NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR Department of Electrical Engineering Revised Curriculum and Syllabi

Program Name Master of Technology in Electrical Engineering (Instrumentation and Control) Effective from the Academic Year: 2022-2023

Recommended by DPAC	:
Recommended in PGAC	: 01.03.2022
Approved by the Senate	: 11.04.2022

CURRICULUM

		Semester – I						
Sl. No.	Code	Subject	L	Τ	S	С	Η	
1	EE1021	Background Course	Instrumentation and Measurement Techniques	3	0	0	3	3
2	EE1022	Specialization Core – I	Advanced Control System I	3	1	0	4	4
3	EE1023	Specialization Core – II	Biomedical Instrumentation	3	1	0	4	4
4	EE9020, EE9011,	Specialization Elective - I	Electric Vehicle, Soft Computing Techniques, Machine Learning	3	0	0	3	3
5	EE9016, EE9033, EE9034, EE9035, EE9036	Specialization Elective – II	and Expert System, Advanced Sensors, Condition Monitoring and Intelligent Systems, Intelligent Control, Robotics & Automation	3	0	0	3	3
6	EE1071	Laboratory 1	Instrumentation Laboratory	0	0	4	2	4
7	EE1072	Laboratory 2	Biomedical Instrumentation Laboratory	0	0	4	2	4
		Total		15	2	8	21	25
		Semester – II						
Sl. No.	Code	Subject		L	Τ	S	С	Η
1	EE2021	Specialization Core – III	Advanced Control System II	3	1	0	4	4
2	EE9021, EE9037, EE9038, EE9039, EE9040	Specialization Elective – III	Digital Signal Processing, Distributed Energy Systems, Industrial Instrumentation, Micro-electromechanical Systems (MEMS), Non- Destructive Testing	3	1	0	4	4
3	EE9018, EE9019, EE9022,	Specialization Elective – IV	Embedded System, FACTS Devices, Estimation of Signals and Systems, Power System	3	0	0	3	3
4	EE9023, EE9028, EE9023, EE9041, EE9042, EE9013	Specialization Elective – V	Control and Instrumentation, Process Instrumentation and Control, Robust & Optimal Control, Medical Imaging, Image Understanding	3	0	0	3	3

		-					-	
5	EE2071	Laboratory 3	Advanced Control Laboratory	0	0	4	2	4
6	EE2072	Laboratory 4	Intelligent System Laboratory	0	0	4	2	4
7	EE2073	Mini Project with		0	0	6	3	6
		Seminar						
		Total		14	2	14	23	30
		Semester – III						
1	EE907X	Audit						2
		Lectures/Workshops						
2	EE3071	Dissertation – I		0	0	24	12	24
3	EE3072	Seminar – Non-Project /	Seminar – Non-Project / Evaluation of Summer Training				2	4
		Total				28	14	30
		Semester – IV						
1	EE4071	Dissertation – II / Industrial Project			0	24	12	24
2	EE4072	Project Seminar		0	0	4	2	4
		Total		0	0	28	14	28

Department of Electrical Engineering							
Course Code	Title of the	Program	Total Nu	umber of co	ntact hours		Credi
EE 1021	course	Core	Lectur	Tutoria	Practica	Total	t
		(PCR) /	e (L)	1 (T)	1 (P)	Hour	
		Electives				S	
		(PEL)					
Backgroun	Instrumentation	PCR	3	0	0	3	3
d Course	and						
	Measurement						
	Techniques	D 1					
Pre-requisites		Basic unders	standing on	n measurem	ent, measur	ing system	ms,
	NIII	analog and d	ligital elect	ronics			
	NIL	CI+EA					
Course	• CO1:	Given details c	of different	measurem	ent systems	, conclude	e to find
Outcomes	the mo	st suitable one	, by estima	ting percen	tage error in	n each cas	se.
	• CO2:	A parameter to	be measu	ired for a g	iven applica	ation of e	
	engine	ering, explore (different al	ternative m	leasuring ins	struments	(naving
	allectro	dynamic etc.)	incipies, io	or example	ility for the	applicati	ng mon,
	the kr	avaled ge of	, appraise	static a	nd dynami	application	teristics
	reliabil	lity and econor	ny for each	of the alte	nu uynann. matives		ieristies,
		Given set of	specificati	ions for m	easurement	of an e	lectrical
	parame	eter find suit	able prima	rv sensing	element d	lesion as	sociated
	analog	signal condition	oning circu	it and digit	al circuit (as	s per give	n output
	specifi	cation. if an	v). and e	valuate th	e system	(available	e detail
	compo	nent data shee	t) to design	nate that the	e measuring	system 1	neet the
	given s	specification cr	iteria.		C	, J	
	• ČO4:	Given electrica	al system a	nd paramet	ters to be m	easured, o	compare
	differe	nt measuremer	nt schemes	having diff	ferent measu	irement l	ocations
	and di	fferent sensin	g and sig	gnal condit	ioning circ	uits, by	judging
	possibi	ility of errors, 1	noises and	drifts.			
	• CO5:	Synthesize a m	leasuremen	nt system us	sing suitable	e set of me	easuring
	units a	nd data acquisi	tion systen	n along witl	n the require	d buildin	g blocks
	for a g	iven complex 1	real life ap	plication re	lated to the	field of e	lectrical
	engine	ering (for exan	nple motor	protection	system, ele	ctrical su	bstation
	monito	oring and co	ntrol, etc.	.), involve	es monitori	ing of i	multiple
	parame	eters and also r	equire to g	enerate cor	trol action v	while mee	eting the
	real tin	ne specification	n criteria.	d			la at art
		a Data A ami	application	and mea	surement c	riteria, d	esign a
	suitabl	e Data Acquis	mon Syste	m and just	ity now it n	leet the s	pecified
	conditi	OIIS.					

SYLLABUS

Topics Covered	 Introduction to measurement and Instrumentation. Static characteristics of measuring instruments. Dynamic characteristics of measuring instruments. Measurement Errors and Loading effect of measuring instrument. Statistical analysis of measurement error. Reliability, choice and economics of measurement systems.[10] DC potentiometers and its application for measurement of resistance, voltage, current and power.AC potentiometers and its use for measurement of self-inductance, voltage current, and power. Measurement of medium and low resistance. Measurement of high, insulation and earth resistance. Locating fault location in cables. Measurement of Inductance using bridges PT and CT for measurement of voltage and current. [8]
	Introduction to electromechanical instruments and D' Arsonval galvanometer Ballistic and Vibration galvanometer Moving coil instruments Moving iron type instruments Electrostatic instruments Electrodynamics instruments Induction type instruments Thermal and Rectifier type instruments Measurement of Power, Energy, frequency and phase; AC bridges [8]
	Review of operational amplifier, instrumentation and programmable gain amplifiers Peak detector and zero crossing detectors Precision rectifier, Lag and lead compensator Signal generator A/D convertor and S/H circuit D/A converter, signal conditioning circuit. [7] Measurement current using Hall Effect sensor and clamp on meter True rms voltmeters and solid state energy meter Electronic Voltmeters, Analog and Digital Multimeter Cathode Ray Oscilloscope (CRO) Digital Storage Oscilloscope Measurement of frequency, phase angle and time period [4] Introduction to DAS, software and hardware co-design Analog input output sub system Digital input output subsystem and input output interfaces Software features in real time application Supervisory Control and Data Acquisition System for real life application of electrical engineering. Measurement of process variables; temperature, pressure, strain, flow etc. [5]
Text Books, and/or reference material	 Text Books 1. A. D. Helfrick and William David Cooper, Modern electronic instrumentation and measurement techniques, Prentice Hall 2. John-G. Webster (ed.), The Measurement, Instrumentation, and Sensors: Handbook, Springer 3. John P. Bentley's book may also be added.
	Reference Books:1. Curtis D. Johnson, Process control instrumentation technology, Prentice Hall

 Robert N. Thurston and Allan D. Pierce, Ultrasonic measurement methods, Academic Press
 William Bolton, Programmable Logic Controllers, Newness
 Stuart A. Boyer, Supervisory Control And Data Acquisition, International Society of Automation
 T. V. Kenneth and B. T. Meggitt, Optical Fiber Sensor Technology, Springer.

