rial	Tex         1. F         wit         2. A         Ado         3. L         4. E         C",         Ref         1. Y         and         2. k         Rea         Add         3. L         4. E         C",         Ref         1. Y         and         2. k         Rea         Add         3. K	t Book T. F. Gil h C", 2 A. V. Ah dition V ipschu . Horo Univer <b>erence</b> . Lange I C++", Anuth, I ding, N dison-V (leinbe	s: berg and nd Edit no, J. D. Vesley tz, "Da witz, S. sities F <b>Books</b> Sam, M Pearso Donald VA: Vesley, rg and	nd B. A ion, CE . Ullma ta Stru . Sahni, Press; S s: I. J. Aug on, 200 E. The , 1997. Eva Ta	. Forou NGAGI n and J ctures S. And econd genstei 6. Art of ISBN: C rdos. A	zan, "E E Learn . E. Ho (Schau editior n and A Compu 20189 Igorith	Data Sti iing. pcroft, m's Ou Freed, n (2008 A. N. Ta uter Pro 6834. I m Desi	ructure "Data Itline So "Funda ). anenba ogramr (SBN: 0 ign. Ada	es: A pseu Structure eries)", Ta amentals um, "Data ning. 3rd 20189684 dison-We	docode ap s and Algo ata Mcgrav of Data Str a Structure ed. Vols 18 42. ISBN: 0 sley 2005	oproach rithms", v Hill. ructures in es using C &2. 201896850. ISBN-13:	
Ma	anning	of CO	978	-03212	295354	l. nd PO	(Progra	mme	Outcor	<u></u>		,		
	POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
Ī	CO1	1	-	1	-	-	-	-	-	-	-	-	-	
	CO2	2	-	3	1	-	-	-	-	-	-	-	-	
	CO3	3	-	3	1	-	-	-	-	-	-	-	-	
	CO4	3	2	3	1	-	-	-	-	-	-	-	-	
	CO5	3	3	3	2	-	-	-	-	-	-	-	-	
	CO6	3	3	3	2	-	-	-	-	-	-	-	-	

Correlation levels 1, 2 or 3 as defined below:

2: Moderate (Medium) 3: Substantial (High) 1: Slight (Low)

PH	C331	PHYSICS OF SEMICONDUCTOR DEVICE 3-0-0 3 Credits 3 Hrs										
			Drogram Coro	Total Nu	mber of co	ontact hours	5					
	Course Code	Title of the course	(PCR) / Electives (PCR)	Lectur e (L)	Tutoria I (T)	Practical (P)	Total Hour s	Credi t				
F		Physics of					3					
	PHC331	Semiconductor Devices	PCR	3	0	0	3	3				
-	Pre-requi	sites	Course Assessment methods: (Continuous (CT), mid-term (MT) and end assessment (EA))									
	PHC 01 in	1st year.	CT+MT+EA									
	Course	At the end of the co	urse, a student will be able to:									
	Outcom	CO1.Describe the di	fferent electronic p	properties	of semicor	nductor mat	erials.					
	es	CO2. Understand the	e working principa	l of electro	onic devise	s (PN Diode	, Photode	etector,				
		Solar cell, Light-										
		Emitting Diode	s, Laser Diodes, JF	ET, MOSFE	T, Tunnel	Diode, Gur	nn Diode,					
		IMPATT Diode,										
		TRAPATT Diod	e and semiconduct	or memor	y).							
		CO3. Apply the know	vledge of memory	expansion	to design	required ex	panded r	nemory				
		for specific										
F	Tanian	application.	unio and union Q. Co			- Fabricatia						
	Covered	Fundamentals of Semiconductor & Semiconductor Devices Fabrication: Introduction										
	Covereu	Mobility and its tom	noraturo dopondo	nco Epora	v hands of	somicondu	ctors Dir	icy,				
		indirect semiconduc	tor Variation of er	nce, Literg	y banus or I with allow	compositic	n III-Va	nd II-VI				
		allov semiconductor	Homo and heter	o-structure	semicond	uctor Effec	tive mas	ses of				
		carriers in semicond	Juctor, Fermi-Dirac distribution function, Density of states, Carrier									
		concentrations at ec	uilibrium, Calculat	ion of nun	nber densi	ty of carrier	s and the	ir				
		temperature depend	dence, Effects of te	temperature on carrier concentrations. High field								
		effects, Hall effect, L [14]	ithography, Optica	al lithograp	hy and Ele	ectron beam	lithogra	phy.				
		Junction-Diode & O	ptoelectronic Devi	ices: P-N ji	unction, Co	ontact poter	ntial, Ban	d				
		diagram, Degenerat	e semiconductors,	Photodete	ector, Solai	cell, Light-l	Emitting	Diodes,				
		internal and externa	il quantum efficien	icy etc., Se	miconduct	or Lasers, P	opulation	1				
		[3]	on, Emission specti	ra for P-N j	unction La	isers.						
		Negative Conductar	nce Microwave De	vices: Mat	erials for n	egative con	ductance	9				
		devices, The Gunn e	ffect and related d	evices, The	e transferr	ed electron	mechani	sm,				
		Transit time devices [10]	, The IMPATT Diod	e, the TRA	PATT Diod	e,Tunnel D	oiode.					
		JFET and MOSFFT: 1	unction Field Effec	t Transisto	rs (JFFT) (	Deration I	·V					
		Characteristics etc.	MOS structure. Dif	fferent MC	S structure	es. Operatio	on of MO	S at				
		high and low freque	ncy. Accumulation	. Inversion	, strong in	version regi	ons. Met	al-				
		Oxide Semiconducto	or Field Effect Tran	sistors (MC	OSFET). MO	DSFET as a C	Capacitor	,				
47	Page				,,		<u> </u>					

 MOSFET as a resistor and related circuits. [9]

 Semiconductor Memory Device: Semiconductor memory organization, Random

 Access Memory (RAM) (static and dynamic), CMOS memory circuits, Charge Coupled

 Devices (CCD).

 Text

1. Physics of Semiconductor Devices, S M SZE.

- and/or 2. Solid State Electronic Devices, Ben G Streetman & Banerjee
- referenc 3. Microwave Solid-State Devices, S Y Liao

### References:

Books,

material

е

- 1. Semiconductor Physics and Devices, Donald A. Neamen.
- 2. Microwave Engineering, David M.Pozar.
- 3. Integrated Electronics, Millman-Halkias.

### Mapping of CO (Course outcome) and PO (Programme Outcome)

POs	PO1	РО	PSO	PSO	PSO										
COs	101	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1	2	1	-	1	1	1	-	-	-	2	-	-	1
CO2	3	2	1	1	1	1	1	1	1	1	-	2	1	1	1
CO3	3	3	2	1	1	1	1	1	1	1	1	1	2	2	1

3 Hrs

### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

## PHS381SEMICONDUCTOR DEVICES LABORATORY0-0-31.5 Credits

Course		Drogram Coro	Total Nu	mber of co	ontact hours	ontact hours			
Course Code	Title of the course	(PCR) / Electives (PCR)	Lectur e (L)	Tutoria I (T)	Practical (P)	Total Hour s	Credi t		
PHS381	Semiconductor Devices Laboratory	PCR	0	0	3	3	1.5		
Pre-requi	sites	Course Assessment methods: (Continuous evaluation (CE) and end assessment (EA))							
PHS 51 in	1st year.	CE+EA							
Course	At the end of the course, a student will be able to:								
Outcom	<ul> <li>CO1. Calcula</li> </ul>	te different charac	teristic pa	rameter of	semicondu	ctor mat	erials.		
es	<ul> <li>CO2. Measur</li> </ul>	e and understand	different o	haracteris	tic of semic	onductor			
	devices.								
	<ul> <li>CO3. Draw th</li> </ul>	ne current-voltage	characteri	stics of sol	ar cell for ca	alculatior	l of		
	conversion e	fficiency.							
Topics	List of Experiments:								
Covered	1. To determine the energy bandgap of a semiconductor.								
	2. Measurement of resistivity of semiconductors by four-probe method at different								
	temperatures.								
	3. Determination of Hall coefficient of a given semiconductor and its temp								

		<ul> <li>dependence.</li> <li>4. To determine the value of e/m of an electron by using a c pair of bar magnet.</li> <li>5. Determination of Stefan's constant.</li> <li>6. Study of p p junction diado characteristics.</li> </ul>	athode	ray tube	and a				
<ul><li>6. Study of p-n junction diode characteristics.</li><li>7. Study of Zener diode characteristics and voltage regulator.</li></ul>									
8. Determination of photo conversion efficiency of a Solar cell.									
Text		Text Books							
Book	s,	1. An advanced course in practical physics, Chattapadhyay	and Rak	shit.					
and/	or	2. Advanced Practical Physics, B. Ghosh and K. G. Mazumda	r						
refer	enc								
е									
mate	erial								
		Mapping of CO (Course outcome) and PO (Programme Out	come)						
<b>DO</b> -			<b>DCO</b>	<b>BCO</b>	<b>D</b> CO				

POs	РО	PSO	PSO	PSO											
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	-	-	-	-	1	1	1	-	2	1	-	1
CO2	3	2	1	-	-	-	-	1	1	1	-	2	1	-	1
CO3	3	2	1	-	1	1	1	1	1	1	-	2	2	-	1

## Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

CS	S351	Digi	tal Logic Desig	n Laboratory	0-0-3	1.5 Credits	3 Ho	urs			
			Depar	tment of Computer Sc	ience and	Engineerin	g				
	Cours	Title	of the course	Program Core	Total N	umber of c	ontact ho	urs	Cred		
	e			(PCR) / Electives	Lectur	Tutori	Practi	Total	it		
	Code			(PEL)	e (L)	al (T)	cal (P)	Hours			
	CSS35	Digit	al Logic	PCR	0	0	3	3	1.5		
	1	Desi	gn								
		Labo	ratory								
	Pre-req	uisites		Course Assessment	methods (	Continuou	s (CT) and	l End asse	ssment		
				(EA))							
	NIL			CT+EA [CT: 60%, EA(	Laborator	y assignme	ent + Viva	Voce): 40	%]		
	Course		• CO1: L	Inderstand basic gate	operation	s.					
	Outcom	nes	• CO2: F	lealize the boolean fur	nction usir	ng basic gat	es in botl	n SOP/POS	5 form.		
			• CO3: F	ealize different comb	inational c	ircuits with	n basic gat	tes.			
			• CO4:	Understand the basi	c structur	e of diffe	rent digi	tal compo	onents-		
			multip	lexer, decoder, encod	er etc.	<b></b>					
_		CO5: Verification of state table of different flip flop using NAND/NOR gate.							R gate.		
	Topics		1. Familia	arization with IC, stud	y of the d	ata sheet,	VCC, Gro	und. Verit	ication		
	Covered	ered of the truth tables.									
			2. Impler	nentation of a given I	Boolean fu	inction usir	ng logic g	ates in bo	th SOP		
			and PC	DS forms. Verify the U	niversal lo	gic gate (N	AND, NOF	R).			
L			3. Verity	DE Morgan's law.							

	4. Implement NAND based logic circuit for any Boolean expression. Verify
	that a Boolean expression, e.g. F= AB + A'C'. is functionally complete.
	5. Implement a Full adder using Half Adder. Implement the combinational
	circuit to realize both Adder and Subtractor together.
	6. Implementation and verification of Decoder, Multiplexer, Encoder and
	Priority Encoder etc.
	7. Implement and verify Ripple Carry Adder, Carry Look Ahead Adder and
	BCD Adder.
	8. Verification of state tables of RS, JK, T and D flip-flops using NAND & amp;
	NOR gates.
	9. Implement and verify the 4-bit counter
Text Books,	Text Books:
and/or	1. Digital Logic Design, M. Morris Mano, Michael D Cilleti, PHI.
reference	Others:
material	1. Laboratory Manual.
Manning of CO /C	Course Outcome) and PO (Programme Outcome)

### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	2	2	-	-	-	1	-	-	I
CO2	3	2	1	2	2	-	-	-	1	-	-	-
CO3	3	2	1	2	2	-	-	-	1	-	-	-
CO4	3	2	1	2	2	-	-	-	1	-	-	-
CO5	3	2	1	2	2	-	-	-	1	-	-	-

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

4 Hours

#### CSS352 Data Structures and Algorithms Laboratory 0-0-4 2 Credits

n Core Total Number of contact hours								
Total	t							
Hour								
s								
4	2							
Course Assessment methods (Continuous Assessment								
(CI) and End assessment (EA))								
CT+EA [CT: 60%, EA (Programming assignment + Viva								
Voce): 40%]								
g linked li	st.							
l list for p	oroblem							
CO3: Implement operations and techniques like insertion and deletion								
traversal, searching and sorting on various data structures.								
ıms.								
	Total Hour s 4 s Assessr nment + N g linked li l list for p on and d							

	CO5: Choose appropriate data structures for representation and
	manipulation of the data for the given problems.
Topics	1. Insertion and deletion in arrays using dynamic memory allocation.
Covered	2. Linear search, Binary search (recursive, non-recursive).
	3. Memory allocation and deallocation for linked list.
	4. Operations on linked list: creation, display, insertion and deletion (in different positions), summation, average, maximum, minimum etc.
	5. Array implementation of stack and queue.
	6. Linked implementation of stack and queue.
	7. Evaluation of postfix expression using stack.
	8. Conversion of infix expression to its postfix version using stack.
	9. Linked implementation of binary tree and preorder, inorder and postorder
	traversal on binary tree.
	10. Implementation of binary search tree and operations on it (searching,
	insertion, deletion).
	11. Implementation of height-balanced binary search tree (AVL tree).
	12. Implementation of 2-3 tree.
	13. Implementation of Chaining.
	14. Implementation of sorting algorithms: Selection sort, insertion sort, bubble
	15 Implementation of few basic graph operations (such as breadth first and
	donth first traversal finding minimum spanning trad, shortest path) on
	aranh
Text Books	Text Books:
and/or	1 S Linschutz "Data Structures (Schaum's Outline Series)" McGraw Hill
reference	Education: First edition (2017)
material	2 E Horowitz S Sahni S Anderson-Freed "Fundamentals of Data Structures in
material	C" Universities Press: Second edition (2008)
	3. E. Balagurusamy, "Programming in ANSI C", McGraw Hill Edu India Private
	Limited. Seventh edition (2017).
	Reference Books:
	1. B. S. Gottfried, "Programming with C", McGraw Hill Education, Fourth ed
	(2018).
Mapping of CO (C	Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	2	I	-	-	I	-	-	-	-	-
CO2	3	2	2	1	-	-	-	-	-	-	-	-
CO3	3	2	2	1	2	-	-	-	-	-	-	-
CO4	3	2	2	1	2	-	-	-	-	-	-	-
CO5	3	3	3	2	2	-	-	-	-	-	-	-

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

3: Substantial (High)

#### FOURTH SEMESTER

CSC 401 Cor	mputer Organization a	and Architecture	3-1-0	4 C	redits 4	Hours					
	Departm	ent of Computer S	cience and	Engineeri	ng						
Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Cred				
Code		(PCR) /	Lectur	Tutori	Practical	Total	it				
		Electives (PEL)	e (L)	al (T)	(P)	Hour					
						S					
CSC 401	Computer	PCR	3	1	0	4	4				
	Organization and										
	Architecture										
Pre-requ	isites	Course Assessme	ent metho	ds (Continu	lous Assess	ment (CA	.) <i>,</i> Mid-				
		Term (MT), End	Гerm (ET))								
Digital Lo	gic Design (CSC302)	CA+ MT + ET [CA	: 15%, MT	25%, ET:	60%]						
Course	• CO1: Ana	alyze the various p	arts of a m	odern con	nputer func	tional uni	its <i>,</i> bus				
Outcome	es structure	e, addressing mode	es and Com	puter arit	hmetic.						
	• CO2: Ide	entify the process i	nvolved in	executing	an instructi	on and fe	etching				
	the word	l from memory.									
	• CO3: De	esign the hardwire	ed and m	icro-progr	ammed co	ntrol uni	ts and				
	impleme	ntation of interrup	ots.								
	• CO4: Un	erstand the memory hierarchy and design a memory system.									
	<ul> <li>CO5: Un</li> </ul>	erstand Pipelined execution and instruction scheduling.									
Topics	UNIT-I: Introdu	tion: Evolution of computers, Basic Structure of Computers: Basic									
Covered	Operational Co	cepts, GPR based and stack based organisation. Bus Structures,									
	Performance N	leasurement: Processor Clock, Basic Performance Equation, Clock									
	Rate, Machine	Instructions and Programs: Memory Location and Addresses,									
	Memory Opera	tions, Instructions	and Instru	ction Sequ	iencing, Add	Iressing N	lodes,				
	Assembly Lang	uage, Basic Input a	nd Output	Operation	s, Encoding	of Mach	ine				
	Instructions (Hi	uttman encoding er	tC).				(4.21.)				
		wantal as non to af		ما بم ج	Fatabing an		(12L)				
	UNIT-II: Fundar	Transfor Evolution	the proces	ssing Unit:	Felching an	iu Storing	5				
	Addition and S	htraction of Signa		Clion, And	f Fact Adda						
	Aduition and St	and Sequential ALL		o, Design o oncion ctr	Trast Auder	s, ian of					
	Multipliors and		trop and B	ansion sua	ltipliers Elo	igii Ui ating Doir	at.				
	Numbers (IEEE	754) Floating Point	t Operation	oc Multinl	ication of D	ating run acitiva	11				
	Numbers Signe	d Operand Multin	lication (Br	noth's Mul	tinlication e	tc) Fast					
	Multiplication	Integer Division			uplication c	(101)					
		uter Organization a	and Design	(Datanath	and contro	l nath).					
	Instruction cod	es computer regis	ters comn	uter instru	ictions timi	ng & con	trol				
	instruction cvcl	e, memory referen	ce instruct	ions. Hard	I-wired Cont	trol. Micr	0				
	programmed C	ontrol: Micro instru	uction. Mic	roprogran	n sequencin	g. Input/e	output				
	Organization: A	ccessing I/O Device	es, Interru	ots – Inter	rupt Hardwa	are, Enab	ling				
	and Disabling Ir	nterrupts, Handling	, Multiple I	Devices. Co	ontrolling De	evice Rea	uests.				
	Exceptions. Dire	ect Memory Access	s, Buses. In	terface Ci	cuits, Stand	lard I/O	,				
	Interfaces – PC	Bus, SCSI Bus, Bus	Arbitratio	n schemes	s, USB. (Brie	, f overviev	w of				
	8085/8086 mic	roprocessor).			(12	L)					
L	·	. ,									

	UNIT-IV: Memory System: Basic Concepts, Semiconductor RAM Memories, Read
	Only Memories, Speed, Size, and Cost, Cache Memories – Mapping Functions,
	Replacement Algorithms, page mode access, interleaved access. Performance
	Considerations, Virtual Memories, Secondary Storage. (12L)
	<b>UNIT-V</b> : Basic concepts of pipelining, the instruction pipeline – pipeline hazards –
	instruction level parallelism – reduced instruction set –Computer principles –
	RISC versus CISC. Introduction to GPP, ASIP and ASIC etc. (10L)
Text Books,	Text Books:
and/or	1. David A Patterson, John L Hennessy, "Computer Organization and Design",
reference	(The Hardware/Software Interface) Morgan Kaufmann.
material	2. Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization, 5th
	Edition, Tata McGraw Hill.
	Reference Books:
	1. William Stallings, "Computer Organization and Architecture".

2. Nicholas P Carter, "Computer Architecture & Organisation".

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO3	2	4	2	2	1						1	2
01	3	1	2	2	L	-	-	-	-	-	1	2
CO2	3	1	2	2	1	-	-	-	-	-	2	2
CO3	3	1	2	2	1	-	-	I	-	-	2	2
CO4	3	2	2	3	2	-	-	I	1	-	2	2
CO5	3	2	2	3	2	-	-	-	1	-	2	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

CS	C 402 The	ory	of Computation	3-	3 Cred	lits	3 Hours						
			Departm	ent of Computer S	cience and	l Engineeri	ing						
	Course	Tit	tle of the course	Program Core	Program Core Total Number of contact hours								
	Code			(PCR) /	Lectur	Tutori	Practical	Total	t				
				Electives (PEL)	e (L)	al (T)	(P)	Hour					
								S					
		Th	eory of	PCR	3	0	0	3	3				
	CSC402	Сс	omputation										
	Pre-requis	sites		Course Assessment methods (Continuous Assessment (CA), Mid-									
				Term (MT), End Term (ET))									
	Discrete N	Лath	nematics (CSC	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]									
	301)												
	Course		<ul> <li>CO1: Exp</li> </ul>	blain the concept of regular languages through regular expressions									
	Outcomes	5	and finite	e automata.									
			<ul> <li>CO2: Des</li> </ul>	scribe context-free languages and context free grammars.									
			<ul> <li>CO3: Des</li> </ul>	esign grammars and automata for various languages.									
			• CO4: Exa	amine the power of Turing machines and design TM for simple									
		problems.											
			• CO5: An	alyze the concept of undecidability in the context of Turing									

	machine design.
Topics	1. Regular sets and Regular Expression, Non-deterministic and deterministic
Covered	finite automata and their equivalence, Minimization of deterministic finite
	automata, Regular expressions to Finite Automata. (10L)
	2. Finite Automata with outputs. (2L)
	3. Properties of Regular Sets: Pumping Lemma, Closure Properties, Decision algorithms. (5L)
	<ol> <li>Context Free Grammars. Derivations. Ambiguity in grammars. (3L)</li> </ol>
	5. Chomsky hierarchy of languages and grammars. Regular grammars. (3L)
	6. Normal Forms for Context free grammars. CNF and GNF. Closure
	properties of context free languages, Pumping lemma for context free
	languages. Decision Properties.
	(10L)
	7. Pushdown automata.
	(3L)
	8. Turing machines. Unrestricted Grammars. Properties of recursive and r.e.
	languages, Undecidability. (6L)
Text Books,	Text Books:
and/or	1. Introduction to Automata Theory, Languages and Computation
reference	by J.E.Hopcroft, Rajiv Motwani and J.M.Ullman.
material	Pearson Education.
	2. Introduction to Languages and Theory of Computation
	By John C. Martin
	McGraw Hill Education
	1. Elements of the Theory of Computation
	By Harry R. Lewis and Christos H. Papadimitriou
	Prentice Hall of India.
	2. Theory of Automata and Formal Languages
	Dy Alldill Sildillid
1	University Science Press

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	3	3	2	-	-	-	-	-	-	-
CO2	3	3	3	3	2	-	-	-	-	-	-	-
CO3	3	3	3	3	2	-	-	-	-	-	-	-
CO4	3	3	2	3	1	-	-	-	-	-	-	-
CO5	3	3	1	3	1	-	-	-	_	-	-	-

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

CS	C 403 D	esig	n and Analysis of	Algorithms 3-1	L- <b>O</b>	4 Credits	4 Hours							
			Departm	ent of Computer S	cience and	l Engineeri	ing							
	Course	Tit	le of the course	Program Core	Total Nu	mber of co	ontact hours	;	Credi					
	Code			(PCR) /	Lectur	Tutori	Practical	Total	t					
				Electives (PEL)	e (L)	al (T)	(P)	Hour						
								S						
	CSC 403	SC 403 Design and		PCR	3	1	0	4	4					
		Ar	alysis of											
		Al	gorithms											
	Pre-requis	sites		Course Assessme	ent metho	ds (Continu	uous Assess	ment (CA	), Mid-					
				Term (MT), End ⁻	Гerm (ET))									
ĺ	Discrete N	Math	ematics (CSC	CA+ MT + ET [CA	: 15%, MT	: 25%, ET: (	60%]							
	301), Data	a Str	ucture and	•	,	,	•							
	algorithm	(CS	C 303)											
	Course	•	• CO1: Stu	udents will be able	e to under	stand mar	ny importan	t concep	ts such					
	Outcomes	s	as asymp	ototic analysis, dyn	amic prog	ramming, r	recurrences	etc.						
			<ul> <li>CO2: Stu</li> </ul>	udents will be able	to describ	e the key	ideas of diff	erent alg	gorithm					
			design pa	aradigms.				-						
			• CO3: Ca	an apply differen	t algorith	mic ideas	efficiently	to solv	ve new					
			problem	S.	-		-							
			• CO4: St	udents can analyz	e and und	derstand t	he time co	mplexity	of the					
			algorithn	ns, and its correctness.										
			<ul> <li>CO5: Ca</li> </ul>	n evaluate the hard	dness of ar	n algorithm	n if required							
	Topics		Introduction ar	nd basic concepts:	Algorithm	i, Asympto	tic notation	s (big-Oh	ı, big					
	Covered		Omega, Theta,	small-oh) and theii	^r significan	ce, introdu	uction to RA	M mode	l of					
			computation, c	omplexity (Time Co	omplexity,	Space Con	nplexity) and	alysis of						
			algorithms, wo	rst case and averag	ge case. So	lving Recu	rrences – Su	Ibstitutio	n					
			method, Recurr	rence tree method and Master Method, Finding maximum and										
			minimum of n r	numbers, Finding tl	ne second	largest of	n numbers a	and exact	t					
			number of com	iparisons.										
			Lower bound: l	ower bound for a	problem. (	Computing	the lower b	ound for	r					
			sorting (compa	rison based sorting) and computing the lower bound for										
			computing conv	vex hull using the l	vex hull using the lower bound for sorting problem. (2L)									
			Amortized com	plexity analysis: a	plexity analysis: aggregate analysis, accounting method and									
			potential metho	od. Examples: storage allocation problem, binary counting										
			problem and he	eap sort. (4L)										
			Using Induction	n to Design algorit	hm: The ce	elebrity pro	oblem, Majo	ority Find	ing					
			problem	(2L)										
			Divide and con	quer Problem: Multiplication of two n-bit integers, Strassen's										
	Matrix Multipli			cation problem, Cic	osest pair (	of points, i	inear time n	nedian fii	nding					
	algorithm, Conv			vex null and its computation. (6L)										
	The Greedy Al			gorithm: Greedy algorithms and their correctness proof: Interval										
	scheduling pro			biem, Interval partitioning problem, Minimizing the Lateness of										
				ramming: Longost Common Subsequence Matrix Chain										
	Dynamic Prog			Anning, LUNGESL ( A-1 Knansack Brok	lem longo	st commo	n subsequer	iaili Ico nrahl	em					
			(61)	U-1 Knapsack Problem, longest common subsequence problem.										
	-													

		Backtracking Method, Branch and Bound Method.	(2L)
		Graph Algorithms: Depth First Search, Breadth First Search, Dijk	stra's Single
		Source Shortest Path algorithm; All pair shortest path algorithm,	, Minimum
		Spanning Tree (Prim's and Kruskal's algorithm).	(7L)
		Randomized Algorithm: Las Vegas and Monte Carlo; Randomized	ed Quick Sort
		algorithm and Min Cut problem. (3L)	
		Reducibility between problems and NP-completeness: Differen	t class of
		Problems (P, NP, NP-Hard, NP-Complete), Discussion of differen	t NP-complete
		problems like satisfiability, clique, vertex cover, independent set	t, Hamiltonian
		cycle, set cover, dominating set problem.	(6L)
		Approximation Algorithm: Approximation ratio for maximizatio	n problem and
		minimization problem, Constant ratio approximation algorithms	for metric
		travelling salesperson problem (TSP) and vertex cover problem,	log n ratio
		approximation algorithm for Set Cover problem.	(6L)
Text	Books,	Text Books:	
and/	/or	1. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introdu	ction to
refe	rence	Algorithms, by Prentice Hall India.	
mate	erial	2. J. Kleinberg and Eva Tardo, Algorithm Design by Pearson Educ	ation (Indian
		edition).	
		3. S. Dasgupta, C. Papadimitriou and U. Vazirani, Algorithms, by	Tata McGraw-Hill.
		Reference Books:	
		1. Michael T. Goodrich and Roberto Tamassia, Algorithm Design	: Foundations,
		Analysis, and Internet Examples, Second Edition, Wiley, 2006.	
		2. Algorithms: Design Techniques and Analysis Volume 7 of Lect	ure notes series
		on computing, World Scientific, 1999.	
		Others: Tim Roughgarden's video lectures and notes of CS161 a	and <i>CS261;</i>
1		NPTEL's lectures on Design and Analysis of Algorithms; NMEICT	video on Design of
		Algorithms (http://www.nmeict.iitkgp.ac.in/Home/videoLink/10	/3gp).
1	+		

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	3	3	2	-	-	-	-	-	-	3
CO2	3	3	3	3	2	-	-	-	-	-	-	2
CO3	3	3	3	3	3	1	1	1	1	1	1	3
CO4	3	3	3	3	2	-	-	-	-	-	-	3
CO5	2	3	2	3	2	-	-	-	-	-	-	3

#### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

#### CSC 404 Object Oriented Programming 2-1-0 3 Credits **3** Hours Department of Computer Science and Engineering Course Title of the course Program Core Total Number of contact hours Credi Code (PCR)/ Lectur Tutori Practical t Total Electives (PEL) (P) e (L) al (T) Hour S CSC 404 **Object Oriented** PCR 2 1 0 3 3

Pr	ogramming									
Pre-requisites	<u> </u>	Course Assessment methods (Continuous Assessment (CA), Mid-								
•		Term (MT), End Term (ET))								
Introduction to	o Computing	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]								
(CSC01), Data	Structures and									
Algorithms (CS	SC303)									
Course	• CO1: Unders	tanding of Object Oriented Design Approach and its real world								
Outcomes	applications									
	CO2: Analyzi	ng problems in terms of object oriented methodologies.								
	CO3: Implem	ent programs using concepts of classes and objects.								
	• CO4: Specify	the forms of inheritance and use them in problem solving.								
	• CO5: Learn a	nd implement different forms of polymorphism.								
	CO6: Develop	bing skills to write generic codes								
Topics	Course Introdu	ction- Concepts of Object Oriented Programming, Procedural								
Covered	approach, Limit	ation of Procedural Language, Object concept.								
	(2L)	Terminalagies Class concert ADT encanculation Cardinality								
	Data hiding Joh	aritance Relymorphism Advantages of OORs. Advantages of								
		e between Procedural and Object Oriented Language, Evolution of								
	C++	(41)								
	Basic Input/Out	t <b>put in C++</b> - The 1st C++ Program (temperature conversion).								
	compilation. Inc	but stream and output stream. Advantages of cin a cout over priting								
	and scanf.	,								
	(3L)									
	Basic C++ featu	res - Literals, Constants, Manipulators, Assertions, Enumerated								
	Data Types, Sco	pe resolution operator.								
	(4L)									
	Pointers & Refe	rences in C++- Basic operations on pointers, Array of pointers,								
	pointer to an ar	ray, self referential structures, References in C++ , use of								
	references.	(4L)								
	Dynamic memo	ory allocation/deallocation- Use of new and delete operator, multi-								
	dimensional arr	ay allocation, Examples.								
	(4L)									
	Constructor and	Destructor, various examples of constructors, Constructor								
	Salient reatures	, Destructors,, Examples.								
	(ZL) Eunctions in C+	+: Overloading function call Macros and it's limitations Inline								
	function Functi	on Overloading Constructor Overloading Examples Function with								
	Default argume	nts. Various Examples of Default arguments.								
	(5L)									
	Writing C++ Cla	sses- Class, C++ class vs Structure, This pointer. Memory Layout of								
	C++ program, St	atic member of class. Static Member Functions, Static Object,								
	Examples. (4L)									
	C++ Constants I	Revisited - Storage Allocation, Constants and References, Constant								
	member data a	nd Functions, Constants Objects, Examples.								
	(2L)									
	Friend Function	& Operator Overloading - Friend Functions, Use of friend								

CO1	3	-	-	3	-	2	2	1	-	1	2	1			
COs															
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
Mapping o	f CO (C	ourse Ou	<u>itcom</u> e	) and P	O (Prog	gramm	e Outco	ome)							
		archive.nptel.ac.in/noc19_cs10/preview_													
		NPTEL C	ourse li	ink by F	rof. Pa	rtha Pr	atim Da	is - <u>htt</u> p	<u>s://onl</u>	<u>inecou</u> rs	es-				
		Others:		-	,										
		5.	More E	ffective	C++ by	/ Scott I	Meyers	, 2002.							
		<b>4.</b>	Scott M	evers	1997.		aysiu	mpiov		riografi		CSIGIT DY			
		л Л	<b>HUBISOI</b> Effectiv	n-wesi o C++·	50 Sna		avs to	Improv	e Vour	Program	ns and D	esign hv			
		3.	Bjarne	Strous	trup, "	Progra	mming	: Princi	ples a	nd Prac	tice Usir	ng C++",			
		-	Profess	ional		_	-								
		2. 9	S. B. L	ippma	n, J. L	ajoie,	B. E.	Moo,	"C++ F	Primer",	Addisor	n-Wesley			
		1.	Bruce E	ckel <i>,</i> "T	hinking	g in C++	.", Pren	tice Ha	II.						
		Refere	nce Boo	oks:											
		<b>.</b>	L. Dala McGrav	w Hill.	vanny,	objet	t one	nteu P	rugran	uuung v		, Idid			
materia	1	2.   ว	Bjarne S	stroust	up "Th	e C++ F	rogran	nming L	anguag	ge", Pear	son Educ	ation.			
referen	ce		Brooks/	Cole Th	nomsor	Learni	ng.				= 1				
and/or		1. /	Adam	Drosde	k, "D/	ATA S	TRUCTU	JRES A	ND A	LGORITH	IMS IN	C++",			
Text Bo	oks,	Text Bo	ooks:												
		2-3 Lect	ures ar	e plann	ed for	doubt d	learand	ce.							
		File han	cture (41): Unformatted Input/ Output operations, Formatted I/O functions, e handling.												
		Lecture	ecture (39-40): Exception Handling in C++ ecture (41): Unformatted Input/ Output operations, Formatted I/O functions,												
		Lecture	Lecture (38): V Table and V pointer, Pure Virtual Function, Examples. Lecture (39-40): Exception Handling in C++												
		Example	Examples. ecture (38): V Table and V pointer, Pure Virtual Function, Examples												
		Polymo	olymorphism and virtual function, Function call finding, Virtual Functions,												
		Up casti	ing.									,			
		Protecto	or Spec	ifier, Ex	amples	of diff	erent ty	pes of	inherit	ance, Vir	tual Base	, e Class,			
		(4L) Inherita	nce in i	C++ De	rive cla	ass Par	ameter	ized co	nstruct	or in der	ive class				
		(4)	te class												
		Templa	tes in C	++, Ger	neric fu	nction	and cla	sses, ex	amples	s, syntax	of a tem	plate,			
		(4L)													
		advantages of friend functions during overloading. (4L)													
		functior	ns, frien	ds as b	ridges,	Variou	s examı	oles, Op	perator	Overloa	ding, exa	imples,			

CO1	3	-	-	3	-	2	2	1	-	1	2	1
CO2	3	3	1	3	3	1	-	-	-	1	-	-
CO3	-	3	3	-	3	-	-	-	-	1	1	1
CO4	1	3	2	3	3	1	-	-	-	1	3	1
CO5	1	2	2	3	3	1	-	-	-	1	3	1
CO6	-	-	3	-	3	3	2	-	1	2	2	1

## Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

	ais and systems	3-U-U 3 Cre	suits 3									
-	Departm	ient of Computer S	science and	Engineer	ing							
Course	Title of the course	Program Core	Total Nu	mber of c	ontact hours	5	Cre					
Code		(PCR)/	Lectur	Tutori	Practical	Total	t					
		Electives (PEL)	e (L)	al (T)	(P)	Hour						
						S						
CSC 405	Signals and	PCR	3	0	0	3	3					
	Systems											
Pre-requis	ites	Course Assessm	ent metho	ds (Contin	uous Assess	ment (CA	4) <i>,</i> Mi					
		Term (MT), End Term (ET))										
Calculus, I	inear algebra	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]										
Course	The students, af	ter successfully co	mpleting t	he course,	will be able	to:						
Outcomes	• CO1: L	Inderstand the	definition	s, classif	fications, p	propertie	s a					
	applicati	ons of signals and	systems.									
	• CO2: Ap	ply Laplace transf	orm, Four	ier transfo	orm, Z-trans	form an	d oth					
	mathem	atical operations f	or the purp	oose of ana	alyzing signa	ils and sy	stem					
	• CO3: De	sign and analysis o	f continuo	us and dise	crete time sy	/stems.						
	• CO4: Co	mpare continuou	s time an	d discrete	e time syste	ems in r	eal l					
	applicati	ons.										
Topics	Introduction to	Signals and syster	ns, introdu	ction to si	gnals, classif	fication c	of					
Covered	signals; mather	natical operations	of signals,	some star	idard signals	s, genera	ting					
	signals using st	andard signals.										
	(6L)											
	Introduction to	systems, classifica	ation of sys	tems, Line	ar Time Inva	ariant (LT	1)					
	Systems (contin	nuous-time and discrete-time systems), properties of LTI systems,										
	impulse respon	ise, convolution, ca	ausality, sta	ability;								
	(6L)	<b>C</b> 14										
	Impulse respon	ise of discrete-time	e LTI syster	ns, discret	e time conv	olution,						
	difference equa	ations and analysis	, developir	ng equivale	ent discrete-	time sys	tem					
	from a given co	ontinuous-time sys	tem and ar	halysis of t	heir stability	/;						
	(4L)											
		- ··· ·		<i>.</i>		-	r					
	Laplace Transfo	orm, Properties of	Laplace Ira	ansform, Ir	nverse Lapla	ce Trans	form					
	(4L)											
	Applications of	Laplace Transform	is to design	h and anal	yse continuc	bus-time						
	systems, transf	er function of cont	inuous-tin	ne systems	s, poles and	zeros, sta	ability					
	analysis;	(4L)										
	later of the second second	7		Tuess		Car	<b>.</b>					
	introduction to	o Z-Transform, Properties of z-Transform, Region of Convergence,										
	Inverse z-Trans	isform;										
	(21)											
	(3L)											
	(3L)	7 7				C						
	(3L) Applications of	Z-Transforms to d	esign and a	analyse Dis	screte Time :	Systems						

	Introduction to Fourier analysis, Fourier series for periodic signals, discrete spectrum of periodic signals;
	(2L)
	power spectral density, frequency response of continuous-time systems, some problem examples:
	(4L)
	Fourier analysis of Discrete Signals, Discrete Time Fourier Transform (DTFT), Properties of DTFT, Examples of DTFT, DFT. (4L)
	Concept of state, state space analysis, state space representation of continuous
	(2L)
Text Books,	Text Books:
and/or	1. Signals and Systems, 2 nd ed., Simon Heykin and Barry Van Veen, John Wiley &
reference	Sons.
material	2. Signals and Systems, Oppenheim and Willsky, Prentice Hall Signal Processing
	Series.
	Reference Books:
	1. Signal Processing and linear systems, B. P. Lathi, Oxford University Press.
	2. Theory and Problems of Signals and Systems, Hsu, Schaum's Outline Series.