	Depa	artment of Elec	trical Engi	neering			-
		Program	Tota	l Number o	of contact h	ours	
Course Code	Title of the course	Core (PCR) / Electives (PEL)	Lectur e (L)	Tutori al (T)	Practica l (P)	Total Hour s	Credit
EE1023	BIOMEDICAL INSTRUMENTATI ON	PCR	3	1	0	4	4
	Pre-requisites	Knowledg	e on Electr Electron	rical Meas ics, Electr	urement, Ai ical Transdu	nalog and icers	l Digital
				CT+I	EA		
 CO1: Familiarisation with biomedical transducers CO2: Design of biomedical equipments and signal processing circuitry CO3: Familiarisation with various biopotentials linke ECG, EEG, EMG EOG CO4: Acquiring knowledge about various electrodes used in bio instrum CO5: Procedures for measurement of blood flow, blood pressure and here CO6: Introduction to medical imaging 				d and mentation. leart sound			
Topics Covered	 CO6: Introduction to medical imaging Introduction to biomedical Instrumentation, biomedical electronics, Components of Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gai Gain Bandwidth product, frequency response. [8 Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] Topics Covered Medical instrumentation constraints, Various biomedical transducers. [4] Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model [4] Use of electrodes for measurement of bio potentials, polarization in electrodes. 						nents of lifier gain, [8] ss power [4] nann ential, les,
	principle of operation	on of Ag/AgCl	electrode,	Equivalen	t circuit of e	electrode	, motion $\frac{6/42}{1}$
							pp. 0/43

	artifact, various types of electrodes for bio potential measurement. [8]
	Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, Chest Limb Leads, ECG amplifiers, Problems encountered in ECG recording [6]
	Analysis of ECG Signals, Pacemakers, Different types of pacing modes, Physiological effects of electric currents, Defibrillators. [6]
	Measurement of blood pressure, measurement of blood pH, measurement of blood flow, measurement of heart sounds, use of Surface Plasmon Resonance for detection of toxins. [8]
	Introduction to medical imaging, Radiography, Computerized tomography, X Ray,- CT, MRI, PET, SPET, Gamma Camera, Ultrasound Imaging, Color Doppler, Recent trends in medical imaging, EIT, DOT, PAT, AEI. [8]
Text Books, and/or reference	 Text Books: 1. John Enderle. Joseph Brinzino, <i>Introduction to Biomedical Engineering</i>, Elsevier, 2012. 2. John G Webster, <i>Medical Instrumentation</i>, <i>Application & Design</i>, John Wiley & Sons, 2009 Reference Books:
material	 L. Cromwell, Fred J. Weibell, Erich A. Pfeiffer, , <i>Biomedical Instrumentation & Measurements</i>, PHI, 2014 Arthur C Guyton, John E Hall, <i>Textbook of Medical Physiology</i>, Elsevier, 2006

Department of Electrical Engineering							
Course	Title of the	Program Core	Total Nu	umber of co	ntact hours		Credit
Code	course	(PCR) /	Lectur	Tutoria	Practica	Total	
		Electives	e (L)	1 (T)	1 (P)	Hour	
		(PEL)				S	
EE 1022	Advanced	PCR	3	1	0	4	4
	Control System I						
Pre-requis	sites	Course Assessment methods (Continuous (CT) and end assessment					
		(EA))					
Control S	ystem Engineering	CT+EA					
in B Tech							
Course	• CO1: T	o learn the perform	nance goal	s of closed	loop contro	ol system	design and
Outcomes	the met	hods of analysis					
	• CO2: 7	• CO2: To illustrate different advanced control system topologies, their design					
	method	s and synthesis of	the control	ler designe	d		

	• CO3: To develop the concept of state variable approach for linear time invariant							
	system modelling and control							
	• CO4: To design feedback control in State space domain							
	• CO5: To design observed based state feedback control system							
	• CO6: To design Linear Ouadratic Regulator. Kalman Bucy Filter for optimal							
	design in state space							
Topics	Performance Objectives/ Goals:							
Covered	Performance Objectives Goals. Pasponse and Loop Goals Stabilization Pole placement Tracking Polystness							
Covered	Disturbance Rejection Noise Attenuation							
	Distuibance Rejection, Noise Attenuation							
	Performance Analysis and Tests:							
	Time Domain Analysis, Internal Model Principle (IMP), Frequency Response analysis							
	by bode diagram and Nyquist criterion, Loop Shaping Techniques, Sensitivity analysis,							
	Utilities of Gain and Phase Margin determination							
	[8]							
	Compensation:							
	Feedforward Control, Feedback Control, Classical Controller P, PI, PID, Lead and Lag,							
	One degree-of-freedom (1 DOF) control, Two DOF configurations, Sylvester matrix							
	Formulation, Internal Model Control (IMC), Internal Model Principle (IMP)							
	[12]							
	State Space Representation of Continuous-time Systems:							
	State model state models for linear continuous time systems, conversion of state							
	variables models to transfer functions in s-domain, solutions of state equations, state							
	transition matrix, state transition flow graphs, eigenvalues, eigenvectors and stability							
	similarity transformation, decompositions of transfer functions, canonical state variable							
	models, controllability and observability. Linear State Variable Feedback (LSVF)							
	control and pole placement Full Order Observer and Reduced Order Observer Design							
	examples MATI AB tools and practical case studies [20]							
	Ontimal Control							
	Linear Quadratic Pagulator (LOP) Linear Quadratic Guassian (LOC) LOP with state							
	estimator Kalman Bucy filter/state estimator Design Examples Practical case studies							
	estimator, Kaman-Ducy mer/state estimator, Design Examples, i factical case studies							
Tarré De alva	[IV]							
Text Books,	1 Madam Cantral Engineering K. Oasta							
and/or	1. Wodern Control Engineering, K. Ugata,							
reference	2. Modern Control System Theory, M. Gopal,							
material	3. Feedback Control Theory, John Doyle, Bruce Francis, Allen Tannenbaum,							
	4. Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P Andrews							
	Reference Books:							
	1. Linear Control System Analysis And Design With MATLAB, John J. D'Azzo and							
	Constantine H. Houpis and Stuart N. Sheldon							
	2. Linear Robust Control, Michael Green and David J.N. Limebeer							

		Department of Ele	ectrical En	gineering			
		Program Core	Tota	l Number o	of contact he	ours	
Course Code	Title of the course	(PCR) / Electives (PEL)	Lectur e (L)	Tutoria l (T)	Practica l (P)	Total Hour s	Credit
EE 9020	Electric Vehicle	PEL	3	0	0	3	3
Pr	e-requisites	Course Assessm end assessment	ent method (EA))	ds (Continu	ious (CT), N	/lid Sem (MS) and
Electr Electr	ical Technology ical Machines I			CT+MS+	ΈA		
 CO1:To acquire an idea about electric vehicles (EVs) and hybrid electric (HEVs) CO2: To learn the fundamentals of different types of EVs and HEVs syntheir components. CO3: To study about the Electric Propulsion Units required in EVs and CO4: To learn about the different types of Energy Sources and Storage in EVs and HEVs systems. CO5:To study the Impacts of EVs and HEVs on power system and Env CO6: To Learn about the EV simulation software and EV simulation for designing and modelling. 						te vehicles ystems and HEVs. units used ironment. r	
Topics Covered	designing and modelling. Introduction to Electric Vehicles: History of Electric Vehicles and hybrid electric vehicles, Recent EVs and HEVs, EV Advantages, social and environmental importance of hybrid and electric vehicles, impact of modern HEVs on energy supplies. [5] Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, and mathematical models to describe vehicle performance. [5] Structure and Components of EVs and HEVs: EV systems, HEV systems, Concept and architecture of hybrid electric drive trains, series and parallel of hybrid electric drive trains, torque and speed coupling of hybrid electric drive trains. [5] Electric Propulsion Unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency						

	Energy Sources and Storage: Introduction to Energy Storage Requirements in
	Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell
	based energy storage and its analysis, Super Capacitor based energy storage and its
	analysis, Flywheel based energy storage and its analysis, Hybridization of different
	energy storage devices. [10]
	Impacts on power system and Environment: Harmonic impact, Harmonic
	compensation, Current demand impact, Current demand minimization, Transportation
	pollution, Environment-sound EVs. [5]
	EV Simulation: Simulation Softwares, System level simulation, case studies of EV
	simulation [5]
	TEXTBOOK:
Text Books,	Iqbal Husain, "Electric and Hybrid Vehicles Design Fundamentals"
and/or	Published by: CRC Press, Boca Raton, Florida, USA, 2003.
reference	
material	REFERENCES:
	Chan, "Modern Electric Vehicle Technology", Oxford 2002

	Department of Electrical Engineering							
		Program Core	Tota	l Number o	of contact he	ours		
Course Code	Title of the course	(PCR) / Electives (PEL)	Lectur e (L)	Tutoria l (T)	Practica l (P)	Total Hour s	Credit	
EE 9011	SOFT COMPUTING TECHNIQUES	PEL	3	0	0	3	3	
P	re-requisites	Course Assessm (EA))	nent metho	ds (Continu	ious (CT) ai	nd end as	sessment	
Basic progra	analytical and mming attribute	CT+EA						
programming attribute • CO1: For the given linear and non-linear problems under practical limitations, compare classical analytical method and soft computing technique. • CO2: For a given single objective problem (SOP), apply binary coded genetic algorithm (BCGA) and real coded genetic algorithm (RCGA) with different typ of crossover, mutation and also understand the impact of different parent select strategies. • CO3: For a given non-linear or non-derivative problem, tune the control parameters of adaptive particle swarm optimization (APSO) for efficiently controlling the global exploration and local exploitation. • CO4: For a given realistic problem, explain the significance of the Difference vector in Differential Evolutionary (DE) technique and also illustrate self-adap differential evolutionary (SADE) technique						ions, netic ent types selection y ence -adaptive		

1	
	 CO5: For a given problem, logically clarify the impact of hidden layers in artificial neural networks (ANN) and also stepwise explicate the back propagation algorithm of ANN. CO6: For a given problem, describe a fuzzy knowledge base controller (FKBC) showing information and computational flow with membership function, rule base and defugrification
	and defuzzification.
Topics	Introduction to soft-computing techniques and its necessity.[2] Fundamentals of genetic algorithm, Genetic algorithm, Encoding, Fitness function, Reproduction, Genetic modelling, Cross Over, Inversion and Deletion, Mutation operator, Bit-wise operators, examples. [10] Basic Steps in Particle Swarm Optimization algorithm, Bird flocking & fish schooling, velocity, inertia weight factor, pbest solution, gbest solution, local optima, global optima, examples, new modifications of PSO, Parameter Selection in PSO. [10] Fundamentals of Differential Evolution algorithm, difference vector and its significance, Mutation and crossover, comparisons among DE, PSO and GA, Examples, new modifications of DE, Improved DE schemes for noisy optimization
Covered	 Examples, new modifications of DE, improved DE schemes for horsy optimization problems. [10] Fuzzy set theory, Fuzzy systems, crisp sets and fuzzy sets, fuzzy set operations and approximate reasoning, Fuzzification, inferencing and defuzzification, Fuzzy knowledge and rule bases, examples;[10] Biological neural networks, Model of an artificial neuron, neural network architecture, Characteristics of neural network, learning methods, Taxonomy of neural network architecture, Back propagation networks, architecture of a back propagation network, back propagation learning, Examples, RBF network, Associative memory, Adaptive resonance theory;[10] Applications of Soft Computing to various fields of engineering. [4]
Text Books, and/or reference material	 Text Books: Devendra K. Chaturvedi, "Soft Computing- techniques and its application in electrical engineering", Springer, 2008. Carlos A. Coello,Garry B. Lamont, David A. van Veldhuizen, "Evolutionary Algorithms for solving Multi-objective Problems", Second Edition, Springer, 2007. Reference Books: Jyh-Shing Roger Jang, Chuen-Tsai Sun &EijiMizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice Hall S. Rajasekaran and G. A. VijayalakshmiPai, Neural Networks, Fuzzy Logic and genetic Algorithm Synthesis and Applications PHI
	 Simon Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall L. A. Zadeh, Fuzzy Sets and Applications, John Wiley & Sons

Department of Electrical Engineering					
		Total Number of contact hours	Credit		

pp. 11/43

Course Code	Title of the course	Program Core (PCR) / Electives (PEL)	Lectur e (L)	Tutoria l (T)	Practica l (P)	Total Hour s	
EE 9016	MACHINE LEARNING & EXPERT SYSTEM	PEL	3	0	0	3	3
Pre-requisi	tes: NA	Course Assessr (EA)) CT+EA	nent metho	ods (Contin	uous (CT) a	and end as	ssessment
Course Outcomes	 CO1: Und limitation CO2: Be algorithm CO3: Und CO4: Be d world data CO5: Be d world data 	lerstand complexit s capable of confide s in practice and in lerstand modern n capable of perform a. capable of designit a.	ty of mach ently apply mplementiz otions in d ning experi ng machin	ine learning ring commong their ow ata analysis ments in m e learning b	g algorithms on Machine n s oriented co achine learn pased expert	s and their Learning omputing ning using t system u	r g real- Ising real-
Topics Covered	Introduction: learning, Aspe Concept Learn specific order spaces and the Decision Tree trees. Picking simple trees a and pruning. Bayesian Lear Parameter sm Bayes nets and Instance-Based past specific Translating de conquer and in	Definition of lea octs of developing ing and the Gener ing of hypothese candidate elimina Learning: Concep the best splitting a nd computational [4] ning: Probability to oothing. Generati d Markov nets for d Learning: Const examples. k-N ecision trees into formation gain, F	rning syst a learning al-to-speci s. Finding ation algori pts as deci attribute: e complexit heory and l ve vs. dis representin tructing ex earest-neig rules, Hen irst-order l	ems, Goals system [4] fic Orderin maximall ithm. [4 sion trees. ntropy and y, Occam's Bayes rule, criminative ng depende plicit gene shour alg uristic rule Horn-clause earning fro	s and appli g: Concept I y specific I 4] Recursive in information razor, Ove Naive Baye e training. I ncies. [4] ralizations gorithm. C induction e induction. m unclassif	ications of learning. hypothese nduction n gain. Se or fitting, s learning Logisitic versus co ase-based using se [5] ied data.	of machine General-to- es. Version of decision arching for noisy data, galgorithm. regression. mparing to learning, eparate and Clustering.
Clustering and Unsupervised Learning: Learning from unclassified data. Cl Hierarchical Aglomerative Clustering. k-means partitional clustering. Ex						Clustering. Expectation	

	maximization (EM) for soft clustering. Semi-supervised learning with EM using
	labeled and unlabled data. [5]
	Artificial Neural Networks: Neurons and biological motivation, Linear threshold units.
	Perceptrons: representational limitation and gradient descent training, Multilayer networks and backpropagation. Hidden layers and constructing intermediate, distributed representations. Overfitting, learning network structure, recurrent networks. [3]
	Support Vector Machines: Maximum margin linear separators. Quadractic programming solution to finding maximum margin separators. Kernels for learning non-linear [4]
	Evaluation of Learning Algorithms: Measuring the accuracy of learned hypotheses. Comparing learning algorithms: cross-validation, learning curves, and statistical hypothesis testing. [3]
	Introduction to Deep Learning: Convolutional neural networks (CNN) for image classification, CNN for object detection, Fully convolutional networks (FCN) for image segmentation. [4]
	Expert System design: Face detection algorithm, Computer-aided diagnosis system [4]
Text Books,	Text Books:
and/or	1. Tom M. Mitchell, Machine Learning 2. Christenber Bishen, Bettern Besserition and Machine Learning
material	2. Christopher bisnop, Pattern Recognition and Machine Learning.

Department of Electrical Engineering							
Course	Title of the	Program	Total Nu	umber of co	ontact hours		Credi
Code	course	Core (PCR)	Lectur	Tutoria	Practica	Total	t
		/ Electives	e (L)	1 (T)	1 (P)	Hour	
		(PEL)				S	
EE 9033	Advanced	PEL	3	0	0	3	3
	Sensors						
Pre-requisites	5	Course assessment methods (continuous (CT) and end					
		assessment (EA))					
Basic underst	anding on	CT+EA					
measurement, measuring							
instruments, analog and digital							
electronics.							