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	2	2	2	2	1	-	-	-	-	-	-	1
CO2	2	3	3	3	-	-	-	-	-	-	-	2
CO3	2	3	3	3	-	-	-	-	-	-	-	3
CO4	2	2	2	2	-	-	-	-	-	-	-	3

#### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

CSS 451 Computer Organization Laboratory 0-0-3 1.5 Credits

3: Substantial (High)

**3** Hours

	Departmen	t of Computer Sci	ence and I	Engineerir	Ig					
Cours	Title of the course	Program Core	Total Nu	umber of c	ontact hou	rs	Cred			
е		(PCR) /	Lectur	Tutori	Practica	Total	it			
Code		Electives (PEL)	e (L)	al (T)	l (P)	Hour				
						S				
CSS	Computer Organization	PCR	0	0	3	3	1.5			
451	Laboratory									
Pre-req	uisites	Course Assessm	Course Assessment methods (Continuous (CT) and End							
		assessment (EA	))							
Digital L	.ogic Design (CSC302),	CT+EA [CT: 60%	, EA(Labo	ratory assi	gnment + V	'iva Voce	):			
Digital L	ogic Design laboratory.	40%]								
(CSS351	.)									
Course • CO1: Understand the basic structure of digital computer.										

	Outcom	ie	• CO	2: Und	erstand	d the sy	nchroi	nous / as	synchro	nous l	ogic.					
	S		• CO	3: Perfo	orm diff	ferent c	operati	ions witł	n flip-flo	op.						
			• CO	4: Unde	erstand	arithm	etic ar	nd contro	ol unit o	operat	ion.					
			• CO	5: Unde	erstand	the ba	sic con	cepts of	Memo	ry.						
	Topics		1. Int	roductio	on to \	/erilog	HDL a	and Imp	lement	ation	of basic lo	ogic gate	es using			
	Covered	k	Vei	rilog.												
			2. Far	niliariza	ition of	Assem	bly lar	nguage p	rogram	iming.						
			3. Im	plemen	tation o	of comb	binatio	nal circu	its usin	g Veri	log.					
			4. Im	plemen	tation d	of seque	ential	circuits l	ising Ve	erilog.						
			5. Im	piemen	tation (		n's iviu	litiplier c	ircuit.	D	D					
			o. Syr	itnesis (	or simp	of Bon	path a		rollers,		4) to port	n form bo	+h D/M/			
			7. IIII	piemen	lation		uom <i>i</i>	ACCESS IN	vieniory		n) to peri					
			8 Mi	ni proje	ct											
	Tovt		Tevt Bool													
	Books	1	David	David A Patterson, John L Hennessy, "Computer Organization and Design", (												
	and/or	-	Hardw	Hardware/Software Interface) Morgan Kaufmann.												
	referen	ce 2	Carl Hamacher, Zvonko Vranesic, Safwat Zaky: Computer Organization,													
	materia		Edition, Tata McGraw Hill.													
		Reference Books:														
			1. Wi	lliam St	allings,	, "Com	puter (	Organiza	tion ar	nd Arcl	nitecture"					
			2. Nic	holas P	. Carte	r, "Con	nputer	Archite	cture 8	. Orga	nisation".					
	2. Nicholas P. Carter, "Computer Architecture & Organisation".															
	Others: Laboratory Manual															
M <u>a</u> j	pping of	- CO (	Sthers: La Course Oi	aborato utcome	ory Mai ) and P	nual O (Prog	gramm	ne Outco	me)							
Ma	pping of POs	CO (0 PO1	Course Or PO2	aborato utcome PO3	ory Man ) and P PO4	nual O (Prog PO5	gramm PO6	ne Outco PO7	me) PO8	PO9	PO10	PO11	PO12			
Maı	pping of POs COs	CO (0 PO1	Diners: La Course Oi PO2	aborato utcome PO3	ory Mai ) and P PO4	nual O (Prog PO5	gramm PO6	PO7	ome) PO8	PO9	PO10	P011	P012			
Ma	pping of POs COs CO1	FCO (0 PO1	2	aborato utcome PO3	ory Mai ) and P PO4 2	nual O (Prog PO5	gramm PO6	ne Outco PO7	PO8 -	<b>PO9</b>	PO10	PO11	PO12 -			
Ma _l	PDing of POs COs CO1 CO2	ECO (0 PO1	PO2	aborato utcome PO3	) and P PO4 2 2	nual O (Prog PO5 2 2	gramm PO6 - -	PO7	pme) PO8 - -	<b>PO9</b> 1 1	PO10 - -	P011 - -	PO12 - -			
Mai	pping of POs COs CO1 CO2 CO3	² CO (( PO1 2 3 3	2 2 2 2 2	aborato utcome PO3 1 1 1	pry Mai ) and P PO4 2 2 2	nual O (Prog PO5 2 2 2 2	gramm PO6 - - -	PO7 PO7	pme) PO8 - - -	PO9 1 1 1	PO10	PO11	PO12 - - -			
	pping of POs COs CO1 CO2 CO3 CO4	2 3 3 3	PO2 PO2 2 2 2 2 2 2	aborato utcome PO3 1 1 1 1	2 2 2 2 2 2	nual O (Prog PO5 2 2 2 2 2	gramm PO6 - - - -	PO7 PO7 - - - -	PO8	PO9 1 1 1 2	PO10	PO11	PO12			
	pping of POs COs CO1 CO2 CO3 CO4 CO5	2 3 3 3 3 3	Dtners: La     Course Or     PO2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2	PO3 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2	nual O (Prog PO5 2 2 2 2 2 2 2	gramm PO6 - - - - -	ne Outco PO7 - - - - - -	pme) PO8 - - - - - -	PO9 1 1 1 2 1	PO10	PO11	PO12			
	pping of POs COs CO1 CO2 CO3 CO4 CO5 relation	² 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	Others: La         Course Or         PO2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         3         1, 2 or 3	PO3 1 1 1 1 1 3 as defi	PO4 PO4 2 2 2 2 2 2 ined be	nual O (Prog PO5 2 2 2 2 2 2 2 2 2 2 2 2 2	gramm PO6 - - - -	ne Outco PO7 - - - - -	PO8	PO9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO10	PO11	PO12			
Mai Mai Corr 1: S	pping of POs COs CO1 CO2 CO3 CO4 CO5 relation light (LO	2 3 3 3 1 evel w)	DescriptionDescriptionCourse OrPO222222231, 2 or 3	PO3 1 1 1 1 1 2: Mc	PO4 PO4 2 2 2 2 ined be	PO5 PO5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	gramm PO6 - - - - - - - - - - - - -	ne Outco PO7 - - - - -	pme) PO8 - - - - - - - - - - - - - - - - - - -	PO9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO10	PO11	PO12			
Ma Ma L L Cori 1: S CSS	pping of POs COs CO1 CO2 CO3 CO4 CO5 relation light (Lo 452 O	ECO (0 PO1 2 3 3 3 3 1evel w) bject	Others: La         Course Or         PO2         2         2         2         2         2         2         2         2         2         2         3         1, 2 or 3         Oriented	PO3 1 1 1 1 1 3 as defi 2: Mo Program	PO4 PO4 2 2 2 2 ined be oderate mming	PO5 PO5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	gramm PO6 - - - - - - um) atory	ne Outco PO7 - - - - - - -	eme) PO8 - - - - 3: S 3	PO9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO10	PO11	PO12			
Ma Ma 	pping of POs COs CO1 CO2 CO3 CO4 CO5 relation light (Lo 452 O	CO (0 PO1 2 3 3 3 3 1evel w) bject	Differs: La Course Or PO2 2 2 2 2 2 2 2 5 1, 2 or 3 Oriented	PO3 1 1 1 1 1 2: Mc Program Departr	PO4 PO4 2 2 2 2 ined be oderate mming ment of	PO5 PO5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	gramm PO6 - - - - - - - - - - - - - - - - - - -	PO7 PO7	PO8 - - - - - 3: S 3 nd Engin	PO9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO10	PO11 3 Hours	PO12			
Ma – – 1: S Corr 1: S	pping of POs COs CO1 CO2 CO3 CO4 CO5 relation light (Lo 452 O Course	<b>FCO (0</b> <b>PO1</b> 2 3 3 3 3 <b>Ievel</b> w) <b>bject</b>	Differs: La Course Or PO2 2 2 2 2 2 2 5 1, 2 or 3 Driented	PO3 1 1 1 1 1 3 as defi 2: Mo Program Departr course	PO4 PO4 2 2 2 2 2 ined be oderate mming ment of Prog	PO5 PO5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	atory	PO7 PO7	PO8 PO8 - - - 3: S 3 nd Engin umber Tut	PO9 1 1 1 1 2 1 ubstar 1.5 Conneerin of cor	PO10	PO11 3 Hours	PO12			
Ma – – – 1: S CSS	pping of POs COs CO1 CO2 CO3 CO4 CO5 relation light (Lo 452 OI Course Course Code	CO (0 PO1 2 3 3 3 3 1evel w) bject Ti	Differs: La Course Or PO2 2 2 2 2 2 2 3 5 1, 2 or 3 Oriented	PO3 1 1 1 1 2: Mo Progran Departr course	PO4 PO4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PO5 PO5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	gramm PO6 - - - - - - - - - - - - - - - - - - -	PO7 PO7	PO8 - - - - - 3: S 3 nd Engin umber Tuto al (1)	PO9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO10 - - - - - - - - -	PO11	PO12			
Ma – – 1: S CSS	pping of POs COs CO1 CO2 CO3 CO4 CO5 relation light (Lo 452 O Course Code	CO (0           PO1           2           3           3           3           Biser           w)           bject	Differs: La Course Or PO2 2 2 2 2 2 3 1, 2 or 3 Oriented tle of the	PO3 1 1 1 1 1 3 as defi 2: Mo Program Departr course	PO4 PO4 2 2 2 2 2 ined be oderate mming ment of Prog (PCI Elec	PO5 PO5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	gramm PO6 - - - - - - - - - - - - - - - - - - -	PO7 PO7	PO8 - - - - 3: S 3 nd Engin umber Tuto al (1	PO9 1 1 1 1 2 1 ubstar 1.5 Cr ori of cor	PO10	PO11 - - - - - - - - -	PO12			
Ma  Corr 1: S CSS	pping of POs COs CO1 CO2 CO3 CO4 CO5 relation light (Lo 452 OI Course Code	CO (0 PO1 2 3 3 3 3 3 1evel w) bject Ti	Differs: La Course Or PO2 2 2 2 2 2 3 5 1, 2 or 3 Oriented tle of the	PO3 1 1 1 1 1 2: Mo Progra Departr course	PO4 PO4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PO5 PO5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	gramm PO6 - - - - - - - - - - - - - - - - - - -	PO7 PO7	PO8         -         -         -         -         -         -         3: S         and Englin         umber         Tute         al (1)         0	PO9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO10 - - - - - - - - -	PO11 - - - - - - - - -	PO12			
Ma – – – 1: S CSS	pping of POs COs CO1 CO2 CO3 CO4 CO5 relation light (Lo 452 OI Course Code	2 3 3 3 3 1evel w) bject	Differs: La Course Or PO2 2 2 2 2 2 3 1, 2 or 3 Driented tle of the	aborato utcome PO3 1 1 1 1 1 3 as defi 2: Mo Prograt Departr course	Provention of the second state of the second s	PO5 PO5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	gramm PO6 - - - - - - - - - - - - - - - - - - -	PO7 PO7 PO7	PO8 - - - - 3: S 3 Md Engin umber Tuto al (1 0	PO9 1 1 1 1 2 1 ubstar 1.5 Cr ori ori []	PO10 - - - - - - - - - - - - -	PO11 - - - - 3 Hours S Total Hour s 3	PO12 1.5			
<b>M</b> a <b>Cor</b> 1: S <b>CSS</b>	pping of POs COs CO1 CO2 CO3 CO4 CO5 relation light (Lo 452 OI Course Code	CO (0 PO1 2 3 3 3 3 3 1evel w) bject bject Ti	Differs: La Course Or PO2 2 2 2 2 2 2 3 5 1, 2 or 3 Oriented tle of the bject Oriented	PO3 1 1 1 1 1 2: Mo Progra Departr course	Prog PO4 PO4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PO5 PO5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	gramm PO6 - - - - - - - - - - - - - - - - - - -	PO7 PO7	PO8         -         -         -         -         -         -         3: S         ad Englibut         umber         Tute         al (1)         0	PO9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO10 - - - - - - - - -	PO11 - - - - - - - - -	PO12			
Ma – – – 1: S CSS	pping of POs COs CO1 CO2 CO3 CO4 CO5 relation light (Lo 452 OI Course Code Course Code	2 3 3 3 1evel w) bject Tri 0 Pri La uisite	Differs: La Course Or PO2 2 2 2 2 2 3 1, 2 or 3 Driented tle of the bject Oriented togramming boratory	aborato utcome PO3 1 1 1 1 2: Mo Progra Departr course	Provention of the second state of the second s	nual O (Prog PO5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	gramm PO6 - - - - - - um) atory uter Sc ore PEL)	PO7 PO7 PO7	PO8	PO9 1 1 1 1 2 1 ubstar 1.5 Cr ori r)	PO10	PO11 - - - - - - - - -	PO12			
Ma  Cor 1: S CSS	pping of POs COs CO1 CO2 CO3 CO4 CO5 relation light (Lo 452 OI Course Code Coss452	CO (0 PO1 2 3 3 3 3 3 3 1evel w) bject w) bject Ti D 0 P La uisite	Differs: La Course Or PO2 2 2 2 2 2 2 3 5 1, 2 or 3 Oriented tle of the bject Oriented tle of the	aborato utcome PO3 1 1 1 1 2: Mo Progra Departr course	PO4 PO4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PO5 PO5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	gramm PO6 - - - - - - - - - - - - - - - - - - -	PO7 PO7 PO7	PO8         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <	PO9 1 1 1 1 2 1 ubstar 1.5 Cr ori ori ()	PO10 - - - - - - - - -	PO11 - - - - - - - - -	PO12			
Ma  1: S CSS	pping of POs COs CO1 CO2 CO3 CO4 CO5 relation light (Lo 452 OI Course Code Course Code	CO (0         PO1         2         3         3         3         3         3         9         bject         0         PI         La         uisite         ction	Differs: La Course Or PO2 2 2 2 2 2 3 1, 2 or 3 Driented the of the bject Orie rogrammi aboratory 5	aborato utcome PO3 1 1 1 1 2: Mo Progran Departr course	PO4 PO4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	nual O (Prog PO5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	gramm PO6 - - - - - - - - - - - - - - - - - - -	e Outco PO7 - - - - - - - - - - - - - - - - - - -	PO8 - - - - - 3: S 3 nd Engin umber Tuto al (1 0 ods (Co	PO9 1 1 1 1 2 1 ubstar 1.5 Cr ori r) ontinuc	PO10	PO11 - - - - - - - - -	PO12 1.5 1.5			

Algorithms		2)										
Algorithms		13)						• •				
Course	•		01: Und	erstan	aing exi	isting pi	robiem	s in terr	ns of o	bject orie	nted	
Outcomes		me	ethodo	logies a	and des	ign cod	es usin	g OOL s	yntax		_	
	•	CC	02: Deri	ve solu	itions u	sing the	e conce	pts of c	lasses	and objec	ts.	
	•	CC	03: Desi	ign and	impler	nent pr	ograms	s using v	various	forms of	inherita	nce
	•	CC	04: Lear	n diffe	rent for	ms of p	olymo	rphism	and de	rive solut	ion for re	elated
		pro	oblems									
	•	CC	)5: Imp	lement	ation o	f templ	ates an	d excep	otion ha	andling		
-	•	CC	)6: Solv	ing mir	ni proje	cts usin	g the c	oncepts	s of obj	ect orient	ed tech	nology
Topics	As	signr	nent 1	Desigr	n codes	using C	OL syn	tax; use	e of ma	nipulator	s, dynan	nic
Covered	alle	ocati	on, mu	lti-dim	ensiona	l array	writing	applica	ation lik	e additio	n, subtra	iction,
	m	ultipli	ication,	findin	g factor	ial of a	large n	umbers	s etc.			
	As	signr	nent 2	Develo	op code	es involv	/ing bir	hary and	l text fi	les involv	ing string	g
	ma	anipu	lation,	graph	process	ing, etc						
	As	signr	nent 3	Desigr	n class l	ibrary f	or impl	ementi	ng mat	rix, comp	lex numl	ber,
	str	ing, s	stack, q	ueue, l	inked li	st <i>,</i> hea _l	o, binar	y searc	h tree,	polynomi	al, etc.	
	As	signr	nent 4	Develo	op class	library	to imp	lement	applica	ation like	hashing,	
	hu	ffma	n code,	, expre	ssion ev	valuatio	n using	; the lib	raries c	leveloped	l in assig	nment
	3.											
	As	signr	nent 5	Enhan	ce the	class lib	raries i	n assigr	hment	3&4 imple	ementing	3
	fur	nctio	n overl	oading								
	As	signr	nent 6	Enhan	ce the	class lib	raries i	n assigr	nment 3	3&4 imple	ementing	3
	ор	erato	or over	oading	•							
	As	signr	nent 7:	Develo	op code	es using	inherit	ance.				
	As	signr	nent 8:	Desigr	n and de	evelop	templa	te class	es.			
	As	signr	nent 9:	Implei	ment ex	ceptio	n handl	ing in s	ome ex	isting ten	nplate cl	asses .
Text Books,	Te	xt Bo	oks:									
and/or		1. E	Bruce E	ckel, "T	hinking	g in C++	″, Pren	tice Hal	I.			
reference		2. 5	5. B. L	ippma	n, J. L	ajoie,	B. E.	Moo, '	'C++ P	rimer",	Addison	Wesley
material		F	Protess	ional		_						
		3. E	Bjarne	Strous	trup, "	Program	nming:	Princi	ples ar	nd Practi	ce Usin	g C++",
		4	Addisor	n-Wesle	ey Profe	essional	•			_		
		4. E	ffectiv	e C++:	50 Spe	citic W	ays to	Improv	e Your	Programs	s and De	esign by
			Scott M	eyers,	1997.	<b>.</b>						
		5. N	Viore E	ffective	e C++ by	Scott I	Vleyers	, 2002.				
	Otr	ners:										
	NP		ourse I	INK by H	Prof. Pa	rtha Pra	atim Da	is - <u>http</u>	s://onl	inecourse	<u>es-</u>	
	arc	nive.	nptel.a	C.In/no	CTA CS	TO/ prev		mal				
										DO10	DO11	DO13
		02	PU3	PU4	PU3	PU0	PU/	PUð	PU9	P010	1011	PU12
	2	2	1	1	2	1	1		-	1		1
		ך כ	5	2	2	1	<u>ר</u> כ	-	-		- 1	<u> </u>
		ך כ	ა 2	י 2	2		2 1	-	-	-	1	-

**CO**4

CO5

2

_

3

3

3

3

3

3

1

_

-

_

-

1

-

1

-

_

2

3

-

_

3

3

<b>CO</b> 6	2	2	1	2	2	2	2	2	2	2	2	1		
Correlation		5 1 2 or 3	⊥ Las dofi	od bo		5	Z	5	5	5	5	T		
1. Slight (Lov		1, 2 01 3	2. Mc	neu be	Modi	um)		2· C	uhsta	ntial (High)				
CSS 453 Sign	v) als an	d Systei	ns laho	ratory	<b>0-0-</b>	ann, R	1 5 Cre	dits	3 Hr	ning				
		u syster	Denartr	nent of	Comp	uter S	cience an	d Engi	neerir	ישרט. זיס				
Course	Title	e of the	course	Pros	ram Co	ore	Total N	umber	of co	ntact hours	:	Credi		
Code			course	(PCF	R) /		Lectur	Tute	ori	Practical	Total	t		
				Elec	tives (P	EL)	e (L)	al (T	-)	(P)	Hour			
					•	,	- (-)		'	(* )	S			
CSS 453	Sigr	nals and		PCR			0	0		3	3	1.5		
	Sys	tems												
	Lab	oratory												
Pre-requ	isites:			ous (CT) an	d End									
		assessment (EA))												
MATLAB,	Pytho	on CT+EA [CT: 60%, ET(Laboratory assignment + Viva Voce): 40%]												
Course		<ul> <li>CO1: Simulate signals and systems using modern computer soft</li> </ul>												
Outcome	es		package	es (Mat	lab/Pyt	hon).								
		•	CO2: A	oply La	place t	ransf	orm, Fou	rier tra	ansfor	m, Z-trans	form an	d other		
		I	mathen	natical	operati	ons fo	or the pur	pose o	f anal	yzing signa	ls and sy	stems.		
		•	CO3: De	esign ar	nd analy	ysis of	continuc	bus and	l discr	ete time sy	/stems.	1.1.6		
		•	CO4: Co	ompare	e conti	nuous	s time ai	nd dise	crete	time syste	ems in i	real life		
Topics		1 1	applicat	tion to	Comp	itor 6	oftware D	ackag	N/a+	lah /Duthan				
Covered		1. I 2 (	Simulat	ion of s	tandar	d of si	ontware P	ackage	IVIAL	iab/Python				
Covereu		Ζ.	simulat 2 Unit	ston	lanuai									
		•	a. Unit h Unit	imnul	e e									
			c. Ram	nnpa. nn										
			d. Peri	odic sir	nusoida	l seau	uences.							
		3.	Basic or	peratio	n on sig	nals:	Addition.	Subtra	ction	. Multiplica	tion. Div	ision.		
		shift	ting, sca	ling, et	:с.	•	,			/ I	,	,		
		4.	Convolv	e and a	analyze	signa	ls in time	domai	in.					
		5.	Laplace	transfo	orm and	d inve	rse Lapla	ce tran	sform	of signals.				
		6.	Convolu	ition of	signals	s in tra	ansforme	d doma	ain an	d verificati	on of			
		conv	volutior	n prope	rty of F	ourie	r and Z-tr	ansfor	m.					
		7. 3	Study o	f LTI sy	stem ar	nd its	stability.							
		8.	Design (	of Stab	le LTI sy	/stem	s.							
		9.	Design (	of FIR a	nd IIR s	systen	ns.							
		10.	mplem	ent Fas	t Fouri	er Tra	nsform a	gorith	m of a	ı signal.				
Text Boo	ks,	Text Bo	ooks:											
and/or		1. 5	Signals	and S	system	s Lab	oratory	with	MATL	AB, Alex	Palamid	es and		
reference	e	Deferre	Anastas	la velo	ni, CRC	Press	5, 2011.							
material		referen		KS:	tima	anala	and Susta	mala	orat-	ny Nacco	· Kohtara	21/27		
		Z. F	nywne sh saki	Morga	n 8. Ch	gridis vnool	anu Syste 2017		JUI ALC	лу, Nasser	Kentarn	idVdZ,		
		гасетте	n Saki,	worga	in & Cla	yhooi	, 2017.							

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	2	1	1	1	3	-	-	-	-	-	-	2
CO2	2	3	3	3	-	-	-	-	-	-	-	2
CO3	2	3	3	3	-	1	-	-	-	-	-	2
CO4	2	2	2	2	_	1	_	1	-	_	-	3

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

# **FIFTH SEMESTER**

CSC 501 O	perating Systems		3-	0-0	3 Credits	3 Hours				
	Departm	Department of Comp			l Engineeri	ing				
Course	Title of the course	Program	n Core	Total Nu	mber of co	ontact hours	5	Credi		
Code		(PCR) /		Lectur	Tutori	Practical	Total	t		
		Elective	s (PEL)	e (L)	al (T)	(P)	Hour			
							S			
CSC 501	Operating Systems	PCR		3	0	0	3	3		
Pre-regui	sites		Course	Assessme	nt metho	ds (Continuo	us Asses	sment		
			(CA), N	/id-Term (MT). End Term (ET))						
Compute	r Organization and		CA+ M	T + ET [CA:	: 15%, MT:	25%, ET: 60	)%]			
Architect	ure (CSC401),Introduc	tion to		-			-			
Computin	ng (CSC01), Data Struc	C01), Data Structures								
and Algor	ithms (CSC303)									
Course	CO1: Explain	the funct	ional arc	hitecture o	of an opera	ating system	ı.			
Outcome	s • CO2: Design	the proc	ess contr	ol algorith	nms, soluti	on to dead	locks and	l multi-		
	threading ap	plications	5							
	CO3: Implem	nent appli	cation pr	ograms us	ing UNIX s	ystem calls.				
	CO4: Design	and solve	control	& data acc	ess synchr	onization pr	oblems.			
	CO5: Explain	virtual m	emory o	rganizatior	n and man	agement in (	OS.			
	CO6: Implan	tation of s	standard	FAT & UNI	IX file syste	em.				
Topics	Introductory Co	ncepts: In	ntroductio	on to Oper	ating Syste	em as a who	ole, mem	ory,		
Covered	CPU(registers ar	id ALU), E	volution	of Operati	ng System	-types of OS	advanta	iges		
	and drawbacks),	Performa	mance measurement metrics. (3L)							
	Process Data St	ructures a	Ictures and State transitions: Process management, Basic							
	Definitions, Proc	rancition	diagram	cess contr	OI DIOCK), I	re(process	table en	lry), aland		
	process states, i	Tansition	ulagraffi,	(21)	i process-i	user level, ki	emei-iev	eranu		
	Process Control	· Drocoss (	creation	(JL) Darent an	l d Child pro	LACCAC SUCT	om calls.	-fork()		
	exit() wait() kill	() Signal H	handling	Process so	cheduling (	strategies-Fi		SRT		
	Round Robin H	RN Fair	share sch	eduling		(51)	CI 3, 31 IV,	51(1)		
	Multi-threading	: Threads	in OS. th	read vs pro	ocess. ULT	& KLT. App	ications	of		
	threads. Use of	POSIX thre	eads libra	irv.		(3	BL)			
	Process synchro	nization -	· Race co	, ndition, Ci	ritical secti	on, Process	Sync Sol	ution		
	using Algorithmi	c approad	ch (Lamp	ort bakery	Algorithm	), Creating s	hared m	emory		
	using POSIX libra	ary.			-		(2	L)		
	Semaphore- Bir	<b>Semaphore</b> - Binary and Counting semaphore, P() and V() operations, Solving						ıg		
	Classical probler	Classical problem using semaphores- Sleeping barber, Producer-consumer,								
	Reader-writer, D	Reader-writer, Dining philosophers's problem, Posix library for semaphores					i.			
	(6L)									
	Monitors - Solvi	ng Classic	al proble	ms using n	nonitors.	(3L)				
	Deadlocks - Nec	Deadlocks - Necessary and sufficient conditions for deadlocks, approaches to o						o deal		
	with deadlocks,	with deadlocks, Deadlock Prevention, Avoidance (Banker					m) and			
	Detection. (3L)									

	Memory organization & management - Virtual memory organization, Pure							
	Paging, Pure Segmentation, Combined Paging-Segmentation, Inverted PMT, Page							
	fault handling algorithms, Working set theory. (7L)							
	File management- Directory structure, Storage of files on disks, contiguous and							
	non-contiguous file allocation strategies, Internal and external fragmentation, FAT							
	& Inode Structure, Free Space management, Disk scheduling strategies. (5L)							
	I/O management concepts (2L)							
Text Books,	Text Books:							
and/or	1. "Operating System Concepts", Silberschatz and Galvin.							
reference	2. "Operating Systems: Internals and Design Principles" by William Stalling.							
material	3. "Operating Systems: A Concept-Based Approach" by D M Dhamdhere.							
	Reference Books:							
	1. "Operating System: A Design-oriented Approach" by Charles Crowley.							
	2. "Operating Systems: A Modern Perspective" by Gary J Nutt.							
	3. "Design of the Unix Operating Systems" by Maurice Bach.							
	4. "MODERN OPERATING SYSTEMS" by Andrew S Tanenbaum.							
	Others:							
	• <u>https://nptel.ac.in/courses/106/106/106106144/#</u> Course "Introduction to							
	Operating Systems" by PROF. CHESTER REBERIO, IIT Madras.							
	• https://nptel.ac.in/courses/106105214/ Course "Operating System							
	Fundamentals" by Prof. Santunu Chattopadhyay, IIT Kharagpur.							

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	3	-	2	2	1	-	1	2	1
CO2	3	3	1	3	3	1	-	-	-	1	-	-
CO3	-	3	3	ŀ	3	-	-	-	-	1	1	1
CO4	1	3	2	3	3	1	-	-	-	1	3	1
CO5	1	2	2	3	3	1	-	-	-	1	3	1
CO6	-	-	3	-	3	3	2	-	1	2	2	1

Correlation levels 1, 2 or 3 as defined below:

2: Moderate (Medium)

3: Substantial (High)

4 Hours

#### CSC 502 Database Management System 3-1-0

Department of Computer Science and Engineering Course Title of the course Program Core Total Number of contact hours Cred Code (PCR) / Lectur Tutori it Practic Total Electives (PEL) e (L) al (T) al (P) Hours CSC 502 3 1 0 4 4 Database PCR Management System

4 Credits

66 | Page

1: Slight (Low)

Pre-requisites	5	Course Assessment methods (Continuous Assessment (CA), Mid- Term (MT), End Term (ET))						
Programming Data Structur Algorithms	knowledge, es and	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]						
Course Outcomes	<ul> <li>CO1: Un database</li> <li>CO2: Con of relation</li> <li>CO3: Apple</li> <li>CO4: U concurrent</li> </ul>	iderstand the basic concepts and appreciate the applications of e systems. Imprehend the fundamentals of design principles for logical design conal databases. Inply the query writing skill and its subsequent optimization. Inderstand the basic issues of transaction processing and ency control.						
Topics Covered	Introduction: Co Languages, Data of DBMS.	oncept & Overview of DBMS, Applications, Data Models, Database abase Administrator, Database Users, Three Schema architecture						
	Entity-Relations Keys, Entity-Rela (5L) Relational Mod Relational Calcu	(4L) <b>ship Model:</b> Basic concepts, Design Issues, Mapping Constraints, ationship Diagram, Weak Entity Sets, Extended E-R features. <b>el:</b> Structure of relational Databases, Relational Algebra, lus, Extended Relational Algebra Operations, Views, Modifications						
	(7L) SQL and Integrit operations, Agg Integrity Constru- application deve	<b>ty Constraints:</b> Concept of DDL, DML, DCL. Basic Structure, Set regate Functions, Null Values, Domain Constraints, Referential aints, assertions, views, Nested Subqueries, Database security elopment using SQL, Stored procedures and triggers.						
	Index Structure (primary, secon- using B tree and Normalization: normalization p normal form, Co fifth normal form join decomposit (8L)	s: Necessity of index structures, Types of Single-Level Index dary, clustering), Multilevel Indexes, Dynamic Multilevel Indexes B+ tree . (4L) Functional Dependency, Anomalies in a Database, The rocess: Conversion to first normal form, Conversion to second onversion to third normal form and BCNF, Fourth Normal form and m, normalization and database design, Denormalization, Loss-less cion, Dependency preservation.						
	Transaction produced disadvantages system, serializ (5L)	<b>rocessing:</b> Introduction of transaction processing, advantages and of transaction processing system, online transaction processing zability and recoverability, view serializability.						
	Concurrency Concurrency Concurrency Concurrency Concurrency With Some Managing Hiera Timestamps, Concurrence (SL)	Control: Serializability: Enforcing, Serializability by Locks, Locking Several, Lock Modes, Architecture for a Locking Scheduler Farchies of Database Elements, Concurrency Control by Concurrency Control by Validation.						
	Database recov	very management: Deferred database modification Vs. Immediate						

	database modification, Check point technique.
	(3L)
	Query Optimization: Heuristics in Query Optimization, Converting Query Tree to
	Query Evaluation Plan.
	(4L)
	Distributed Database (DDB): Introduction of DDB, DDBMS architectures,
	Homogeneous and Heterogeneous databases, Distributed data storage,
	Advantages of Data Distribution, Disadvantages of Data Distribution Distributed
	transactions, Commit protocols, Data Replication, Data Fragmentation.
	Distributed database transparency features.
	(4L)
Text Books,	Text Books:
and/or	1. "An Introduction to Database Systems", C. J Date, Pearson Education.
reference	<ol><li>"DatabaseSystem Concepts", Abraham Silberschatz, Henry F. Korth and S.</li></ol>
material	Sudarshan, McGraw-Hill.
	<ol><li>"Distributed Databases Principles &amp; Systems", Stefano Ceri and Giuseppe</li></ol>
	Pelagatti, McGraw-Hill International Editions.
	Reference Books:
	1. "Fundamentals of Database Systems", Ramez Elmasri and Shamkant B.
	Navathe, Addison-Wesley.
	Others: https://onlinecourses-archive.nptel.ac.in/noc18_cs15/preview

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

					<u>, </u>							
POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	2	3	3	2	1	1	1	1	1	1	2	2
CO2	3	3	3	3	2	1	1	-	-	2	2	2
CO3	2	3	3	3	2	1	1	-	-	2	2	2
CO4	3	2	2	2	1	1	1	1	1	1	2	2

#### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

CSC 503 Compiler Design 3-0-0 3 Credits 3 Hours

	Departm	ent of Computer S	Science and Engineering						
Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Credi		
Code		(PCR) /	Lectur	Tutori	Practical	Total	t		
		Electives (PEL)	e (L)	al (T)	(P)	Hour			
						s			
CSC 503	Compiler Design	PCR	3	0	0	3	3		
Pre-requis	sites	Course Assessme	ent metho	ds (Contin	uous Assess	ment (CA	4) <i>,</i> Mid-		
		Term (MT), End Term (ET))							
Theory of	Computing/	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]							
Theory of	Automata								
Course	• CO1: Id	ea of the differ	ence bet	ween Co	mpiler and	other	various		

Outcomes	<ul> <li>Translators, Phases of a Compiler and Bootstrapping.</li> <li>CO2: Understand Lexical Analyzer, Transition Diagram of different tokens, Reserved Word Strategy.</li> <li>CO3: Idea of Syntax Analyzer, Ambiguity, Parse Tree, Top Down and Bottom Up Parser.</li> <li>CO4: Concept of Semantic Analyzer, Semantic Actions, Intermediate Code, Virtual Machine. Lexical and Grammatical Errors.</li> <li>CO5: Idea of Code Optimization, Criterion of Optimization, Different Local and Global Optimization Techniques.</li> <li>CO6: Idea of Code Generation, Instruction Costs, Code Generation Algorithm, Run Time Store Management.</li> </ul>
Topics Covered	Idea of the difference between Compiler and other various Translators, Phases of a Compiler and Bootstrapping.(5L)Understand Lexical Analyzer, Transition Diagram of different tokens, Reserved Word Strategy.(5L)Idea of Syntax Analyzer, Ambiguity, Parse Tree, Top Down and Bottom Up Parser.(6L)Concept of Semantic Analyzer, Semantic Actions, Intermediate Code, Virtual Machine. Lexical and Grammatical Errors.(7L)Idea of Code Optimization, Criterion of Optimization, Different Local and Global Optimization Techniques.(7L)Idea of Code Generation, Instruction Costs, Code Generation Algorithm, Run Time Store Management.(7L)Symbol Table Design, Fixed Length and Variable Length Entry, Symbol Table Actions, Different Searches, Hash Table Organization, Different Deletions of Symbols, Linked List and Tree Representation.(5L)
Text Books,	Text Books:
and/or	1. Principles of Compiler Design – Alfred V. Aho & Jefrey D. Ullman, Pearson
reference	Education.
material	Reference Books:
	1.Compiler Design in C – Holub, Prentice Hall.