Course	• CO1: To understand the basics of sensors and actuators and their
Outcomos	• COI. To understand the basies of sensors and actuators and then
Outcomes	• CO2: To loom about sensors for massuring motion pressure fluid flow.
	• CO2: To learn about sensors for measuring motion, pressure, fluid now
	and temperature.
	• CO3: To learn about Biosensors, biopotential electrodes and Bio-
	Chemical Sensors
	• CO4: To understand about the micro-sensors and their fabrication and
	applications.
	• CO5: To learn about sensor instrumentation, signal acquisition and
	processing.
	CO6: Application of sensors in Power Plants
Topics Covered	Introduction and Applications of Sensors: Introduction sensors and
	transducers, various primary sensing elements, Active and Passive Transducers,
	Sensor parameters, Static Characteristics and Calibration, Dynamic
	Characteristics, Input-Output Configuration of Instruments and Measurement
	System, choice and economics of sensors, Sensors for different applications like
	mechanical, electrical, thermal, magnetic, optical, radiation, chemical and
	biological types. [6]
	Motion Measurement: Introduction to motion sensors. Motion and dimensional
	measurement by Resistive Potentiometer. Strain gauge, LVDT, Piezoelectric
	transducers and Synchros. Measurement and translational and rotational velocity
	by tachometer and stroboscopic methods [4]
	Measurement of pressure: Introduction to pressure sensors Measurement of
	pressure by using Diaphragm Gauges McLeod Gauge and ionisation gauge
	Measurement of Sound by Canacitive microphone [4]
	Flow sensors. Introduction to flow measurement Measurement of flow by
	electromagnetic flow meter hot-wire anemometer Donnler flow meter water
	flow measurement blood flow sensor gas flow measurement [4]
	Massurement, of temperatures Massurement of temperature by registence
	thermometer thermister Thermosourles and Dyrometers and junction somi
	applueter sensors
	Conductor sensors. [4]
	Bio-potential electrodes: introduction to physiological measurement, bio
	potentials electrodes, skin-electrode interface, equivalent circuit of electrode and
	electrode interface, electrode surface electrodes, needle electrodes,
	Electrocardiography (ECG) electrodes, Electroencephalography (EEG)
	electrodes, Electromyography (EMG) electrodes. [4]
	Biosensors and Bio-Chemical Sensors: Introduction to biosensors, introduction
	to chemical sensors, pH-sensor, blood-glucose sensor, alcohol-sensor.
	[4]
	Micro-sensors: Introduction to Microsystems, MEMS, Micro-fabrication, Micro
	pressure sensor, micro-accelerometer, micro-biosensors, nano-particle based
	sensing. [4]
	Sensor Instrumentation: Manipulation, Transmission and acquisition of data:
	Bridge Circuits, OPAMP, Instrumentation amplifiers, Noise Problems and its
	remedy, Chopper stabilized amplifier, Charge Amplifier, Analog and digital
	filters, Amplitude, Phase and frequency modulation, spectrum analyzers, Cable
L	

	and fibre optic transmission of data, Data Acquisition system, virtual instruments Sensors and transducers applied in power plant. Optical sensors and ultrasonic sensors. [8]
Text Books,	Text Books
and/or reference	1. E.O. Doebelin, Measurement System: Application and Design,
material	McGraw- Hill.
	2. D. Patranabis, Sensors and Transducers, PHI.
	3. Sensors and Actuators: Engineering System Instrumentation, Second
	Edition Hardcover – 10 August 2015, by Clarence W. de Silva
	(Author), CRC Press (10 August 2015)
	Reference Books:
	1. R.P. Areny and J.G. Webster, Sensors and Signal Conditioning, Wiley
	India
	2. Ian Sinclair, Sensors and Transducers, Elsevier
	3. Nadim Maluf, An Introduction to Micro Electro Mechanical System
	Design, Artech House, 2000.
	4. Medical Instrumentation Application and Design, 4-Ed, by John G.
	Webster, Wiley (2015)

Department of Electrical Engineering								
Course	Title of the	Program Core	Total Num	ber of con	tact hours		Credit	
Code	course	(PCR) / Electives	Lecture	Tutori	Practica	Total		
		(PEL)	(L)	al (T)	1 (P)	Hour		
						S		
EE 9034	Condition	PEL	3	0	0	3	3	
	Monitoring							
	and							
	Intelligent							
	Systems							
Pre-requisi	ites	Course Assessment methods (Continuous (CT) and end assessment						
		(EA))						
	NIL	CT+EA						
Course	• CO1: F	Fundamental knowled	lge of conditi	ion monito	ring and its	application	on.	
Outcomes	• CO2: A	Able to know the basi	c parameters	responsib	le for causir	ng the fail	ure of	
	equipm	nent in a system.						
	• CO3: Create the skills to find out the causes of failures and its prevention in				n in			
	rotating	rotating machines.						
	• CO4: S	Skilful knowledge to	find out the	causes of	failures and	d its prev	ention of	
	transfo	rmer and transformer	r oil.					

Topics	Introduction: Overview of condition monitoring and the needs for reliable operation
Covered	of equipment in a system, causes of failure, preventive maintenance concepts its
	economics and application [5]
	Physical parameters monitoring
	Electrical parameters of equipment's, Temperature measurement, Local and Hot-spot
	measurement with the concept of thermal image processing, Humidity and pressure
	measurement with advanced sensors. [6]
	Condition Monitoring of Rotating Electrical Machines: Introduction to condition
	monitoring of rotating machines, Construction of electrical machines and their types
	operation, failure modes of electrical machines, Machine specification and failure
	modes. Overview of vibration monitoring, vibration transducers, transducers selection,
	machinery signature, analysis technique, measurement location, severity criteria,
	permanent monitoring, and rotating machinery signals.
	[15]
	Condition Monitoring of Transformer:
	Introduction of transformer monitoring and its aging, study of failure analysis for
	prediction of life of transformer.
	Conventional tests: AC High voltage test, impulse voltage test of transformers and
	hushings Dissolved gas analysis of transformer oil Vey Cos method Cos Patio
	Method and others. Partial Discharge measurements for transformer and transformer
	ail with different methods. PD Measuring circuits, calibration, signature analysis for
	prediction of failure of transformer
	Failure prediction of transformers and rotating machines using Artificial Intelligence
	(AI) and Machine Learning (PM) techniques. Condition monitoring of bridge large
	multi storey building
	[2]
Text Books,	Text Books:
and/or	1. Transformers by BHEL, Bhopal, Tata McGraw Hill
reference	2. Introduction to Machinery Analysis and Monitoring/ John S. Mitchell/ Perm Well
material	Books, Perm Well Publishing Company, Tulsa, Oklahoma, 1993.
	Reference Books:
	1. R. A. Collacott, "Vibration monitoring and diagnosis", Wiley, 1979.
	2. Rao J.S., "Vibratory Condition Monitoring of Machines", CRC Press, 2000.
	3. Isermann R., Fault Diagnosis Applications, Springer-Verlag, Berlin, 2011.

Department of Electrical Engineering							
		Program Core	Total Number of contact hours				
Course Code	Title of the course	(PCR) / Electives (PEL)	Lectur e (L)	Tutoria l (T)	Practica l (P) [#]	Total Hour s	Credi t
EE 9036	Robotics and Automation	PEL	3	0	0	3	3

pp. 16/43

Pre-ree	quisites	Course Assessment methods (Continuous evaluation (CE) and end assessment (EA))
Control Syste in B	m Engineering Tech	CE+EA
Course Outcomes	 CO1: T CO2: T robotics CO3: T plannin CO4: T related CO5: T automa CO6: T industri 	o understand the basic concepts of robotics o learn about the power sources, sensors, actuators etc. essential for s and automation technology o get the idea of programming languanges and techniques for path g of robots o design and solve real life problems for control and automation to robotics o get acquainted with industrial applications of robotic and tion systems o design optimal control algorithms for path planning and control of al robots
Topics Covered	BASIC CONC robotics – vari robotics – dyn POWER SOU determination path determinat – acoustic – m MANIPULAT manipulators – manipulator co considerations KINEMATICS – multiple so programming CONTROL S Linear model of torque control Impedance for CASE STUDI and non- manu INDUSTRIAI SYSTEMS: Pr inspection, Vis ROBOT APPI Industrial Apj applications, I Justification o	CEPTS: Definition and origin of robotics – different types of ous generations of, robots – degrees of freedom – Asimov's laws of amic stabilization of, robots. [4] RCES AND SENSORS: Hydraulic, pneumatic and electric drives – of HP of motor and gearing ratio – variable speed arrangements – ation – micro machines in robotics –machine vision – ranging – laser agnetic, Fiber optic and tactile sensors. [6] 'ORS, ACTUATORS AND GRIPPERS: Construction of - manipulator dynamics and force control – electronic and pneumatic ontrol circuits – end effectors – U various types of grippers –design . [6] S AND PATH PLANNING: Solution of inverse kinematics problem lution Jacobian work envelop – hill climbing techniques – robot languages [6] [6] YSTEMS: The manipulator Control problem, Linear control schemes, of a manipulator joint, Joint actuators, PID control scheme, Computed , Force control strategies, Hybrid position/force control architecture, rec/torque control, Adaptive Control. [6] ES: Multiple robots – machine interface – robots in manufacturing ifacturing applications – robot cell design – selection of robot. [6] _ APPLICATIONS OF VISION-CONTROLLED ROBOTIC resence, Object location, Pick and place, Object identification, Visual sual guidance [4] LICATIONS: plications, material handling, Processing applications, Assembly nspection application, Principles for Robot application and planning, f Robots, Robot safety, Non-industrial applications
Text Books, and/or reference material	Text Books: 1.L. Sciavicco Springer	o and B. Siciliano, Modeling and Control of Robot Manipulators,

2. K. S. Fu, R. C. Gonzalez and C. S. G Lee, Robotics: Control, Sensing, Vision, and Intelligence, McGraw-Hill Inc.
3. Mikell P. Weiss G.M., Nagel R.N., Odraj N.G., Industrial Robotics, McGraw-Hill, Singapore, 1996.
Reference Books:
1.J. J. Craig, Introduction to Robotics, Mechanics and Control, Addison Wesley
2. R. J. Schilling, Fundamentals of Robotics Analysis and Control, Prentice Hall.

]	ctrical Engi	ineering				
Course	Title of the	Program Core	Total Nu	umber of co	ntact hours		Credi
Code	course	(PCR) /	Lectur	Tutoria	Practica	Total	t
		Electives	e (L)	1 (T)	1 (P) [#]	Hour	
		(PEL)				S	
EE 9035	Intelligent	PEL	3	0	0	3	3
	Control						
Pre-requis	ites	Course Assessm	nent metho	ds (Continu	lous evaluat	tion (CE)	and end
		assessment (EA))				
Control Sy	stem Engineering	CE+EA					
in B Tech							
Course	• CO1: I	CO1: Biological motivation to design intelligent systems and control			1		
Outcomes	• CO2:	To study of con	trol-theore	tic founda	tions such	as stabil	lity and
	robusti	ess in the frame work of intelligent control.					
	• CO3: '	'o analyse learning systems in conjunction with feedback control					
	system	S					
	• CO4: 7	Fo simulate intellig	ent control	l systems to	evaluate th	e perform	nance.
	• CO5: 7	To have an exposur	e to many	real world	control prob	olems.	
	• CO6: 7	Fo design and solve	e real life p	roblems w	ith intelliger	nt control	
Topics	Introduction:	A challenge to a	utomatic o	control, Ad	lvance in ir	telligent	control,
Covered	What is intell	igent control, Stru	ctural theo	ries of inte	lligent contr	rol, Resea	arch and
	applications of	applications of intelligent control [2]			[2]		
	Biological for	Biological foundations to intelligent systems I: Artificial neural networks, Back-					
	propagation i	propagation networks, Radial basis function networks, and recurrent networks.					
	[8]						

	Biological foundations to intelligent systems II: Fuzzy logic, knowledge representation and inference mechanism, genetic algorithm, and fuzzy neural networks.fuzzy and expert control (standard, Takagi-Sugeno, mathematical characterizations, design example), Parametric optimization of fuzzy logic controller using genetic algorithm.[6]System identification using neural and fuzzy neural networks.[5]Stability analysis: Lyapunov stability theory and Passivity Theory.[6]Adaptive control using neural and fuzzy neural networks, Direct and Indirect adaptive control, and Self-tuning Pill Controllers.[4]Applications to pH reactor control, flight control, robot manipulator dynamic control, underactuated systems such as inverted pendulum and inertia wheel pendulum control and visual motor coordination.[5]
Text Books, and/or reference material	 Text Books: (1) Large-Scale Systems: Modeling, Control and Fuzzy Logic, Author:Mo Jamshidi (2) L. A. Zadeh, Fuzzy Sets and Applications, John Wiley & Sons (3) Simon Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall Reference Books: (1) Jyh-Shing Roger Jang, Chuen-Tsai Sun & Eiji Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice Hall (2) S. Rajasekaran and G. A. Vijayalakshmi Pai, Neural Networks, Fuzzy Logic and genetic Algorithm Synthesis and Applications, PHI

Department of Electrical Engineering							
Course	Title of the	Program	Total Nu	Total Number of contact hours			Credi
Code	course	Core (PCR) /	Lectur	Tutoria	Practica	Total	t
		Electives	e (L)	1 (T)	$1(P)^{\#}$	Hour	
		(PEL)				S	
EE 1071	Instrumentation	PCR	0	0	2	6	2
	Laboratory						
Pre-requis	ites	Course Assessment methods (Continuous evaluation (CE) and					
-		end assessment (EA))					
Signal and systems in		CE+EA					
B.Tech.							

pp. 19/43

Course	• CO1: To understand uncertainty analysis of measurement results and to
Outcomes	compare the results obtained from stroboscope and tachometer for
	measurement of angular speed
	• CO2: To compare the results obtained from Strain gauge and LVDT for
	measurement of displacement
	• CO3: To under the principle of operation of RTD. Thermistor and
	Thermocouples
	 CO4:To understand the Arduino based voltage measurement and wireless data
	transmission technique
	 CO5: Design and implementation of liquid level and flow control system using
	Programmable Logic Controller (PLC) and SCADA
	• CO6: Characterization of DV cell in series and parallel condition under
	• COO. Characterization of FV cen in series and paranet condition under
Tanias	• From 01. Calibration of watter star by ghantam loading and up cartainty analysis
Topics	• Exp-01: Calibration of wattmeter by phantom loading and uncertainty analysis
Covered	of results
	• Exp-02: Measurement of reactive power by wattmeter and uncertainty analysis
	of results
	• Exp-03: Measurement of displacement and speed by various electrical sensors
	• Exp-04: Measurement of temperature by RTD, Thermistor and Thermocouples
	• Exp-05: Realizing Analog Switching Circuits using CD4067BE CMOS
	MUX/DEMUX ICs
	• Exp-06: Realizing Wireless Data Transmission Using 433MHz RF Transmitter-
	Receiver Module
	• Exp-07: To make an Arduino Based Digital Voltmeter
	• Exp-08: Design and implementation of liquid level control system using
	Programmable Logic Controller (PLC) and SCADA
	• Exp-09: Design and implementation of flow control system using
	Programmable Logic Controller (PLC) and SCADA.
	• Exp-10: Characterization of PV cell in series and parallel condition under
	different radiation level
Text Books,	Text Books:
and/or	1. Electrical Measurement by E.W. Golding- Wheeler Students' Edition
reference	2. Electronic Instrumentation by H. S. Kalsi- McGraw Hill
material	3. Digital Electronics (Oxford Higher Education) Paperback – Illustrated, 11
	March 2010, by G.K. Kharate (Author), Oxford (2010).
	4. Arduino Projects for Engineers, Paperback, July 2016 by Neerparai Rai
	(Author). BPB Publications (2016)
material	 Digital Electronics (Oxford Higher Education) Paperback – Illustrated, 11 March 2010, by G.K. Kharate (Author), Oxford (2010). Arduino Projects for Engineers, Paperback, July 2016 by Neerparaj Rai (Author), BPB Publications (2016)

Department of Electrical Engineering							
Course	Title of the	the Program Total Number of contact hours			Credi		
Code	course	Core (PCR) /	Lectur	Tutoria	Practica	Total	t
		Electives	e (L)	1 (T)	$1(P)^{\#}$	Hour	
		(PEL)				S	

pp. 20/43

EE 1072	Biomedical Instrumentation Laboratory	PEL	0	0	2	6	2
Pre-requisi	ites	Course Assess end assessmen	Course Assessment methods (Continuous evaluation (CE) and end assessment (EA))				
Signal and B.Tech.	systems in	CE+EA					
Course Outcomes	 CO1: To un CO2: To un CO3: Feature CO4: To un CO5: To un CO6: To un 	understand the methods of ECG signal analysis ander the method of EOG signal analysis ture extraction from ECG and EOG signals understand the designing method of an ECG Amplifier Circuit understand the designing method of an EEG Amplifier Circuit understand the designing method of an A Data Acquisition System					
Topics Covered	 Exp-01: Re Exp-02: De Exp-03: De Exp-04: De Exp-05: De Exp-05: Re Exp-07: De 	 Exp-01: Removal of periodic noise from ECG signal Exp-02: Detection of QRS complex from ECG signals Exp-03: Detection of premature ventricular contraction from ECG Signals Exp-04: Detection of eye fatigue from EOG Signals Exp-05: Designing and Development of an ECG Amplifier Circuit Exp-06: Realization of an EEG Amplifier Circuit Exp-07: Designing of A Data Acquisition System using NI Hardware 					
Text Book and/or reference material	s, Text Books: 1. J. G. Proal <i>Algorithms</i> 2. Medical Ins Wiley (2015) 3. LabVIEW f Paperback –	ukis & D. G. Manolakis, <i>Digital Signal Processing: Principle and Applications</i> , Prentice Hall of India. Istrumentation Application and Design, 4-Ed, by John G. Webster (5) for Everyone (National Instruments Virtual Instrumentation Serie – Import, 16 November 2001, Prentice Hall (2001)					<i>rinciples,</i> Webster, n Series)