### Mapping of CO (Course Outcome) and PO (Programme Outcome)

		-				· ·							
PO	s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CC	Ds												
CO	1	2	3	3	2	2	-	-	-	-	-	-	3
CO	2	2	3	3	2	2	-	-	-	-	-	-	3
CO	ß	2	2	3	2	2	-	-	-	-	-	-	3
CO	4	2	2	3	3	2	-	-	-	-	-	-	3
CO	5	3	2	3	3	2	-	-	-	-	_	-	3
CO	6	3	2	3	3	2	-	-	-	-	-	-	3

#### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

cs	C 504	Embedded Systems	3-0-0	3 Credit	s 3 Ho	ours					
		Departm	ent of Computer S	cience and	Engineeri	ng					
	Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Cred			
	Code		(PCR) /	Lectur	Tutori	Practical	Total	it			
			Electives (PEL)	e (L)	ar (T)	(P)	Hour				
							3				
	CSC504	Embedded	PCR	3	0	0	3	3			
_	Pre-regui	sites	Course Assessme	ent metho	ds (Contini	Jous Assess	ment (CA	), Mid-			
	1-		Term (MT), End ⁻	Term (ET))			( -	,, -			
	Compute	r Organization and	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]								
	Architectu	ure (CSC401)			( = 1 - 1						
	Course	• CO1:. Ur	iderstand the Build	ling Blocks	of Embed	ded System:	s grammin	a			
	Outcome	• CO2:Le	arn the working of	microcon	trollers in	huilding em	grannin hedded	Б			
		systems.					bedded				
		• CO4 : Ur	derstand the impo	rtance of p	bower in tl	ne design pr	ocess.				
		• CO5 : Ur	derstand the conc	epts and c	onstraints	of realtime	systems.				
_		• CO6 : Le	arn the techniques	of synthes	sising hard	ware desigr	n from HD	DL.			
	Topics	UNIT-1									
	Covered	Introduction to	embedded System	, Modular	approacht	to embedde	d system	l			
		design using six-	box approach: Inp	ut devices,	output de	evices, embe	edded	anh			
		Processor Gene	ral Purpose and As	SICs Proces	sor Desig	ning a single	ower sup	эріу., S			
		processor, Optir	nization Issues		501, 20516		pulpose	-			
								6L			
		UNIT-2				_					
		Introduction to	FPGA, Behavioral s	ynthesis o	n FPGA usi	ng VHDL/Ve	erilog	41			
		LINIT-3						4L			
		Microcontroller	based embedded	system Des	sign. Salier	nt feature of	modern				
		microcontroller,	Arduino Uno, Seri	al Commu	nication ar	nd Timer, Co	ontroller I	Design			
		using Arduino									
								5L			
		UNIT-4	olo Discrotiation	oficianala							
		Sensors and Sigi	A/D convortor	orsignals	and A/D C	onverter, Qi	uantizatio	on			
								5L			
		UNIT-5									
		Power Aware Er	nbedded System, S	D and DD	Algorithm	, Parallel op	erations	and			
		VLIW, Code effic	ciency, DSP Applica	tion and a	ddress ger	eration Uni	t				
								6L			
		UNIT-6									

			Real tim constrai	ie opera int issue	ating sy e, Priori	vstem, l ity inve	RMS Alg rsion ai	gorithm nd Prior	, EDF A rity inhe	lgorith eritance	m and res	source	EI
			UNIT-7										SL
			Modelli state m	ng and achine,	specific SDL, Da	cation, ata flov	FSM an v mode	d state I	chart, s	state m	ate sema	ntics, Pro	ogram
			UNIT-8										5L
			Hardwa design,	re synt HW-SM	hesis, S / partiti	cheduli oning,	ing, Dig Optimi:	ital can zation, S	nera de Simulat	sign, Di ion, Fo	gital cam rmal verif	era-itera fication	itive
													6L
	Text Bo	oks,	Text Bo	ooks:									
	and/or		1. M	azidi ar	nd Mazi	di, Mic	rocontr	oller ar	nd Emb	edded s	Systems,	Pearson	
	reference Education.												
	material 2. Peter Marwedel, Embedded System Design, Kluwer.												
			3. W	ayne W	/olf, Co	mputer	rs as Co	mpone	nts: Pri	nciples	of Embed	ded	
			Сс	omputir	ng Syste	ems De	sign, M	organ-k	Kaufma	nn.			
			<mark>4. Fr</mark>	ank Vał	nid and	Tony G	livargis,	, Embeo	dded Sy	stem D	esign: A l	Jnified	
			Ha	ardware	e/Softw	are Int	roducti	on, Joh	n Wiley	<b>'</b> .			
			Refere	nce Boo	oks:								
			1. R.	Kapadi	a, 8051	Micro	control	ler and	Embed	ded Sy	stems, Jai	со.	
			2. Pe	atman,	,J.B. <i>,</i> "D	esign v	vith PIC	Micro					
			Сс	ontrolle	rs"Pear	rsonEdเ	ucation	3rdEdit	tion <i>,</i> 20	04.			
			3. Fu	rber,S.	, "ARM	System	n on Chi	ip Archi	tecture	e" Addis	son Wesle	ey trade	
			Сс	ompute	r Public	ation, 2	2000.						
M	apping of	f CO (C	ourse Ou	utcome	) and P	O (Prog	gramme	e Outco	ome)		-	-	
	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	COs												
ſ	CO1	3	3	3	2	2	-	-	-	1	-	-	1

2 2 CO6 1 _ _

3

3

2

3

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low)

2: Moderate (Medium)

1

1

1

1

3

3

2

3

3: Substantial (High)

1

-

_

-

-

-

-

_

-

_

1

-

_

-

_

-

-

_

-

_

#### CSS 551 Design and Analysis of Algorithms Laboratory 0-0-3 1.5 Credits 3 Hours

1

1

1

1

-

-

_

-

_

-

-

_

-

_

-

-

_

-

_

	Department of Computer Science and Engineering										
	Course	Title of the course	tle of the course Program Core Total Number of contact hours					Credi			
	Code		(PCR) /	Lectur	Tutoria	Practical	Total	t			
			Electives (PEL)	e (L)	l (T)	(P)	Hour				
							S				
Ē	CSS 551	Design and	PCR	0	0	3	3	1.5			
		Analysis of									
		Algorithms									

CO2

CO3

CO4

CO5

3

3

3

3

	Laboratory													
Pre-req	Pre-requisites					Course Assessment methods (Continuous (CT) and End assessment (EA))								
Design Algorith Structu	Design and analysis of Algorithm (CSC 503), Data Structures and Algorithms					CT+EA [CT: 60%, EA(Laboratory assignment + Viva Voce): 40%]								
Laborat	ory (C	SS 352)												
Course		After co	mpleti	on of t	n of this course, the students will be:									
Outcom	Outcomes • CO1: Ab • CO2: Ab • CO3: Ab • CO4: Ab					The to identify the essence of theory into implementation. The to interpret the theory efficiently through coding. The to verify the theory experimentally. The to explain the behaviour of an algorithm efficiently.								
Tonics		Δςςίση	ment 1	· Expor	Exponential versus Polynomial Running time solution of a problem									
Covere	h	Assignment 2: Heans and priority queue									Toblem.			
coveres	u	Assignment 2. Fredes and priority queue.												
		Assignment 4: Problem using Divide and Conquer algorithm												
	Assignment 5: Problem using Greedy algorithm													
		Assign	ment 6	Probl	Problem using Dynamic Programming algorithm.									
Assignment 7: (					Graph representation and traversal.									
		Assign	ment 8	Problem using Union Find structure.										
		Assign	ment 9	Probl	Problem using Interval tree.									
		Assign	ment 1	0: Conv	: Convex Hull computation from a given set of n points in 2D and									
then determini				ning th	ing the farthest pair of these point set.									
Text Bo	Text Books. Text Books:							•						
and/or	,	1. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to												
referen	ce	Algorithms, by Prentice Hall India.												
materia	material		2. J. Kleinberg and Eva Tardo, Algorithm Design by Pearson Education (Indian edition).											
		Reference Books:												
		1. Michael T. Goodrich and Roberto Tamassia, Algorithm Design: Foundations,												
		Analysis, and Internet Examples, Second Edition, Wiley, 2006.												
		2. S. Dasgupta, C. Papadimitriou and U. Vazirani, Algorithms, by Tata McGraw-												
		Hill.												
		Others:												
	The Al	The Algorithm Design Manual 2nd ed. 2008 Edition by Steven S S. Skiena,												
		Springe	r.											
/lapping o	f CO (C	Course O	utcome	) and I	PO (Pro	gramn	ne Outco	ome)	1	1	1			
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	2	2	3	2	3	-	-	-	1	1	-	3
CO2	2	2	3	3	3	-	-	1	2	1	1	3
CO3	2	2	2	3	3	-	-	1	1	2	1	3
CO4	2	3	3	2	1	1	-	-	-	3	1	3
CO5	2	2	3	3	3	1	1	2	2	2	1	3
#### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

CSC 55	52	Emb	edded System Desig	gn Laboratory		3-0-0	3 Credits	3 Ho	urs				
			Department	of Computer S	cience and	l Engineer	ing						
Со	urse	Tit	le of the course	Program	Total Nu	mber of co	ontact hours	5	Credi				
Со	de			Core (PCR)	Lectur	Tutori	Practical	Total	t				
				/ Electives	e (L)	al (T)	(P)	Hour					
				(PEL)				S					
CS	5552	E	mbedded Systems	PCR	0	0	3	3	1.5				
Dire			Laboratory	Course Assessment methods (Continuous Assessment (CA)									
Pre	e-requis	nes		Mid-Term (MT), End Term (ET))									
CS	S 451 Co	omp	outer Org.	CT+EA [CT: 60%, EA(Laboratory assignment + Viva Voce):									
Lab	borator	у		40%]									
Со	urse		After the course the	e students are expected to be able to									
Ou	utcomes	5	CO1: Learn the wor	king of microco	ontroller.		_						
			CO2 : Understand th	he Building Bloo	cks of Emb	edded Sys	tems						
			CO3 : Learn to imple	ement circuits (	using FPGA	s and HDL	. programm	ing.					
			CO4 : Learn to solve	e problems usin	g Arauino,	Raspberry	/ PI .it in decigni	na ombo	ddad				
			CUS : KNOW the Cha	racteristics ARI	vi processo	or and use	it in designi	ng embe	uueu				
	pics		List of Experiments	: with 9051 micr	acontrollo	r bacad pr	ogramming						
0	vereu		1. Failiniarization	With 8051 microcontroller based programming.									
			signal Processir	agetc									
			3. Simulating sim	ole circuits usin	g Verilog/\	/HDL and	FPGA kits.						
			4. LED blink for di	fferent amount	s of time u	ising Ardu	ino (with/wi	ithout us	ing				
			delay() functior	ı).		0			0				
			5. Controlling the	LED blinking us	sing a Pote	ntiometer	(Read pote	ntiomete	er).				
			6. Interfacing Ard	uino with simpl	e LED Mat	rix.							
			7. Sensing temper	rature using Ras	spberry Pi.								
			8. Familiarization	with ARM DEV	ELOPMENT	F KIT micro	ocontroller ι	ising emb	bedded				
			C program.										
			9. Develop and ve	rify the interfa	cing LED ar	nd PWM w	vith ARM						
			DEVELOPMENT	KIT microconti	roller using	g embedde	ed C program	n 					
			10. Develop and ve	verify the interfacing of real time clock and serial port with									
			ARIVI DEVELOPI	VIENT KIT MICK		using emi torictics of	EADM and E	ogram.					
			11. Verify the inter	d C program				PGA by					
Tex	xt Book	s,	Text Books:										
an	d/or		1. Peatman,J.B	., Design with	PIC Micro	Line 2004							
ret	rerence		Controllers"	rearsonEducat	ion,3rdEdi ting Starts	tion, 2004	tabas Dastr		Monte				
ma	aterial		2. Programmin	ig Aruuno: Get 2051 Microcont	ting Starte	u with SKE	d Systems	by Simor	ινισηκ				
			5. n. Kapauld, d			LIIIbeuue	u systems, J	alcu.					

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	3	2	2	-	-	-	1	-	-	1
CO2	2	2	2	2	2	-	-	-	-	-	-	-
CO3	2	2	1	-	-	-	-	-	1	-	-	-
CO4	3	3	3	3	3	-	-	-	1	-	-	1
CO5	2	2	2	1	1	-	-	-	-	-	-	-

#### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

2. Moderate (Medi

CSS 553	<b>Operating Systems Laboratory</b>	0-0-3	1.5 Credits	3 Hours
---------	-------------------------------------	-------	-------------	---------

		Departm	tment of Computer Science and Engineering										
Course	Tit	le of the course	Program Core	Total Nu	mber of co	ontact hours	5	Credi					
Code			(PCR) /	Lectur	Tutori	Practical	Total	t					
			Electives (PEL)	e (L)	al (T)	(P)	Hour						
							s						
CSS 553	Оре	erating Systems	PCR	0	0	3	3	1.5					
	Lab	oratory											
Pre-requi	sites		Course Assessment methods (Continuous (CT) and End										
			assessment (EA))										
Introduct	ion to	o Computing	CT+EA [CT: 60%, EA(Laboratory assignment + Viva Voce): 40%]										
(CSC01), I	Data	Structures and											
Algorithm	ns (CS	SC303)											
Course		<ul> <li>CO1: Imp</li> </ul>	1: Implement elementary UNIX system commands.										
Outcome	S	<ul> <li>CO2: Dev</li> </ul>	vevise programs to test synchronization problems.										
		<ul> <li>CO3: Des</li> </ul>	sign and develop user level thread library.										
		• CO4: Des	sign and implemen	t file syste	m.								
Topics		Assignment 1:	Getting a feel of ra	ce conditio	ons throug	h read/writ	e operati	ons by					
Covered		multiple proces	ess (run the same program in four terminals simultaneously) on a										
		single binary fil	e.										
		Assignment 2:	Design application	where the	parent pr	ocess uses f	ork syste	em call					
		to create multi	ole child processes	in the diff	erent give	n hierarchy	and displ	aying					
		and storing the	process hierarchy	in a separa	ate file.								
		Assignment 3:	Design application	where par	ent sync w	vith several	child pro	cesses					
		using fork & wa	it system call to so	lve a parti	cular task	(searching,	prime nu	mber					
		generation, etc	ation, etc.) like parallely also try to understand and change process										
		priorities using	ng system calls.										
		Assignment 4:	Implement signal handling among parent child processes.										
		Assignment 5:	Design multithreaded application using POSIX thread library.										
		Assignment 6:	a POSIX library										
		processes using	ing FOSIA libitary. 7: Implement semanhores (named) and solve data access sync										
		Assignment 7:	7: Implement semaphores (named) and solve data access sync										

	problems like (producer/consumer) using multiple processes.
	Assignment 8: Implement semaphores (unnamed) and solve data access sync
	problems like (producer/consumer) using multiple threads.
	Assignment 9: Use other IPC mechanisms like message queues, named pipe.
Text Books,	<b>Text Books: "</b> Beginning Linux Programming", 4th Edition by Richard Stones, Neil
and/or	Matthew, Wiley Publishing, Inc.
reference	<b>Reference Books: "</b> Advanced Programming in the UNIX environment", 3rd Edition,
material	W. Richard Stevens and Stephen A. Rago, Addison-Wesley, 2013.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	3	-	2	2	1	-	1	2	1
CO2	3	3	3	3	2	1	-	-	-	1	-	-
CO3	-	3	3	-	3	-	-	-	-	1	1	1
CO4	1	3	2	3	2	1	-	-	-	1	3	1

#### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

			SIXTH SEMES	<u>STER</u>							
HS	C 631	Economics and M	anagement Acco	untancy 3-	0-0 3 Cred	lits 3	3 Hr	S			
-		Dep	partment of Huma	anities and S	Social Scient	ces					
	Course	Title of the	Program Core	Total Num	nber of cont	act hours	;				Credi
	Code	course	(PCR) /	Lecture	Tutorial	Practica	al	Тс	otal		t
			Electives	(L)	(T)	(P)		Ho	ours		
-			(PEL)								
	HSC631	Economics and	PCR	3	0	0		3			3
		Management									
-	_	Accountancy				()					
	Pre-requi	sites	Course Assessm	hent metho	ds (Continue	ous (CT),	mid	-ter	m (Ⅳ	1T) (	and
-	<b>N</b> 111		end assessmen	t (EA))							
	NIL		CI+MI+EA								
-	Course	CO1 Lear	ners will be able t	to review ba	asic econom	ic princip	les.				
	Outcom	CO2 Lear	ners will be intro	duced to th	e basic capit	tal apprai	sal r	net	hods	us	ed for
	es	carrying o	out economic ana	alysis of diff	erent altern	natives of	eng	ine	ering	g pr	ojects
		or works.									
		CO3 Lear	ners will gain a	good know	wledge of f	inancial	ассс	ount	ing,	ena	abling
		them pre	pare, analyse an	d interpret	financial st	atements	s for	' tal	king	infc	ormed
		decisions	•								
	Topics			PART 1: Eco	onomics						
	Covered		Gro	oup A: Micro	peconomics						
		SI. No.		Name			Ľ	ΤI	P C	r	Н
		Unit 1:	Economics: Bas	ic Concepts			2	0	0 2	2	2
		Unit 2:	Theory of Consi	umer Behav	iour		3	0	03	3	3
		Unit 3:	Theory of Produ	uction, Cost	and Firms		3	0	0 3	3	3
		Unit 4:	Analyses of Ma	rket Structu	res: Perfect		3	0	0 3	3	3
		U. 4 F.	Competition				<b>.</b>	<u> </u>	~ ~	<b>`</b>	2
		Unit 5:			fara Faanan		2		0 ∠ 0 ~	2	2
		Unit 0.	General Equilib		Iare Econori		2 ' 1	0	U 2 1	<u> </u>	2
			тот	AL			5	0	0	5	5
						·			-	•	
			Gro	up B: Macr	oeconomics	5					
		SI. No.		Name		L	т	Ρ	C r	н	
		Linit 1.	Introduction	to Macroec	onomic The	orv 2	0	0	2	2	
		Unit 2:	National Inco	me Account	ting	3	0	0	3	2	
		0111121	Determinatio	n of Equilib	rium Level c	of	Ū	Ū	0	0	
		Unit 3:	Income			4	0	0	4	4	
		Unit 4:	Money, Inter	est and Inco	me	2	0	0	2	2	
		Unit 5:	Inflation and	Unemployn	nent	2	0	0	2	2	
		Unit 6:	Output, Price	and Employ	yment	2	0	0	2	2	
			TO	ΤΛΙ		1	^	^	1	1	
			10	IAL		5	U	U	5	5	

			<b>C</b> 1			PART	2: Mar	nageme	ent Acco	untancy				-	
		ſ	SI. No.				Nam	ie			L	т	Ρ	C r	н
		Ui	nit 1:	Intro Acco Obje Equa Acco Fina	oductic ounting ectives ations f ounting ncial S	on to A Enviro of Acco for Fina : Jourr tatemo	onmen ounting ancial S nal, Lec ent Pre	ting: t of Bus g; Acco Statemo Iger, Ca eparation	siness; unting ents. Bo ash bool <b>on and</b>	oks of «.	3	0	0	3	3
		Ui	nit 2:	Anal Prep Loss discu	l <b>ysis:</b> aration accour ussion.	n of Tri nt and	ial Bala Balanc	ince, Tr ce Shee	ading, P t. Case :	Profit & study	5	0	0	5	5
		Ui 3:	nit	Finan Comr Finan Finan	r <b>cial Ra</b> non Siz cial Ra cial Ra	t <b>io An</b> e Stat tios; Ir tios wi	<b>alysis:</b> ement iterpre th the	s; Comp tation a help of	putatior and ana f case st	n of lysis of udies.	4	0	0	4	4
						то	TAL	-			12	0	0	1 2	1 2
Text							PAR	Г 1: Есо	nomics						
Books	,	Group	A: Mio	croeco	nomic	s									
and/o	r	1. Kout	soyiar	nnis: N	lodern	Micro	econor	nics							
refere	nc	2. Mad	dala a	nd Mil	ler: Mi	croecc	onomic	S							
е		3. Anin	dyaSe	n: Mic	roecon	omics	: Theor	ry and A	Applicat	ions					
mater	ial	4. Pind	yck&R	ubenf	eld: Mi	croeco	onomic	S							
		Group	B: Mic	croeco	nomic	5									
		1. W. H	l. Bran	ison: N	lacroe	conom	nics – T	heory a	and Poli	cy (2nd eo	d)				
		2. N. G	. Manl	kiw: M	acroec	onomi	ics <i>,</i> Wc	orth Pul	olishers						
		3. Dorn	bush	and Fis	sher: N	1acroe	conom	ic Theo	ory						
		4. Sour	nyen S	Sikder:	Princip	oles of	Macro	econoi	mics						
						PART 2	2: Man	ageme	nt Acco	untancy					
		1. Gupt	ta, R. L	. and I	Radhas	wamy	, M: Fii	nancial	Accoun	ting; S. Cł	nand	& S	ons		
		2. Asho	ke Ba	nerjee	: Finan	cial Ac	counti	ng; Exc	el Books	5					
		3. Mah	eshwa	ari: Inti	roducti	on to /	Accour	nting; V	ikas Puk	olishing					
		4. Shuk	la, MO	C, Grev	val TS a	and Gu	ipta, SC	C: Adva	nced Ac	counts; S	. Cha	nd	& Co	<b>)</b> .	
PO MA	PPIN	IG of Ec	onom	ics and	d Mana	ageme	nt Acco	ountan	cy (HSC	631)				1	
POs	PO 1	PO2	PO 3	PO ⊿	PO5	PO6	PO7	PO8	PO9	PO10	РС	)11		PO	12
<u>(01</u>	<u>-</u> 3	2	3	3	2	З	2	3	2	3	2			2	
-O1	ן ג	2	ן ג	ן ר	2 2	ן ג	2	2	2	2	2			2	
ഹി		J	J	J	J	J	4	۷	J	J	Э			<u>د</u>	
CO2	-	_	-	1	-	-	-	-	_	2	С			_	
CO2 CO3	- -		- 0r 2 -	1	-	-	-	-	-	2	3			-	

CSC 601	Soft	ware Engineering	3-0-0 3	Credits	3 Hours								
		Departm	ent of Computer S	cience and	l Engineeri	ng							
Cour	rse	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Credi					
Code	e		(PCR) /	Lectur	Tutori	Practical	Total	t					
			Electives (PEL)	e (L)	al (T)	(P)	Hour						
							S						
		Software	PCR	3	0	0	3	3					
CSC	601	Engineering											
Pre-r	requis	sites	Course Assessme	ent metho	ds (Continu	Jous Assess	ment (CA	), Mid-					
			Term (MT), End ⁻	Term (ET))									
			CA+ MT + ET [CA	: 15%, MT	: 25%, ET: (	60%]							
Cour	rse	• CO1: Ho	w to apply the so	oftware en	gineering	lifecycle by	demons	strating					
Outo	comes	compete	ence in communic	ation, plai	nning, ana	lysis, desig	n, constr	uction,					
		and dep	loyment.										
		CO2:An	ability to work in	one or mo	ore signific	ant applicat	tion dom	ains to					
		develop	and deliver quality	software.									
		<ul> <li>CO3:Der</li> </ul>	nonstrate an unde	rstanding o	of and app	ly current th	neories, r	nodels,					
		and tech	iniques that provid	e a basis fo	or the soft	ware lifecyc	le.						
		• CO4: De	monstrate an ability to use the techniques and tools necessary for										
		software	engineering pract	ICES.			<u> </u>						
Гори	CS	Software Parad	ligm / Introduction	: Definition	n of Inform	lation Syste	m, softwa	are,					
Cove	erea	software engin	eering paradigms,	Software e	engineering	g in context	of Busine	ess					
		Process Engine	ering, Goal of Softw	vare Engin	eering, Qu	ally locus.							
		Software Proces	s <i>Model</i> · Umbrella	activities	Waterfall	Model Prot	otvne m	laho					
		Banid Applicatio	on Development M	odel Evoli	itionary Ai	nnroach in P	Process m	nodel					
		(Spiral Model).					10000311	louel					
		(4L)											
		Requirement En	aineerina: Require	ments Eng	ineering Ta	asks, Inform	ation						
		Modelling (Entit	y Relationship Mo	del, Extenc	ded ER Mo	del), Functio	onal Mod	el					
		(DFD, CFD), Beh	avioral Model (Stat	te Transitio	on Diagran	n), Petri-net	modellir	ng,					
		System Require	ment Specification	(SRS), Spe	cification l	anguage – I	Formal	_					
		Methods, Regul	lar Expression, Decision Tree, Decision Table, SRS Standards.										
					(6L)								
		Design Principle	and Basics: Design	ı level task	s, Problem	partitionin	g, abstra	ction,					
		top down & bot	tom up design stra	tegies, refi	inement te	echniques, N	/linor Des	sign					
		principles, Cont	rol Hierarchy (Strue	ctured Cha	rt), constra	aint design (	Warnier	–Orr).					
		(2L)											
		Design Languag	esign Language basics: Unified Modelling Language – Building Blocks, Well-										
		formedness rule	ess rule; Use case, structural diagram introduction - Class Diagram, Object										
		Diagram, Seque	quence diagram, collaboration diagram.										
		(DL) Madular Dasian	an: Concept of module and Modular design Eurotional										
		indopondopor	Concept of modu			and counting	ai na Mad	al					
			Lunesiun, Coupiing	, measurin	ig corresion	ranu coupii	iig, wou	-					
		Architecture Ro	sic [.] Software archit	ecture Fu	nctional ar	nd extra-fun	ctional						
		properties famili	ilies of related systematic	em. Archit	ectural stv	les: Data-ce	ntric. dat	a-					
					cottan ar oty								

		2	2	3	2	1	1	1	1	1	1	2	2
	COs												
IVI	POs	PO1	PO2	PO3	PO4	PO5	PO6		PO8	PO9	PO10	PO11	PO12
			Others	: Unifie www.o	d Mode mg.org	elling La /spec/L	anguage JML/	e, Objeo	t Mana	agemer	nt Group,		
	<b>Reference Books:</b> Rajib Mal - "Fundamental of Software Engineering", PHI.												
	referen materia	ce I	Interna I. Some	tional. rville –	"Softw	are Eng	gineerir	- ng", Ado	dison-V	/esley			
	Text Bo and/or	oks,	Text Bo R. S. Pr	ooks: essman	n -"Soft	ware Er	ngineer	ing – Pr	actitio	ner's Ap	oproach"-	McGrav	v Hill
			(2L) <u>Testing</u> Terminc Inspecti Box Test State Ta Based T Need of Matrice <u>Testing</u> , Progress (2L) <u>Softwar</u> metrics, McCabe (4L) Standar	strateg ology ar ons, Str ting Teo ble-Bas esting, White- s, Loop strateg Functions sive vs f <u>e &amp; Me</u> Size or compl d Softwo hendation	<u>y 1</u> – Int nd Metl ructure chnique sed Tes Error G Box Te Testing <u>y 2</u> - Va on Test Regress <u>trics</u> : Se riented lexity, N vare Eng ons. (21	troduct hodolog d Walk es: Bour ting, De uessing sting, L g, Data lidation ing, Sys sive Tes oftware metrics McClure gineerin	ion to S gy Verif through ndary V ecision g Dynan ogic co Flow Te to Activit stem Te ting, Re ting, Re Measu s, Funct compl ng Prac	Softwar ication ns, Tech alue Ar Table-B nic Test verage esting.( ies: Un sting, A egression uremen ion orie lexity, a	e Testii and Va inical R nalysis ( ased To cing : W Criteria 6L) it Valid ccepta on Testa t & me ented N ind Hal	ng, Soft lidation eviews BVA), E esting, hite-Bo a, Basis ation To nce Tes ability. trics, D Aetrics, stead S and IS	ware Test n, Static To I Dynamic Equivalence Cause-Eff ox Testing Path Test esting, Int sting IReg irect and Complex oftware S 16443	ting esting: c Testing ce Class ect Grap Techniq ing, Grap ression T indirect ity Metr cience	g: Black- Testing, hing jues: ph Testing:
			Differen (2L) <u>Coding</u> Gunning	<u>Manag</u> it cost e <u>Techniq</u> g Fog In	<u>ement</u> : estimat <u>jues &amp; S</u> dex for	LOClFu ion: De <u>Standar</u> docum	inction Iphi-em r <u>d guide</u> nentatio	Point A pirical- <u>elines</u> : F on.	nalysis COCON Rules/g	PERT C /IO esti uideline	hart estin mation. es for star	nation, ndard Co	ding l
			flow, ca (2L)	II and R	eturn,	layered	, enter	prise.					

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

CO2

CO3

CO4

	Departm	ent of Computer S	cience and	l Engineeri	ing		
Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Credi
Code		(PCR) /	Lectur	Tutori	Practical	Total	t
		Electives (PEL)	e (L)	al (T)	(P)	Hour	
						S	
	Data	PCR	3	1	0	4	4
CSC 602	Communication						
	and Computer						
	Networks						
Pre-requis	sites	Course Assessme	ent metho	ds (Contini	uous Assess	ment (CA	.) <i>,</i> Mid-
		Term (MT), End	Term (ET))				
Data Strue	ctures and	CA+ MT + ET [CA	: 15%, MT	: 25% <i>,</i> ET:	60%]		
Algorithm	s, Operating system						
concepts						<u> </u>	
Course	• CO1: Un	derstand the basi	c taxonom	ny and ter	minology o	t the cou	mputer
Outcomes	network	ing and enumerate	the layers	S OT USI mo	Dael and TCI	/IP mod	el.
	• CO2: Coi	mprehend the fund	damentals	of Physica	ll layer, and	will appl	y them
	in real til	me applications.		deciae in		ataaala	
		nully uata link laye	nconcepts	, design iss	sues, anu pr		tha ID
	• CO4. Cla	ssily the routing	work	dilu dila	iyze now to	Jassign	the ip
		auire knowledge	of Applic	sation law	or and Dro	contation	a lavor
	• COJ. At	and protocols	or Applic			Sentation	Таусі
Topics	Overview of Da	ata Communicatio	n and Net	working: In	ntroduction	Data	
Covered	communication	is: components. da	ta represe	ntation (A	SCII.ISO etc.	). directi	on of
	data flow (simp	lex, half duplex an	d full duple	ex); netwo	rk criteria, r	physical	
	structure (type	of connection, top	ology), cat	egories of	network (L	AN,	
	MAN,WAN); Int	ternet: brief histor	y, Protocol	s and stan	dards; Refe	rence mo	dels:
	OSI reference n	nodel, TCP/IP refer	ence mod	el, their c	omparative	study.	
	(4L)				·		
	Physical Level:	Overview of data (	analog & c	digital), sig	nal (analog	& digital)	,
	transmission (a	nalog & digital) & t	ransmissio	on media (	guided & ur	guided);	Circuit
	switching: time	division & space d	ivision swi	tch, TDM l	bus; Telepho	one Netw	ork.
	(6L)						
	Data link Layer:	Types of errors, fr	aming (cha	aracter and	d bit stuffing	g), error	
	detection & cor	rection methods;	Flow contr	ol; Protoco	ols: Stop & v	vait ARQ,	Go-
	Back- N ARQ, Se	elective repeat AR	ע, HDLC; ₪	1edium Ac	cess sublay	er: Point t	to
	Point Protocol,	LCP, NCP, Token R	ing; Reserv	/ation, Pol	ling, Multipl	e access	
	protocols: Pure	ALUHA, Slotted Al	LUHA, CSM	ia, CSMA/	CD, CSMA/(	.A, Tradit	ional
	Ethernet, Fast E	tnernet. (12)	_)				
	Notwork laws	Internative dias	douiceer	Donostoro			hoc
	Router Catework	w: Addrocsing: ID a	ddroccing	subpottio	TUDS, BIID	ses, SWICC	.1185, 05
	static vs. dvpap	nic routing Unicost	t Routing D	rotocole.	RID OCDE D	GP: Otho	es, r
		ne routing, officasi	r Nouting P		мг, ОЗГГ, D	Gr, Othe	1

#### CSC 602 Data Communication and Computer Networks 3-1-0 4 Credits 4 Hours

	COs												
Γ	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Ma	apping of	⁻ CO (C	ourse Ou	itcome	) and P	O (Pro	gramm	e Outco	me)				
			Educatio	on/PHI.		0		• •	, ,	`	, -		
			3. Come	er – "Int	ternetw	orking	with T(	CP/IP, v	ol. 1, 2,	3(4th	Ed.)" – Pe	arson	
	materia	I	Refere	nce Boo	oks:	•							
	referen	ce	2. A. S. T	Fanenb	aum – '	"Comp	uter Ne	tworks	(4th Ec	l.)" – Pe	earson Ed	ucation/	PHI.
	and/or		1.B. A. F	orouza	n – "Da	ita Con	nmunica	ations a	nd Net	workin	g (3rd Ed.	)" – TM	Н.
ſ	Text Bo	oks,	Text Bo	ooks:									
			(2L)		•			- 0 -	1		,		
			Queuin	g Theor	rv: Intro	ductio	n to Qu	ieuing T	heorv a	and De	lav Analvs	sis for ne	tworks.
			Defined	netwo	rking (S	DN).			(41)	57, 110	oudetion	10 50110	ure
			Modern	tonics	· Introc	luction	to Wire	aless Te	chnolo	gv Intr	oduction	to Softw	are
			sorios a	e, auti			LESS LU	111101, 50	ecunity	Stanua	IUS IIKE IL	.3, 13/130	27000
			Signatu	r: Inrea	ns anar	ysis, Cry	plogra	phy (Pu ptrol_c	DIIC, PI	ivale K standa	ey baseu) rde liko Tl		27000
			(4L) Socurity	. Throa	te anal	ucic Cra	ntogra	nhy (Du	blic Dr	ivata K	ov bacad)	Digital	
				tion Lay	yer: int	roducti	on to D	9185, SIVI	1P, SNI	VIP, FT	-, нпр &	vv vv vv.	
			(4L)						-				
			Transp	ort laye	er: Proc	ess to l	Process	deliver	y; Sock	et addi	ress, UDP;	; TCP.	
			algorith	nm, Tok	ken buc	ket alg	orithm.	(1	14L)				
			choke p	backets	; Qualit	y of se	rvice: te	echniqu	es to ir	nprove	QoS: Lea	ky bucke	et
			Protoco	ols: ARF	P, IP, IC	MP, IP\	/6, Con	gestion	Contro	l: Oper	n Loop, Clo	osed Loo	р

COs												
CO1	2	2	2	1	1	1	1	1	1	2	2	2
CO2	2	2	1	1	1	1	1	1	1	1	2	2
CO3	2	2	3	2	2	1	1	1	1	1	1	2
CO4	3	3	3	3	2	2	2	1	1	2	2	2
CO5	2	2	2	2	2	1	1	2	1	2	2	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

3: Substantial (High)

#### CSS 651 Compiler Laboratory

0-0-3 1.5 Credits 3 Hours

	Departm	ent of Computer S	cience and	l Engineeri	ng				
Course	Title of the course	Program Core	Total Nu	5	Credi				
Code		(PCR) /	Lectur	Tutori	Practical	Total	t		
		Electives (PEL)	e (L)	al (T)	(P)	Hour			
						S			
CSS651	Compiler	PCR	0	0	3	3	1.5		
	Laboratory								
Pre-requis	sites	Course Assessment methods (Continuous (CT) and End							
		assessment (EA))							
Compiler	Design	CT+EA [CT: 60%, EA(Laboratory assignment + Viva Voce): 40%]							
Theory of	Computation								
CSC402									
Course	• CO1: To	apply the concept of regular expressions in the identification of							
Outcomes	s tokens ir	n a lexical analyzer.	1						

	• CO2: To explore the use of program generating softwares like LEX and
	FLEX.
	• CO3: To generate context -free grammar to represent the syntax of the
	language.
	<ul> <li>CO4: To use compiler generators like YACC and BISON.</li> </ul>
	<ul> <li>CO5: To use syntax directed translation to generate intermediate code.</li> </ul>
Topics	1. Handle tokens in an input using LEX generated program.
Covered	2. Describe class of tokens using regular expressions in LEX.
	3. Use context free grammars with YACC to describe simple syntactic
	structures.
	4. Remove ambiguity in if-then-else constructs using YACC's inbuilt features.
	5. Use syntax directed translation in YACC to generate simple intermediate
	code.
Text Books,	Text Books:
and/or	1. Lex - A Lexical Analyzer Generator <i>M. E. Lesk and E. Schmidt</i> Online
reference	Manual.
material	2. Yacc: Yet Another Compiler-Compiler Stephen C. Johnson Online Manual.
	3. Lex & YaccJohn R. Levine, Tony Mason, Doug Brown , O'Reilly & Associates.
	Reference Books:
	1. Compilers: Principles, Techniques, and Tools
	By Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman. Addison-Wesley Pub Co.

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	3	2	2	-	-	-	-	-	-	-
CO2	2	3	3	2	3	-	-	-	-	-	-	-
CO3	3	3	3	2	2	-	-	-	-	-	-	-
CO4	2	3	3	2	3	-	-	-	-	-	-	-
CO5	3	2	3	2	3	-	-	-	-	-	-	-

Mapping of CO (Course Outcome) and PO (Programme Outcome) Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

#### CSS 652 Data Communication and Computer Networks Laboratory 0-0-3 1.5Credits 3 Hours

	Departm	ent of Computer S	cience and	l Engineeri	ng				
Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Credi		
Code		(PCR) /	Lectur	Tutori	Practical	Total	t		
		Electives (PEL)	e (L)	al (T)	(P)	Hour			
						S			
CSS 652	Data	PCR	0	0	3	3	1.5		
	Communication								
	and Computer								
	Networks								
	Laboratory								
Pre-requi	sites	Course Assessment methods (Continuous (CT) and End							

82 | Page

	assessment (EA))
Operating Sys	tem Laboratory CT+EA [CT: 60%, EA(Laboratory assignment + Viva Voce): 40%]
Course	<ul> <li>CO1: Develop programs for client-server applications.</li> </ul>
Outcomes	<ul> <li>CO2: Perform packet sniffing and analyze packets in network traffic.</li> </ul>
	<ul> <li>CO3: Implement error detecting and correcting codes.</li> </ul>
Topics	Assignment 1 : Packet capturing and analyzing using wireshark packet sniffer tool
Covered	Assignment 2 : Socket Programming for TCP client server (Iterative server).
	Assignment 3 : Socket Programming for TCP client server (Concurrent Server).
	Assignment 4 : Socket programming for UDP client.
	Assignment 5 : Handling both TCP client and UDP client using select() system call.
	Assignment 6 : Simplified FTP implementation.
	Assignment 7 : Two player game (Tic Tac Toe) implementation.
	Assignment 8 : Implementation of CRC and Hamming code for error handling
	Assignment 9 : RPC (Remote Procedure Call) implementation.
Text Books,	Text Books:
and/or	1. Richard Stevens, Unix Network Programming, Volume 1 and 2, Addison-
reference	Wesley Professional.
material	Reference Books:
	1. Neil matthew and Richard Stones, Beginning Linux Programming, Wrox
	Publishers, 4 th Edition.

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
LUS												
CO1	2	2	2	2	2	-	-	1	1	1	2	2
CO2	2	2	2	2	2	-	-	1	1	1	2	2
CO3	2	2	2	2	2	-	-	1	1	1	2	2

Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

3: Substantial (High)

# CSS 653 Database Management System Laboratory 0-0-3 1.5 Credits 3 Hours

Department of Computer Science and Engineering									
Course	Title of the course	Program Core	Total Nu	Credi					
Code		(PCR) /	Lectur	Tutori	Practical	Total	t		
		Electives (PEL)	e (L)	al (T)	(P)	Hour			
						S			
CSS 653	Database	PCR	0	0	3	3	1.5		
	Management								
	System								
	Laboratory								
Pre-requi	sites	Course Assessment methods (Continuous (CT) and End							
		assessment (EA))							
Programn	ning knowledge,	CT+EA [CT: 60%, EA(Laboratory assignment + Viva Voce): 40%]							
Data strue	cture knowledge								

Course	• CO1: Understand, appreciate and effectively explain the underlying							
Outcomes	concepts of database technologies.							
	• CO2: Design and implement a database schema for a given problem-							
	domain.							
	<ul> <li>CO3: Populate and query a database using SQL DML/DDL commands.</li> </ul>							
	• CO4: Programming PL/SQL including stored procedures, stored functions,							
	cursors, packages.							
Topics	Structured Query Language (SQL):							
Covered	1. Creating Database Creating a Database Creating a Table Specifying Relational							
	Data Types Specifying Constraints Creating Indexes.							
	2. Table and Record Handling INSERT statement Using SELECT and INSERT							
	together DELETE, UPDATE, TRUNCATE statements DROP, ALTER statements.							
	3. Retrieving Data from a Database The SELECT statement Using the WHERE							
	clause Using Logical Operators in the WHERE clause Using IN, BETWEEN, LIKE,							
	ORDER BY, GROUP BY and HAVING Clause Using Aggregate Functions Combining Tables Using JOINS Subqueries.							
	4. Database Management Creating Views Creating Column Aliases Creating							
	Database Users Using GRANT and REVOKE.							
	PL / SOL:							
	Decision-control in PL / SQL. Cursors in PL / SQL. Stored Procedures.							
	Case Studies: Real-life case studies.							
Text Books,	<b>Text Books:</b> SQL, PL/SQL the Programming Language of Oracle by Ivan Bayross,							
and/or	PHI, 2010.							
reference	Reference Books: SQL The Complete Reference, Groff James, 3rd Edition, Tata							
material	McGraw-Hill Education, India.							