Department of Electrical Engineering							
Course	Title of the	Program Core	Program Core Total Number of contact hours				Credi
Code	course	(PCR) /	Lectur	Tutoria	Practica	Total	t
		Electives	e (L)	1 (T)	1 (P)	Hour	
		(PEL)				S	
EE 2021	Advanced	PCR	3	1	0	4	4
	Control System						
	II						

pp. 21/43

Pre-requisites	5	Course Assessment methods (Continuous (CT) and end						
		assessment (EA))						
ADVANCED	O CONTROL	CT+EA						
SYSTEM I E	E1022							
Course	• CO1: T	o acquire the knowledge of sampled data system, the sampling and						
Outcomes	hold pro	ocess, understand, investigate and analyze the stability of the discrete						
	time sys	stems						
	• CO2: T	o analyze the sample data system both in time and frequency domain						
	$\bullet CO3: 1$	CO3. To learn digital control for sample data systems						
	• CO4: 1	o get the idea of state variable analysis for discrete-time systems						
	• CO3: T	CO6. To design control system for nonlinear systems						
Topics	Introduction t	o Digital Control: Sample Data System. The sampling process						
Covered	Discrete-time	signals and their classifications Representation of discrete-time						
Covered	signals as segu	lences Sampling Process: Sampling Theorem: Aliasing Sampling of						
	Continuous-tir	ne signals Signal reconstruction Discrete-time Systems and their						
	classifications	Finite dimensional LTI systems [8]						
	Difference eq	uations, z-transform theory, z-transfer functions (pulse transfer						
	functions), inv	erse z-transform and response of linear discrete systems, z-transform						
	analysis of san	npled data control systems, z and s domain relationship [6]						
	Stability anal	ysis in z-plane, Jury's stability criteria, Root Locus Analysis,						
	Frequency Res	ponse of Sample data system, Bilinear Transformation, Bode diagram						
	in w-plane [6]							
	Digital Contro	llers: Feedback Control, Classical Controller P, PI, PID, Lead and Lag						
	[6]							
	State Space Re	epresentation of Discrete-time Systems: State model state models for						
	linear discrete	time systems, conversion of state variables models to transfer						
	functions in z	-domain, solutions of state equations, state transition matrix, state						
	transition flo	w graphs, eigenvalues, eigenvectors and stability similarity						
	transformation	, decompositions of transfer functions, canonical state variable						
	models, contr	ollability and observability, state feedback and pole placement,						
	Nonlinean Sug	gn, MATLAB tools and case studies [10]						
	<u>Nonlinear Sys</u>	tems and Control:						
	runuamentais (matrix and stability domain of convergence. Phase plane analysis						
	Steady state fr	aguancy response analysis. Describing function. Extended Nyquist						
	criteria	equency response analysis, Desenoing function, Extended Nyquist						
	Lypunov stabi	lity Criteria. Application of Lyapunov stability Popov criteria						
	stabilization via state feedback. Feedback linearization							
Text Books.	Text Books:	[]						
and/or	1. Discrete T	ime Control Systems, K Ogata						
reference	2. Digital Co	ontrol System, B. C. Kuo						
material	3. Applied N	onlinear Control, Slotine and Li, Prentice-Hall 1991						
	Reference Bool	ks:e Variable Methods, M. Gopal						
L		· 1						

pp. 22/43

 Digital Control Of Dynamic Systems, G.Franklin, J.Powell, M.L. Workman. Nonlinear System, H. K. Khalil

	Departm			trical Engi	neering			
Course	Title	e of the course	Program	Total Nu	umber of co	ntact hours		Credi
Code			Core	Lectur	Tutoria	Practica	Total	t
			(PCR) /	e (L)	1 (T)	l (P)	Hour	
			Elective				S	
			s (PEL)					
EE 9038	IND	USTRIAL	PEL	3	1	0	4	4
	INS	TRUMENTATIO						
	N				41 1 (0			1
Pre-requis	ites		Course As	sessment r	nethods (C	ontinuous (CT) and e	end
	N	TTT	assessmen	t (EA))				
	Γ		CI+EA					
Course		• CO1: Given spe	ecifications of	of different	t measuring	g instrument	s for	
Outcomes		measurement o	f particular p	parameter (of some kno	own electric	al system	l ,
		compare and ju	dge to find t	he most su	intable one.	C		
		• CO2: Given ap	plication of e		ngineering	for measure	ement of	
		particular paran	neter along v	with specif	ied range a	nd accuracy	, choose	most
		suitable measur	ing instrument with the understanding of individual working					
		CO3: For some) judge to fit the given application.					
		• CO3. FOI solite	on accuracy and output format, choose suitable sensor, design					
		associated sign	accuracy and output format, choose suitable sellsof, design					
		the desired spec	an conditioning and analog/digital processing circuit to inter					
		 CO4: Give mul 	lti-parameter control application of electrical engineering					
		design a suitabl	le instrument	tation loop	using PLC		-ingilieerii	-8
		• CO5: Integrati	ion of different components of Data Acquisition System with					n with
		sensors/transdu	ucer for some complex electrical system such.					
		• CO6: Design of	of optical fib	er based ci	urrent senso)r		
Topics Co	vered	Measurement of P	rocess Varia	bles: Press	sure, Flow,	Temperatu	re, Liqui	d Level,
_		Strain, Force, Torq	ue, Linear ai	nd angular	displaceme	ent/speed etc	c.; [10]	
		Programmable Log	gic Controlle	er (PLC):	Introductio	n, Applicati	on, Phys	ical and
		functional compor	nents, Time	rs, Counte	ers, Shift	Registers, 1	Memory,	Ladder
	Diagram, PLC Programming, Interfacin			g with sense	sors and ac	tuators. A	Advance	
	PLCs, analog input output, HMI, SCADA, Communica			cation proto	cols, PID	control		
		through PLC; Data	Acquisition	Systems: (Objective of	t a DAS, sin	gle chann	el DAS,
		Multi-channel DA	S, Compon	ents used	in DAS-	- Converter	Charact	eristics-
		Resolution-Non-lin	nearity, settli	ng time, M	Ionotonicit	y; [10]		

	Optical Fiber Based Instrumentation: General principles of optical fiber, brag grating fiber, amplitude modulating FO sensors, measurement of high current and voltage, temperature etc.; Power System Instrumentation: Measurement of Voltage, Current Frequency Phase and Transmission line Transients; [5]
	Ultrasonic Instrumentation: Ultrasonic transmitter and receiver properties, propagation through medium and interfaces, application in Non-destructive Testing (NDT), measurement of process variables such as flow, level, thickness etc.; Partial discharge (PD) measurement and detection using ultrasonic sensor. [5]
	Digital Measurement Techniques and instrumentations: Different Digital Instrumentation, Digital Measurement of Power Factor, Frequency and Time Period, Counters; [5]
	Recorders and Data Loggers: General Description, Measuring Parts and Recording Means: [6]
	Microprocessor Based Instruments: Embedded systems, Microprocessor/Microcontrollers, classification, different field of application, design of microcontroller based measuring instrument. [8] Industrial Process Control, ON-OFF Control, P, PI and PID control of interacting and non-interacting process. [7]
Text Books,	Text Books
and/or	1. A. D. Helfrick and William David Cooper, Modern electronic
reference	instrumentation and measurement techniques, Prentice Hall
material	2. John-G. webster (ed.), The Measurement, Instrumentation, and Sensors. Handbook Springer
	Reference Books:
	1. Curtis D. Johnson, Process control instrumentation technology, Prentice
	2. Robert N. Thurston and Allan D. Pierce, Ultrasonic measurement
	methods, Academic Press
	3. William Bolton, Programmable Logic Controllers, Newness
	4. Stuart A. Boyer, Supervisory Control And Data Acquisition, International
	Society of Automation 5 T. V. Konnoth and P. T. Maggitt, Ontical Ether Sensor Technology
	Springer.

Department of Electrical Engineering							
		Program Core Total Number of contact hours				ours	
Course Code	Title of the course	(PCR) / Electives (PEL)	Lectur e (L)	Tutoria l (T)	Practica l (P)	Total Hour s	Credi t
EE 9037	Distributed Energy Systems	PEL	3	1	0	4	4

pp. 24/43

Pre-requisites		Course Assessment methods (Continuous (CT), Mid Sem (MS)			
(EE1011) Ad	vanced Power El	ectronics – I	CT+MS+EA		
(EE2012) Ma	chine Drives - II				
Course Outcomes	 CO1: Terresource CO2: Terresource CO3: Terresource CO4: Terresource CO5: Terresource CO5: Terresource CO6: Terresource 	o learn to summari es such as solar, wi o learn to apply the o learn to determin on of power from so o learn to compare r controls for diffe o learn to recognize f operations. o learn control of d	ze the energy conversions from renewable energy nd, small hydro, biomass, tidal, geothermal. e solar energy systems/ bio-gas for practical use. e a suitable turbine and an induction generator for small hydro power plant. different power electronics converter topology rent types of renewable energy generations. e different generating systems and the associated istributed generation systems		
Topics Covered	Renewable Energy Basics (6) Solar Energy (7) Wind Energy (7) Small-scale Hydro Electric Power Plants (7) Energy from Biomass (7) Other Renewable Energy Sources (7) Renewable Energy Sources using Modern Power Electronics Technologies (8) Control of Distributed Generation in Island Mode and Grid Connected situations (6)				
Text Books, and/or reference material	 Text Books: 1. G.D. Rai, Non-conventional energy resources, Khanna Publishers, New Delhi, 2003. 2. N. G. Clavert, Wind Power Principle, their application on small scale, Calvert Technical Press. Reference Books: 1. Fuel Cell Handbook, Parsons Inc. 2. I. Earnest and T. Wizelius, Wind Power Plants and Projects development, PHI. 				

Department of Electrical Engineering							
Course	Title of the	Program Core	Total Nu	umber of co	ntact hours		Credi
Code	course	(PCR) /	Lectur	Tutoria	Practica	Total	t
		Electives	e (L)	1 (T)	$1(P)^{\#}$	Hour	
		(PEL)				S	
EE 9021	DIGITAL	PEL	3	1	0	4	4
	SIGNAL						
	PROCESSING						
Pre-requisites		Course Assessment methods (Continuous evaluation (CE) and					
_		end assessment (EA))					

pp. 25/43

Signal and sys B.Tech.	stems in CE+EA	
Course	• CO1: To understand the properties of signals and systems.	
Outcomes	• CO2: To understand the concept of signal processing.	
	• CO3: To analyze discrete time signals and systems in time as well as frequence	y
	domain.	
	• CO4: To design digital filters.	
	• CO5: To get acquainted with digital processors recently used.	
Topics	Discrete time signals and systems, properties, convolution, analysis of discrete tim	ne
Covered	systems in time-domain [4]	
	Frequency domain representation of discrete time systems and signals, Gibl	DS
	phenomenon, band limited signals, sampling theorem aliasing sampling of	of
	continuous time signals [6	j]
	Z- transforms, region of convergence, Z- transform theorems and propertie	s,
	methods of Inverse Z-transforms, analysis of discrete time signals and systems	in
	Z-domain, pole-zero plots, stability [4	[]
	Realization of FIR Systems and IIR systems [4	[]
	Discrete time Fourier transform of discrete time signals and systems, Invers	se
	discrete time Fourier transform, Eigenfunction [6	5]
	Discrete Fourier transform (DFT), properties of DFT, Linear convolution usir	ıg
	DFT, Computation of DFT by FFT algorithms like decimation in frequency ar	ıd
	decimation in time [10)]
	Various Filter design techniques for FIR and IIR filters [8]]
	Sampling rate conversion, up and down rate sampling, interpolation and decimation	n
		-
	Introduction to discrete Hilbert Transform, [4]
	Practical applications of DSP, DSP processors. [4]	
Text Books,	Text Books:	
and/or	5. Discrete Signal Processing by A.V. Oppenheim and R.W. Schafer (Prentice	e-
reference	Hall).	
material	6. J. G. Proakis & D. G. Manolakis, Digital Signal Processing: Principle	s,
	Algorithms and Applications, Prenuce Hall of India.	
	1 Digital Signal processing by Saniit K Mitra (Tata McGrayy Hill)	
	2. Theory and Application of Digital Signal Processing by J. P. Pabinar and I	Ð
	Gold Pearson Education 2004	.ر

Department of Electrical Engineering, NIT Durgapur							
Course Code	Title of the	Program	Program Total Number of contact hours				Credi
	course	Core (PCR)	Lectur	Tutoria	Practica	Total	t
		/ Electives	e (L)	l (T)	1 (P)	Hour	
		(PEL)				S	

pp. 26/43

EE 9039	Micro		PEL	3	1	0	4	4	
	Electro)-		C	-	Ŭ		-	
	Mecha	nical							
	System	ns							
	(MEM	(S)							
Pre-requisites			Course asses	sment metl	hods (conti	nuous (CT)	and end		
			assessment (EA))					
Basic under	rstanding	g on	CT+EA						
engineering		physics,							
engineering	math	ematics,							
electrical tech	nology,	analog							
and digital elect	ronics.	<u> </u>		1 0 1	1 (1)			•	
Course Outcom	es •	COI : U	nderstanding t	he fundame	entals of M	IEMS technol	ology and	1ts	
		applicat	ions	(1 1.00	,	(C.N.C.)			
	•	Drocad	o study and lea	arn the diffe	erent aspec	us of Mitcrol	abrication	1	
			ues. 'o loorn shout f	ha Miarafa	hrizotian T	Procedures			
		CO3: 1	o lealli about t	the Microse	oncore and	Microactuat	ore and th	nair	
	•	applicat	ion		lisois and	Wheroactua	ions and u		
	•	CO5: I	earn about the	RE-MEMS	S and Bio-l	MEMS tech	niques an	ł	
		applicat	ions.				inques un		
	•	CO6: T	o learn the mo	delling and	computer	simulation t	echnique	s for	
		MEMS	designs.		· · · · · · · · · ·		1		
Topics Covered		1. Intr	roduction to MEMS: Introduction to MEMS technology, Why						
-		ME	MS, Advantag	ges, Applic	cations, ex	amples of	MEMS	devices,	
		ME	MS in Electron	nic Industri	es, VLSI	Fechnology	for fabric	ation of	
		inte	grated circuitsc	chips. (4L).	,				
		2. Fun	ndamentals of Microfabrication Procedures: Introduction to						
		Thi	n Film Techn	ology, Cl	ean room	s, Surface	Microma	chining,	
		ME	MS fabricatio	ns process	$\frac{1}{2}$ flow (L	eposition,	Lithograp	hy and	
		Etci	ning), MEMS 1	abrication	instrumen	ts, MEMS I	abrication	i bench,	
		2 Thi	romachining, S	surface Mo	bnigues	UL). Substrata N	Interiala	Silicon	
		J. IIII Wet	for Motol Do	lymer Dla	etic subst	substitute N rate Thin	Film Do	nosition	
		vv al Prov	ress Physical 1	Deposition	nrocess (Themical Va	nour De	position	
		Spil	ttering. Electro	deposition	Electron	ating. Oxida	tion. (81 .)	•	
		4. Fun	damentals o	f Lithog	raphy: I	troduction	to Thi	n Film	
		Tec	hnology. Diffe	erent Litho	ography T	echnique.	Mask and	d Mask	
		Mat	erial, Photores	ists, Positi	ve Photor	esists, Nega	tive Phot	oresists,	
		Lift	-off, LIGA. (61	L).		. 0		,	
		5. Etc	hing Procedu	res: Need	for etchir	ng process,	different	etching	
		tech	niques, wet e	tching, dry	etching,	etching ma	terials, C	hemical	
		Etcl	ning, Plasma Et	tching, pred	cautions. (6L).			
		6. Mic	crosensors and	d Microac	tuators:	Acceleromet	ters, Gyro	oscopes,	
		Ang	le-Sensors, Pr	essure Sen	sor, Micro	phones and	MEMS	sensors.	
		(4L).						

pp. 27/43

	7. Introduction to BioMEMS: MEMS technology in biomedical
	applications, Microelectrodes for Biomedical Engineering,
	Introduction to Microfluidics and its Applications. (4L).
	8. RF MEMS: MEMS for telecommunications (RF MEMS), RF MEMS
	Components, RF-MEMS applications, Recent RF MEMS
	development, RF MEMS Limitations, RF MEMS Challenges. (4L).
	9. Computational Modeling of MEMS and MEMS Devices:
	Overview of MEMS-CAD software; followed by tour of MEMS
	Design Centre, COMSOL, IntelliSuite. (6L).
	10. Recent Development in Microtechnology: Introduction to
	Nanotechnology, Carbon Nanotube, Graphene, CNT Sensors
	Graphene Sensors. (4L)
Text Books,	Text Books:
and/or Reference	An Introduction to Microelectromechanical Systems Engineering: Nadim
Material	Maluf, Artech House, 2000
	Microsystem Technology: Wolfgang Menz, Jürgen Mohr, Oliver Paul, John
	Wiley & Sons, 2008.
	Reference Books:
	An Introduction to Microelectromechanical Systems Engineering: Nadim
	Maluf, Kirt Williams, Artech House, 2004.
	Fundamentals of Microfabrication: The Science of Miniaturization, Marc J.
	Madou, CRC Press; 2nd Ed. 2002.
	MEMS: A Practical Guide to Design, Analysis, and Applications: Jan Korvink
	Oliver Paul, William Andrew; 1 edition (November 14, 2005)

Department of Electrical Engineering, NIT Durgapur								
Course Code	Title of the	Program	Total Number of contact hours Credi				Credi	
	course	Core	Lectur	Tutoria	Practica	Total	t	
		(PCR) /	e (L)	1 (T)	1 (P)	Hour		
		Electives				S		
		(PEL)						
EE 9040	Nondestructive	PEL	3	1	0	4	4	
	Testing (NDT)							
Pre-requisites		Course assessment methods (continuous (CT) and end						
		assessment (EA))						
Basic understan	ding on	CT+EA						
engineering physics, engineering								
mathematics, electrical								
technology, analog and digital								
electronics.								