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	COs												
	CO1	2	2	3	2	2	1	1	1	1	1	1	2
	CO2	2	3	3	2	2	1	1	1	1	1	1	2
	CO3	2	3	3	2	2	1	1	1	1	1	1	2
ĺ	CO4	2	3	3	2	2	1	1	1	1	1	1	2

Correlation levels 1, 2 or 3 as defined below:

2: Moderate (Medium) 3: Substantial (High) 1: Slight (Low)

#### Depth Elective – 1, 2

CS	SE 612 Syst	em Software 3-	0-0 3 Credits	5 3Hou	urs					
Department of Computer Science and Engineering										
	Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Credi		
	Code		(PCR) /	Lectur	Tutori	Practical	Total	t		
			Electives (PEL)	e (L)	al (T)	(P)	Hour			
							S			
	CSE612	System Software	PEL	3	0	0	3	3		
	Pre-requis	sites: Programming	Course Assessme	Course Assessment methods (Continuous Assessment (CA), M						

Language Par	adigms, Theory	Term (MT), End Term (ET))
Architecture	Operating	
Systems. Com	noilers	
		CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]
Course	• CO1: To	introduce the students to the collection of programs and
Outcomes	procedu	res which constitute the system software of a computer platform.
	• CO2: To	allow the students to understand & acknowledge the main
	objective	es, problems faced and programming techniques used by a system
	program	mer in designing and implementing system software.
	• CO3: To	emphasize on the conceptual framework in which the system
	software	e is developed and used rather than a broad overview of programs
	which b	elong to the system software running on a particular computer
		enable the students to deduce the logical relationship between
	the soft	vare components of any software system
	<ul> <li>CO5: To</li> </ul>	enable students to understand the mechanism of Integration of
	different	System Software components.
Topics	Part I: The Met	hodology
Covered	The funct	lamental objective of this part is to develop a concept of a System.
	0 0	concept is to be built upon both Mathematical construction(
	A	lgebraic and Logic Systems) as well as around construction based
	C	n Abstract Machines. (3L)
	Program	as and documents that are part of System Software are to be
	defined.	(1L)
	A structu	aring of System Software Components are to be defined and built.
		avered on a hierarchy of levels. The hardware system is taken as
	t	he first level of this hierarchy. The interface relationship between
	t	he components of the system software vertical hierarchy is then
	e	stablished. (2L)
	0 F	lorizontal Structuring: Each level of the system software vertical
	h	ierarchy is discussed as a horizontal structure. The elements of
	t	his horizontal structure (formal definitions will also be given) are
	S	pecific software components of the system software organized as
	S	oftware systems. (2L)
	• The spe	cific problems posed by the interaction between the software
	system o	components of a norizontal level of the system software hierarchy
	afe usc	v convenience and evolution of a system software are
	introduc	ed and illustrated (21)
	Part II: Program	ming Support Environment:
	<ul> <li>of a Svst</li> </ul>	em Software is to be discussed as the collection of tools offered by
	a compu	ter platform to computer users to help them use the computer to
	develop	programs that solve their problems. (2L)
	Detailed	discussions on Topics like: Language, Translators, Interpreters,
	Mechani	sm of target machine code generation; proper emphasis on

	<ul> <li>distinguishing between Compilers, Assemblers, Linker/Loaders, and Interpreters will be there. Interfacing users with the Operating System environment as tolls from the support environment is to be discussed. (6L)</li> <li>Case study of JVM, GNU GCC implementation of the Linux Assembler, Linker and Loader will be dealt with in detail, introducing implementation of symbol tables. (7L)</li> <li>Part III: Execution Support Environment:</li> <li>A software system that manages computer resources of the computer platform and the processes running on the computer platform will be introduced and illustrated by the operating system. (3L)</li> <li>The components of the operating system itself are layered on the levels of a hierarchy. (2L)</li> <li>The mechanism of a system call (system function call) will be discussed as a tool for implementing this hierarchy relation. (2L)</li> <li>The following layers of an operating system will be discussed with a practical illustration with the Linux kernel, with mechanisms of designing system programs developed with and for the support of: (10L)</li> <li>Interrupt System ⇔ designing interrupt handlers.</li> <li>Memory Management System ⇔ designing page-fault exception handlers</li> <li>Input/Output Management System (File System) ⇔ examining</li> </ul>
Text Books.	Text Books:
and/or	1. System Software and Software Systems: Systems Methodology for
reference	Software, Tudor Rus, World Scientific Press, 1993.
material	<ol> <li>System Software: An Introduction to Systems Programming, leyland L. Beck, 1996.</li> </ol>
	3. System Programming with C and Unix, Adam Hoover, Adison Wesley 2010.
	Reference Books:
	1. Understanding the Linux Kernel, Daniel P. Bovet, Marco Cesati, O'Reilly Pub Date:November 2005
	Available online at:
	http://johnchukwuma.com/training/UnderstandingTheLinuxKernel3rdEditi
	on.pdf

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	2	2	2	-	2	-	-	-	-	-	-	-
CO2	2	3	3	3	3	-	-	-	-	-	-	-
CO3	2	2	-	3	2	-	-	-	-	-	-	-
CO4	-	3	-	3		-	-	-	-	-	-	-
CO5	-	3	-	2	3	-	-	-	-	2	-	-

C	Correlation	evels 1, 2 or 3 as defi	ined below:					
1:	Slight (Low	) 2: Moo	derate (Medium)		3: Subst	antial (High)		
CS	E 613 In	ternet and Web Tech	nologies 3-0-0	3 Cr	redits	3 Hours		
		Departm	ent of Computer S	cience and	l Engineeri	ing		
	Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Credi
	Code		(PCR) /	Lectur	Tutori	Practical	Total	t
			Electives (PEL)	e (L)	al (T)	(P)	Hour	
							S	
	CSE 613	Internet and Web	PEL	3	0	0	3	3
	Dro-roquie	sitos		ont mothor	ds (Continu		ment (CA	) Mid-
	Flefequi	Sites	Term (MT), End	Ferm (ET))		1003 A33633		<i>),</i> who -
	Programn	ning Fundamentals,	CA+ MT + ET <b>[</b> CA	: 15%, MT	: 25%, ET: (	60%]		
	Data Strue	cture and						
	Algorithm	s, Operating						
	Systems, I	Data networks (may						
	be carried	out						
	simultane	ously)						
	Course	• CO1: Un	derstanding the fu	undamenta	al concept	s of Interne	et Structu	re and
	Outcomes	S Protocol	S				COOKE	
		• CO2: Usi	ng ICP/IP protocol	s and inter	rnet progra	amming usir		I API.
		• CO3: UNC	cerstanding HITP p	voloning		es or web F	rogramm	ning. ocurity
		• CO4. D	esigning and de mont	veloping	web ahl	plications	with S	ecurity
			ineni. Iderstanding Sem	antic Wah	and Ang	nlving Web	Analytic	s over
		Semantic	Weh			orying web	Analytic	5 0001
	Topics	INTERNET TECH						
	Covered	Brief review of	Data Networking: (	data transr	mission. lir	nks and MAC	Cs. Forwa	rding
		and Routing. TO	P-IP lavered netwo	ork concep	ots.		,	. 0
		0,	,					(3L)
		Internet specif	ic issues like scalab	ility, inter-	-operabilit [,]	y.		、 ,
					•			(1L)
		Internet Structu	ures – logical and p	hysical gro	ouping with	h sub-nettin	g and sup	ber
		netting.						
								(3L)
		Review of TCP-I	P protocols – proc	essing, per	formance	and variatio	ons.	
								(3L)
		Security Implen	nentations - secure	ed IP, Trans	sport Laye	r security.		
								(3L)
		Quality of Servi	ce Issues and their	Applicatio	on in Interr	net.		
								(2L)
			AMMING: Introdu	ction to SC	)CKET ΔΡΙ·	Client prog	ramming.	
		Server program	ming – sequential	concurrer	nt and mul	ti-threaded	: P2P	
		application Pro	gramming.	50.1001101		caaca,	,	
								(4L)
L	-							\·-/

	HTTP: Requests and Responses - Message Formats, Headers and Fields; TCP Keep- alive and pipe-lining concepts; Server Architecture ,Performance and Doployment
	(3L)
	WEB PROGRAMMING: Document Object Model; Client side scripting fundamentals: Server Side Scripting and Programming – Data base connectivity, session management and security enhancement; Introduction to Web Application Development Platforms – JavaEE, Dzango. (7L)
	XML: DTD and Schema; Visualisation using XSLT; Web Application using XML; Service Oriented Architecture and Web services based application development and deployment; Xquery and SOA based application development platforms. (6L)
	SEMANTIC WEB: General Concept of Semantic Web and linked Data; RDF based relation description; Web Ontology concepts and use; Putting XML, RDF and Ontology together to develop semantic web applications; Capturing Information from semantic web pages; Data analytics over semantic and linked Web. (7L)
Text Books,	Text Books:
and/or	1. B. A. Forouzan, "TCP/IP Protocol Suite", 4 th Edition, 2010, McGrawHIII
reterence material	Publishers. 2 P. Deitel, H. Deitel, A. Deitel, "Internet and World Wide Web – How to
material	Program", Pearson.
	3. G. Antoniou, P. Groth, F. Harmelen and R. Hoekstra, "A Semantic Web Primer"
	Prentice Hall India.
	Reference Books:
	1. D. E. Comer and D L Stevens, "Internetworking with TCP/IP vol.II", Pearson.

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	2	3	-	-	3	2	1	1	2	-	-	1
CO2	2	2	-	-	3	1	-	-	1	-	-	-
CO3	1	1	-	-	3	2	2	2	3	1	1	-
CO4	-	-	-	-	-	-	-	-	-	-	-	-
CO5	3	3	2	2	3	2	-	2	3	_	-	2

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

CS	E 614 A	dvanced Computer A	rchitecture 3	<b>3-0-0</b>	3 Credits	3 Hours						
		Departm	ent of Computer S	cience and	l Engineeri	ing						
	Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Credi				
	Code		(PCR) /	Lectur	Tutori	Practical	Total	t				
			Electives (PEL)	e (L)	al (T)	(P)	Hour					
-	CCE C14	A du con a a d		2	0	0	S 2	2				
	CSE 614	Advanced	PEL	3	0	0	3	3				
		Architecture										
-	Pre-requis	sites	Course Assessment methods (Continuous Assessment (CA). Mid-									
	i i e i equit		Term (MT), End Term (ET))									
	Digital Ele Organisat	ctronics, Computer ion	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]									
-	Course	• ·CO1: Unde	erstand classes of	computers	and inter	rpret the pe	erforman	ce of a				
	Outcomes	s processor b	ased on different r	netrics.								
		CO2: Design	n and describe pipe	eline data- _l	path for pe	erformance	enhance	ment.				
		CO3: Under	rstanding the chall	enges in r	ealizing di	fferent leve	ls of para	allelism				
		and leverage	e them for perform	nance enh	ancement							
		CO4: Design	n of memory hierai	of memory hierarchy for efficient memory design.								
		CO5: Appre     architecture	clate and evaluate	Late and evaluate the new trends and developments in computer								
		architecture	e.									
	Topics	OVERVIEW OF Y	VON NEUMANN AF	RCHITECTU	IRE: Instru	ction set arc	hitecture	e: The				
	Covered	Arithmetic and	Logic Unit, The Control Unit, Memory and I/O devices and their									
		interfacing to tl	he CPU; Measuring and reporting performance; CISC and RISC									
		processors.	(4L)									
		PIPELINING: Pip	pelining fundamentals, Linear and Nonlinear Pipeline Processors,									
		Arithmetic and	instruction pipelining, Pipeline hazards, Techniques for									
		overcoming or	reducing the effect	s of variou	is hazards,	superscalar	and sup	er				
			LIVV architectures.									
		(0L)										
		INSTRUCTION -	-IFVFI PARALIFIIS	M (II P): Co	oncepts an	d challenges	s of ILP:					
		Compiler Techr	iques for exposing	ILP; Branc	ch costs rea	ductions - St	atic and					
		Dynamic predic	tions; Hardware-b	ased specu	ulation.							
		(8L)										
		MEMORY HIER	ARCHY DESIGN: Int	roduction;	Memory	echnology a	and					
		optimizations,	Virtual memory, Cache memory, Cache performance; Cache									
		Optimizations,	Cache conerence, Cache coherence protocols – snoop based and									
		directory based	i protocols, Advanc	ed optimiz	zations of (	cache perfo	rmance.					
L												

	MULTIPROCESSORS ARCHITECTURES: Introduction; Taxonomy of parallel architectures, Centralized shared-memory architecture: synchronization, memory consistency, interconnection networks. Distributed shared-memory architecture. (8L)
	Routing Mechanism. (4L)
Text Books, and/or	Text Books:
reference material	<ol> <li>Computer Architecture, A Quantitative Approach – John L. Hennessey and David A. Patterson; 4th edition, Morgan Kaufmann.</li> <li>Advanced Computer Architecture Parallelism, Scalability, Programmability – Kai Hwang; Tata Mc-Graw Hill.</li> <li>Reference Books:</li> </ol>
	<ol> <li>Computer architecture and parallel processing – Kai Hwang and FayéAlayé Briggs; McGraw-Hill.</li> <li>Parallel Computer Architecture, a Hardware / Software Approach – David E. Culler, Jaswinder Pal Singh, Anoop Gupta; Morgan Kaufman.</li> <li>John Paul Shen and Mikko H. Lipasti, Modern Processor Design: Fundamentals of Superscalar Processors, Tata McGraw-Hill.</li> <li>M. J. Flynn, Computer Architecture: Pipelined and Parallel Processor Design, Narosa Publishing House.</li> <li>Others: NPTEL/MOOC Courses materials.</li> </ol>

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	2	-	1	-	-	-	-	1
CO2	3	3	3	2	2	-	1	-	-	-	-	1
CO3	3	3	2	3	3	-	1	-	-	-	-	2
CO4	2	3	3	2	3	-	2	-	-	-	-	1
CO5	3	3	3	3	3	-	-	-	-	-	-	3

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

	Departu	ment of Computer S	Science and	d Engineer	ing						
Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	:	Cred				
Code		(PCR) /	Lectur	Tutoria	Practical	Total	t				
		Electives (PEL)	e (L)	I (T)	(P)	Hour					
			- (-)	,	( )	S					
CSE615	Optimization	PEL	3	0	0	3	3				
	Techniques										
Pre-requi	sites	Course Assessme	ent metho	ds (Continu	Jous Assess	ment (CA	) <i>,</i> Mi				
		Term (MT), End	Term (ET))								
Engineeri	ng Mathematics,	CA+ MT + ET [CA	.: 15%, MT	: 25%, ET: (	60%]						
Discrete I	Mathematics										
Course	<ul> <li>CO1: To</li> </ul>	o understand the Ba	sic princip	les of optir	nization.						
Outcome	s • CO2: To	able to formulate	optimizatio	on problem	n mathemat	ically.					
	<ul> <li>CO3: To</li> </ul>	know various solut	tion metho	ods in optir	nization Pro	blems.					
	• CO4: A	ble to perform sen	sitivity an	alysis and	post proce	ssing of	optir				
	solutior	15.									
	<ul> <li>CO5: Ab</li> </ul>	ole to explore a wid	e range of	engineerir	ng optimizat	ion prob	lems.				
Topics	Introduction to	Optimization- Dev	elopment,	mathemat	ical problen	n formula	ation				
Covered	engineering ap	plications of optimi	zation, clas	ssification	of optimizat	ion prob	lems				
	(3L)										
		zation of Single and Multivariable. Optimality criterion for single									
		ization of Single an	d iviuiti var	lable- Opt	Imality crite	rion for s	Single				
	and multi-varia	ible method, Regior	le and Multivariable, unidirectional search, direct search methods								
	(10)	ble and Multivariab	ie, unidired	ctional sea	rch, alrect s	earch me	ethot				
	(10L)										
	Linear Program	ming-Standard for	m of linear	nrogram	ning (IP) nr	hlem					
	Granhical meth	nod Simplex algorit	hm Simnle	x criterion	Duality in	IP Sensi	tivitv				
	post optimality	analysis. Transport	ation Prob	lem and A	ssignment P	Problem.	civicy				
	(121)				55151111111						
	Dynamic Progr	amming- Introducti	on. Sequer	ntial optim	ization. com	putation	al				
	procedure, disc	crete versus continu	ious dynan	nic program	mming, curs	e of					
	dimensionality	. (3L)		0 -	0,						
	Integer Program	mming-Introductio	n, Linear ai	nd Nonline	ar integer p	rogramn	ning,				
Methods for integer programming.											
	(2L)										
	Non-Linear Pro	ramming-Introduction, examples of non-linear programming,									
	types of non-lin	iear programming, Constraint and Unconstrained optimization,									
	methods of no	nlinear programmir	ng.								
	(7L)	(7L)									
Modern Optimization- Multi-objective optimization, many optimization, Genetic											

	Algorithms, Particle Swarm Optimization, Differential Evolution, CMA-ES, applications in engineering optimization problems. (5L)												
Text Books,	Text Books:												
and/or reference material	<ol> <li>S. S. Rao, Engineering Optimization: Theory and Practice, New Age International.</li> <li>K. Deb, Optimization for Engineering Design, Prentice Hall of India.</li> <li>A. Ravindran, K. M. Ragsdell and G. V. Reklaitis, Engineering Optimization: Methods and Applications, Wiley.</li> </ol>												
	4. Hillier & Lieberman, Introduction to Operations Research, TMH.												
	Reference Books:												
	1. S. M. Sinha, Mathematical Programming, Elsevier.												
	2. Handy Taha, Operations Research – An Introduction, Prentice Hall of India, New Delhi.												
	3. R. Fletcher, Practical Methods of Optimization, Wiley.												

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	-	-	-	-	-	-	2	3
CO2	2	3	2	3	1	-	-	-	-	-	3	3
CO3	3	3	3	2	1	-	-	-	-	-	3	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

CS	E616 /	Artificial Intelligence	3-0-0	3 Credit	is 3 Ho	ours					
		Departm	ent of Computer S	cience and	l Engineeri	ng					
	Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Credi			
	Code		(PCR) /	Lectur	Tutori	Practical	Total	t			
			Electives (PEL)	e (L)	al (T)	(P)	Hour				
							S				
	CSE 616	Artificial	PEL	3	0	0	3	3			
		Intelligence									
	Pre-requi	sites	Course Assessme	Course Assessment methods (Continuous Assessment (CA), Mid-							
			Term (MT), End	Term (MT), End Term (ET))							
	Data Stru	cture and	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]								
	Algorithm	n, DBMS, Object									
	Oriented	Programming									
	Course	• CO1: Le	arns Concepts of	f Intellige	nce, Artif	icial Intellig	ence, P	roblem			
	Outcome	s Represei	ntation and Charac	terization.							
		<ul> <li>CO2: Cor</li> </ul>	nceptualizes Intelli	gent Searc	h, differen	t heuristics.					
		<ul> <li>CO3: Un</li> </ul>	derstands Knowled	dge Repres	entation 1	echniques a	and Unce	ertainty			
		Manager	nents.								
		CO4: Lea	rns Semantic Knov	vledge, Ser	mantic Net	and Frame					
		<ul> <li>CO5: Lea</li> </ul>	rns Game Playing	Program D	esign.						

	<ul> <li>CO6: Learns Expert Systems and Various Machine Learning Systems.</li> <li>CO7: Learns Neural Networks</li> </ul>
Topics	
Covered	Introduction to Artificial Intelligence (AI): Features of natural intelligence, Definition of Artificial Intelligence (AI), Turing Test. (4L)
	Problem Representation and Characterization: State Space Representation, Production Systems, Search, Problem Characterization. (5L)
	Intelligent Search Techniques: Search Classifications, Heuristic Function, Various Types of Heuristic Search Techniques, Performance Measure of Heuristic Search with Penetrance.
	(5L)
	Knowledge Representation Methodologies: Types of Knowledge, Propositional vs. Predicate Logic, Resolution Proof, Logic Programming, Knowledge representation using Rules, Declarative and Procedural Representation, Uncertainty Management in Knowledge Representation, Certainty Factors in facts and rules, Concept of Fuzzy Logic. (5L)
	Semantic Knowledge Representation: Syntactic vs. Semantic Knowledge, examples of Semantic Knowledge, Semantic Net, Frame, OOP, Property Inheritance, Tangled Hierarchies. (4L)
	Game Playing: Game Tree, Minimax Search, Search Reduction by alpha and beta cutoffs. Planning: Introduction to Planning, Goal Stack Planning, Nonlinear, Hierarchical and Reactive Planning. (4L)
	Learning: Learning and Intelligence, Learning Spectrum, Various Types of Learning Techniques and Systems. (5L)
	Expert Systems (ES) and ES Shells: Definition of Expert Systems, Components of Expert Systems. Types of ES – Manual, Semi-automatic, and Automatic ES, Techniques of Knowledge Acquisition (KA) for ES ES Shell. Advantages and disadvantages of ES Shell over ES. (5L)
	Neural Networks: Symbolic vs. Neural Network AI, Hofield Network, Perceptron as a model of neuron, Single and multiplayer Perceptron for classification and knowledge representation, Back propagation Network, Supervised, Reinforcement and Unsupervised Learning. AI standardization: Needs for standardization, Data quality analysis standards,
	bias compliance standard, standardization efforts under ISO/IEC/ CD 42000 series

	and ISO/IEC CD 5200X series.								
	(5L)								
Text Books,	Text Books:								
and/or	1. Artificial Intelligence Rich and Knight Tata McGraw Hill.								
reference	2. Artificial Intelligence – A New Synthesis – Nilsson Morgan Kaufmann								
material	Publishers.								
	Reference Books:								
	1. Artificial Intelligence and Expert Systems Paterson PHI.								
	2. Artificial Neural Networks – B. Yegnanarayanana. PHI.								

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	2	2	1	-	-	-	-	-	-	3
CO2	3	3	2	2	2	-	-	-	-	-	-	3
CO3	3	2	2	3	2	-	-	-	-	-	-	3
CO4	3	2	2	3	2	-	-	-	-	-	-	3
CO5	3	3	3	3	2	-	-	-	-	-	-	3
CO6	3	3	3	3	2	-	-	-	-	-	-	3
CO7	3	2	3	3	2	-	-	-	-	-	-	3

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

2: Moderate (Medium)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

CSE 617 Advanced Algorithms

3-0-0

3 Credits 3 Hours

	Department of Computer Science and Engineering										
Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Credi				
Code		(PCR) /	Lectur	Tutori	Practical	Total	t				
		Electives (PEL)	e (L)	al (T)	(P)	Hour					
						S					
CSE 617	Advanced	PEL	3	0	0	3	3				
	Algorithms										
Pre-requis	sites	Course Assessme	ent metho	ds (Contini	uous Assess	ment (CA	() <i>,</i> Mid-				
		Term (MT), End Term (ET))									
CSC 303, 0	CSC 403	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]									
Course	CO1. Car	have the efficiend	ave the efficiency in the complexity analysis of the algorithms.								
Outcomes	6 • CO2. De	tecting and applying the algorithmic structures in many different									
	fields of	engineering.									
	• CO3. Wi	I have the knowle	dge for sta	ite of the a	art developr	nent in t	he field				
	of algorit	hms.									
	• CO4. Ca	in have the pro	oficiency o	of coding	and comp	paring d	ifferent				
	algorithr	ns.									
Topics	Revisit: Differe	nt Complexity anal	lysis and Al	gorithm's	correctness	by Loop	-				
Covered	Invariant techn	iques.									

#### (2L)

**Data Structures:** van Emde Boas Trees, Dynamic graphs, Bloom filters, Hashing (Open addressing).

(5L)

**Randomized Algorithm**- Las Vegas and Monte Carlo algorithms, Essential mathematical tools for Randomized algorithms: Linearity of expectation, Markov inequality, Chebyshev's inequality, Chernoff bound, and Union bound with examples to Randomized algorithm design. Examples and analysis of: Hiring Assistant Problem, Randomized selection, Skip list. (4L)

**Network Flow** - Flow networks, Augmenting paths, Ford- Fulkerson Algorithm, Edmonds - Karp algorithm, Max flow min-cut theorem, Push-relabel algorithm, Maximum bipartite matching, Some applications of network flow. (5L)

**Linear Programming:** Introduction, algorithms, and its applications, Linear programming duality. (4L)

**Parallel Algorithms** – Multithreaded Algorithms: Multithreaded matrix multiplication, Multithreaded merge sort. (3L)

**Online Algorithms:** Overview, Online scheduling and online Steiner tree, Online Bipartite matching, Online learning and multiplicative weights algorithm. (5L)

**NP- Completeness** - Reduction revisited; NP-Completeness proof of different problems: CLIQUE, VERTEX COVER, INDEPENDENT SET, SET COVER. (4L)

**Approximation Algorithms** - Constant factor approximation algorithm: VERTEX COVER and TSP; Christofides algorithm on TSP with 1.5 approximation factor; SET-COVER problem with log n factor approximation algorithm; PTAS and FPTAS, Linear programs and approximation algorithms. (7L)

**Semidefinite Programming:** Introduction with the problem: The Maximum Cut Problem and Semidefinite Programming. (2L)

**Overview of some Special Topics:** Communication complexity, Spectral graph theory, Compressive sensing . (1L)

Text Books, and/orText Books:1. Rajeev Motwani and Prabhakar Raghavan, Randomized Algorithms, 2 nd Edition, Cambridge University press, Cambridge, MA, 1995.material2. Thomas H. Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduction to Algorithms. 3rd ed. MIT Press, 2009, ISBN: 9780262033848. 3. S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice-Hall, 1989. 4. M. J. Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw Hill Higher Education, 1987, ISBN: 978-0070510715. 5. J. Kleinberg and E. Tardos, Algorithm Design of Approximation Algorithms, Cambridge University Press. 7. S. Arora and B. barak, Computational Complexity: A Modern Approach, Cambridge University Press.Reference Books: 1. Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, 2 nd Edition, Athena Scientific, July 2008. 2. M. Mitzenmacher and E. Upfal, Probability and Compuitng: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press. 3. T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016. 4. T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017. Others: NMEICT video on: Dreins of Algorithms (Marci Video 1:11/2022)		
<ul> <li>and/or</li> <li>1. Rajeev Motwani and Prabhakar Raghavan, Randomized Algorithms, 2nd Edition, Cambridge University press, Cambridge, MA, 1995.</li> <li>2. Thomas H. Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduction to Algorithms. 3rd ed. MIT Press, 2009, ISBN: 9780262033848.</li> <li>3. S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice-Hall, 1989.</li> <li>4. M. J. Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw Hill Higher Education, 1987, ISBN: 978-0070510715.</li> <li>5. J. Kleinberg and E. Tardos, Algorithm Design, Pearson.</li> <li>6. D. V. Williamson and D. B. Shmoys, The Design of Approximation Algorithms, Cambridge University Press.</li> <li>7. S. Arora and B. barak, Computational Complexity: A Modern Approach, Cambridge University Press.</li> <li>Reference Books:</li> <li>1. Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, 2nd Edition, Athena Scientific, July 2008.</li> <li>2. M. Mitzenmacher and E. Upfal, Probability and Compuitng: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press.</li> <li>3. T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2016.</li> <li>4. T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017.</li> <li>Others: NMEICT video on: Design of Algorithms (function on: Design of Algorithms (function on: Design of Algorithms (function on: Design of Algorithms (function on:</li> </ul>	Text Books,	Text Books:
<ul> <li>reference</li> <li>Cambridge University press, Cambridge, MA, 1995.</li> <li>2. Thomas H. Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduction to Algorithms. 3rd ed. MIT Press, 2009, ISBN: 9780262033848.</li> <li>3. S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice-Hall, 1989.</li> <li>4. M. J. Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw Hill Higher Education, 1987, ISBN: 978-0070510715.</li> <li>5. J. Kleinberg and E. Tardos, Algorithm Design, Pearson.</li> <li>6. D. V. Williamson and D. B. Shmoys, The Design of Approximation Algorithms, Cambridge University Press.</li> <li>7. S. Arora and B. barak, Computational Complexity: A Modern Approach, Cambridge University Press.</li> <li>Reference Books:</li> <li>1. Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, 2nd Edition, Athena Scientific, July 2008.</li> <li>2. M. Mitzenmacher and E. Upfal, Probability and Compuitng: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press.</li> <li>3. T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016.</li> <li>4. T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017.</li> <li>Others: <i>NMEICT video on:</i> Droine of Algorithms (http://doi.org/10.00000000000000000000000000000000000</li></ul>	and/or	1. Rajeev Motwani and Prabhakar Raghavan, Randomized Algorithms, 2 nd Edition,
<ul> <li>material</li> <li>2. Thomas H. Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduction to Algorithms. 3rd ed. MIT Press, 2009, ISBN: 9780262033848.</li> <li>3. S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice-Hall, 1989.</li> <li>4. M. J. Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw Hill Higher Education, 1987, ISBN: 978-0070510715.</li> <li>5. J. Kleinberg and E. Tardos, Algorithm Design, Pearson.</li> <li>6. D. V. Williamson and D. B. Shmoys, The Design of Approximation Algorithms, Cambridge University Press.</li> <li>7. S. Arora and B. barak, Computational Complexity: A Modern Approach, Cambridge</li> <li>University Press.</li> <li><b>Reference Books:</b></li> <li>1. Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, 2nd Edition, Athena Scientific, July 2008.</li> <li>2. M. Mitzenmacher and E. Upfal, Probability and Compuitng: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press.</li> <li>3. T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016.</li> <li>4. T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017.</li> <li>Others: <i>NMEICT video on:</i> Design of Algorithms (bitra (docume pressi bitling and indication) (2007)</li> </ul>	reference	Cambridge University press, Cambridge, MA, 1995.
<ul> <li>Introduction to Algorithms. 3rd ed. MIT Press, 2009, ISBN: 9780262033848.</li> <li>3. S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice-Hall, 1989.</li> <li>4. M. J. Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw Hill Higher Education, 1987, ISBN: 978-0070510715.</li> <li>5. J. Kleinberg and E. Tardos, Algorithm Design, Pearson.</li> <li>6. D. V. Williamson and D. B. Shmoys, The Design of Approximation Algorithms, Cambridge University Press.</li> <li>7. S. Arora and B. barak, Computational Complexity: A Modern Approach, Cambridge University Press.</li> <li><b>Reference Books:</b></li> <li>1. Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, 2nd Edition, Athena Scientific, July 2008.</li> <li>2. M. Mitzenmacher and E. Upfal, Probability and Compuitng: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press.</li> <li>3. T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016.</li> <li>4. T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017.</li> <li>Others: NMEICT video on: Docing of Algorithmic Toolbox (Stanford University), 2017.</li> </ul>	material	2. Thomas H. Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein.
<ul> <li>3. S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice-Hall, 1989.</li> <li>4. M. J. Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw Hill Higher Education, 1987, ISBN: 978-0070510715.</li> <li>5. J. Kleinberg and E. Tardos, Algorithm Design, Pearson.</li> <li>6. D. V. Williamson and D. B. Shmoys, The Design of Approximation Algorithms, Cambridge University Press.</li> <li>7. S. Arora and B. barak, Computational Complexity: A Modern Approach, Cambridge University Press.</li> <li><b>Reference Books:</b></li> <li>1. Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, 2nd Edition, Athena Scientific, July 2008.</li> <li>2. M. Mitzenmacher and E. Upfal, Probability and Compuitng: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press.</li> <li>3. T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016.</li> <li>4. T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017.</li> <li>Others: NMEICT video on: Darian of Algorithms (http://ucuu.magint.iit/constant/sideol.int/10/2ap)</li> </ul>		Introduction to Algorithms. 3rd ed. MIT Press, 2009, ISBN: 9780262033848.
<ul> <li>4. M. J. Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw Hill Higher Education, 1987, ISBN: 978-0070510715.</li> <li>5. J. Kleinberg and E. Tardos, Algorithm Design, Pearson.</li> <li>6. D. V. Williamson and D. B. Shmoys, The Design of Approximation Algorithms, Cambridge University Press.</li> <li>7. S. Arora and B. barak, Computational Complexity: A Modern Approach, Cambridge University Press.</li> <li><b>Reference Books:</b></li> <li>1. Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, 2nd Edition, Athena Scientific, July 2008.</li> <li>2. M. Mitzenmacher and E. Upfal, Probability and Compuitng: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press.</li> <li>3. T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016.</li> <li>4. T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017.</li> <li>Others: NMEICT video on: Design of Algorithms (http://doi.org/10.00000000000000000000000000000000000</li></ul>		3. S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice-Hall, 1989.
<ul> <li>5. J. Kleinberg and E. Tardos, Algorithm Design, Pearson.</li> <li>6. D. V. Williamson and D. B. Shmoys, The Design of Approximation Algorithms, Cambridge University Press.</li> <li>7. S. Arora and B. barak, Computational Complexity: A Modern Approach, Cambridge University Press.</li> <li>Reference Books: <ol> <li>Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, 2nd Edition, Athena Scientific, July 2008.</li> <li>M. Mitzenmacher and E. Upfal, Probability and Compuitng: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press.</li> <li>T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016.</li> <li>T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017.</li> </ol> </li> </ul>		4. M. J. Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw Hill Higher Education, 1987, ISBN: 978-0070510715.
<ul> <li>6. D. V. Williamson and D. B. Shmoys, The Design of Approximation Algorithms, Cambridge University Press.</li> <li>7. S. Arora and B. barak, Computational Complexity: A Modern Approach, Cambridge University Press.</li> <li>Reference Books: <ol> <li>Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, 2nd Edition, Athena Scientific, July 2008.</li> <li>M. Mitzenmacher and E. Upfal, Probability and Compuitng: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press.</li> <li>T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016.</li> <li>T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017.</li> </ol> </li> </ul>		5. J. Kleinberg and E. Tardos, Algorithm Design, Pearson.
Cambridge University Press. 7. S. Arora and B. barak, Computational Complexity: A Modern Approach, Cambridge University Press. <b>Reference Books:</b> 1. Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, 2 nd Edition, Athena Scientific, July 2008. 2. M. Mitzenmacher and E. Upfal, Probability and Compuitng: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press. 3. T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016. 4. T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017. <b>Others:</b> NMEICT video on: Design of Algorithms(Atta)(Augus project jitk/apple.		6. D. V. Williamson and D. B. Shmoys, The Design of Approximation Algorithms,
<ul> <li>7. S. Arora and B. barak, Computational Complexity: A Modern Approach, Cambridge University Press.</li> <li>Reference Books: <ol> <li>Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, 2nd Edition, Athena Scientific, July 2008.</li> <li>M. Mitzenmacher and E. Upfal, Probability and Compuitng: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press.</li> <li>T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016.</li> <li>T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017.</li> </ol> </li> <li>Others: NMEICT video on: Design of Algorithms (https://doi.org/10.1000/000000000000000000000000000000</li></ul>		Cambridge University Press.
Cambridge University Press. <b>Reference Books:</b> 1. Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, 2 nd Edition, Athena Scientific, July 2008. 2. M. Mitzenmacher and E. Upfal, Probability and Compuitng: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press. 3. T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016. 4. T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017. <b>Others:</b> <i>NMEICT video on:</i> Design of Algorithms (http://www.pmgict.jit/gp.go.in/Wenc.ideol.iol/(10/2cn))		7. S. Arora and B. barak, Computational Complexity: A Modern Approach,
<ul> <li>University Press.</li> <li>Reference Books: <ol> <li>Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, 2nd</li> <li>Edition, Athena Scientific, July 2008.</li> <li>M. Mitzenmacher and E. Upfal, Probability and Compuitng: Randomized</li> <li>Algorithms and Probabilistic Analysis, Cambridge University Press.</li> <li>T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016.</li> <li>T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017.</li> </ol> </li> <li>Others: NMEICT video on:</li> </ul>		Cambridge
<ul> <li>Reference Books:</li> <li>1. Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, 2nd</li> <li>Edition, Athena Scientific, July 2008.</li> <li>2. M. Mitzenmacher and E. Upfal, Probability and Compuitng: Randomized</li> <li>Algorithms and Probabilistic Analysis, Cambridge University Press.</li> <li>3. T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016.</li> <li>4. T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017.</li> <li>Others: NMEICT video on:</li> </ul>		University Press.
<ol> <li>Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, 2nd Edition, Athena Scientific, July 2008.</li> <li>M. Mitzenmacher and E. Upfal, Probability and Compuitng: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press.</li> <li>T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016.</li> <li>T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017.</li> <li>Others: NMEICT video on: Design of Algorithms (http://www.pmoint.iit/op.go.in/Home/videoLink/10/2an)</li> </ol>		Reference Books:
<ul> <li>2. M. Mitzenmacher and E. Upfal, Probability and Compuitng: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press.</li> <li>3. T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016.</li> <li>4. T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017.</li> <li>Others: NMEICT video on: Design of Algorithms (http://www.nmoiot.iit/gap.gs.in/Home/videoLink/10/2ap)</li> </ul>		1. Dimitri P. Bertsekas and John N. Tsitsiklis, Introduction to Probability, 2 nd Edition, Athena Scientific, July 2008.
<ul> <li>Algorithms and Probabilistic Analysis, Cambridge University Press.</li> <li>3. T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016.</li> <li>4. T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017.</li> <li>Others: NMEICT video on:</li> <li>Design of Algorithms (http://www.pmgiet.iitkgp.gs.in/Home/videoLink/10/2cp.)</li> </ul>		2. M. Mitzenmacher and E. Upfal, Probability and Compuitng: Randomized
<ul> <li>3. T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016.</li> <li>4. T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017.</li> <li>Others: NMEICT video on:</li> <li>Design of Algorithms (http://www.nmoiot.iit/gap.go.in/Homo.fuideol.in/(10/2ap))</li> </ul>		Algorithms and Probabilistic Analysis, Cambridge University Press.
<ul> <li>4. T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University), 2017.</li> <li>Others: NMEICT video on:</li> <li>Design of Algorithms (http://www.nmoiot.iitkgn.gs.in/Home/videoLink/10/2gn)</li> </ul>		3. T. Roughgarden, CS261: A Second Course in Algorithms (Stanford University), 2016.
2017. <b>Others:</b> NMEICT video on: Design of Algorithms(http://www.pmoiot.iitkgp.gc.in/Homo/videoLink/10/2gp)		4. T. Roughgarden, CS168: Modern Algorithmic Toolbox (Stanford University),
<b>Others:</b> NMEICT video on:		2017.
Design of Algorithms (http://www.pmoiot.iitkap.gc.in/Homokiidaalink/10/2gn)		<b>Others:</b> NMEICT video on:
Design of Algorithms(http://www.hmelct.httsgp.ac.h/home/videoLink/10/3gp)		Design of Algorithms(http://www.nmeict.iitkgp.ac.in/Home/videoLink/10/3gp)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	1	2	2	-	-	-	2	2
CO2	3	2	3	3	2	2	2	1	1	1	2	2
CO3	3	2	3	3	2	2	2	1	-	1	2	3
CO4	2	2	3	3	3	2	2	2	2	2	2	2

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

3: Substantial (High)

**3 Hours** 

CSE 618	Information Coding Theory	3-0-0	3 Credits

Department of Computer Science and Engineering											
Course	Title of the course	Program Core	gram Core Total Number of contact hours								
Code		(PCR) /			Practical	Total	t				
		Electives (PEL)	e (L)	al (T)	(P)	Hour					
						S					
CSE 618	Information	PEL	3	0	0	3	3				

	CO	ding the	ory											
Pre-re	quisites			Cou	Course Assessment methods (Continuous Assessment (CA), Mid-									
				Ter	Term (MT), End Term (ET))									
Probal	oility and	d statisti	cs,	CA+	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]									
linear	algebra,	calculus	5.											
Course	5	•	CO1: U	ndersta	anding o	definitio	on and	measur	rement	of inform	ation.			
Outco	mes	•	CO2: l	Inderst	tanding	sourc	e codii	ng and	l Desig	gn and a	nalysis	of data		
			compre	ession t	sion techniques.									
		٠	CO3: U	ndersta	anding (	Channe	g theory	y						
		٠	CO4: Design and analysis of Error correction coding											
Topics		Introdu	uction,	Mathe	matical	Measu	re of In	formati	ion, Av	erage and	Mutual			
Covere	ed	Inform	ation a	nd Entr	^r opy, Pr	opertie	es of Ent	tropy, [	Discrete	e memory	less soui	rces		
		(DMS),	Extens	ion of I	DMS, M	larkov s	sources	, Source	e codin	ig theoren	n, Fixed l	length		
		and va	riable l	ength c	oding, l	Kraft in	equality	y, Prope	erties c	of prefix co	odes.	(8L)		
		Source	Coding	g: Lossl	ess entr	opy en	coding,	Huffm	an cod	e, Huffma	n code a	pplied		
		on the	symbo	ls of ex	tended	source	s, Shan	non-Fa	no cod	ing, efficie	ency			
		calcula	tions, L	empel-	-Ziv cod	es, arit	hmetic	coding	, Rate d	distortion	Theory.	(8L)		
		Lossles	s and l	ossy pr	edictiv	e codin	g and d	ecodin	g, Quai	ntization,	PCM, DN	/I, ADM,		
		DPCM.	. (6	L)										
		Chann	els and	Channe	el Capa	city: Dis	screte n	nemory	/less ch	nannel mo	del, Bina	iry		
		symme	etric cha	annels	and cha	innel ca	apacity,	entrop	y rate	and chanr	nel codin	g		
		theore	m, info	rmatio	n capac	ity the	orem.				(6L)			
		Error c	orrectio	on code	es: Intro	oductio	n, Basic	conce	ots of li	inear alge	bra inclu	ding		
		group,	ring, fi	eld, veo	tor spa	ce etc.			(3L)					
		Block c	odes: I	ntrodu	ction, si	ngle pa	arity che	eck cod	es, pro	duct code	s, repeti	tion		
		codes.	(3L)						<b>.</b>					
		Linear	Codes:	Definit	efinition, encoding and decoding of linear codes, generator									
		matrix	, error (	detection	on and	correct	ion, Pei	fect co	des, Ha	amming co	odes.	(5L)		
		Cyclic	codes: l	Jefiniti	on, poly	/nomia	ls, enco	ding ar	nd deco	oding tech	niques, o			
		reaund	iancy c	песк.								(3L)		
Iext B	OOKS,	Iext B	DOKS:	:			:		h N			1		
and/o		1.	Informa	ation I	neory a	na Coa	ing Har	acover	by NOI	rman Abra	amson, N	/icGraw-		
reierei	ince	r	пIII. Flaman	to of h	format	ion Th	0000 ()		riac in	Talacam	municati	one and		
materi	dl	Ζ.			ing) by	.100 IN Thoma		viley se						
		r	Signal F	nocess	ing) by Coding	I NOMA	S IVI. CO	ver, Joy	y A. The	Dearson	еу-віаск	wen.		
		3. Defere		ontroi	Louing	by Shu	Lin, Dai	nei J. C	osteno	, Pearson.				
				oks:	formati	on Tho	onyby	toyon	Doman	Coringor	Vorlag			
		1. 2	Error C	anu in ontrol (	Coding	by Pote	ory by S		ho Wile	, Springer	-venag.			
Manning		2.		) and r		or a man		11Cy, JU		= y & 30115.				
									DUO	DO10	DO11	DO12		
r US (Oc		FUZ	FUJ	F 04	105	FUU		FUO	F03	1010	FOIT	FUIZ		
CO1	2	2	1	1	_		_			_		2		
	<b>4</b>	<b>_</b>	-	-					1	1		5		

3

3

3

-

-

_

CO2

CO3

**CO**4

2

3

2

3

3

3

3

3

3

2

2

2

-

-

_

-

-

-

-

-

-

-

-

_

-

-

_

-

-

_

#### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

#### CSE 619 Computer Graphics 3-0-0 3 Credits 3 Hours

Course Code       Title of the course (PCR) / Electives (PEL)       Total Number of contact hours       Credi       Credi         CSE619       Computer Graphics       PEL       3       0       0       3       3         Pre-requisites       Course Assessment methods (Continuous Assessment (CA), Mid- Term (MT), End Term (ET))       Course Assessment (ET))       Credi       I       Credi       I
Code       (PCR) / Electives (PEL)       Lectur e (L)       Tutoria I (T)       Practical (P)       Total Hour s       t         CSE619       Computer Graphics       PEL       3       0       0       3       3         Pre-requisites       Course Assessment methods (Continuous Assessment (CA), Mid- Term (MT), End Term (ET))       Course Assessment (CA), Mid-
Electives (PEL)     e (L)     I (T)     (P)     Hour s       CSE619     Computer Graphics     PEL     3     0     0     3     3       Pre-requisites     Course Assessment methods (Continuous Assessment (CA), Mid-Term (MT), End Term (ET))     Course Assessment (ET))     Course Assessment (ET)
CSE619Computer GraphicsPEL30033Pre-requisitesCourse Assessment methods (Continuous Assessment (CA), Mid- Term (MT), End Term (ET))Term (MT), End Term (ET))
CSE619Computer GraphicsPEL30033Pre-requisitesCourse Assessment methods (Continuous Assessment (CA), Mid- Term (MT), End Term (ET))Term (ET)
GraphicsGraphicsPre-requisitesCourse Assessment methods (Continuous Assessment (CA), Mid- Term (MT), End Term (ET))
Pre-requisites         Course Assessment methods (Continuous Assessment (CA), Mid- Term (MT), End Term (ET))
Term (MT), End Term (ET))
Introduction to Computing CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]
Course After completing the course, the students will be able to:
Outcomes • CO1: Understand Graphics Hardware, Software.
<ul> <li>CO2: Learn various 2D algorithms and 3D algorithms.</li> </ul>
• CO3: Learn and analyze scan conversion - lines, circles, ellipses, filling
polygons, clipping algorithms, solid modeling, visible surface algorithms.
CO4: Learn Illumination and Shading Models, Plane Curves and Surfaces.
CO5: Apply different algorithms to solve real life problems.
Topics Section 1 Introduction to Computer Graphics, Graphics Application and Software,
Covered Description of some graphics devices, Active and Passive Graphics Devices, Display
Section 2 Two-Dimensional Transformations and Matrices Transformation
Conventions 2D Transformations Rotation Reflection Scaling
(61)
Section 3 Three-Dimensional Transformations Introduction Three-Dimensional
Scaling Three-Dimensional Shearing Three-Dimensional Rotation Three-
Dimensional Reflection. Three-Dimensional Translation.
(6L)
Section 4 Filling polygons and clipping algorithms. Clipping Lines algorithms—
Cvrus-Beck, Cohen-Sutherland and LiangBarsky, Clipping Polygons.
(6L)
Section 5 Visible-Surface Determination Techniques, Categories of algorithms,
Back face removal, The z-Buffer Algorithm, Scan-line method, Painter's algorithms
(depth sorting), Area sub-division method, BSP trees.
(6L)
Section 6 Illumination and Shading Illumination and Shading Models for Polygons,
Reflectance properties of surfaces, Ambient, Specular, and Diffuse reflections,
Atmospheric attenutation, Phong's model, Gouraud shading, some examples.
(6L)
Section 7 Plane Curves and Surfaces Curve Representation, Parametric
Representation of a Circle, Ellipse, Parabola, Hyperbola, Space Curves, Cubic

	Splines, Bezier Curves, B-spline Curves, B-spline Curve Fit, B-spline Curve
	Subdivision. (6L)
Text Books,	Text Books:
and/or	1) J. D. Foley, A. Van Dam, S. K. Feiner and J. F. Hughes, Computer Graphics -
reference	Principles and Practice, Second Edition in C, Pearson Education, 2003.
material	2) D. F. Rogers and J. A. Adams, Mathematical Elements for Computer
	Graphics, 2nd Edition, McGraw-Hill International Edition, 1990.
	Reference Books:
	1) D. Hearn and M. Pauline Baker, Computer Graphics (C Version), Pearson
	Education, 2nd Edition, 2004.
	2) F. S. Hill Jr., Computer Graphics using OpenGL, Pearson Education, 2003.
	Others:
	NPTEL Course: https://nptel.ac.in/courses/106106090/

# Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	2	2	2	2	2	-	-	-	-	-	1	2
CO2	3	2	3	3	1	-	-	-	-	-	1	2
CO3	3	3	3	3	3	1	-	-	-	-	1	2
CO4	3	2	3	3	2	1	-	-	-	-	1	2
CO5	3	2	3	3	3	1	_	1	2	1	1	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

CSE 620 Game Theory and its Applications 3-0-0 3 Credits 3 Hours

	Department of Computer Science and Engineering								
Course	Title of the	Program	Tota	l Nu	mber of con	tact hours		Credit	
Code	course	Core (PCR) /	Lect	ure	Tutorial	Practical	Total		
		Electives	(L)		(T)	(P)	Hours		
		(PEL)							
CSE 620	Game Theory	PEL	3		0	0	3	3	
	and its								
	Applications								
Pre-requi	sites			Course Assessment methods (Continuous (CT),					
				M	id-Term (M	Г) end assess	ment (EA))		
1. MA	AC 01: Mathemat	tics - I		СТ	: 15%, MT: 1	25% <i>,</i> EA: 60%	6		
2. MA	AC 02: Mathemat	tics - II							
3. MA	AC 331 : MAC 01:	Mathematics -							
Course	After complet	ion of this cours	e, the	stud	ents:				
Outcome	s • CO1: (	Can have the e	fficien	cy to	o remembe	r concepts t	to act in a	a strategic	
	situatio	on.							
	<ul> <li>CO2: Can analyse the strategic interactions among agents.</li> </ul>								
	<ul> <li>CO3: Can understand modern state of the art in Game Theory.</li> </ul>								
	• CO4: V	Vill have the kr	nowled	lge o	of related a	rea where G	Game Theo	ory can be	

	applied.
Topics	Introduction: Motivation to the course.
Covered	(2L) <b>Non-Coperative Game Theory:</b> Introduction to Game Theory, Extensive Form Games, Strategic Form Games, Dominat Strategy Equilibria, Pure Strategy Nash Equilibrium, Mixed Strategy Nash Equilibrium, Fixed Point Theorem and Existence of Nash Equillibrium, Computation of Nash Equillibrium, Complexity of Computing Nash Equillibrium, Matrix Games (Two Players Zero sum Games), Bayesian Games, Subgame Perfect Equilibrium.
	<b>Mechanism Design without Money</b> : One sided and two sided matching with strict preferences, Voting theory, and Participatory democracy.
	Mechanism Design with Money: Auction basics, sponsored search auctions, Revenue optimal auctions, VCG Mechanisms.
	<b>Cooperative Game Theory</b> : Correlated Strategies and Correlated Equilibrium, Two Person Bargaining Problem, Coalitional Games, The Core, and The Shapley Value. (5L)
	<b>Repeated Games:</b> Introduction to repeated games and its Applications. (4L)
	Applications: Incentive Study in - P2P Networks, Crowdsourcing, Digital currency.
	<b>Some Special Topics</b> : Fair Division, Price of Anarchy, Scoring rules, Learning in Auction, Synergies between Machine Learning & Game Theory. (7L)
Text	Text Books:
Books, and/or reference	<ol> <li>N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game Theory. Cambridge University Press, New York, NY, USA, 2007, ISSN: 978- 0521872829.</li> </ol>
material	2. M. Maschler, E. Solan, and S. Zamir. Game Theory, Cambridge University Press; 1 st Edition, ISSN: 978-1107005488, 2013.
	<ol> <li>Y. Narahari. Game Theory and Mechanism Design. World Scientific Publishing Company Pte. Limited, 2014, ISSN: 978-9814525046.</li> <li>T. Boughgarden, Twenty Lectures on Algorithmic Game Theory. Cambridge</li> </ol>
	University Press, 2016, ISSN: 978-1316624791.
	Reference Books:
	1. T. Roughgarden, CS364A: Algorithmic Game Theory Course (Stanford University), 2013.
	<ol> <li>T. Roughgarden, CS269I: Incentives in Computer Science Course (Stanford University), 2016.</li> </ol>
	3. S. Barman and Y. Narahari, E1:254 Game Theory Course (IISc Bangalore), 2012.

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

PO	)s	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
C	Os												

CO1	2	2	3	2	1	-	-	-	-	-	1	2
CO2	2	3	3	3	2	1	-	-	-	-	1	2
CO3	3	2	3	3	2	1	-	-	-	-	1	3
CO4	3	2	3	3	3	1	1	1	2	2	1	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

CSE 621	Digi	tal Systems Testi	ng 3-0-0	3 Credit	s 3Ho	ours					
		Departm	ent of Computer S	cience and	l Engineeri	ing					
Course	Tit	le of the course	Program Core	Total Nu	mber of co	ontact hours	5	Credi			
Code			(PCR) /	Lectur	Tutori	Practical	Total	t			
			Electives (PEL)	e (L)	al (T)	(P)	Hour				
							S				
CSE621	Dig	gital Systems	PEL	3	0	0	3	3			
	Tes	sting									
Pre-requ	isites		Course Assessment methods (Continuous Assessment (CA), Mid-								
			Term (MT), End Term (ET))								
Digital Lo	ogic D	esign,	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]								
Compute	er Org	ganisation									
Course		• CO1: 10	explain and exem	plity basic	and advar	ncea concep	ots of Tes	sting of			
Outcome	es		ircuits. understand fault m	odoling a	ad tast gar	oration					
		• CO2.10	fully appreciate the need for testability measures in the des								
		stage of	circuits			iity measure		uesign			
		● CO4·To	understand the use	≏ of built ir	n testing m	heasures for	online te	sting			
		• CO5: To	appreciate the o	lifferent t	esting str	ategies for	memory	based			
		devices.					memory	basea			
Topics		Introduction to	VLSI testing and ve	rification.	Logic and	Event Drive	n Simulat	ion.			
Covered		(2L)	0 1 1		-0						
		Fault Modeling.	Single Stuck-at Fau	ult model.	Fault Colla	psing. Fault	Equivale	nce.			
		Fault Dominatio	n. Checkpoint The	orem.	(8L	)	•				
		Fault Simulation	. Serial, Parallel, D	eductive a	nd Concur	rent.		(3L)			
		Test Generation	. Boolean Differen	ce Method	l. D-Algori	thm. PODEN	Л. FAN.	(8L)			
		Testability Analy	/sis	(3L)							
		Design for Testa	bility. Adhoc appro	baches. Sca	an based D	esign. Rand	om Scan	. Scan			
		FF design. LSSD.	Scan-Hold FF.		(8L)						
		Built-in Self Test	. Pseudo-Random	Pattern Ge	eneration.	LFSR (8	L)				
		Memory testing	•					(2L)			
Text Boo	oks,	Text Books:									
and/or		1. Essentia	ls of Electronic Tes	sting for D	igital, Mer	nory and M	lixed Sigr	nal VLSI			
referenc	е	Circuits.	Bushnell and Agrav	wal. Kluwe	r Academi	c Publishers	•				
material		2. Digital S	Systems Testing a	and Testa	ble Desig	n. Abramo	vici et.al	. Jaico			
		Publicati	ons.								
		Reference Boo	ks:								
		1.VLSI Test F	rinciples and Arch	itectures. l	I Wang e	t.al. Morgar	Kautma	n.			

Mapping of CO (Course Outcome) and PO (Programme Outcome)

	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	COS												
	CO1	3	3	3	2	2	1	2	-	-	-	-	-
	CO2	3	3	3	2	2	-	-	-	-	-	-	-
	CO3	3	3	3	2	3	-	-	-	-	-	-	-
	CO4	3	3	3	3	3	-	-	-	-	-	-	-
	CO5	3	3	3	3	3	-	-	-	-	-	-	-
Cor	Correlation levels 1, 2 or 3 as defined below:												

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

	022	Soft Computing	3-0-0 3 Cre	edits 3	Hours							
		Departm	ent of Computer S	cience and	d Engineeri	ing						
0	Course	Title of the course	Program Core	Total Nu	imber of co	ontact hours	5	Credi				
0	Code		(PCR) /	Lectur	Tutori	Practical	Total	t				
			Electives (PEL)	e (L)	al (T)	(P)	Hour					
							S					
C	SE 622	Soft Computing	PEL	3	0	0	3	3				
F	Pre-requi	sites	Course Assessment methods (Continuous Assessment (CA), Mid-									
			Term (MT), End Term (ET))									
1	ntroduct	ion to computing,	CA+ MT + ET <b>[</b> CA	: 15%, MT	: 25%, ET:	60%]						
0	Data Stru	ctures and Analysis										
C	of Algorit	hms										
0	Course	• CO1: To	amiliarize with neural networks and learning methods for neural									
0	Outcome	s networks	and its limitations.									
		• CO2: To	introduce basics of genetic algorithms and their applications in									
		optimiza	ion and planning.									
		• CO3: To	introduce the idea	as of fuzzy	/ sets, fuzz	y logic and	fuzzy in	ference				
		system.										
		<ul> <li>CO4: To i</li> </ul>	ntroduce students	s' tools and	d techniqu	es of Soft Co	omputing	5.				
		• CO5: To	develop skills th	orough u	nderstandi	ing of the	theoretic	cal and				
		practical	aspects of Soft Co	mputing.								
ר	Topics	Module I: Introc	luction									
0	Covered	(6L)										
		Introduction and	d different definition	ons of Soft	Computin	g, Basic tool	ls/memb	ers of				
		Soft Computing:	Fuzzy Logic, Neura	al Network	c and Evolu	itionary Con	nputing.					
		Module II: Fuzzy	/ Logic					(10L)				
		Fuzzy Logic-I: Cr	isp Sets, Fuzzy sets	s, Fuzzy me	embership	functions, B	Basic ope	rations				
		on fuzzy sets, Fu	on fuzzy sets, Fuzzy relations and Composition of fuzzy relations.									
		Fuzzy Log	Fuzzy Logic –II (Fuzzy Rules and Approximate Reasoning): Fuzzy if-then									
		rules: M-A and T	SK Rules, Fuzzifica	tion, Com	positional	rule of						
		Inference/Appro	oximate Reasoning, Defuzzification, Applications: Pattern									
		Recognition, Fuz	zy c-means Cluste									
		Module III: Neu	ral Networks					(10L)				
		Neural N	etworks-1 (Introd	uction & A	Architectur	<b>e):</b> Introduc	ction to n	neural				

г			-	-											
			net	works:	Artifici	al Neui	ron and	its mo	del, Ad	tivatio.	n functions	s, Neural n	etwork		
			arch	nitectu	re, lear	ning al	gorithn	ns/rule	s, Trair	ning an	d testing.		Neural		
			Net	works-	II: Perc	eptror	n mode	l: single	e layer	and mu	ultilayer pe	rceptron (	MLP) <i>,</i>		
			Erro	or back	propag	gation,	Radial	basis f	unctior	netwo	ork (RBFN),	Self-orgar	nizing map		
			net	work (S	SOMN),	Recur	rent ne	ural ne	twork,	Applic	ations of A	NN.			
			Mo	Module IV: Evolutionary Computing											
			(12)	(12)											
			Gen	-, otic Al	gorithr	<b>n_I</b> • Ev	olution	ary Co	mnutin	o Raci	c concents	and worki	nσ		
			nrin		f cimpl			onotic	Oporat	ors So	loction Cr		d		
					flann ak	e GA (S				.015. 3 <del>0</del>			u		
			IVIU	ation,		iart or :	5GA, CI	nromos	some E		g & Decou	ng, Popula	ition		
			Initi	alizatio	on, Obje	ective/	fitness	Function	on, var	able le	ngth Chroi	nosome,			
			App	licatio	ns: Trav	elling :	Salesm	an Pro	olem (1	SP).					
			Gen	etic Al	gorithr	n–II (№	1ulti-ol	ojective	Gene	tic Algo	orithm (MC	<b>)GA)):</b> Cor	iflicting		
			obje	ectives	, Objec	tive spa	ace and	d variak	ole spac	ce, Don	nination, P	areto fron	t, Pareto		
			Set,	NSGA	A-II: No	n-dom	inated	Sorting	, Crow	ding di	stance ope	rator, App	lications.		
			Part	icle Sw	/arm O	ptimiza	ation (P	SO), A	nt Colo	ny Opt	imization (	ACO), Loca	l Search		
			and	Meme	etic algo	orithm.									
			Mo	dule V	Hybrid	dizatio	n of dif	ferent	Soft Co	omputi	ng Tools				
			(4L)		-					•	•				
Ī	Text E	Books,	Tex	t Bool	ks:										
	and/c	) or													
	refere	nce		1 5	Raisekł	aranar	nd and	Vijava	lakshm	ni Pai	"Neural N	-tworks F			
	mater	rial		1. J. 200	d Gonot		rithm:	Synthe	nakonn sis and	l Annlia	rations" D	ontico Hal	l of India		
	mater	iai		2 N		dhy "	Artifici	al Into		o and	Intolligon	t Systom	" Oxford		
				Z. IN.	F. Fa	Droce	Artifici		ingene	e anu	intelligen	i Systems	s, Oxioiu		
					iversity	Press.			T.		-:-// Duant:		a alta		
				3. G.	Kiirand	IB. YU2	in, Fuz	zzy sets	and Fi	JZZY IO	gic , Prenti	ce Hall of I	naia.		
				4. К.	H. Lee	e., "Firs	st Cou	rse on	Fuzzy	Ineor	y and App	plications",	Springer-		
				Vei	rlag.			_				<i>.</i>			
				5. G.	J. Klir a	nd T. A	. Folge	r: Fuzzy	/ Sets, I	Uncert	ainty, and l	nformatio	n, PH.		
				6. J.Y	'en anc	R. Lar	ngari, "	Fuzzy l	.ogic, lı	ntellige	ence, Contr	ol and Info	ormation",		
				Pea	arson E	ducatio	on.								
				7. D.	Goldbe	rg: Intr	oducti	on to G	enetic	Algorit	hm.				
			Def		. D. al.										
			Rei			). deim "N	loural	Notico	lee" Dr	ontico	المال مل المط	-			
				1. 5111 2. Tim	idii nay	/KIN, P	veurari «E	Networ	KS, PI	entice		d. 	a I al i a		
				2. IIM 2. K	iotny J.	ROSS,	Fuzzy	LOGIC V	VILN EN	gineeri		lons, will	ey India.		
				3. KUI	mar Sat ,	lisn, "N	eurair	vetwor	ks", la	ta ivic.	Graw Hill.				
				4. B.' -	regnan	arayan	a, "Ari		veural	Netwo	rks"				
				5. A.	Konar,	"Comp	outatio	nal Inte	elligenc	e", Spr	inger.				
				6. Y.	H. Pao	Adap	tive Pa	ttern l	Recogn	ition a	nd Neural	Networks	, Addison-		
		- [		We	esley.		<u>/D :</u>		<u> </u>						
IVI I	apping	of CO	Cours	e Outc	ome) a	na PO	(Progra	amme	Outcor	ne)			1		
	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12		
	COs														

CO1

2

3

3

3

3

-

_

_

_

-

_

3

CO2	2	3	3	3	3	-	-	-	-	-	-	3
CO3	2	3	3	3	3	-	-	-	-	-	-	3
CO4	3	3	3	3	3	-	-	-	-	-	-	3
CO5	3	3	3	3	3	-	-	-	-	-	-	3

Correlation levels 1, 2 or 3 as defined below:

2: Moderate (Medium) 3: Substantial (High)

CSF	623
CJL	023

1: Slight (Low)

Advanced Database Systems 3-0-0 3 Credits **3** Hours

Department of Computer Science and Engineering											
Cours	Title of	Program Core	Total Numb	per of contac	t hours		Credi				
е	the	(PCR) /	Lecture	Tutorial	Practica	Total	t				
Code	course	Electives (PEL)	(L)	(T)	l (P)	Hours					
CSE 623	Advanced Database Systems	PEL	3	0	0	3	3				
Pre-requ	uisites	Course Assessment methods (Continuous Assessment (CA), Mid-Term (MT), End Term (ET))									
Fundam DBMS, I Structur	entals of Data res	CA+ MT + ET [CA	: 15%, MT: 25	%, ET: 60%]							
Course	Jutcomes	<ul> <li>CO1: Acquire knowledge about the design and application view of DBMS.</li> <li>CO2: Able to analyze query expression, specially importance of query optimization.</li> <li>CO3: To learn about design, features and operations in the field of DDBMS, OODBMS and DW.</li> <li>CO4: To learn the concept of multimedia database as a real-life application.</li> </ul>									
Topics C	Covered	Unit-1: Comparise Databases, Databases, Data	son between o base System A base Manage ted and Centr Primary, Seco Primary, Seco Prim	different dat Applications, ment system alized DB, In ondary, Mult onal Depende nversion to t on to third n ormal form a esign, Denor preservation.	abases: Sign Advantage ns, Compari troduction tilevel, Dyna ency, Anom first normal formal form nd fifth nor malization,	nificance of s and Disadvar son between I of various type amic multileve alies in a Data form, Convers form, Convers The boyce-co mal form, Lossless join	ntages DBMS, es of I (B- base, sion to ode				

Unit-3: Transaction processing: Introduction of transaction processing, advantages and disadvantages of transaction processing system, online transaction processing system, serializability and recoverability, view serializability, Transaction management in multi-database system, long duration transaction, high-performance transaction system. (3L) Unit-4: Concurrency Control Serializability: Enforcing, Serializability by Locks, Locking Systems With Several, Lock Modes, Architecture for a Locking Scheduler Managing Hierarchies of Database Elements, Concurrency Control by Timestamps, Concurrency Control by Validation, Database recovery management. (3L) Unit-5: Query Optimization: Algorithm for Executing Query Operations: External sorting, Select operation, Join operation, PROJECT and set operation, Aggregate operations, Outer join, Heuristics in Query Optimization, Semantic Query Optimization, Converting Query Tree to Query Evaluation Plan, multi-query optimization and application, Efficient and extensible algorithms for multi-query optimization. (5L) Unit-6: Query Execution: Introduction to Physical-Query-Plan Operators, One-Pass Algorithms for Database, Operations, Nested-Loop Joins, Two-Pass Algorithms Based on Sorting, Two-Pass, Algorithms Based on Hashing, Index-Based Algorithms, Buffer Management, Parallel Algorithms for Relational Operations, Using Heuristics in Query Optimization, Basic Algorithms for Executing Query Operations. (5L) Unit-7: Distributed Database (DDB): Introduction of DDB, DDBMS architectures, Homogeneous and Heterogeneous databases, Distributed data storage, Advantages of Data Distribution, Disadvantages of Data Distribution Distributed transactions, Commit protocols, Availability, Concurrency control & recovery in distributed databases, Directory systems, Data Replication, Data Fragmentation. Distributed database transparency features, distribution transparency. (5L) Unit-8: Object Oriented DBMS(OODBMS): Overview of object: oriented paradigm, OODBMS architectural approaches, Object identity, procedures and encapsulation, Object oriented data model: relationship, identifiers, Basic OODBMS terminology, Inheritance, Basic interface and class structure, Type hierarchies and inheritance, Type extents and persistent programming languages, OODBMS storage issues. (5L) Unit -9: XML Query processing: XML query languages: XML-QL, Lorel, Quilt, XQL, XQuery, and Approaches for XML query processing, Query processing on relational structure and storage schema, XML database management system. (4L) Unit -10: Data Warehousing: Overview of DW, Multidimensional Data Model, Dimension Modelling, OLAP Operations, Warehouse Schema (Star Schema, Snowflake Schema), Data Warehousing Architecture, Virtual Data, Metadata and Types of Metadata, OLAP Engine, Data Extraction, Data Cleaning, Loading, Refreshing. (4L) **Unit-11:** Database application: Multimedia database, Video database management: storage management for video, video preprocessing for

	content representation and indexing.	(2L)
Text Books, and/or	Text Books:	
reference material	1. "An Introduction to Data Base Systems", C. J Date, Pearson Educat	tion.
	2. "DatabaseSystem Concepts", Abraham Silberschatz, Henry F. Kort	h and S.
	Sudarshan, McGraw-Hill.	
	3. "Distributed Databases Principles & Systems", Stefano Ceri and Gi	useppe
	Pelagatti, McGraw-Hill International Editions.	
	Reference Books:	
	1. "Fundamentals of Database Systems", Ramez Elmasri and Shamka	int B.
	Navathe, Addison-Wesley.	

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	2	1	1	1	1	1	1	2	2
CO2	2	2	3	2	2	1	1	1	1	1	2	2
CO3	2	2	3	2	2	1	1	1	2	1	2	2
CO4	2	3	3	2	1	1	1	1	1	1	1	2

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

# **SEVENTH SEMESTER**

MSC731	PRINCIPLES OF M	RINCIPLES OF MANAGEMENT 3-0-0 3 Credits 3 Hours										
	D	EPARTMENT OF	MANAGEMENT STUDIES									
Course	Title of the	Program	Total Nu	mber of co	ontact hour	s	Credit					
Code	course	Core (PCR) /	Lectur	Tutoria	Practica	Total						
		Electives	e (L)	I (T)	l (P)	Hour						
		(PEL)				S						
MSC-	PRINCIPLES OF	DCD	3	0	0	2	2					
/31	MANAGEMENT	PCK		0	0	3	3					
Prerequis	sites- NIL	Course Assess	Course Assessment methods (Continuous (CT) and end assessment									
		(EA))										
		CT+EA										
Course	<ul> <li>CO1:To ma</li> </ul>	ake budding eng	ineers awa	are of vario	ous manage	ment fur	ictions					
Outcome	s required fo	for any organization										
	CO2:To im	CO2:To impart knowledge on various tools and techniques applied by the										
	executives	executives of an organization										
	• CO3:10 ma	CO3: IO make potential engineers aware of managerial function so that it would help for their professional career.										
	• CO4:To im	<ul> <li>CO4:To impart knowledge on organizational activities operational and strategic</li> </ul>										
	both in na	both in nature										
	<ul> <li>C05: To im</li> </ul>	<ul> <li>C05: To impart knowledge on each functional area of management like</li> </ul>										
	Marketing	Marketing, Finance, Behavioral Science and Quantitative Techniques and										
	decision so	ience										
Topics	UNIT I: Manage	ment Functions	and Busine	ess Enviror	nment: Busi	ness env	ironment-					
Covered	macro, Busines	macro, Business environment -micro; Porter's five forces, Management functions –										
	overview, Diffe	overview, Different levels and roles of management, Planning- Steps, Planning and										
	environmental	environmental analysis with SWOT, Application of BCG matrix in organization (8)										
		UNIT II: Quantitative tools and techniques used in management: Forecasting										
	LINIT III. Creatin	LINIT III: Creating and delivering superior customer value: Pasic understanding of										
	marketing Con	marketing Consumer behavior-fundamentals Segmentation Targeting &										
	Positioning, Pro	Positioning. Product Life cycle. (8)										
	UNIT IV: Behavi	<b>UNIT IV:</b> Behavioral management of individual: Motivation, Leadership, Perception,										
	Learning. (8)	Learning. (8)										
	UNIT V: Finance	UNIT V: Finance and Accounting: Basics of Financial management of an organization,										
	Preparation of I	Preparation of Financial accounting, Analysis of Financial statements, CVP Analysis,										
	An overview of financial market with special reference to India .(12)											
Text	Text Books:											
Books,	1. Financia	Publishin	g House.									
and/or	2. Marketi	ng Management	on, Philip Kotler and Kelvin Keller, Pearson									
material		ment Principles	Drocesso	s and prac	tica first a	dition /	Anil Bhat and					
material		Arva Kumar, Oxford Higher education										
	4. Organiz	ational Behavior	or 13 th edition Stenhen P Robhins Dearson Pren									
			, <u>10 m cu</u>	cion, stepi		,, i ca						

hall India
5. Operations Management, 7th edition (Quality control, Forecasting), Buffa &
Sarin, Willey

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1												
CO2												
CO3												
CO4												
CO5												

Mapping of CO (Course Outcome) and PO (Programme Outcome)

#### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

CSS 751 Soft	S 751 Software Engineering Laboratory					redits 3	Hours					
		Departm	ent of Computer S	cience and	d Engineeri	ing						
Course	Title of	f the course	Program Core	Total Nu	mber of co	ontact hour	S	Credi				
Code			(PCR) /	Lectur	Tutori	Practical	Total	t				
			Electives (PEL)	e (L)	al (T)	(P)	Hour					
							S					
	Softwa	re	PCR	0	0	3	3	1.5				
CSS 751	Engine	ering										
	Laborat	tory										
Pre-requi	sites		Course Assessment methods (Continuous (CT) and End									
			assessment (EA))									
			CT+EA [CT: 60%, EA(Laboratory assignment + Viva Voce): 40%]									
Course		• CO1: Un	nderstand Control Flow Graph (CFG) and CFG based Functional									
Outcome	s	Complex	kity of the software.									
		• CO2: Understand the Coverage Criteria (Statement, Branch, Decision).										
		• CO3: Software modelling through ERD, DFD and ERD for distinct cases.										
		CO4: Unified Modelling Language based system Design and code										
		Generation.										
		• CO5: Understand the basic concepts of Testing and Verification (Decision										
		tree & gr	raph, WBT, BBT, Unit testing).									
Topics	1) (	Control Flow	Graph based problems (Tool: C++/Java Language Compiler).									
Covered	2) 8	) ERD / DFD related problems (Tool: StarUML ER Extension or Other OpenSource										
	Too	Tools).										
	3) (	3) UML based Design problems (Tool: Rational Rose/StarUML).										
	4) 5	4) Software Testing related Problems (Tool: Junit) - Implementation Program on										
	Jav	Java and testing using Junit. Suggested List of Applications: 1. Student Marks										
	Ana	Analysing System, 2. online Ticket Reservation System, 3. Payroll System, 4.										
	Cou	urse Registrat	tion System, 5. Expert Systems, 6. ATM Systems, 7. Stock									
	Maintenance.											
-------------	-------------------------------------------------------------------------------	--	--	--	--	--	--	--	--			
Text Books,	References:											
and/or	1. Frances E. Allen, "Control flow analysis", Proceedings of a symposium on											
reference	Compiler optimization archive, ACM SIGPlan Notices, Pages 1 – 19, 1970											
material	2. Unified Modelling Language, Object Management Group,											
	http://www.omg.org/spec/UML/											
	3. JUnit User Guide, <u>https://junit.org/junit5/docs/current/user-guide/</u>											

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	3	3	2	1	1	1	-	-	1	1
CO2	2	3	3	3	2	1	1	1	-	-	1	2
CO3	2	3	3	3	2	1	1	1	-	-	1	2
CO4	2	3	3	3	2	1	1	1	-	-	1	1

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

3: Substantial (High)

### CSS 752 Modeling and Simulation Laboratory 0-1-3 2.5 Credits 4 Hours

	Department of Computer Science and Engineering											
Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Credi					
Code		(PCR) /	Lectur	Tutori	Practical	Total	t					
		Electives (PEL)	e (L)	al (T)	(P)	Hour						
						S						
	Modeling and	PCR	0	1	3	4	2.5					
CSS 752	Simulation											
	Laboratory											
Pre-requi	sites	Course Assessme	ent metho	ds (Contini	uous (CT) an	d End						
		assessment (EA)	sessment (EA))									
		CT+EA [CT: 60%,	CT+EA [CT: 60%, EA(Laboratory assignment + Viva Voce): 40%]									
Course	• CO1: D	emonstrate the c	haracterist	ics of ma	athematical	modelli	ng and					
Outcome	s Python	oackages.										
	<ul> <li>CO2: Un</li> </ul>	derstand the concepts of mathematical modelling for a problem.										
	• CO3: Ur	derstand the user-friendly editor of Python and various libraries										
	for simu	lation of the problems.										
	• CO4: De	veloped and imple	ment the r	nathemati	cal problem	s using P	ython.					
Topics	1. Study th	e basic concepts of	f mathema	tical form	ulation for a	problem	ı.					
Covered	2. Study th	e characteristics ar	nd package	s of Pytho	n programn	ning lang	uage.					
	3. Modelin	g and simulation o	f linear pro	ogramming	g problems.							
	a) Grap	hical Method										
	b) Simp	) Simplex Method										
	4. Modelli	4. Modelling and simulation of Transportation problem.										
	a) Diffe	a) Different initialization solution techniques										
	b) Bala	nced and Unbalanc	ced									

	c) Degenerate problem
	5. Modelling and simulation of Assignment problem.
	6. Modelling and simulation of travelling salesman problem.
	7. Modelling and simulation of network flow problem.
	8. Modelling and simulation to find the dual of a primal problem.
	9. Modelling and simulation to determine optimal strategy for a two person
	zero game.
	a) Pure Strategy
	b) Mixed strategy
Text Books,	Text Books:
and/or	1. Rardin, Optimization in Operation Research, Pearson Publications.
reference	2. Handy A Taha, Operations Research – An Introduction, Prentice Hall of
material	India, New Delhi.
	3. Hillier & Lieberman, Introduction to Operations Research, TMH.
Mapping of CO (	Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COS												
CO1	2	1	3	3	3	1	1	1	2	1	2	2
CO2	2	3	3	2	1	1	1	1	2	1	2	3
CO3	3	3	3	2	3	1	1	1	1	1	3	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

#### Depth Elective – 3, 4, 5

CSE 710 Machine Learning 3-0-0 3 Credits 3 Hours

	Departm	ent of Computer S	cience and	l Engineeri	ng				
Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Cred		
Code		(PCR) /	Lectur	Tutori	Practical	Total	it		
		Electives (PEL)	e (L)	al (T)	(P)	Hour			
						S			
CSE 710	Machine Learning	PEL	3	0	0	3	3		
Pre-requi	sites	Course Assessme	ent metho	ds (Contini	Jous Assess	ment (CA	N),		
		Mid-Term (MT),	End Term	(ET))					
Probabilit	y and Statistics,	CA+ MT + ET [CA	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]						
Artificial Intelligence									
Course	• CO1: Understanding of the basic concepts, fundamental issues and								
Outcome	s challeng	es of machine lear	ning.						
	<ul> <li>CO2: Cor</li> </ul>	nprehend the prin	ciple and t	echniques	of supervise	ed learni	ng.		
	<ul> <li>CO3: Exp</li> </ul>	lain the basic conc	epts and t	echniques	of unsuperv	vised lear	rning.		
	• CO4: Un	derstanding of the	e basic co	ncepts an	d challenge	s of reir	forced		
	learning								
	• CO5: A	bility to apply th	e concept	s of mac	hine learni	ng in di	fferent		
	domains	domains.							
Topics	1. Introduc	tion: what is Mac	hine Learn	ing; Huma	an learning	and Mac	hine		
Covered	learning	Well-posed lear	ning prob	lem; Type	s of Machi	ine Lear	ning:		
	Supervis	ed, Unsupervised,	and Reir	nforcemen	t learning;	Applicat	ions,		

	Issues, and tools of Machine Learning. (3L)
	2. Concept Learning: inductive learning hypothesis, general to specific ordering of hypothesis: FIND-S algorithm: Version space candidate
	elimination algorithm; Inductive bias. (4L)
	3. Bayesian Learning, Naïve Bayes Classifier, Optimal Classifier. (3L)
	4. Supervised learning: Classification- k-Nearest Neighbour, Decision Tree,
	Support vector machine. Regression- Simple and Multiple linear
	regression. (9L)
	5. Artificial Neural Networks: Biological neuron and artificial neuron, How
	Perceptron. McCulloch-Pits model. ADALINE network model:
	Architecture of ANN- single-layer feed forward, multi-layer feed
	forward, competitive network, recurrent network; Backpropagation
	algorithm; Basic concept of deep learning. (9L)
	6. Unsupervised learning and Clustering: Different clustering techniques-
	Partitioning methods (K-means, K-medoid), Hierarchical methods
	Ward's methods) and Density-based method (DBSCAN), (51)
	7. Dimensionality Reduction: principal component analysis, singular value
	decomposition, Linear discriminant analysis, Independent conponent
	analysis, stochastic neighbour embeddingy. (6L)
	8. Reinforcement Learning: Basic concept, Model based learning, Temporal
Taut Daala	difference based learning. (3L)
Text Books,	1 Machine Learning by Terr Mitchell [MacGrow Hill]
and/or	1. Machine Learning by Tom Mitchell [Mit. Graw-Hill].
material	2. Pattern Recognition and Machine Learning by Christopher M bishop,
material	3 Applied machine Learning by M. Gonal [Mc. Graw-Hill 2018]
	4.NPTEL Course materials.
	Reference Books:
	1. Introduction to Machine Learning by Ethem Alpaydin [MIT Press].

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	2	2	3	2	2	1	2	2	3	3
CO2	2	2	3	3	3	2	2	1	2	2	3	3
CO3	2	2	3	3	3	2	2	1	2	2	3	3
CO4	2	2	3	3	3	2	2	1	2	2	3	3
CO5	3	3	3	3	3	1	2	1	3	3	3	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)2: Moderate (Medium)3: Substantial (High)

### CSE 711 Graph Theory 3-0-0 3 Credits 3 Hours

Department of Computer Science and Engineering										
Course	Title of the course	Program Core	Total Number of contact hours	Cred						

111 | Page

Code		(PCR) / Electives (PEL)	Lectur e (L)	Tutori al (T)	Practical (P)	Total Hour	it				
						S					
CSE 711	Graph Theory	PEL	3	0	0	3	3				
Pre-requi	sites	Course Assessme	ent metho	ds (Contini	uous Assess	ment (CA	A), Mid-				
Discroto	Mathematics and	$\frac{1}{1} = \frac{1}{1} = \frac{1}$									
Discrete Data Stru	ctures		. 15%, 1011	. 25%, ET.	00% <b>]</b>						
Course Outcome	<ul> <li>CO1: Un</li> <li>CO2: A problem</li> <li>CO3: Dis</li> <li>CO4: Studriven and</li> <li>CO5: U</li> </ul>	derstand the basic apply the basic p s scuss chromatic ch dents can explore nd research oriente lse a combinatior	concept of roperties aracteristic knowledg ed problen of theor	of graph ar of graph cs and plar e of graph ns. retical knc	nd its proper theory to nar graphs. theory to s pwledge and	ties. prove di olve tech d mathe	ifferent inology matical				
	thinking	to solve various co	omputer sc	ience appl	ications.						
Topics Covered	Preliminaries: G degree, operation graph: deletion decomposition, circuits.	iraphs, isomorphis ons on graphs, radi of vertex/edge, fus join, Cartesian pro	m, automo ius, diamet sion, union duct, com	orphism, co cer, biparti n, intersect plement. S	omponents, te graph, Op ion, ring sur Self-compler	sub-grap perations m, mentary §	ohs, on graphs,				
	<b>Connected grap</b> distance, cut-ve relationship bet theorem, separa tree,1-isomorph	hs and shortest partices, cut-edges, c ween edge and ver able graph, blocks, ism, 2-isomorphis	aths: Walk connectivit rtex conne block-cut m, topolog	s, trails, pa y: edge an ctivity, k-c vertex tree sical orderi	ths, connec d vertex cor onnected gr e, block tree ng.	ted graph nectivity raph, Me , cut vert	hs, /, nger's .ex (8L)				
	between spanni connected grap graph.	ng tree of a conne h, diameter of tree	of trees, r cted graph and conne	ninimum s i, eccentric ected grap	panning tre city, Centre( h , nullity ol	es, Dista s) of tree f tree, lab	nce s and pelled				
	<b>Planarity:</b> Plana planarity , dualit planarity detect problem.	(3L) <b>Planarity:</b> Planar graph, Kuratowski's theorem, Euler's formula, Detection of planarity, duality, uniqueness of duality, Homomorphism: subdivision, merging, planarity detection using homeomorphism graphs, five color and four color problem.									
	<b>Covering, Indep</b> and edge coveri relationship bet MDS, CDS, matc minimum match	(5L) <b>Covering, Independent sets, Dominating Set, Matching:</b> Basic concepts, vertex and edge covering, minimal covering, independent set, maximal independent set, relationship between covering and independent set, theorems, dominating set, MDS, CDS, matching in bipartite graphs, perfect matching, maximal matching, minimum matching, Hall's theorem.									
	( <b>Factorization :</b> Factor, 1-factor, 2-factor Tutte's theorem. (3L)										

	<ul> <li>Vertex coloring: Chromatic number and cliques, greedy coloring algorithm, Brook's theorem, chromatic partition, Uniquely colourable graph.</li> <li>Edge coloring: Gupta-Vizing theorem, color edge, equitable edge-coloring. (2L)</li> </ul>	(3L)
	Line Graph: Properties and proof. (2L)	
	Eulerian graphs: Characterization, Arbitrarily traceable graph, Fleury's algorit	hm. (2L)
Text Books,	Text Books:	
and/or reference	1. Douglas B. West. Introduction to Graph Theory. Pearson Education, Secon- Edition.	d
material	2. R. Deistel. Graph Theory. Springer- Verlag NewYork 1997.	
	3. R.J. Wilson and J.J. Watkins. Graphs : An Introductory Approach. John Wil and Sons Inc.	ey
	Reference Books:	
	Science. PHI.	
	2. S. Pirzada, An Introduction to Graph Theory, Orient Blackswan,	

### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	2	2	2	2	-	2	-	-	-	-	-	-
CO2	2	2	3	2	2	-	2	-	-	-	-	-
CO3	2	2	2	2	-	-	-	-	-	-	-	-
CO4	2	3	3	3	3	3	3	-	-	-	-	2
CO5	2	3	3	3	3	3	3	-	-	_	-	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

### CSE 712 Electronic Design Automation 3-0-0 3 Credits 3 Hours

	Departm	ent of Computer S	cience and	d Engineeri	ing			
Course	Title of the course	Program Core	Total Nu	Total Number of contact hours				
Code		(PCR) /	Lectur	Tutori	Practical	Total	t	
		Electives (PEL)	e (L)	al (T)	(P)	Hour		
						S		
CSE712	Electronic Design	PEL	3	0	0	3	3	
	Automation							
Pre-requi	sites	Course Assessment methods (Continuous Assessment (CA), Mid-						
		Term (MT), End Term (ET))						
Digital Ele	ectronics, Computer	CA+ MT + ET [CA	.: 15%, MT	: 25%, ET:	60%]			

Organisation,	Algorithm							
Analysis and I	Design.							
Course	• CO1: To visit the various stages of the VLSI design cycle and	appreciate the						
Outcomes	role of automation therein.							
	<ul> <li>CO2: To appreciate how High Level Synthesis converts an HE</li> </ul>	)L code into an						
	architecture level design.							
	• CO3: To discuss the algorithmic approach to physical design.							
	<ul> <li>CO4: To emphasize the importance to testability measures in</li> </ul>	η the design.						
Topics	VLSI Design cycle. Design styles. System packaging styles. Fabrication	n of VLSI						
Covered	devices. Design rules-overview.							
	(3L)							
	HLS: Scheduling in High Level Synthesis. ASAP and ALAP schedules. 1	Time						
	constrained and Resource constrained scheduling.							
	(4L) HLS: Allocation and Bind	ing. Datapath						
	Architectures and Allocation tasks. (4L)							
	Partitioning. Clustering techniques. Group Migration algorithms.	(4L)						
	Floorplanning. Constraint based Floorplanning. Rectangular Dualizat	ion.						
	Hierarchical Tree based methods. Simulated Evolution approaches.	Timing Driven						
	floorplanning. (5L)							
	Placement. Simulation based placement algorithms. Partitioning bas	sed placement						
	algorithms. Cluster Growth.	Cluster Growth.						
	(5L) Global Routing.	Maze Routing						
	algorithms. Line probe algorithms. Shortest Path based algorithms.	Steiner's Tree						
	based algorithms. (5L)							
	Detailed Routing. Channel Routing Algorithms. Switchbox Routing. C	)ver-the-cell						
	routing. Clock and Power Routing.							
	(4L)							
	Design for testability. Fault testing. Ad-hoc and structured DFT tech	niques.						
	(8L)							
Text Books,	Text Books:							
and/or	1. Algorithms for VLSI Physical Design Automation. N.A.She	erwani. Kluwer						
reference	Academic Publishers.							
material	2. High-Level Synthesis: Introduction to Chip and System Desig	n. Gajski et. al.						
	. Kluwer Academic Publishers.							
	3. Digital Systems Testing and Testable Design. Abramovi	ci et.al. Jaico						
	Publications.							
	Keterence Books							
	1. VLSI Physical Design Automation. Sadiq M. Sait and Habib Y	ysical Design Automation. Sadiq M. Sait and Habib Youssef. Kluwer						
	Academic Publishers.	· · Le alte						
	2. Algorithms for VLSI Design Automation. Sabin H. Gerez. Wile	y india.						
	3. Essentials of Electronic Testing for Digital, Memory and Mix	s of Electronic Testing for Digital, Memory and Mixed Signal VLSI						
	Circuits. Bushnell and Agrawal. Kluwer Academic Publishers.							

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	3	3	2	1	I	-	-	2	-

114 | Page

CO2	3	3	3	3	3	-	-	-	-	-	-	-
CO3	3	3	3	3	3	-	-	-	-	-	-	-
CO4	3	3	3	3	2	-	2	-	-	_	1	-

Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

3: Substantial (High)

### CSE 713 Natural Language Processing 3-0-0 3 Credits 3 Hours

	Department of Computer Science and Engineering									
Course	Title of	f the course	Program Core	Total Nu	mber of co	ontact hours	5	Cred		
Code			(PCR) /	Lectur	Tutori	Practical	Total	it		
			Electives (PEL)	e (L)	al (T)	(P)	Hour			
							S			
CSE 713	Natura	al Language	PEL	3	0	0	3	3		
	Proces	sing								
Pre-requis	sites		Course Assessment methods (Continuous Assessment (CA),							
			Mid-Term (MT), End Term (ET))							
1. Bas	sics of	probability	CA+ MT + ET [CA	: 15%, MT	: 25%, ET:	60%]				
and	d statisti	CS								
2. CSC	2303:	Data								
Str	uctures	and								
Alg	orithms									
3. CSC		ntroduction								
to	Computi	ng								
Course		<b>a</b> (01)	Describe the fun	Describe the fundamental concents underlying natural language						
Course		• (01:	Describe the fund	amentai (	concepts u	inderlying n	atural la	nguage		
Outcomes	>		Demonstrate the approaches to syntactic and semantic analysis							
		• CO2.	P							
		<ul> <li>CO3:</li> </ul>	 : Apply the concepts of NIP to solve real-life problems							
		• CO4:	Analyze various solutions to an NLP problem and choose the best							
		one.	Analyze various solutions to an INEP problem and choose the best							
Topics Co	vered	Introduction	n to natural langua	ge proces	sing. (1L)					
		Basic Text P	rocessing: Tokeniz	ation, Ster	mming. (21	L)				
		Minimum E	dit Distance. (2L)	,	0 (	,				
		Language N	Iodeling: Introduct	tion to N-g	rams, Esti	mating N-gr	ams			
		probabilitie	s. Application of la	nguage m	odeling to	real-life exa	mples (s	uch as		
		text -classifi	cation). (4L)							
		Generative	Vs. Discriminative	Models. (4	1L)					
		POS Tagging	g. (4L)							
		Parsing: Intr	roduction of Probabilistic Parsing, Lexicalized Parsing,							
		Dependence	/							
		Parsing. (6L	.)							
		Information	ı Retrieval. (3L)							
		Semantics:	Word meaning and	d Senses. (	3L)					
		Machine Tra	anslation (rule bas	ed technic	jues, Statis	stical Machir	ne Transl	ation		

(SMT), parameter learning in SMT (IBM models)). (4L) Two applications: Question Answering and Text Summarization (4L)
Two applications: Question Answering and Text Summarization (41)
Two upplications. Question raiswering and Text summarization. (42)
Recent trends. (3L)
Standards for Indian Languages: Key layout - IS 16350 : 2016, inscript
information IS 13194:1991 (2L).
Text Books, Text Books:
and/orJurafsky, David, and James H. Martin. Speech and Language Processing: AnreferenceIntroduction to Natural Language Processing, Computational Linguistics andmaterialSpeech Recognition. Prentice-Hall, 2000. ISBN: 0130950696.
Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, Cambridge University Press. 2008.
Reference Books:
Manning, Christopher D., and Hinrich Schütze. Foundations of Statistical Natural Language Processing. Cambridge, MA: MIT Press, 1999. ISBN: 0262133601.
Others:
1. CS124: <u>YouTube lecture videos</u> by Dan Jurafsky.
2. 2012 NLP MOOC by Dan Jurafsky with Chris Manning: Youtube channed lecture videos
(anning of CO (Course Outcome) and DO (Dregremme Outcome)

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1	1	-	-	-	-	-	1
CO2	3	3	3	3	2	1	-	-	-	-	-	1
CO3	3	3	3	3	3	2	-	1	1	1	2	2
CO4	3	3	3	3	3	2	1	2	2	2	2	2

#### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

Data Warehousing and Data Mining 3-0-0 CSE 714 3 Credits 3 Hours

	Department of Computer Science and Engineering								
Course	Title of the course	Program Core	Total Nu	Credi					
Code		(PCR) /	Lectur	Tutori	Practical	Total	t		
		Electives (PEL)	e (L)	al (T)	(P)	Hour			
						S			
CSE 714	Data Warehousing and Data Mining	PEL	3	0	0	3	3		
Pre-requis	sites	Course Assessment methods (Continuous Assessment (CA), Mid-							
Artificial I	ntelligence, DBMS,	Term (MT), End Term (ET))							
Object Or	iented								
Programn	ning								

	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]
Course	• CO1: Understanding the Concept of Data Warehousing and Data Mining.
Outcomes	• CO2: Association Rules: Item set, Support, Confidence.
	CO3: Classification – Pattern: Labelled Pattern, Decision Trees.
	• CO4: To understand the SVM, Generalization Error.
	• CO5: To understand the different types of Clustering Methods.
	• CO6: To understand the detection of different types of outliers and outlier
	detection.
Topics	Data Warehousing: Multidimensional Data Model, Dimension Modelling, OLAP
Covered	Operations, Slicing and Dicing, Warehouse Schema, Star Schema, Snowflake
	Schema, Advantages and Disadvantages of Snowflake Schema, Data Warehousing
	Architecture, Virtual Data Warehouse, Advantages and Disadvantages of Virtual
	Data Warehouse, Metadata, Types of Metadata, OLAP Engine, Different Options
	for OLAP Engine, Data Extraction, Data Cleaning, Loading, Refreshing. [4L]
	Data Mining: Different Definitions of Data Mining, KDD vs. Data Mining, Stages of KDD , DBMS vs. DM, AI vs. DM, Classifications of Data Mining, Stages of KDD, DM
	Techniques , Discovery Driven Tasks, Classification, Frequent Episodes, Discovery
	of Association Rules, Clustering, Deviation Detection, Mining Problems,
	Applications of DM, Other Mining Problems. [4L]
	Association Rules: Item set, Support, Confidence, Problem Decomposition, Frequent Item Set, Maximal Frequent Set, Border Set, Applications of Data
	Mining, Spotting Fraudulent Behaviour, Astronomy etc., Association Rules,
	Informal a priori Algorithm for Learning Association Rules, Finding Frequent Sets and Association Rules, Formal a priori Algorithm for Association Rule. [5L]
	Classification – Pattern: Labelled Pattern, Approaches of Classification, Evaluation
	of Classifiers, Normalized Confusion Matrix, Accuracy, Precision, Recall and F – score, Cross Validation Technique, Classification Techniques. [4L]
	Decision Trees: Inductive Learning, ID3 Program, Algorithm for Building Decision
	Trees, Advantages of Decision Trees for Classification Purpose, Development of
	Decision Trees for Different Training Data Sets, Rule Extraction from Pattern Set,
	[4L]
	Bayesian Belief Nets (DAG): K nearest Neighbour, ANN, Learning in ANN,
	Perceptron as a model of neuron, Single and multiplayer Perceptron for
	classification and knowledge representation, Back propagation Network,
	Supervised, Reinforcement and Unsupervised Learning. [4L]
	Classification (Complex): Support Vector Machine (SVM), Generalization Error, SVM to find out the best classification, Margin. [3L]
	Clustering: Partitioned and Hierarchical Clustering, k means Clustering, Fast k Means Clustering, Fuzzy K means Clustering, Hierarchical Clustering,

				Agglomerative and Divisive Hierarchical Clustering, Single Linkage, Complete									
			Agglom Linkage	erative and Av	and Div erage L	visive H .inkage	ierarch Cluster	ical Clu ing. [4	stering L]	, Single	Linkage,	Complet	е
	Clustering (Complex): Outlier Detection, Outlier vs. Cluster, Types of Outliers, Outlier Detection Methodologies, Supervised, Unsupervised and Semi supervised detection, Statistical Approaches, Parametric and Non Parametric Methods, Proximity Based Methods, Clustering Based Methods. [4L]									rs, rvised s,			
			Temporal and Spatial Data Mining: Temporal Data Mining, Tasks involved, Temporal Association Rules, Sequence Mining, Episode Discovery, Spatial Mining, Tasks involved , Spatial Clustering. [3]										
	Web Mining: Web Mining Techniques, Web Content Mining, Web Structure Mining, Web Usage Mining, Text Mining. [3L]								<u>)</u>				
	Text Bo	oks,	Text Bo	ooks:									
	and/or		1. Da	ata Min	ing Tec	hnique	s – Aru	n K Puja	ari – Ur	niversiti	es Press.		
	referen	ce	2. Da	ata Min	ing – V	ikram F	udi, P.	Radha	Krishna	– Oxfo	ord Univer	sity Pres	s.
	materia	l l			0							,	
			Refere	nce Boo	oks:								
			1.	Data M	ining –	J. Han.	M. Kan	nber. J.	Pei E	lesvier.			
			2. D	ata Mir	ning – F	iand, N	1annila	and Sn	nith — P	HI.			
M	apping of	FCO (Co	ourse Ou	itcome	) and P	O (Prog	gramme	e Outco	me)				
	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	COs												
	CO1	2	1	1	2	2	-	-	-	-	-	-	3
	CO2	2	1	1	2	2	-	-	_	-	_	-	3
	CO3	3	3	2	3	3	-	-	-	-	-	-	3
	CO4	3	3	2	3	3	-	-	-	-	-	-	3
	CO5	3	3	3	3	3	-	-	-	-	-	-	3

#### 3 Correlation levels 1, 2 or 3 as defined below:

3

3

1: Slight (Low)

CO6

2: Moderate (Medium) 3: Substantial (High)

3

-

-

3

-

#### Digital Image Processing CSE 715 3-0-0 3 Credits **3 Hours** . . . . .

3

Department of computer science and Engineering									
Course	Title of the course	Program Core	Program Core Total Number of contact hours						
Code		(PCR) /	Lectur	Tutori	Practical	Total	it		
		Electives (PEL)	e (L)	al (T)	(P)	Hour			
						S			
CSE 715	Digital Image	PEL	3	0	0	3	3		
	Processing								
Pre-requi	sites	Course Assessment methods (Continuous Assessment (CA), Mid-							
		Term (MT), End Term (ET))							
NIL		CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]							
Course	• CO1: Un	derstand image ac	lerstand image acquisition and camera basics.						

-

-

-

118 | Page

Outcomes	<ul> <li>CO2: Apply image enhancement and filtering techniques to the spatial and frequency domain of images</li> <li>CO3: Design edge detection and segmentation algorithms for object detection and recognition purpose</li> <li>CO4: Understand color image processing</li> <li>CO5: Develop image compression models.</li> <li>CO6: Develop image processing algorithms using ImageJ and Python.</li> </ul>
Topics	Introduction, Image acquisition process, image sensors, camera basics.
Covered	<ul> <li>(4L)</li> <li>Transform functions, Histogram, spatial and frequency filtering.</li> <li>(10L)</li> <li>Redundancy, compression models, coding methods.</li> <li>(8L)</li> <li>Point, Line, edge detection, thresholding, region based segmentation.</li> <li>(6L)</li> <li>Color models, color image processing, segmentation and compression using colors.</li> <li>(8L)</li> <li>Introduction to Image Processing using ImageJ and Python, Image databases.</li> </ul>
	(6L)
Text Books,	Text Books:
and/or	1. Digital Image Processing by Ratael C Gonzalez & Richard E Woods.
material	
	Reference Books:
	Digital Image Processing by William K Pratt.
	Others:
	NPTEL online course.

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	2	2	3	2	-	1	-	-	-	-	-	2
CO2	3	3	3	3	-	-	-	-	-	-	-	3
CO3	3	3	3	3	-	-	-	-	-	-	-	3
CO4	2	2	2	2	-	-	-	-	-	-	-	3
CO5	3	3	3	3	-	-	-	-	-	-	-	3
CO6	2	2	3	3	3	-	-	-	-	-	-	3

#### Correlation levels 1, 2 or 3 as defined below:

1:	Slight (Low	) 2: Moo	derate (Medium)	3: Substantial (High)				
CS	E 716	Data Analytics	3-0-0	3 Credits		3 Hours		
		Departm	ent of Computer S	cience and	Engineeri	ng		
	Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Credi
	Code		(PCR) /	Lectur	Tutori	Practical	Total	t
			Electives (PEL)	e (L)	al (T)	(P)	Hour	
							S	
	CSE 716	Data Analytics	PEL	3	0	0	3	3

Pre-requisites	5	Course Assessment methods (Continuous Assessment (CA), Mid- Term (MT), End Term (ET))
		CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]
Course Outcomes	<ul> <li>CO1: Claunlabella and corra</li> <li>CO2: M connecting the grap</li> <li>CO3: Development of the connecting the grap</li> <li>CO3: Development of the connecting the connecting</li></ul>	assify the labelled dataset into different classes and group the ed dataset into different clusters by uncovering hidden patterns elations among them odel a problem into a graph database after absorbing and ng a large volume of data and performing the analytical task over h. velop a recommendation system by predicting users' preferences n similarity measures and evaluating its performance using the such as Precision, recall, and F1-score. derstand and set up the Hadoop framework, which will allow them ently manage and process big data in a distributed computing nent.
Topics Covered	environn Introduction to Diagnostic Anal Issues and Chal Fundamentals of Descriptive Statistics, Infere Sample Space, Random Conditional Independence, Distribution, Co Similarity Meas Similarity Meas Similarity. Missing Value P Score. (6L) Basics of Comp Degree Distributions, T Betweenness C Centrality. Com Newman, Fast Greedy, La Metrics: Modularity, NM Introduction to Regression, Decision-trees	nent. Data Analytics, Types of Data Analytics: Descriptive Analytics, ytics, Predictive Analytics, and Prescriptive Analytics. Use Cases, lenges in Big Data Analytics. (4L) of Statistics: Population, Sample, Parameter, Statistic, Variable. ential Statistics. Basic Probability Theory: Random Experiment, Variables, Probability, Conditional Probability, Independence, Expectation, Variance, Probability Distribution, Joint Probability onditional Probability Distribution. (8L) ures: Jaccard Similarity, Cosine Similarity, Adjusted Cosine Prediction Techniques: Mean Centering, Weighted Average, Z- lex Network: Scale-Free Networks, Small-World Phenomenon, ransitivity or Clustering. Centrality Measures: Degree Centrality, entrality, Closeness Centrality, Eigenvector Centrality, PageRank munity Structure, Community Detection Algorithms: Girvan- bel Propagation, Clique Percolation Method. Community Quality 11, Conductance. (10L) Data Mining, Machine Learning Techniques: Least Square

	Introduction to Hadoop Ecosystem – HDFS, Map-Reduce, PIG, HIVE, HBase,
	Mahout,
	Zookeeper, Flume, Sqoop, etc. (6L)
Text Books,	Text Books:
and/or reference material	<ol> <li>Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data – EMC Education Services – Wiley.</li> <li>Machine Learning: Hands-On for Developers and Technical Professionals – Jason Bell – Wiley.</li> </ol>
	Reference Books:
	<ol> <li>Networks: An Introduction – M. E. J. Newman – Oxford University Press.</li> <li>Hadoop: The Definitive Guide – Tom White – O'Reilly.</li> </ol>

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	1	-	-	-	2	-	1	-	-
CO2	3	3	3	3	-	1	2	-	2	2	3	-
CO3	3	3	3	3	1	1	3	-	2	2	3	1
CO4	2	2	1	1	3	3	1	2	-	-	-	2

#### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)2: Moderate (Medium)3: Substantial (High)

CS	SE 717	Biometrics	3-0-0	3 Credits	s 3 Ho	urs						
		Departm	ent of Computer S	cience and	l Engineeri	ing						
	Course	Title of the course	Program Core	Program Core Total Number of cont				Credi				
	Code		(PCR) /	Lectur	Tutori	Practical	Total	t				
			Electives (PEL)	e (L)	al (T)	(P)	Hour					
							S					
	CSE 717	Biometrics	PEL	3	0	0	3	3				
	Pre-requi	sites	Course Assessme	ent metho	ds (Contini	Jous Assess	ment (CA	), Mid-				
			Term (MT), End ⁻	Term (ET))								
	Basic Mat	hematics –	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]									
	Knowledg	ge and ability to use										
	calculus,	probability, and										
	statistics	are essential.										
	Course	• CO1: Un	derstanding biome	trics syste	ms and its	different ch	aracteris	tics.				
	Outcome	s • CO2: Im	plementation of	different	biometric	s systems	includin	g face,				
		fingerpri	fingerprint, iris, palm, signature, EEG, etc.									
		• CO3: Ap	ply the concept	of unime	odal and	multimoda	l paradi	gms in				
		biometri	cs systems.									

- CO4: Analyze different feature extraction and learning techniques for biometrics systems.
  - CO5: Design and develop real life biometrics systems.

Topics Covered	Biometrics Overview: Introduction, characteristics of biometric systems, biometric systems, biometric functionalities, biometrics system errors, design cycles of biometric systems, applications of biometric systems, security and privacy issues. [4L]
	Image Processing Techniques: What is image processing?, origin of image processing, fundamental steps in digital image processing, components of image processing system, image sensing and acquisition, image sampling and quantization, basic relationships between pixels. [6L]
	Filtering: Background, basic intensity transformation functions, histogram processing, fundamentals of spatial and frequency domain filtering, smoothing filters, sharpening filters, Discrete Fourier Transform, Fast Fourier Transform. [4L]
	Pattern Classification Techniques: Introduction, Bayesian decision theory, maximum likelihood and Bayesian parameter estimation, non-parametric techniques, linear discriminant functions, multilayer neural networks, non-metric methods. [6L]
	Fingerprint Recognition: Introduction, ridge pattern, fingerprint acquisition, feature extraction, matching, and fingerprint synthesis.
	Face Recognition: Introduction, image acquisition, face detection, feature extraction, matching and advanced topics. [6L]
	Iris Recognition: Introduction, iris recognition systems, image acquisition, iris segmentation, iris normalization, iris encoding and matching, iris quality and performance evaluation. [4L]
	Multi-modal Biometric Systems: Introduction, sources of multiple evidence, acquisition and processing architecture, fusion levels. [2L]
	Other Biometrics: Signature, hand shape, ear, palmprint, etc. [4L]
Text Books, and/or reference material	<ul> <li>Text Books:</li> <li>Anil K. Jain, Arun Ross, and Karthik Nandakumar, Introduction to Biometrics, Springer, 2011.</li> <li>J. L. Wayman, Anil K. Jain, D. Maltoni, D. Maio, Biometric Systems: Technology, Design and Performance Evaluation, Springer, 2005.</li> <li>R. M. Bolle, J. Connell, S. Pankanti, N. K. Ratha, A. W. Senior, Guide to Biometrics Caringer, 2004.</li> </ul>
	<ul> <li>Richard O. Duda, Peter E. Hart, David G. Stork, Pattern Classification, 2nd</li> </ul>

Edition, Wiley, 2000.

• R.C. Gonzalez and R. E. Woods, Digital Image Processing, Pearson, 2009.

#### **Reference Books:**

- D. R. Kisku, P. Gupta and M. Tistarelli, Multibiometrics Systems: Modern Perspectives to Identity Verification, LAMBERT Publishing, 2012.
- D. R. Kisku, P. Gupta and J. K. Sing, Advances in Biometrics for Secure Human Authentication and Recognition, CRC Press, Taylor & Francis, 2013.
- D. R. Kisku, P. Gupta and J. K. Sing, Design and Implementation of Healthcare Biometric Systems, IGI Global, 2019.
- M. Dawson, D. R. Kisku, P. Gupta, J. K. Sing and W. Li, Developing Next-Generation Countermeasures for Homeland Security Threat Prevention, IGI Global, 2016.

#### Others:

**Online Biometrics Courses** 

- 1. https://nptel.ac.in/courses/106104119/
- 2. https://www.mooc-list.com/tags/biometric

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3	1	1	1	-	-	1	2
CO2	2	3	3	2	3	1	2	1	-	-	1	2
CO3	2	3	3	2	3	1	2	1	-	-	2	2
CO4	2	3	2	3	2	1	1	1	-	-	2	1
CO5	3	3	3	3	2	1	2	1	-	-	3	3

Correlation levels 1, 2 or 3 as defined below:

2: Moderate (Medium) 3: Substantial (High)

CSE	718	<b>Cryptography and Ne</b>	etwork Security 3-	0-0 3	3 Credits	3 Hours			
		Departm	ent of Computer S	cience and	l Engineeri	ing			
	Course	Title of the	Program Core	Total Nu	;	Credi			
	Code	course	(PCR) /	Lectur	Tutori	Practical	Total	t	
			Electives (PEL)	e (L)	al (T)	(P)	Hour		
							S		
	CSE 718	Cryptography and	PEL	3	0	0	3	3	
		Network Security							
	Pre-requisites		Course Assessment methods (Continuous Assessment (CA), Mid-						
			Term (MT), End Term (ET))						
	CSE 602		CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]						
	Basic know	wledge of linear							
	algebra, probability theory.								
	Programming skills are								
	desirable.								

1: Slight (Low)

Course	<ul> <li>CO1: Introduce the basic mechanisms of Cryptography.</li> </ul>
Outcomes	CO2: Notion of computationally hard problems and their applications.
	• CO3: Notion of trap-door and one-way functions and their applications.
	CO4: The attack and crypto-analysis.
	• CO5: Ability to design secure protocols and their vulnerability analysis.
Topics	1. Introduction, X.800 : Security architecture for Open Systems
Covered	Interconnection, Attack, Adversarial Behavior. (2L)
	2. Basic Number Theory, Field, Extension Field and applications. (5L)
	3. Confidentiality, Symmetric and Asymmetric Encryption, Public key
	encryption mechanisms - RSA, ElGamal, Rabin's, Asymmetric Key
	Encryption - DES, AES. (10L)
	4. Attacks- Passive attacks, Side channel Attacks, Factorizations and Index
	calculation methods, Countermeasures. (7L)
	5. Implementational Issues - Fast Hardware for symmetric and Asymmetric
	key. (5L)
	6. Pseudo-random number generation, Stream ciphers. (3L)
	7. Message Integrity, Cryptographic hashing, Message Authenticity, Message
	Authentication code. (3L)
	8. Entity Authentication, Digital signature, Nonrepudiation. (5L)
	9. Secure protocol designing - SSL, PGP and TLS. (2L)
Text Books,	Text Books:
and/or	1. Handbook of Applied Cryptography, CRC Press (free ebook).
reference	2. Douglas Robert Stinson, Maura Paterson, Cryptography: Theory and
material	Practice.
	3. O. Goldrich, Fundamentals of Cryptography: Basic Tools, Cambridge
	University Press.
	4. N. Koblitz, A Course in Number Theory and Cryptography.
	5. Abhijit Das, Key Cryptography: Theory and -C. E. Veni Madhavan, Public
	.Practice
	Reference Books:
	1. M. Bellare and S. Goldwasser, Lecture Notes on Cryptography, 2001.
	2. Abhijit Das, Computational Number Theory, CRC Press.
	Others:
	1. Janathan Knudsen, Java Cryptography, O'Relly Press.

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	2	2	-	-	-	-	-	-	-	-	-	2
CO2	3	2	1	-	-	-	-	-	-	-	-	2
CO3	3	2	2	-	-	-	-	-	-	-	3	2
CO4	-	3	3	2	-	-	-	2	-	-	3	-
CO5	-	-	3	2	3	2	-	2	-	-	3	-

### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low	) 2: Moderate (Mediur	n)	3: Substa	3: Substantial (High)		
CSE 719	Multimedia Information Systems	3-0-0	3 Credits	3 Hours		

	Departm	rtment of Computer Science and Engineering									
Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Cred				
Code		(PCR) /	Lectur	Tutori	Practical	Total	it				
		Electives (PEL)	e (L)	al (T)	(P)	Hour					
						S					
CSE 719	Multimedia	PEL	3	0	0	3	3				
	Information										
	Systems										
Pre-requis	sites	Course Assessme	ent metho	ds (Contin	uous Assess	ment (CA	A), Mid-				
		Term (MT), End ⁻	Term (ET))								
Knowledg	e of data structures	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]									
databases	s and compression										
technique	es										
Course	•CO1: In (	depth understandir	ng of medi	a characte	ristics and r	esource					
Outcomes	s requirem	ent.									
	•CO2: Or	ganizing multimedi	a content,	physical st	torage and r	etrieval o	of				
	multimed	lia data, Content-ba	ased Searc	h and retri	ieval, creatiı	ng and					
	delivering	g networked and m	ons, securin	g multim	edia						
	content a	nd current researc	h direction	s in this ar	ea.						
	•CO3: Ur	nderstanding netwo	orking of m	nultimedia	data and ho	ow techn	ology				
	can help u	us access, deliver, k	prowse, sea	arch, enric	h and share	multime	dia				
	content.										
	•CO4: Un	derstanding of mul	ltimedia da	atabase sto	prage and re	etrieval.					
Topics	Overview of mu	ltimedia system: Te	extual info	rmation co	des (Morse	, ASCII,					
Covered	EBCDIC), audio,	deo and graphics, RTF, TIFF, RIFF. (3L)									
	Video and Anima	ation: Capturing Gr	aphics and	l Images C	omputer As	sisted Gr	aphics				
	and Image Proce	essing; Reconstruct	ing Images	; Graphics	and Image	Output					
	Options. Basics;	Television Systems	s; Digitaliza	tion of Vic	leo Signals;	Digital					
	Television; Basic	Concepts; Virtual	Reality, Vic	leo signal	representat	ion, Com	puter				
	Video Format, C	omputer- Based an	nimation, A	nimation	Languages,	Methods	of				
	controlling Anim	hation, Display of A	nimation,	Transmissi	on of Anima	ation. (1	LOL)				
	Information rep	resentation, media	synchroni	sation, SAS	S factors, re	lative and	d 				
	absolute tempoi	ral specifications, n	etworking	delays, Sk	ew, Jitter, e	nd to end	d delay				
	factors, latency	time for stored and	captured	objects.	<b>D</b>	(6L)	_				
	Data Compressio	on: Storage Space r	equiremei	nt, Coding	Requirement		e,				
	Entropy Coding	Lossy Sequential Do	CI-based	viode, Exp	anded Loss	y DCT-ba	sea				
	Node, JPEG and	WIPEG. (č	SL) Sinanalaw du	unlos hono	المعامل المعام	ام مر ما ام م					
		n techniques like s	simplex, at	ipiex, base	Danu vs. Dro	Jaubanu,	,				
	synchronous tra		ransmissic	on, synchron	lization						
	Parameters.	(JL)	(5L)								
	multimodia pros		val, creating and delivering networked and								
	residing across of	lohal computer po	tworks m	iltimadia /	tatahasas in	ndeving	ia uata				
	retrieval hy cimi	larity (101)			alabases, 11	iucning,					
Text Rook		(10L)									
and/or	Multimedia Info	rmation Networkin	ng Nalin K	Sharda Dr	entice Hall I	ndia					
reference	Multimedia: Cor	Computing, Communications and Applications, Ralf Steinmetz and									
		ultimedia: Computing, Communications and Applications, Ralf Steinmetz and									

material	Klara Nahrstedt, Pearson Education Asia.
	Multimedia Communications, Applications, Networks, Protocols and Standards,
	Fred Halsall, Pearson Education Asia.
	Multimedia Systems, John F. Koegel Buford, Pearson Education Asia.
	Reference Books:
	Subrahmanian and Jajodia, Multimedia Database Systems, Springer.
	V.S. Subrahmanian, Principles of Multimedia Database Systems, Morgan
	Kaufmann Publishers, 1998.

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	2	3	3	2	2	3	3	1	1	3	2	3
CO2	3	3	3	2	3	3	3	1	2	3	2	3
CO3	3	3	3	2	2	3	3	1	2	3	2	3
CO4	3	3	3	2	3	3	3	1	2	3	2	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

#### Cellular Automata and its Application 3-0-0 3 Credits CSE 720 3 Hours

	Department of Computer Science and Engineering										
Course	Titl	e of the course	Program Core	Total Nu	mber of co	ontact hours	5	Credi			
Code			(PCR) /	Lectur	Tutori	Practical	Total	t			
			Electives (PEL)	e (L)	al (T)	(P)	Hour				
							S				
	Cel	lular Automata	PEL	3	0	0	3	3			
CSE720	and	d its		-	-	-	-	-			
	Ap	plication									
Dro roqui	citor.			ont motho	de (Continu		mont (CA				
Pre-requi	sites		Torm (MT) End	Torm (ET))		uous Assess	ment (CP	() <i>,</i> IVIIU-			
Digital Ele	otror	aicc		· 1 E0/ NAT	· )E0/ ET.	<u>د ۵۰/۱</u>					
			dorstanding the ha	nsic and advanced concents of Cellular Automata							
Outcomo	<b>^</b>	• COI. Unit	derstanding the ba	isic allu au	vanceu co	incepts of Ce	ilular Au	loniala			
Outcome	5	(CA).	dorstanding the dif	different phases of evolution of CA machine							
		<ul> <li>CO2: Unit</li> </ul>	derstanding the un	a method of characterization of CA machine.							
		• CO3: 010	delign of physica	l/roal_tim	anacteriza	with a ma	thomatic				
		such as (	N		e systems	with a ma	linematic				
				s of CA for	huilding (	A hased mo	dal ta sti	idv			
Topics		Introduction: B	asic definitions of	<u>collular au</u>	tomata an	d symbolic (	dunamics	uuy.			
Covered		Inioctivity surie	asic definitions of	v Gardon.	of-Edon th	a symbolic (	lund's	2			
Covereu		theorem Conse	rsihla/irrow	arcihla C	Δ						
		neighbourbood	dimensions state	in and rev	iow		77				
			, unitensions, state	-3, 1011010-0							
		[UL] Characterizatio	n of CA behaviour	and its an	nlications	• Initial Dha	e of				
				anu its du	plications						

	Development, CA-Based Models - Language Recognizer, Biological Applications, CA as Parallel and Image Processing Systems, CA based model of physical systems. [6L] New Phase of Development–Wolfram's model of CA, 3-neighborhood 2-state CA, CA rules, Classification of rules, CA technology, CA as an FSM, Linear/non- linear/additive CA, Polynomial Algebraic Characterization of CA Behavior, Matrix Algebraic Characterization. [6L] Irreversible/Group CA characterization in linear domain: Null/Periodic boundary Characterization of the State-Transition Behavior, Cycle Set Characterization, Isomorphism between a CA and an LFSR. CA based Pseudorandom Pattern Generation, Pseudo noise sequence, CABIST, Pattern Classification. [6L] Characterization of nongroup CA/non-invertible CA in linear domain: General Characterization of Cyclic States (attractors), Characterization of Single Length Cycle Single Attractor CA (SACA), D1*CA, Multiple-Attractor Cellular Automata (MACA)[6L] Non-linear CA: Characterization of non-linear rules, invertible and non-invertible CA, CA with point states; applications in VLSI domain. [6L] Advanced Concepts: Extension of dimension, d-state CA, introduction to Asynchronous CA, follow-up and review. [6L]
and/or	1. Additive Cellular Automata: Theory and Applications, by Parimal Pal
reference material	Chaudhuri, Dipanwita Roy Chowdhury, Sukumar Nandi, Santanu Chattonadhyay Wiley
	<ol> <li>Tommaso Toffoli, Norman Margolus. Cellular Automata Machines: A New Environment for Medelling, MIT Press</li> </ol>
	3. Cellular Automata and Complexity: Collected Papers by Stephen Wolfram;
	Westview Press.
	Reference Books:
	edition.
	2. A New Kind of Science, by Stephen Wolfram, Wolfram Media.
	3. A New Kind of Computational Biology, by Chaudhuri, P.P., Ghosh, S., Dutta,
	<ol> <li>A., Choudhury, S.P. Springer.</li> <li>Joel L. Schife. Cellular Automata: A Discrete View of the World. Wilev -</li> </ol>
	Interscience.
Appring of CO (C	Course Outcome) and PO (Programme Outcome)

## N

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	-	1	I	-	-	-	1

CO2	1	1	1	1	1	-	1	-	-	-	-	1
CO3	1	2	1	1	2	-	1	-	-	-	-	1
CO4	3	3	3	3	3	-	2	-	-	-	-	3
CO5	3	3	3	3	3	-	2	-	-	-	-	2

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

#### **Computational Geometry** CSE 721 3-0-0 3 Credits **3 Hours**

	Department of Computer Science and Engineering									
Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Cred			
Code		(PCR) /	Lectur	Tutori	Practical	Total	it			
		Electives (PEL)	e (L)	al (T)	(P)	Hour				
						S				
CSE 721	Computational	PEL	3	0	0	3	3			
	Geometry									
Pre-requis	sites	Course Assessme	ent metho	ds (Contini	uous Assess	ment (CA	.) <i>,</i> Mid-			
		Term (MT), End	Term (ET))							
A course o	n Design and	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]								
analysis of	algorithm									
Course	• CO1: T	o demonstrate fa	amiliarity	with some	e of the ba	asic algo	rithmic			
Outcomes	s techniqu	les								
	of the a	rea.								
	• CO2: To	lesign and analyze "new" geometric algorithms and to derive the								
	lower bo	ound for some geor	and for some geometric problems.							
	• CO3: To	map practical problems to computational geometric problems and								
	finding a	solution to these geometric problems help to solve a wide range								
	of pract	ical problems in a	a variety	of fields s	such as gra	phics, ro	botics,			
	database	es, sensor network								
	• CO4: To	develop skills to v	work on ge	eometrical	manipulatir	ng softwa	are and			
<u> </u>	to demo	nstrate acquaintar	ice with m	odern rese	earch in the	field.				
Topics	Computational	Geometry Introdu	uction: His	torical per	spectives, G	eometric	;			
Covered	preliminaries, C	onvex Hull, Algorit	thms to fin	d the Conv	vex Hull of a	point set	t in 2D			
	plane: Granam	s Scan Algorithm, I	Divide and $\overline{T}$	Conquer a	algorithm, O	utput ser	nsitive			
	algorithm: Jarvi	is's March Algorith	m, limoth	y Chan's A	igorithm; LC	wer boui	na			
	analysis for Cor	ivex Hull Algorithm	1 [6L]				- <b>t</b> I			
	Line Segment I	Line Segment Intersection: Line Segment Intersection, The Doubly-Conne								
	[4L]	nputing the Overlay of Two Subdivisions, Boolean Operations.								
	Polygon Triang	<b>rgulation:</b> Guarding and Triangulations, Area of a simple polygon,								
	Counting the n	umber of triangula	tions in a c	onvex pol	ygon <i>,</i> Art Ga	llery The	orem,			
	Monotone Poly	gon, Partitioning a	Polygon ii	nto Monot	one Pieces,	Triangula	ating a			
	Monotone Poly	Polygon.								

			[6L] <b>Orthog</b> Trees, I [6L]	6L] <b>Drthogonal Range Searching:</b> 1-Dimensional Range Searching, Kd Trees, Range Trees, Higher-Dimensional Range Trees, Fractional Cascading. 6L]											
			<b>Point L</b> Algoritl planar [6L]	ocatior nm to c point lo	n: Point ompute ocation	Locatio e a Tra proble	on and pezoida m.	Trapezo al Map	oidal M and a S	aps, A I earch s	Randomiz tructure,	ed Incre Kirkpatr	mental ick's		
			Vorono Vorono Divide diagrar Compu	<b>bi Diagr</b> and Cor ns, Tria ting the	am and am, Coi nquer A ngulati e Delau [7L]	<b>d Delau</b> mputing Algorith ons of I nay Tria	n <b>ay Tri</b> g the V m. Clos Planar F angulat	angula oronoi lest pai Point Se ion.	tion: De Diagran r Proble ets, The	efinition n: Fortu ems. Ap Delaur	n and Bas une Swee oplication nay Triang	ic Prope p Algorit of voron gulation,	rties of hm, ioi		
			<b>Arrang</b> Applica	Arrangements and Duality: Arrangement of lines, Zone theorem, Duality, Application of arrangements and duality, Ham Sandwich Cut. [4L]											
			Geome [3L]	etric Da	ta Stru	cture:	nterval	Trees,	Priority	Search	Trees.				
-	Text Bo	oks.	Text Bo	ooks:											
	and/or	,	1. Fran	co P. Pr	eparat	a and N	/lichael	lan Sha	imos, C	omputa	ational Ge	eometry-	An		
	, referen	ce	Introdu	iction, S	Springe	r Verla	g.			•		,			
	materia		2. Marl	k de Bei	rg, Mar	c van K	, reveld	Mark C	Overma	rs, Otfr	ied Cheor	ng,			
			Compu	tationa	l Geom	etry: A	lgorithr	ns and	Applica	tions, 1	hird Edit	ion, Sprii	nger		
			Verlag.												
			3. Jose	ph O' R	ourke,	Compu	tationa	l Geom	etry in	C, Cam	bridge Un	iversity	Press.		
			Refere	nce Boo	oks:										
			Others	: Lectu	re note	es on Co	omputa	tional g	eomet	ry by Da	avid Mou	nt.			
iviap	ping of		burse Ou		) and P	U (Prog	gramme		me)	000	0010	<b>DQ</b> 44	0010		
	PUS	PO1	PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         PO10         PO11         PO12												
	CO1	1	2												
	CO2	1	2	3	3	2			_	_	_	_	2		
	CO3	1	2	3	3	3	_	-	-	-		_	2		
	CO4	1	2	3	3	3	_	_	_	_	-	-	2		
Corr	elation	levels	1, 2 or 3	as defi	ned be	low:	L	L	L						
1: Sl	ight (Lo	t (Low) 2: Moderate (Medium) 3: Substantial (High)													

CSE 722 Complex Network Theory 3-0-0 3 Credits **3** Hours Department of Computer Science and Engineering Total Number of contact hours Program Core Title of the course Course Cred (PCR) / Code Lectur Tutoria Practical Total it Electives (PEL) e (L) I (T) (P) Hour

CSE 722	Complex Network	PEL	3	0	0	s 3	3				
	Theory										
Pre-requis	sites	Course Assessme	ent metho	ds (Continu	Jous Assess	ment (CA	), Mi				
		Term (MT), End ⁻	Term (ET))			·					
Probabilit	y, Calculus, Linear	CA+ MT + ET [CA	: 15%, MT	: 25%, ET: (	60%]						
Algebra, G	Graph Theory	-	,	,	-						
Course	CO1: Illu	strate the modern	theory and	d applicati	ons of netw	ork scien	ce.				
Outcomes	• CO2: Ana	alyze structure of c	, ommunitie	es in differ	ent networl	ks					
	• CO3: Def	ine random walk a	ind design	real-world	lapplicatior	าร					
	• CO4: Ap	ply of linear alg	ebra and	probabili	ty to real-	world co	omp				
	network	problems		·			•				
	<ul> <li>CO5: Cul</li> </ul>	tivate reading of re	esearch pa	pers and a	rticles						
Topics	Introduction to	Network Science		•							
Covered	Graph Theory: r	evision of basic concepts. (2L)									
	Properties of Co	mplex networks:	Degree dis	, tribution, a	associativity	, clusteri	ng				
	coefficient.(4L)	•	0				0				
	Random Netwo	<b>rks</b> : Poisson's distr	ibution, gi	ant compo	onent and it	s emerge	nce,				
	generating funct	tion, component size distribution. (6L)									
	Bipartite netwo	<b>rks</b> : unipartite projection, giant component condition. (6L)									
	Centrality meas	ures: degree centrality, closeness centrality, betweenness									
	centrality, eigen	vector centrality, Peron Frobenius theorem.(4L)									
	Spectral Graph	Theory: eigen valu	es and eige	en vectors,	, spectrum d	of a graph	۱,				
	spectrum of a cl	ique, eigen values	and eigen	vectors of	special mat	rices like					
	triangular and d	iagonal matrices, N	Aarkov ma	trix, trace	of a matrix,	physical					
	interpretation o	of principal eigen vector, spectral coverage, significance of 2 nd									
	eigen vector, M	otifs, Frobenius norms, dimension reduction. (4L)									
	Network Model	ls: Erdos Renii graph, power law distribution in small world									
	network, scale f	ree networks. (4L)									
	Random walks	on graphs and its a	pplication	s: random	walks and	Markov c	hain				
	transitional prob	bability, stationery	state, hitti	ng time, c	ommute tin	ne, cover	time				
	mixing rate, stoo	pchastic matrix, page rank algorithm, page rank ++, HITS (Hypertex									
	induced topic se	election) algorithm by Klienberg, HITS on citation networks,									
	bibliographic co	upling, SALSA (The	stochastic	approach	to Link Stru	icture and	alysis				
	and TKC effects)	. (7L)									
	Community det	ection algorithms:	what is a o	community	y, core com	munity <i>,</i> V	Vu-				
	Huberman Algo	rithm, Radicchi's A	lgorithm, o	community	y detection	algorithm	าร				
	based on shorte	st path betweenne	ess and ran	dom walk	betweenne	ess.(4L)					
Text Book	s, Text Books:										
and/or	• " The str	• "The structure and dynamics of networks" by Newman, Barabasi, Watts,									
reference	Princeto	eton University Press.									
material	• "Netwo	orks: An Introduction" by Mark Newmann, Oxford University Press									
	• "Netwo	ork Science" by Barabasi, Cambridge University Press.									
	Reference Boo	ks:									
	<ul> <li>"Networ</li> </ul>	k Science" Theory	and Applic	ations by T	Fed G Lewis	, Wiley.					
	Others:										

Г				ccionco	/	<u></u>	vorle +k		liboroi			Locturo	) by Dr
			-	<u>Science</u> Animos	/compi h Muki	<u>ex-net</u>	WOLK-LL	ieory-iii	Kharaş	gpur.nt	<u>.mi</u> (video	Lecture	) by Dr.
∟ Ma	nning of	F CO (C	ourse Oi	itcome	) and P		gramm	e Outco	me)				
	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	COs												. • ==
	CO1	3	1	3	3	1	2	1	-	-	-	-	2
	CO2	1	3	3	2	1	1	-	-	-	-	-	1
	CO3	3	2	3	1	2	1	-	-	-	-	-	1
_	CO4	3	3	3	2	2	1	-	-	-	-	-	1
	CO5	1	1	1	1	2	1	-	2	2	3	1	1
<b>Cor</b> 1: S	light (Lo	ieveis w)	1, 2 or 3	2: Mc	derate	e (Medi	um)		3: S	ubstan	tial (High)	1	
	723	Patt	ern Reco	ognition	3-0-	0	3 Crec	lits	3 Hour	S			
	Course	T:+	lo of tho	Departr	nent of	Comp	uter Sc	Total N	nd Engli	neering	toot hour		Crad
	Code	110	le of the	course		gram C p) /	ore				Practical	Total	i+
	couc				Elec	tives (F	PEL)		al (	г)	(P)	Hour	
									u. (	.,	(. )	S	
	CSE 723	B Pa Re	ttern cognitio	n	PEL	PEL 3 0 0 3						3	
	Pre-req	uisites			Cou	rse Ass	essme	nt meth	ods (Co	ntinuc	us Assess	ment (C	4), Mid-
	Artificia	l Intelli	gence, D	Data	Teri	m (MT)	, End T	erm (ET	))				
	Mining,	DBMS	, Object										
_	Oriente	d Prog	ramming	5				450( )					
-	Course			<u></u>			= I <b>[</b> CA:	15%, N	II: 25%	, EI: 60	)%] • •f • Dott		
	Outcom		•	Svstom	ea abo	ut Patto	ern and	a Patter	n Class,	Desigi	n or a Patt	ern Reco	gnition
	Outcon	162	•	CO2: Id	ea of l	nstar. (	Dutstar	Group	s of Ins	tar an	d Outstar.	Differer	nt types
			-	of Men	nories.		Jucoca	) 0.04p	0 01 110		a o'acocar,	Differen	it types
			•	CO3: (	Concep	t of F	eedfor	ward,	Feedba	ick an	d Compe	etitive L	earning
				Networ	·k.								
			•	CO4: C	oncept	of Co	omplex	PR Ta	sks: RB	F, RE	3F Netwo	rk for	Pattern
				Classifi	cation.			_		-			
_	<b>T</b> '		•	CO5 : I	dea of	Tempo	ral Patt	tern Rec	cognitio	n: Con	cepts.		•
	Topics	4	Patteri	Pattern and Pattern Class: Design of a Pattern Recognition System, Syntactic and									
	Covered	L	Error, Risk and Loss. [4L]									165,	
		Parametric and Non Parametric Methods: Histogram Method – Kernel Based Methods – K - Nearest Neighbor Method Probabilistic Neural Network base on Parzon Window – PNN Learning. [3L]											
		Basics of ANN: Instar , Outstar, Groups of Instar and Outstar, Different types of Memories. [3L]											

-														
			PR Tas Netwo Mappi	ks: PR P rk, Patt ng Netv	Problem ern Clu vork, Se	ns, Diffe stering elf Orga	erent PF , Featur anizing I	R Tasks re Map Networ	by FF, F ping Pro k. [4L]	B and ( oblem,	Competiti Different	ve Learr Feature	ning	
			FF ANN	N: Patte	rn Asso 1	ciation	Netwo	rk, Heb	b's Lav	ı, Patte	rn Classif	ication		
			FB AN Auto a State T	N: Patte ssociati ransitic	ern Ass on , Ho on Diag	ociation pfield I ram, St	n, Patte Networl ochasti	rn Stor k, Capa c Netw	age, Pa city and ork and	ttern E d Energ I Boltzm	nvironme y of a Hop nann Mac	nt Stora ofield Ne hine. [51	ge, twork, _]	
			Compo Minima	etitive l al Learr	earnin ing, M	g Netw alsburg	ork: Pat Learnii	ttern St	orage, Leaky L	Patterr earning	Clusterir . [4L]	ng Netwo	ork,	
			Comple RBF ov	omplex PR Tasks: RBF, RBF Network for Pattern Classification, Advantages of BF over MLFF ANN, CPN Network. [3L]										
			Single Algorit Vector	Single and Multilayer Network: Gradient Descent Procedure, Newton's Algorithm, Fixed Increment Learning, Variable Increment Learning, Support Vector Machine(SVM), Multilayer Neural Networks, Unsupervised Learning. [5L]										
			Tempo Archite Connee	oral Patt ecture f cted Re	ern Re or tem current	cognitio ooral PI t Netwo	on: Con R Tasks, ork, Diff	cepts, I , Avalar erence	Problen Iiche Sti betwe	ns in te ructure, en Aval	mporal se Jordon N anche Ne	equence, Jetwork, twork ar	Fully	
			Similar Metric Maxim	rity Mea , Manh ium Val	asures: attan / ue Dist	Mahala ′ City Bl ance L∘	anabis E ock / L1 ∞ Norm	Distance norm, , Hamn	e, Prope Euclide ning Dis	erties o ean Dist stance l	f Metrics, cance L2 N _1 norm.	Minkow Jorm, [4L]	vski	
Γ	Text Bo	oks,	Text B	ooks:										
	and/or		1.	Pattern	Classif	ication	– Duda	, Hart &	& Stork	– J. Wil	ey & Son	s.		
	referen	ce	2. A	Artificial	Neura	l Netwo	orks – B	. Yegna	inaraya	na – PF	II.			
	materia	I	Referer	nce Boo	ks:									
			1.	Neural	Netwo	rks for I	Pattern	Recogr	nition –	C.M. B	ishop – O	xford.		
Ma	apping of	FCO (C	ourse Ou	utcome	) and P	O (Prog	gramme	e Outco	ome)					
	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	
_	COs													
ļ	CO1	3	3	2	2	3	-	-	-	-	-	-	3	
ļ	CO2	3	3 2 2 3 3											
_	CO3	3	2	3	2	3	-	-	-	-	-	-	3	
-	CO4	3	3	2	2	3	-	-	-	-	-	-	3	
	CO5	3	3	2	2	3	-	-	-	-	-	-	3	
Co	rrelation	levels	1, 2 or 3	as defi	ned be	low:	,		<b>•</b> -					
1::	Slight (Lo	w)		2: Mc	oderate	(Medi	um)		3: S	ubstant	ial (High)			
CS	E 724 S	Semant	mantic Web Technology 3-0-0 3 Credits 3 Hours											

#### 3-0-0 CSE 724 Semantic Web Technology

132 | Page

Department of Computer Science and Engineering												
Course	Title of the course	Program Core	Total Nu	mber of c	ontact hours	5	Cred					
Code		(PCR) /	Lectur	Tutori	Practical	Total	it					
		Electives (PEL)	e (L)	al (T)	(P)	Hour						
						s						
CSE-724	Semantic Web	PEL	3	0	0	3	3					
Pre-requis	sites	Course Assessment methods (Continuous Assessment (CA),										
		Mid-Term (MT), End Term (ET))										
Data strue	cture, DBMS, Web	CA+ MT + ET [CA	: 15%, MT	: 25%, ET:	60%]							
Technolog	gy, Basic Computer											
Logic												
Course	• CO1: Un	derstating the phile	osophy of	Semantic V	Web and Lin	ked Data						
Outcomes	6 • CO2: Ur	nderstanding the	writing of	own sem	nantic web	page by	using					
	publicly	available vocabula	ry.									
	• CO3: De	esign and publish o	own data i	n Open Da	ata format,	such that	t other					
	people c	an discover it easil	у.									
	CO4: Abl	le to develop differ	ent semar	ntic web ap	oplications.							
	• CO5: Ge	etting exposure i	n this top	oic for fu	urther highe	er studie	es and					
	research	l.										
Topics	Principles of Lir	nked Data, Introdu	ction, A La	yered App	roach. (3L)							
Covered	Naming Things	with URIs, Making URIs Dereferenceable. (3L)										
	The Semantic V	Veb (SW) vision:V	Vhat is SW	? The diffe	erence betw	een Curre	ent					
	web and SW, S	W technologies, th	e Layered	approach.	(5L)							
	The XML Langu	age, Structuring, N	lamespace	s, Address	sing and Que	erying XIV	IL					
	Documents. (51	L)										
	Resource Desci	ription Framework, RDF syntax, RDF Schema (RDFS). (7L)										
	Construction R	DF and RDFS: Diffe	erent synta	ix impleme	entation, Ho	w to Stor	re into					
	server, Constru	iction of RDFS. (5L)			(01)							
	SPARQL: Query	Language: Syntax	and Quer	y processii	ng. (2L)	0.14						
	Web Ontology	Language OWL: OWL Syntax and Intuitive Semantics, OWL										
	Species. (4L)				. (41)							
	Description Log	gics, Model-Theore	tic Semant	CICS OF OW	L. (4L)		•					
	Ontology Engin	v	on, Constr	ucting Ont	loiogies, Ret	ising exis	ting					
	Drotógó tools /	/ / ) /										
Toyt Pool	Tort Booker	~~LJ										
and/or	1 Somantic	Wah Primar: saca	nd adition	hy Grigori	c Antoniou c	nd Frank	, van					
reference	1.5emantic Harmel	an		by drigon	S AIILUIIIUU d		vali					
material	2 Foundatio	ons of Semantic W/	eh Technol	logies hy H	litzler Pasca	I						
	Reference Boo	ks:		iogics by I								
	1. Ontolog	gical Engineering by Asunción Gómez-Pérez, Mariano Fernández-										
		and Oscar Corcho.										
	2. Linked I	Data: Evolving the Web into a Global Data Space by Tom Heath										
	and Chr	ristian Bizer.										
	Others:											
	Harald Sack ser	emantic web videos.										

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	3	-	2	2	1	-	1	2	3
CO2	2	3	1	2	3	1	-	-	-	1	-	-
CO3	-	3	3	-	3	-	-	-	-	1	1	1
CO4	1	3	2	3	3	1	-	-	-	1	3	2
CO5	1	2	2	3	3	1	-	-	-	1	3	3

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

#### Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

CSE 725	Human Computer Interaction

3-0-0 3 Credits 3 Hours

	Department of Computer Science and Engineering										
Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Cred				
Code		(PCR) /	Lectur	Tutori	Practical	Total	it				
		Electives (PEL)	e (L)	al (T)	(P)	Hour					
						S					
CSE 725	Human Computer	PEL	3	0	0	3	3				
	Interaction										
Pre-requis	sites	Course Assessment methods (Continuous Assessment (CA), Mid-									
		Term (MT), End Term (ET))									
NIL	1	CA+ MT + ET [CA	: 15%, MT	: 25% <i>,</i> ET:	60%]						
Course	• CO1: Ac	quire knowledge at	oout Comp	onents of	HCI.						
Outcomes	6 • CO2: To	learn the basic Psy	arn the basic Psychology of Usable Things.								
	<ul> <li>CO3: To</li> </ul>	learn about Usabili	arn about Usability Engineering, Usability Benchmarking.								
	• CO4: To	learn Inspection m	ethods, te	sting meth	iods, design						
Topics	Introduction, P	sychology of Usabl	e Things. (	7L)							
Covered	Usability Engin	eering, Know the User, Usability Benchmarking. (7L)									
	Goal-Oriented	Interaction Design, Prototyping. (7L)									
	Usability Inspe	ction Methods, Usability Testing Methods. (7L)									
	Usability in Pra	ctice, Visual Design and Typography. (7L)									
	Icon Design, Ca	se Studies. (7L)									
Text Book	s, Text Books:										
and/or	1.Dix A., Finlay	/ J., Abowd G. D. ar	nd Beale R.	Human Co	omputer Int	eraction,					
reference	Pearson Educat	ion, 2005.									
material	2.Preece J., Ro	gers Y., Sharp H., B	aniyon D.,	Holland S.	and Carey	r. Human					
	ComputerIntera	iction, Addison-We	sley, 1994								
	Reference Bool	(S:									
	B. Shneiderm	an, Designing the L	Jser Interfa	ace, Addiso	on Wesley 2	000.					
	Others:										
	NPTEL online	course.									

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1	1	1	1	1	1	1	1
CO2	2	2	3	2	1	2	1	1	1	1	1	3
CO3	3	2	3	2	2	2	1	1	2	2	2	3
CO4	3	2	2	1	2	1	1	1	2	1	1	3

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

CSE 726 Incentive Mechanisms in Co	omputer Science 3-0-0	3 Credits	3 Hours
------------------------------------	-----------------------	-----------	---------

	Dep	oartment of Com	puter Scie	nce and Eng	gineering							
Course	Title of the	Program	Total Nu	mber of cor	tact hours		Credit					
Code	course	Core (PCR) /	Lecture	Tutorial	Practical	Total						
		Electives	(L)	(T)	(P)	Hours						
		(PEL)										
CSE 726	Incentive	PEL	3	0	0	3	3					
	Mechanisms											
	in Computer											
	Science											
Pre-requi	isites	Course Assessment methods (Continuous (CT), Mid-Term (MT) end										
		assessment (E	:A))									
1. Int	roduction to											
CO	omputing											
Course	After complet	After completion of this course, the students										
Outcome	• CO1: C	an have the effi	ciency to tr	nink about i	ncentive issu	les in comp	outation.					
	• 002:0	an learn the too	HS LO LACKIE	dorn state	ve issues.	of incont	ive becad					
	• CO3: 0		a the mod	uem state	of the art	or incent	ive based					
		an analyzo tho g	conarios o	f incontivo k	asod compu	itation						
	• CO4. C	an analyze the s		solving rea	l life problem							
Topics		• Motivation to	the course	with canor	nical ideas of	game theo	nrv					
Covered	introduction					game thee	(31)					
covered	Incentives in	labour market	· School Ch	oice Media	al Residency	, matching	(JL) Kidnev					
	exchange. H	ouse allocation	etc.	loice, mean		matering	, maney					
							(51)					
	Auctions and	d Incentive issue	es.				(3-)					
							(5L)					
	Incentives in	Incentives in Voting, Knapsack Voting , Participatory Democracy										
				,	1		(4L)					
	Incentives in	P2P networks.	Incentives	for social p	articipation	(such as St	ack					
	Exchange et	<b>c.)</b> .		•	•		(5L)					

		Incentive study in selfish routing	(3L)
		Incentives in BGP routing	(21)
		Incentives in cryptocurrencies	(3L)
		Reputation system and incentive issues	(2L)
		Incentivizing Forecasts and Feedback	(2L)
		Prediction Markets Time-Inconsistent Planning	(2L) (2L)
		Fair Division	(4L)
Т	ext	Text Books:	
B a re	Books, Ind/or eference	<ol> <li>N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorith Theory. Cambridge University Press, New York, NY, USA, 2007, 0521872829.</li> </ol>	mic Game ISSN: 978-
n	naterial	<ol> <li>T. Roughgarden, Twenty Lectures on Algorithmic Game Theory, University Press, 2016, ISSN: 978-1316624791.</li> </ol>	Cambridge
		Reference Books:	
		1. T. Roughgarden, CS364A: Algorithmic Game Theory Course University), 2013 (Lecture Notes).	(Stanford
		<ol> <li>T. Roughgarden, CS269I: Incentives in Computer Science Course University), 2016 and later offerings (Lecture Notes).</li> </ol>	e (Stanford
Мар	ping of CO	(Course Outcome) and PO (Programme Outcome)	

ſ	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	COs												
	CO1	3	2	2	2	1	-	-	-	-	-	1	2
	CO2	1	2	2	2	3	1	-	1	1	1	1	2
	CO3	3	3	3	3	2	1	-	1	-	-	1	3
	CO4	2	3	3	3	1	1	-	-	1	1	1	2
	CO5	3	2	3	2	2	1	1	1	-	-	1	2

## Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)2: Moderate (Medium)3: Substantial (High)

# **EIGHTH SEMESTER**

CS <u>E 811</u>	. Dis	tributed Systems	3-0-0 3 Cre	dits 3	Hours									
		Departm	ent of Computer S	cience and	Engineeri	ng		Γ						
Cou	rse	Title of the course	Program Core	Total Nu	mber of co	ontact hours	6	Cred						
Cod	e		(PCR) /	Lectur	Tutori	Practical	Total	it						
			Electives (PEL)	e (L)	al (T)	(P)	Hour							
005	044			-		•	S	2						
CSE	811	Distributed	PEL	3	0	0	3	3						
Bro	roquic	Systems		ont mother	de (Continu		mont (CA	) Mid						
FIE-	requis	Siles	Term (MT), End Term (ET))											
One	rating	systems	CA+ MT + FT ICA	· 15% MT	· 25% FT·	60%]								
Con	nputer	Networks		. 1370, 1011	. 2370, 21.	00/0]								
Cou	irse	• CO1: To	explain the paradig	gm of distr	ibuted con	nputing.								
Out	comes	• CO2: To	explore various ex	kisting and	possible a	architecture	s of dist	ributed						
		systems												
		<ul> <li>CO3: To</li> </ul>	properly apprecia	te the iss	ues that a	rise in distr	ibuted s	ystems						
		and expl	ore solutions for th	ne problem	ns.									
		• CO4: To	fully appreciate th	e advanta	ges to be o	obtained fro	om a dist	ributed						
		environr	ent wrt fault tolerance, load sharing etc.											
Тор	ICS	Introduction to	Distributed Syster	ns. Motiva	tions. Desi	gn Issues.								
Cov	erea	(3L) Clocks in a Dist	ributed Sustana Su	nahranitat	ion lacuas	Logical Clay	aka Caus							
			Induced System. Sy	nchronizat	ion issues.	LOGICAL CIOC	LKS. Caus	di (21)						
		Distributed Sta	te Detection Glob:	al State Co	nsistent (	ut Global	State red	(JL) Cording						
		algorithm.						Jorung						
		(2L)												
		Termination De	etection. Credit bas	ed algorith	nm. Diffusi	on Computa	ation bas	ed						
		algorithm.		-										
								(2L)						
		Distributed Mu	tual Exclusion. Tok	en based a	ind non-to	ken based a	lgorithm	s.						
		(4L) Deadlock	s in Distributed Sys	tems. Reso	ource alloc	ation Mode	ls. Deadl	ock						
		Prevention. De	adlock Avoidance -	- Safe stat	es. Deadlo	ck detectior	n and							
		Correction. Pha	antom Deadlocks. (	Centralized	, Distribut	ed and Hiera	archical							
		deadlock detec	tion algorithms.					(51)						
		Fault recovery	Classes of Faults	Packward	and Forwa	rd racovary	Loghac	(5L) od						
		recovery Chec	knoints Shadow na	backwalu oging	anu i 01 wa	Turecovery	. LUg Das	eu						
		(51)		181118.										
		Fault Tolerance	e. Data Replication.	Quorum A	lgorithms	. Distributed	l Commit							
		Protocols. 2-ph	ase commit. 3-pha	se commit	. Election /	Algorithms.	Bully	_						
		algorithm. Ring	topology algorithr	n.		-	-							
		(8L)												
		Byzantine fault	s and Agreement P	rotocols.										
		(2L)												

	<ul> <li>Distributed File systems. Mechanisms. Stateful and Stateless servers. Scalability.</li> <li>Naming and Name Servers.</li> <li>(4L)</li> <li>Distributed Scheduling. Load Balancing. Load Estimation. Stability. Process</li> <li>Migration. Remote Procedure Calls. Transparency. Binding.</li> <li>(4L)</li> </ul>
Text Books, and/or reference material	Text Books: 1. Advanced Concepts in Operating Systems. Singhal and Sivaratri. McGraw Hill. Refenence Books:
	<ol> <li>Operating Systems: A Concept Based Approach. Dhamdhere. McGraw Hill.</li> <li>Distributed Operating Systems: Concepts and Design. P.K.Sinha. Prentice Hall.</li> <li>Distributed Operating Systems. A.Tanenbaum. Pearson Education.</li> <li>Distributed Systems: Concepts and Design. Coulouris et.al. Pearson Education.</li> </ol>

## Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	2	3	3	2	3	3	2	-
CO2	3	2	3	2	2	2	2	2	2	3	2	-
CO3	3	2	3	2	2	2	2	2	2	3	2	-
CO4	3	2	3	2	2	2	2	3	3	3	3	-

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

#### CSE 812 Computer Vision 3-0-0 3 Credits **3 Hours**

	Department of Computer Science and Engineering								
Course	Title of the course	Program Core	Total Nu	imber of co	ontact hours	5	Cred		
Code		(PCR) /	Lectur	Tutori	Practical	Total	it		
		Electives (PEL)	e (L)	al (T)	(P)	Hour			
						S			
CSE 812	Computer Vision	PEL	3	0	0	3	3		
Pre-requis	sites	Course Assessment methods (Continuous Assessment (CA), Mid-							
		Term (MT), End Term (ET))							
Probabilit	y and Statistics,	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]							
Algebra, C	Optimization,								
Computer	r Graphics								
Course	• CO1: Un	derstanding basic	architectu	ire and pri	inciples of c	computer	r vision		
Outcomes	s systems.								
	CO2: Implementation of computer vision algorithms including depth								
	estimatio	on, multi-camera v	iew and m	otion anal	ysis compor	nents.			
	CO3: Apply basic image processing and feature extraction techniques in								

	order to design computer vision algorithms.
	CO4: Analysis of pattern analysis and image segmentation techniques used
	for computer vision systems.
Taslas	COS: Design and development of real time computer vision systems.
Covered	Digital Image Formation and low-level processing: Overview and State-of-the-art, Fundamentals of Image Formation, Transformation: Orthogonal, Euclidean, Affine, Projective, etc; Fourier Transform, Convolution and Filtering, Image Enhancement, Restoration, Histogram Processing. [5L]
	Depth estimation and Multi-camera views: Perspective, Binocular Stereopsis: Camera and Epipolar Geometry; Homography, Rectification, DLT, RANSAC, 3-D reconstruction framework; Auto-calibration. Apparel. [6L]
	Feature Extraction: Edges - Canny, LOG, DOG; Line detectors (Hough Transform), Corners - Harris and Hessian Affine, Orientation Histogram, SIFT, SURF, HOG, GLOH, Scale-Space Analysis- Image Pyramids and Gaussian derivative filters, Gabor Filters and DWT.
	[8L]
	Image Segmentation: Region Growing, Edge Based approaches to segmentation, Graph-Cut, Mean-Shift, MRFs, Texture Segmentation; Object detection. [5L]
	Pattern Analysis: Clustering: K-Means, K-Medoids, Mixture of Gaussians, Classification: Discriminant Function, Supervised, Un-supervised, Semi-supervised; Classifiers: Bayes, KNN, ANN models; Dimensionality Reduction: PCA, LDA, ICA; Non-parametric methods.
	[8L]
	Motion Analysis: Background Subtraction and Modeling, Optical Flow, KLT, Spatio- Temporal Analysis, Dynamic Stereo; Motion parameter estimation. [4L]
	Shape from X: Light at Surfaces; Phong Model; Reflectance Map; Albedo estimation; Photometric Stereo; Use of Surface Smoothness Constraint; Shape from Texture, color, motion and edges. [6L]
Text Books,	Text Books:
and/or	Richard Szeliski, Computer Vision: Algorithms and Applications, Springer-
reference	Verlag London Limited 2011.
material	• D. A. Forsyth, J. Ponce, Computer Vision: A Modern Approach, Pearson
	Education, 2003.
	Reference Books:
	• Richard Hartley and Andrew Zisserman, Multiple View Geometry in

			•	Compu 2004. K. Fuk Edition, R.C. Go	ter Vis unaga; , Acade nzalez	ion, Se Introd mic Pre and R.E	econd uction ess, Mo E. Wood	Edition, to Sta rgan Ka ds, Digi ¹	, Camb atistical ufmani tal Imaj	Patte Patte n, 1990 ge Proc	University rn Recog essing, A	/ Press, gnition, ddison-	March Second Wesley,
		Others:											
			Others		-								
			Swayaı	m Onlin	e Cours	se							
	1. <a href="https://swayam.gov.in/nd1_noc19_cs58/preview">https://swayam.gov.in/nd1_noc19_cs58/preview</a>												
			2.	https://	/www.c	courser	a.org/c	ourses	query=	compu	ter%20vis	sion	
			3.	https://	/www.e	edx.org	/course	/comp	uter-vis	ion-and	d-image-a	nalvsis-3	3
			4	https://	/www.r	nooc-li	st com/	tags/co	ompute	r-vision	1		_
Л	anning of			itcomo	) and D		ramm		mal	1 113101	-		
IVI	apping of												
	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12
	COs												
	CO1	3	2	3	2	2	-	-	-	-	-	-	2
	CO2	2	3	3	3	2	-	-	-	-	-	-	2
	CO3	2	2	3	2	3	-	-	-	-	-	-	2
	CO4	2	3	2	3	2	-	-	-	-	-	-	2

_

_

2 Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

CO5

2

2: Moderate (Medium)

3

3

3

3: Substantial (High)

2

_

CSE 813	Optical Networks	3-0-0	3 Credits	3 Hours

	Department of Computer Science and Engineering								
Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Cred		
Code		(PCR) /	Lectur	Tutori	Practical	Total	it		
		Electives (PEL)	e (L)	al (T)	(P)	Hour			
						S			
CSE 813	Optical Networks	PEL	3	0	0	3	3		
Pre-requis	sites	Course Assessment methods (Continuous Assessment (CA), Mid-							
		Term (MT), End Term (ET))							
Basic Con	cepts of Computer	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]							
Networks, and Algorithms									
Course	• CO1: Un	derstanding the f	undament	al concept	s and ident	tifying di	fferent		
Outcomes	s issues of	optical networks.							
	• CO2: Co	mprehend the ba	isic conce	ots and so	olution tech	nniques f	for the		
	different	fundamental pro	blems like	routing a	nd wavelen	gth assig	gnment		
	(RWA), v	irtual topology de	sign, wave	length rero	outing, and t	traffic gro	ooming		
	in optica	l network design.							
	• CO3: Acc	quire knowledge of	the wave	length cor	vertible net	work.			
	<ul> <li>CO4: Cor</li> </ul>	CO4: Comprehend the multicast routing in optical networks.							
Topics	1. Fundamenta	ls and Different P	r <mark>oblems</mark> : (	Optical fibe	er principles	, Optical			
Covered	transmissior	transmission system, Wavelength Division Multiplexing(WDM), optical							
	networking	networking evolution, Optical Network Architectures, Different issues in							

-		· · ·											
			wav	elength	n routed	d netwo	orks.						(061)
			2. Rou the Rou Rou algo	u <b>ting ar</b> RWA pr ting, Ex ting. W prithm.	n <b>d Wav</b> roblem, haust F aveleng	<b>elengti</b> , Route Routing gth Sele	<b>n Assigr</b> Selecti , Least ( ection a	om algo Conges Igorithi	( <b>RWA)</b> a rithms ted Pat ms. Joir	algorith – Fixed h Routi nt wave	nms: ILP f Routing, ng, Limite length-Ro	formulat Fixed Ali ed altern oute sele	ion of ternate ate ction
			3 Way	velengtl	n Conve	ortihle	Networ	·ks· Ne	ed for \	Navele	ngth Conv	verters	(U/L)
			Wav Perf Wav	velengt formant velengt	h conve ce Evalu h Conve	ertible S uation o ersion,	Switch A of Conv Conver	Archited ertible ter Plac	cture, R networ cement	outing ks, Net proble	in Conver work with m.	tible Net Sparse	tworks,
								_	<i>c</i> .				(06L)
			4. <b>Wa</b> in w	4. <b>wavelength Rerouting Algorithm</b> : Benefits of wavelength rerouting, Issues in wavelength rerouting, Rerouting algorithm.									
													(04L)
			5. Virt virtu forr	ual Top ual topo nulation	ology I ology, L n. Virtu	<b>Design</b> : imitatio al topo	Physic ons on v logy de	al and ` /irtual t sign he	Virtual opolog uristics	topolog y, Virtu	gy, Traffic al topolog	routing gy proble	over em
			1011	indiaciói	i, viica		1057 40	5161110		•			(06L)
													. ,
			6. <b>Traf</b> forr TGC	<b>fic Groc</b> nulatior P. etc)	<b>oming:</b> h of the for the	Basic co traffic traffic s	oncepts groom groomi	, Groor ing prol ng prob	ning no blem, D lem.	ode arch Differen	nitecture, t heuristio	ILP cs (MST,	MRU,
				, ,		(	<b>, ,</b>	01					(06L)
			7. <b>Opt</b> i split Mul Virt	i <b>cal Mu</b> ting noc ticast T ual sou	lticast I de and I ree ger rce base	Routing MI node neration ed tree	: Multi e, Netw n algori genera	cast rou vork wit thms – ition alg	uting pr h full s Source gorithm	oblem, plitting based, is.	architect and spars Steiner b	ure of Li se splittin ased and	ght ng, d
													(07L)
	Text Bo	oks,	Text B	ooks:				_					
	and/or	•••	1.	WDM	OPTIC/		WORKS	Concep	ots, Des	sign and	d algorithi	ms.	
	materia	ce	2	07 C. SI OPTIC	Vа кат АГ МЕТ		y and N S by Ris	/ionan ( wanath	Mukh	MY (PH ariaa (T	п). мн)		
	matcha		۷.	orne		WORK.	5 DY DI3	wanath			iviii).		
			Refere	nce Bo	oks:								
			1.	Optical	Netwo	orks: A	Practica	al Persp	pective	(3rd Ec	lition) by	R. Rama	iswami,
				K. Sivar	ajan, G	. Sasaki	(Morg	an Kau	fmann	Publish	ers).		
Ma	apping o	f CO (Co	ourse Ou	utcome	) and P	O (Prog	gramme	e Outco	ome)			_	
	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
-	<u>CO</u>	2	2	2	1	1							2
-	<u> </u>	2	2	2	2	2	-	-	-	-	-	-	2
-	<u> </u>	2	3	3	ן ר	2	-	-	-	-			3
-	CO4	2	3	3	2	2	_	_	_	_	_	_	י א
Co	rrelation	levels	1, 2 or 3	as defi	ined be	low:	I	I	I	I	<u> </u>	1	•
1:	Slight (Lo	w)	,	2: Mc	oderate	(Medi	um)		3: S	ubstant	tial (High)		
141	Page	-				-							
	. 0												

SE 814	Inte	rnet of Things	3-0-0	3 Cre	dits 3	Hours							
	1	Departm	ent of Com	puter S	cience and	l Engineeri	ng		1				
Course	Tit	tle of the course	Program	Core	Total Nu	mber of co	ontact hours	5	Cred				
Code			(PCR) /		Lectur	Tutori	Practical	Total	it				
			Electives	(PEL)	e (L)	al (T)	(P)	Hour					
								S					
CSE 814	Int	ernet of Things	PEL		3	0	0	3	3				
Pre-requi	 sites		Course A	Course Assessment methods (Continuous Assessment (CA) Mid									
e . equi	5.000		Term (M	T) Fnd	Term (FT))				()) 1110				
			CA+ MT -	+ FT <b>[</b> CA	: 15%. MT	: 25%. FT: (	60%]						
Course		CO1: Unit	derstand th	ne basic	concepts of	of Internet	of Things.						
Outcome	s	• CO2: Pr	eparing th	ie right	backgrou	und to ta	ke up rese	earch wo	orks in				
	-	emerging	g wireless t	echnolo	gies and Ir	nternet of	Things.						
		• CO3: Se	rvice com	puting	models fo	or IoT - e	edge comp	uting, N	1achine				
		learning	mechanisn	ns in IoT	scenarios								
		• CO4: Ab	le to unde	erstand	the innov	ation opp	ortunity in	Іот арр	lication				
		segment	s.				,						
Topics		Module 1: Intro	duction to	loT and	Sensing (	(3L)							
Covered		Introduction to	oT, Sensing	oT, Sensing, Edge computing, Data processing, Learning.									
		Introduction to	ayered arc	hitectu	re of IoT.								
	Module 2: Sens			uating	(4L)								
		working principl	e of some s	sensors	like Ultras	onic senso	r, Thermal S	Sensors,					
		Infrared Sensors	;, Pollutant Sensors, Temp, IMU Sensor etc.; basic actuation										
		mechanisms and	d common actuators.										
		Module 3: Micro	ocontroller/Microcomputer (4L)										
		Open source ha	rdware, Play with Sensors using Arduino Programming, Local data										
		processing using	g Raspberry Pi/Uddo Neo, using different Network Modules										
		(Bluetooth, WiFi	, GSM/GPF	RS).									
		Module 4:Wirel	ess Netwo	rks Pres	ent and Fu	u <b>ture</b> (10L)	)						
		Concept of TCP/	IP protocol Stack, 802.11 Protocol (WiFi Network), LoRa Netwo						twork,				
		Acoustic Commu	unication, S	Socket P	rogrammi	ng, Wiresh	ark Tool						
		Module 5: IoT F	Protocols (4	4L)									
		HTTP, QUIC, CoA	AP, MQTT.										
		Module 6:Perfo	rmance an	d Secur	ity in IoT(6	SL)							
		Performance mo	odeling of s	stochast	ic systems	, QoS mod	eling, estim	ation of I	оТ				
		service response	e times; fundamentals of lightweight security protocols. IS/ISO/IEC										
		TR 22417: 2017	IoT general standards.										
		Module 7: Case	Study of IoT Based Applications (11L)										
		Case Study 1: (a	activity Identification) Human Activity using Ultra sonic										
		Sensors/Therma	31 Sensors.										
		Case Study 2: (E	<b>Environment Monitoring)</b> Pollution Monitoring and Forecasting in										
		Indoor and Outo	000r.										
		Case Study 3: (R	oad iransp	portatio	n System)	(a)importa	ant Pols Usir	ig GPS tr	alls,				

	(b)Context Aware Speed Profiling from Mobile Phone Sensors, (c)My Smartphone							
	Can Monitor My Street-lights.							
	Case Study 4: (Challenged Networks) offline Crisis Mapper Design using ChatBot,							
	IoT Protocol Stack Development using Acoustic Communication.							
	Case Study 5: (Agriculture Monitoring): Smart Farming using MQTT Protocol							
	through Cost-effective Heterogeneous Sensors.							
	SmartCity IoT: Integration of multiple IoT application segments, dynamic directory							
	management, service replication and server selection; putting it all together.							
Text Books,	Text Books							
and/or	1. "The Internet of Things: Enabling Technologies, Platforms, and Use							
reference	Cases", by Pethuru Raj and Anupama C. Raman (CRC Press).							
material	2. "Internet of Things: A Hands-on Approach", by Arshdeep Bahga and							
	Vijav Madisetti (Universities Press).							

### Mapping of CO (Course Outcome) and PO (Programme Outcome)

	POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
	COs												
	CO1	3	2	1	-	-	2	1	-	-	1	-	1
	CO2	3	2	2	2	1	1	1	1	-	1	-	2
ſ	CO3	2	3	2	1	3	2	2	2	1	2	1	1
	CO4	-	3	2	3	3	3	2	2	2	2	3	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

## CSE 815 Cloud Computing 3-0-0 3 Credits 3 Hour

	Department of Computer Science and Engineering									
Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Cred			
Code		(PCR) /	Lectur	Tutori	Practical	Total	it			
		Electives (PEL)	e (L)	al (T)	(P)	Hour				
						S				
CSE 815	Cloud Computing	PEL	3	0	0	3	3			
Pre-requis	sites	Course Assessme	ent metho	ds (Contin	uous Assess	ment (CA	A),			
		Mid-Term (MT),	End Term	(ET))						
		CA+ MT + ET [CA	: 15%, MT	: 25%, ET:	60%]					
Course	After the compl	etion of this course	e, student v	will be able	e to:					
Outcomes	s 🛛 🔹 CO1: Ur	nderstand the core	e concepts	s of the c	loud compu	iting par	adigm:			
	paradigr	n shift, the charac	teristics, a	Idvantages	and challe	nges of v	various			
	models a	and services.								
	• CO2: Ap	ply fundamental c	oncepts in	cloud inf	rastructures	to unde	erstand			
	the trac	leoffs in power,	efficiency	and cost,	and then	study h	now to			
	leverage	and manage singl	e and mul	tiple data	centers to b	uild and	deploy			
	cloud ap	plications that are	resilient, e	elastic and	cost-efficier	nt.				
	• CO3: Le	arn system, netwo	ork and sto	orage virtu	alization ar	nd outlin	e their			
	role in e	role in enabling the cloud computing system model.								
	• CO4: A	nalyze the perfo	rmance,	scalability,	and avai	lability	of the			
	underlyi	underlying cloud technologies and software.								
	<ul> <li>CO5: Ide</li> </ul>	CO5: Identify security and privacy issues in cloud computing.								

	• CO6: Explain recent research results in cloud computing and identify their pros and cons.											
Topics	Introduction to Services Oriented Computing - Service Oriented Software, Web											
Covered	Applications Paradigm.[2]											
	Services Oriented Architecture - SOA and Web Services Fundamentals, SOA and											
	Service-Orientation, SOA - Planning and Analysis, SOA - Technology and Design,											
	SOA Reference model (OASIS), SOA standard S3, Business Process and SOA,											
	Software as a Service (SaaS) [4]											
	Web Services - Introduction to Web Services, Web Service Jargon – Publishing,											
	Discovery and Binding, Web Service Technologies – WSDL, SOAP, UDDI, Issues and											
	Challenges – MANET, CLOUD, DTN, Formal, Representation of Services[4]											
	Cloud Computing Basics- Overview, Applications, Intranets and the Cloud.											
	Organization and Cloud Computing- Benefits, Limitations, Security Concerns. [2]											
	Cloud Infrastructure - Data center, Virtualization, Clients, Security, Network,											
	Services and Delivery Models (SaaS, PaaS, IaaS). Case study like Amazon EC2,											
	Microsoft Azure etc. Deployment types (Private, Public, Hybrid) [4]											
	Software as a Service (Saas)- Understanding the Multitenant Nature of SaaS											
	Solutions, Understanding SOA. [2]											
	Platform as a Service (PaaS)- IT Evolution Leading to the Cloud, Benefits of Paas											
	Solutions, Disadvantages of Paas Solutions. [2]											
	Infrastructure as a Service (laas)-Understanding laas, Improving Performance											
	through Load Balancing, System and Storage Redundancy, Utilizing Cloud-Based											
	Virtualization Understanding Virtualization History Server Virtualization Data											
	Storage Virtualization [A]											
	Securing the Cloud- General Security Advantages of Cloud-Based Solutions											
	Introducing Business Continuity and Disaster Recovery. Disaster Recovery-											
	Understanding the Threats. [4]											
	Migrating to the Cloud-Cloud Services for Individuals, Cloud Services Aimed at the											
	Mid-Market, Enterprise-Class Cloud Offerings, and Migration. [4]											
	Designing Cloud Based Solutions-System Requirements, Design Is a Give-and-											
	Take Process. Coding Cloud Based Applications-Creating a Simple Yahoo Pipe,											
	Using Google App Engine and creating a Windows Azure Application. Application											
	Scalability-Load-Balancing Process, Designing for Scalability, Capacity Planning											
	Versus Scalability, Scalability and Diminishing Returns and Performance Tuning.											
	[7]											
Text Books,	Text Books:											
and/or	Cloud Computing: A Practical Approach by Anthony T. Velte Toby J. Velte, Robert											
reference	Elsenpeter, The McGraw-Hill Publisher.											
material	Cloud Computing: SaaS, PaaS, IaaS, Virtualization and more. by Dr. Kris Jamsa,											
	Jones & Bartlett Publisher.											
	Keterence Books:											
	Cloud Computing Sible by Barrie Sosinsky, Published by Wiley Publishing.											
	and Dr. Forn Halnor, Wiloy Publiching											
	Cloud Computing Theory And Practice Dane Marinerous Elsevier											
	Ciouu computing meory and Practice Danc.iviamercus, Eisevier.											
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------
COS												
CO1	2	2	2	-	-	2	-	1	2	-	-	-
CO2	1	2	3	-	2	1	1	1	1	-	-	-
CO3	1	1	-	-	2	2	1	-	2	-	-	-
CO4	3	2	2	3	2	2	-	-	1	-	-	1
CO5	-	1	2	3	1	3	-	3	-	-	-	2
CO6	3	3	1	3	2	-	-	-	-	-	-	3

### Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

3: Substantial (High)

|--|

	Departm	ent of Computer S	cience and	l Engineeri	ing					
Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Cred			
Code		(PCR) /	Lectur	Tutori	Practical	Total	it			
		Electives (PEL)	e (L)	al (T)	(P)	Hour				
						S				
CSE 816	Mobile Computing	PEL	3	0	0	3	3			
Pre-requis	sites	Course Assessme	ent metho	ds (Contin	uous Assess	ment (CA	N) <i>,</i> Mid-			
		Term (MT), End	Term (ET))							
Computer	r Networks	CA+ MT + ET [CA	: 15%, MT	: 25%, ET:	60%]					
Course	CO1: Inti	CO1: Introduce the basics of Wireless Networks.								
Outcomes	6 • CO2: Pr	<ul> <li>CO2: Preparing the right background to take up research wor</li> </ul>								
	emergin	emerging wireless technologies and Internet of Things.								
	• CO3: To	CO3: To introduce the scopes of using sensing, edge computing, Mac								
	learning	mechanisms in per	rvasive cyb	per physica	ll systems.					
	• CO4: Ab	le to understand	the innov	ation opp	ortunity in	IoT appl	lication			
	segment	S.				_				
	• CO5: H	ands-on experier	nce on \	Wireless	Networks	&	Mobile			
	Computi	ng.								
Topics	Module 1: Phys	sical Layer (6 L)								
Covered	Bit transmission	n over Wireless, Va	ry Much d	ifferent fro	om Wired N	etwork.				
	Module 2: Mac	: Layer <b>(8 L)</b>								
	Access in Share	a Medium, Differe	nce betwe	en Wired	WAC &	Wireless	S MAC,			
	Different Type	of MACs (a) Rando	m MAC (b)	) Schedule	d MAC, Exar	nples of I	MAC			
	Implementation	n (WiFi Protocol8	302.11, Blu	letooth Pro	otocol805.	15).				
	Madula 2: Nati	work lover (01)								
	woaule 3: Net	work Layer <b>(8 L)</b>								

	Reactive Routing, Proactive Routing, DSR Principle, AODV Principle, Location Aware Routing. Adhoc Network, Delay Tolerant Network, Opportunistic Network Introduction, Architecture & amp; Applications, Routing Algorithms – Epidemic, Prophet, Spray & amp; Wait, Spray & amp; Focus, Maxprop Simulation Tool - ONE Simulator.
	<b>Module 4:</b> Transport Layer <b>(8 L)</b> Wireless TCP and rationale, Difference between Wired TCP and Wireless TCP, QoS Measurement of Wireless Networks.
	<b>Module 5:</b> Modelling <b>(8 L)</b> Mathematical Modelling of Network Functionalities - Combining them to derived overall performance.
	Module 6: Case Study: Implementation of opportunistic Networks in Challenged Network scenarios (4 L) (a) Connection Mechanism (b) Sync - Transferring the information in Collaborative manner (c) Offline Dashboard (Information Summarization) (d)security
Text Books, and/or reference material	Text Books:         1. "Mobile Communication", by Jochen Schiller (PEARSON EDUCATION LIMITED).         2. "Wireless Networking" A kumar, D. manjunath, J. Kuri, Elsevier, 2008.         3. "Wireless Communication", T. S. Rappaport, Pearson, latest edition.         Reference Books:         1 JEEE Infocom Tutorials slides by Prof. Nitin Vaidya
	Others: Tools: Sniffer Tool (Wireshark) Simulation Tools: OMNET ONE
	NS3

POs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
COs												
CO1	1	1	1	1	-	1	-	-	-	-	-	-
CO2	2	2	3	2	-	2	-	-	-	2	-	-
CO3	2	2	2	2	3	3	3	1	-	-	-	3
CO4	2	1	3	3	-	3	-	-	-	-	3	-
CO5	2	3	3	3	3	3	3	-	3	3	2	3

# Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

3: Substantial (High)

)T\	Expert Syst	Departm	3-U-U	5 Cre	cience and	Engineeri	ησ					
Courco	Title of th		Brogram	Coro		mbor of co	ng Ing		Cro			
Code	The of th	e course		Core	Loctur			Tatal				
Coue								TOLAI	Ľ			
			Electives	o (PEL)	e (L)	ai (1)	(P)	nour				
			חבו		2	0	0	5 2	2			
C2E 017	EXPERIS	ISTEIVIS	PEL		3	0	0	3	5			
Pre-requi	sites		Course Assessment methods (Continuous Assessment (CA), Mid-									
Artificial I	ntelligence,	Data	Term (M	IT) <i>,</i> End 1	Гerm (ET))							
Mining, P	attern Reco	gnition,										
ООР												
			CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]									
Course	•	CO1: Ide	a about Kr	nowledge	e Base & Ex	xpert Syste	ems.					
Outcome	s •	CO2: Ide	a of Infere	nce Tool	and Infer	ence Engir	ne and differ	rent met	hods			
		Inferenc	e Methoo	lologies.								
	•	CO3: Io	dea abou	t Reas	oning un	der Unce	ertainty ar	nd Unce	ertai			
		Manage	nent which is really crucial under present day scenario.									
	•	CO4: Co	ncept of t	cept of the Design of Expert System Components and Expert								
		Systems	•									
	•	CO5: Sor	ne Exampl	es of Pra	ictical Expe	erts Systen	n.					
Covered	1.	Introduc Advanta Applicat The Diff Knowle Proposi quantifi	ction to Exp ages of Ex- cions and D ferent Tech dge – Prod tional and iers. [7L]	pert Syst opert Sys omains onniques f luctions - Predicat	ems: Defir tems – Ch – Procedur for Knowle – Semantic e Logic – T	nition of ar aracteristic ral and No dge Repre c Nets- Fra he univers	n Expert Syst cs of Expert n procedura sentation: N mes – Logic sal and exist	tem – Systems Il System Meaning s – ential	- s. [6			
	3.	<ol> <li>The Different Methods of Inference : Trees, Lattice and Graph – Sta Problem Space – Rules of Inference – Logic Systems – Resolution Sy and Deductions – Forward and Backward Reasoning – Meta knowle [7L]</li> </ol>							ite ar vsten edge.			
	4.	<ol> <li>The Reasoning Under Uncertainty and Inexact Reasoning – Uncerta Types of Errors – Classical Probability – Experimental and Subjective probabilities – Compound and Conditional Probabilities – Temporal Reasoning – Uncertainty in Inference Chains – Evidence Combinatic Uncertainty and Rules – Certainty Factors – Dempster- Shafer Theo Approximate Reasoning. [8L]</li> </ol>										

PUS	PUI	PUZ	PU3	PU4	PU5	P06	101	PUð	PU9	POID	POIL	POIZ	
Mapping	of CO (C	ourse Ou	Itcome	) and P	O (Prog	grammo	e Outco	me)	DOD	<b>DO10</b>	DO11	DO12	
			2.	Neural	Netwo	rks for I	Pattern	Recogr	nition –	C.M. Bisł	nop – Ox	ford.	
			1.	Artificia	al Neura	al Netw	orks – I	3. Yegn	anaray	ana – PHI			
		Refere	nce Bo	oks:									
mate	rial		2. Pa	ittern C	lassific	ation- ·	– Duda,	Hart &	Stork -	– J. Wiley	& Sons.		
refere	ence		Ηοι	ise.									
and/o	or		1. Expert Systems Principles and Programming – Bikash Publishing										
Text I	Books,	Text Bo	Text Books:										
		AM	onitorir	ng Prob	lem.[7l	_]							
		Exec	ution C	Control	– Certa	inty Fa	ctors –	Decisio	n Trees	– Backwa	ard Chai	ning –	
		Phas	Phases and Control Facts – Importing and Exporting facts – Modules and										
		6.	6. Some Practical Examples of Expert System Design – Modular Design –										
			Development – Expert System Life Cycle – A Life Cycle Model. [7L]										
			Appro	oriate P	roblem	ı – Stag	es in th	e devel	opmen	t – Errors	in		
		5.	The De	esign of	Expert	System	ns Tool a	and Exp	pert Sys	stems : Se	lecting		

		. • +											
	COs												
	CO1	3	3	2	3	3	-	-	-	-	-	-	3
ſ	CO2	3	2	2	3	3	-	-	-	-	-	-	3
ſ	CO3	3	2	1	2	3	-	-	-	-	-	-	3
	CO4	3	2	1	2	3	-	-	-	-	-	-	3
	CO5	3	2	1	2	3	-	-	-	-	-	-	3

Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)

				H-	<b>.</b>
CSE 818 E	thics, Society,	and Computer Scie	ence 3-0-0	3 Credits	3 Hours

	Department of Computer Science and Engineering										
Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	5	Credi				
Code		(PCR) /	Lectur	Tutoria	Practical	Total	t				
		Electives (PEL)	e (L)	l (T)	(P)	Hour					
						S					
CSE818	SE818 Ethics, Society, PEL 3 0 0 3										
	and Computer										
	Science										
Pre-requi	sites	Course Assessment methods (Continuous Assessment (CA), Mid-									
		Term (MT), End	Term (ET))								
Basic know	wledge of	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]									
programn	ning and AI/ML										
Course	CO1: To ur	derstand profession	onal and e	thical resp	onsibilities,	includin	g those				
Outcome	s defined in t	he ACM/IEEE Profe	essional Co	de of Ethio	cs.						
	• CO2: To e	nsure fairness, acc	countability	y, and trar	nsparency w	hile wor	king on				
	machine lea	arning, artificial int	elligence a	ind related	fields.						
	<ul> <li>CO3: To ap</li> </ul>	CO3: To appreciate the threats to privacy posed by modern data aggregation									
	and data pr	and data processing techniques.									
	• CO4: To de	esign technologies	incorpora	ating ethic	al consider	ations fr	om the				

	specification provided.
Topics	Introduction: What is Ethics?, Ethics and Computer Science, Social consensus on
Covered	unethical practices by computer professionals, Conventional issues, Emerging
	issues in the age of data driven (AI/ML based) decision making, History and
	Evolution of ethics with advances in computer science and engineering. (4L)
	<b>Ethics in Data collection and aggregation:</b> Basic mechanism of data driven (AI/ML based) decision making, Data aggregation and decision making, Data Ownership, Collection and collation of digital imprints of users, Data stealing and data broking, Informed consent, Data repurposing, Privacy, Anonymity, Data validity, Establishing data protection framework with legal backing, Concept of differential privacy, GPDR. (10L)
	Algorithmic Fairness: Discriminatory impact of imperfect decisions, Case study: Facial recognition software, Criminal justice using big data, recidivism models for sentencing guidelines, predictive policing, Trust in AI/ML based decision making, Algorithmic fairness, Notions of fairness, Parity based and preference based notions, Fairness and accuracy, Identifying and mitigating inherent bias in data and/or machine learning algorithms, Proper choice of representative sample, Making training data fair, Designing fairness aware classifiers, Algorithmic audit, Challenges, Audit based on user survey, Sock puppet audit, Audit based on scrapping/crawling. (12L)
	<b>Transparency and Explainability:</b> Black-box phenomenon and trust, Unpredictability, Explanation/Reasoning, Right to explanation, Explainability and accuracy trade off, Transparency and interpretability, DARPA XAI, ML model explainability, Linear model explainability, Nonlinear model explainability, Neural networks explainability, LIME package, SHAP values, What-if tool. (5L)
	AI Ethics: Moral issues in autonomous and intelligent systems, Narrow (or Weak) AI and General (or Strong) AI, Weaponization of AI, Moral issues in autonomous robots, Robot ethics, Moral issues in self-driving cars, Moral Machine Quiz. (5L)
	<b>Personalization:</b> Personalized recommendation, search and newsfeed, Intellectual isolation associated with personalization, Objective search results, Personalized advertisement, Cross-domain tracking. (3L)
	<b>Code of Ethics:</b> Ethical standards by international professional societies, IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems, ACM Code of Ethics and Professional Conduct. (3L)
Text Books, and/or reference	<ul> <li>Text Books:</li> <li>1. D J Patil, Hilary Mason, Mike Loukides, "Ethics and Data Science", O'Reilly Media, Inc.; 1st edition (July, 2018).</li> </ul>
material	2. P. Singer, "Practical Ethics", Cambridge University Press, 3 rd edition (February 2011)

### **Reference Books:**

 Cathy O'Neil, "Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy", Crown; 1st edition (September 6, 2016).
 John C. Havens, "Heartificial Intelligence: Embracing Our Humanity to Maximize Machines", TarcherPerigee; (February 2, 2016).
 Wendell Wallach, Colin Allen, "Moral Machines: Teaching Robots Right from Wrong", Oxford University Press; 1st edition (June 3, 2010).

4. Garry Kasparov, "Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins", PublicAffairs; 1st edition (May 2, 2017).

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	1	-	-	-	2	-	1	-	-
CO2	3	3	3	3	-	1	2	-	2	2	3	-
CO3	3	3	3	3	1	1	3	-	2	2	3	1
CO4	2	2	1	1	3	3	1	2	-	-	-	2

#### Mapping of CO (Course Outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium)

3: Substantial (High)

3 Hour

CSE 819	Knowledge Management	3-0-0	3 Credits

		Departr	nent of Computer S	Science and Engineering									
	Course	Title of the course	Program Core	Total Nu	mber of co	ontact hours	;	Credi					
	Code		(PCR) /	Lectur	Tutori	Practical	Total	t					
			Electives (PEL)	e (L)	al (T)	(P)	Hour						
							S						
	CSE 819	Knowledge	PEL	3	0	0	3	3					
		Management											
	Pre-requis	sites	Course Assessme	Course Assessment methods (Continuous Assessment (CA), Mid-									
			Term (MT), End	Term (ET))									
			CA+ MT + ET [CA	: 15%, MT	: 25%, ET: (	60%]							
	Course	CO1: Ur	derstand Knowledge and its creation, acquisition,										
	Outcomes	s dis	semination, use and re-use.										
		CO2: Ur	derstand KM syste	ms and its	applicatio	n in knowled	dge gene	ration					
		and	d knowledge transf	er									
		CO3: Ur	derstand knowledg	ge codificat	tion and sy	vstem develo	opment,	testing					
		and											
		de	ployment of KM sy	stems.									
		CO4: To	evaluate effectiver	ness of KM	System, d	raw inferen	ce from o	data,					
150	Page												

	data
	mining for knowledge extraction, understand role of KM Systems
	and Applications in institutes and organizations.
Topics Covered	KM concepts: Use of KM, KM System Life Cycle, aligning KM and business strategy (6L)
	Knowledge Types, KM System Life Cycle models (5L)
	Knowledge codification and system development, testing and deployment, Knowledge transfer and knowledge sharing (7L)
	KM systems: Analysis, design and development of KM System (5L)
	KM tools: inferences from data, data mining and knowledge portals (6L)
	Evaluation of KM effectiveness: Tools and metrics, Case studies on KM Systems and Applications (7L)
	KM experiences from Indian companies, KM innovation and Learning organization,
	The future of KM (6L)
Text Books,	Text Books:
and/or reference	1. Elias.M. Awad & Hassan M. Ghaziri – "Knowledge Management" Pearson Education.
material	2. Knowledge Management in Theory and Practice - 2nd edition by Kimiz Dalkir. <b>Reference Books:</b>
	1. Guus Schreiber, Hans Akkermans, Anjo Anjewierden, Robert de Hoog, Nigel Shadbolt, Walter Van de Velde and Bob Wielinga, "Knowledge Engineering and
	Management", Universities Press.
	2. C.W. Holsapple, "Handbooks on Knowledge Management", International
	Handbooks on Information Systems, Vol 1 and 2.
	Others: This course follows the structure of NPTEL Course on Knowledge
	Management by Prof. KBL Srivastava, IIT Kharagpur, link:
	https://nptel.ac.in/courses/110105076

### Mapping of CO (course outcome) and PO (Program Outcome)

POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												
CO1	3	3	3	3	3	3	3	1	3	3	3	3
CO2	3	3	3	3	3	3	3	1	3	3	3	3
CO3	3	3	3	3	3	3	3	1	3	3	3	3
CO4	3	3	3	3	3	3	3	1	3	3	3	3

Correlation levels 1, 2 or 3 as defined below:

1. Slight (Low) 2. Moderate (Medium)

3. Substantial (High)

#### Annexure - II

Note: CSC504 Microcontroller based Systems is now converted to CSC504 Embedded Systems.CSC 504 Microcontroller based Systems3-0-03 Credits3 Hours

Course CodeTitleCSC 504Micro basePre-requisitesCourse Outcomes	of the course rocontroller ed Systems CO1: Ren CO2: Unc CO3: App Soncor in	Program Core (PCR) / Electives (PEL) PCR Course Assessme Term (MT), End T CA+ MT + ET [CA nember the archited	Total Nu Lectur e (L) 3 ent method Term (ET)) : 15%, MT	mber of co Tutori al (T) 0 ds (Continu	Practical (P) 0 Jous Assess	Total Hour s 3 ment (CA	Credi t 3 .), Mid-								
Code CSC 504 Micro base Pre-requisites Course Outcomes	• CO1: Ren • CO2: Unc • CO3: App	(PCR) / Electives (PEL) PCR Course Assessme Term (MT), End T CA+ MT + ET [CA nember the archited	Lectur e (L) 3 ent method Term (ET)) : 15%, MT	Tutori al (T) 0 ds (Continu : 25%, ET: 1	Practical (P) 0 Jous Assess	Total Hour s 3 ment (CA	t 3 .), Mid-								
CSC 504 Micro base Pre-requisites Course Outcomes	• CO1: Rem • CO2: Unc • CO3: App	Electives (PEL) PCR Course Assessme Term (MT), End CA+ MT + ET [CA nember the archited	e (L) 3 ent method Term (ET)) : 15%, MT3	al (T) 0 ds (Continu : 25%, ET: (	(P) 0 Jous Assess 60%]	Hour s 3 ment (CA	3 ), Mid-								
CSC 504 Micro base Pre-requisites Course Outcomes	• CO1: Ren • CO2: Unc • CO3: App	PCR Course Assessme Term (MT), End T CA+ MT + ET [CA nember the archited	3 ent method Term (ET)) : 15%, MT ecture and	0 ds (Continu : 25%, ET: (	0 Jous Assess 60%]	s 3 ment (CA	3 .), Mid-								
CSC 504 Micro base Pre-requisites Course Outcomes	<ul> <li>CO1: Ren</li> <li>CO2: Unc</li> <li>CO3: App</li> </ul>	PCR Course Assessme Term (MT), End CA+ MT + ET [CA nember the archite derstand PIC interr	3 ent methoo Term (ET)) : 15%, MT	0 ds (Continu : 25%, ET: (	0 Jous Assess 60%]	3 ment (CA	3 .), Mid-								
Pre-requisites Course Outcomes	<ul> <li>CO1: Ren</li> <li>CO2: Unc</li> <li>CO3: App</li> </ul>	Course Assessme Term (MT), End T CA+ MT + ET [CA nember the archite	ent methoo Term (ET)) .: 15%, MT	ds (Continu : 25%, ET: (	uous Assess	ment (CA	.), Mid-								
Pre-requisites Course Outcomes	<ul> <li>CO1: Ren</li> <li>CO2: Unc</li> <li>CO3: App</li> </ul>	Course Assessme Term (MT), End T CA+ MT + ET [CA nember the archite	ent method Term (ET)) :: 15%, MT: ecture and	ds (Continu : 25%, ET: (	uous Assess	ment (CA	.) <i>,</i> Mid-								
Course Outcomes	<ul> <li>CO1: Ren</li> <li>CO2: Unc</li> <li>CO3: App</li> <li>Sonsor in</li> </ul>	Term (MT), End CA+ MT + ET [CA nember the archite derstand PIC interr	Term (ET)) :: 15%, MT: ecture and	: 25%, ET: (	60%]										
Course Outcomes	<ul> <li>CO1: Ren</li> <li>CO2: Unc</li> <li>CO3: App</li> </ul>	CA+ MT + ET [CA nember the archite	<u>: 15%, MT</u>	: 25%, ET:	60%]	Term (MT), End Term (ET))									
Course Outcomes	<ul> <li>CO1: Ren</li> <li>CO2: Unc</li> <li>CO3: App</li> <li>Sonsor in</li> </ul>	nember the archite lerstand PIC interr	ecture and		CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]										
	<ul> <li>CO4: Ana ARM arch</li> <li>CO5: App architecto</li> <li>CO6: Creation</li> </ul>	oly the knowledge terfacing and ARM lyze ADC, DAC and nitectures. oraise the architect ure. ate embedded ARI	rupts, inter in LCD key 1 assembly d Sensor in ture of PIC M applicat	instructio facing of p board inte language terfacing u and ARM ions.	n sets of PIG eripherals. erfacing, ADG programmi using PIC; re in terms of	C and ARI C, DAC ar ng. late PIC a RISC	vI. Id Ind								
Topics Covered I F	UNIT I INTRODU Introduction to PIC16cxx—- Pipe Instruction Set - (12L) UNIT II INTERRU	JCTION TO PIC MI PIC Microcontrolle lining - Program M Addressing mode	CROCONT er–PIC 16C 1emory con es –Simple 9 PIC Micro	ROLLER 9 : 6x and PIC nsideration Operation	14 16C7x Arch ns – Registe s.	itecture– r File Stru External	icture -								
 	Interrupts-Interrupt Programming–Loop time subroutine - TimersTimer Programming– Front panel I/O-Soft Keys– State machines and key switches– Display of Constant and Variable strings. (8L) UNIT III PERIPHERALS AND INTERFACING 9 I 2 C Bus for Peripherals Chip Access– Bus operation-Bus subroutines– Serial EEPROM—Analog to Digital Converter– UART-Baud rate selection–Data handling circuit–Initialization - LCD and keyboard Interfacing - ADC DAC and Sensor Interfacing (81)														

	UNIT IV INTRODUCTION TO ARM PROCESSOR 9 ARM Architecture –ARM programmer's model –ARM Development tools- Memory Hierarchy–ARM
	Assembly Language Programming–Simple Examples–Architectural Support for Operating systems.
	(10L)
	UNIT V ARM ORGANIZATION 9 3-Stage Pipeline ARM Organization – 5-Stage
	Pipeline ARM Organization–ARM Instruction ExecutionARM Implementation–
	ARM Instruction Set– ARM coprocessor interface– Architectural support for High
	Level Languages – Embedded ARM Applications.
	(4L)
Text Books, and/or	Text Books:
reference	1. Peatman, J.B., "Design with PIC Micro
material	Controllers" PearsonEducation, 3rdEdition, 2004. 2. Furber, S., "ARM System on
	Chip Architecture" Addison Wesley trade Computer Publication, 2000.
	Reference Books:
	1. Mazidi, M.A., "PIC Microcontroller" Rollin Mckinlay, Danny causey Prentice Hall
	of India

Mapping of CO (Course Outcome) and PO (Programme Outcome)

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	1	1	1	1	1	1	1	1	1
CO2	2	2	2	1	1	1	1	1	1	1	1	1
CO3	2	2	2	1	1	1	1	1	1	1	1	1
CO4	2	2	2	1	1	1	1	1	1	1	1	1
CO5	2	2	2	1	1	1	1	1	1	1	1	1
CO6	2	2	2	1	1	1	1	1	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

2: Moderate (Medium) 3: Substantial (High) 1: Slight (Low)

### Annexure III Modification of syllabus of some courses

CSE	719	<b>Multimedia Informat</b>	tion Systems	8-0-0	3 Credits	3 Hours				
		Departm	ent of Computer	Science and	d Engineer	ing				
	Course	Title of the course	Program Core	Total Nu	Total Number of contact hours					
	Code		(PCR) /	Lectur	Tutori	Practical	Total	t		
			Electives (PEL)	e (L)	al (T)	(P)	Hour			
							S			
	CSE 719	Multimedia Information Systems	PEL	3	0	0	3	3		

153 | Page

Pre-requisites	5	Course Assessment methods (Continuous Assessment (CA), Mid- Term (MT), End Term (ET))						
Knowledge of	Data	CA+ MT + ET [CA: 15%, MT: 25%, ET: 60%]						
Structures and	d DBMS							
Course Outcomes	<ul> <li>CO1: In image, vi</li> <li>CO2: Une operating</li> <li>CO3: U issues or techniqu</li> <li>CO4: Une</li> </ul>	ideo and animation. derstand multimedia compression techniques, multimedia g systems fundamentals and multimedia network fundamentals. Inderstanding multimedia synchronisation aspects, SAS factors n dealing with multiple data formats, data encryption/decryption les. derstanding of multimedia database storage and retrieval.						
Topics Covered	Overview of mu Computer base of controlling a (6L) Media Synchron (4L) Entropy, data c compression Multimedia Optimanagement, p communication (9L) Data Encryption (3L) Multimedia dat (10L)	ultimedia system: Text, audio, video, graphics. d animation-display of animation, animation languages, methods nimation, transmission of animation. nization and QOS ompression, image compression, audio compression, video (10L) erating Systems issues like real time operation, resource process management, file systems, multimedia networking and a fundamentals n/Decryption techniques for media transmission cabases, query types, multimedia data storage and retrieval						
Text Books, and/or reference material	Text Books: Multimedia Info Multimedia: Co Klara Nahrstedi Multimedia Cor Fred Halsall, Pe Multimedia Sys Reference Bool Subrahmanian V.S. Subrahmar Kaufmann Publ	ormation Networking, Nalin K.Sharda, Prentice Hall India. Imputing, Communications and Applications, Ralf Steinmetz and t, Pearson Education Asia. Immunications, Applications, Networks, Protocols and Standards, arson Education Asia. tems, John F. Koegel Buford, Pearson Education Asia. <b>ks:</b> and Jajodia, Multimedia Database Systems, Springer. nian, Principles of Multimedia Database Systems, Morgan ishers, 1998.						

### Mapping of CO (Course Outcome) and PO (Programme Outcome)

 				-			· · · · · · · · · · · · · · · · · · ·	-	r			
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs												

CO1	3	3	3	2	3	3	3	1	2	3	2	3
CO2	3	3	3	2	3	3	3	1	2	3	2	3
CO3	3	3	3	2	3	3	3	1	2	3	2	3
CO4	3	3	3	2	3	3	3	1	2	3	2	3

Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low)

2: Moderate (Medium) 3: Substantial (High)