Course Outcomes	• CO1: To understanding the fundamentals of NDT and its applications.
	• CO2: To study the X-Ray based NDT.
	• CO3: To learn about the NDT based on Ultrasound.
	• CO4: To understand the Eddy Current based NDT.
	• CO5: To study the NDT procedures with Infrared thermography (IRT).
	• CO6: To learn about the Ground Penetrating Radar (GPR) based NDT.
	• CO7: To study the other NDT techniques such as Vibration Analysis.
	Magnetic Particle Testing, Liquid Penetrant Testing, Leak and pressure
	testing.
	• CO8: To understanding the NDT for Electrical Engineering Materials
Topics Covered	Introduction to material characterization : Introduction to materials
Topies Covered	material structure and properties material characterization material
	testing destructive testing nondestructive testing structural health
	monitoring offling monitoring onling monitoring (A I)
	Introduction to Nondestructive Testing (NDT). Introduction to NDT
	destructive testing Comparison between destructive testing and
	nondectructive testing, comparison between destructive testing and
	nondestructive testing, structural nearth monitoring (SHW), ND1 for
	material characterization, online monitoring, oil-line monitoring,
	advantages of ND1, Applications of ND1. (6L).
	NDI with X-Rays: Introduction to X-Rays, X-Ray tube, X-Ray
	generation, X-ray films and screens, X-Ray dosage, X-Ray attenuations,
	X-Ray planner radiography, Radiography instrumentation, X-ray safety,
	advantages and limitations, introduction to X-ray computed tomography,
	CT instrumentation, image reconstruction and image quality, CT
	procedure and precautions, industrial applications, advantages and
	limitations. (8L).
	Ultrasound and Acoustic Emission Testing (AE): Principles of sound,
	principle of ultrasound, ultrasound for NDT, Piezoelectric Material,
	ultrasound transducers, types of transducers/probe, ultrasound equipment
	ultrasound beam and beam forming, ultrasound focusing, ultrasound
	penetration depth, A, B and C scan procedures with ultrasounds,
	applications, advantage, limitations (6L).
	Electromagnetic and Eddy Current Techniques: introduction to
	electromagnetics, magnetic fields, magnetic materials, Eddy current, Eddy
	currents generation, Eddy current based NDT, Eddy currents instruments,
	Eddy currents techniques in industry, sensitivity, applications, advantages
	and limitations of Eddy current based NDTs. (6L).
	Infrared thermography (IRT): Infrared radiation (IR), applications of
	Infrared, thermography, IR thermography, IR thermography as NDT,
	applications, limitations, IDNDT for industrial applications. (6L).
	Ground Penetrating Radar (GPR): Introduction to GPR, GPR
	instrumentation, application of GPR, GPR testing procedures, advantages
	and limitations, GPR data interpretation. (4L).
	Other NDT Techniques:

	Vibration Analysis (VA): vibration, vibration of materials, source of
	vibrations, vibration testing instruments, vibration sensors, applications of vibration testing, advantages, limitations (2I)
	Magnetic Particle Testing (MPT). Basic principles of MPT steps of MPT
	MPT equipment and instrumentation MPT procedure Magnetic Particle
	Testing. Important terminologies related to magnetic properties of
	material, principle, magnetizing technique, procedure, equipment.
	fluorescent MPT method, sensitivity, application and limitations. (3L)
	Liquid Penetrant Methods (LPM): introduction to dye penetrant testing/
	liquid penetrant testing, Basic procedure of LPM, Mechanics of LPM,
	Types of penetrants, characteristics of penetrant, penetrant testing
	materials, removers and developers, fluorescent penetrant testing method-
	sensitivity, application and limitations. (3L)
	Leak and pressure testing (LPT): Definition of leak and types, Principle,
	Various methods of pressure and leak testing, Advantages of pressure and
	NDT for Electrical Engineering Materials. Introduction to electrical
	engineering materials NDT for engineering materials testing of
	transformer oil testing of electrical insulators testing of electrical
	conductors. (4L)
Text Books, and/or	Text Books:
Reference	1. Non-Destructive Test and Evaluation of Materials Hardcover – 1 July
Material	2017, by J Prasad (Author), C. G. Krishnadas Nair (Author), McGraw
	Hill Education (1 July 2017).
	2. Introduction to Nondestructive Testing: A Training Guide, 2nd
	Edition by Paul E. Mix, wiley-interscience (3 June 2005).
	Reference Books:
	1. Practical Non-Destructive Testing, Paperback – 1 January 2009, by
	Baldev Raj (Author), Narosa (1 January 2009)
	2. Nondestructive Testing Handbook: Acoustic Emission Testing: 5
	Hardcover – Import, 1987, by Ronnie K. Miller (Editor), Paul McIntire
	(Editor)

Department of Electrical Engineering							
Course	Title of the	Program Core	Program Core Total Number of contact hours Cred			Credi	
Code	course	(PCR) /	Lectur	Tutoria	Practica	Total	t
		Electives	e (L)	1 (T)	1 (P)	Hour	
		(PEL)				S	
EE 9018	EMBEDDED	PEL	3	0	0	3	3
	SYSTEMS						
Pre-requisites		Course Assessment methods (Continuous (CT) and end					
		assessment (EA))					
NIL		CT+EA					

pp. 30/43

Course	• CO1: Comparing different microprocessor architectures and justifying their
Outcomes	field of application.
	• CO2: Given peripheral devices such as memory, ADC, DIOs, etc., design
	of interfacing circuit, and writing algorithms to fulfil a given specific
	application.
	• CO3: Programming processor specific and processor independent software
	for different complex embedded system applications.
	• CO4: Developing hardware and software for a given applications.
	• CO5: Knowledge of advanced microcontrollers and RTOS features and
	their field of applications.
	• CO6: Given single task application design a microprocessor based system.
Topics	Introduction to Embedded systems:
Covered	Introduction – Features – Microprocessors – ALU - Von Neumann and Harvard
	Architecture, Classification, SPP, ASIC, ASIP [3]
	CISC and RISC - Instruction pipelining. Fixed point and Floating point processor
	General characteristics of embedded system introduction to different components
	etc[5]
	Microcontroller 89CX51/52 Series: Characteristics and Features Overview of
	architectures and Perinherals Timers Counters Serial communication Digital I/O
	Ports[5]
	Microcontroller PIC Series: Characteristics and Features Overview of
	architectures and Perinherals Interrunts Timers watch-dog timer I/O port
	Expansion analog-to-digital converter UART 12C and SPI Bus for Peripheral
	Chins Accessories and special features [5]
	ARM Architecture: Evolution Characteristics and Features Overview of
	architectures Modes Registers etc
	[5]
	Digital Signal Processor [5]
	Software architecture and RTOS:
	Software Architecture: Round Robin- Round Robin with interrupts -Function
	Oueue Scheduling
	Architecture RTOS: Architecture Tasks and Task States Tasks and Data
	Samaphores and Shared Data Massage Queues Mail Boyes and pines Timer
	Functions - Events - Memory Management Interrunt Routines [6]
	Tunctions -Events -Weinory Wanagement, interrupt Routines. [0]
	Basic design using a real time operating system:
	Overview. General principles. Design of an embedded system.
	Development Tool: Cross-Compiler, Cross-Assemblers, Linker/locator. PROM
	Programmers, ROM, Emulator, In-Circuit Emulators. Debugging Techniques.
	Instruction set simulators. The assert macro. [6]
Text Books.	Text Books:
and/or	1. Douglas V. Hall, <i>Microprocessors & Interfacing</i> , Tata McGraw-Hill
reference	2. M. Predko, Programming & Customising 8051 Microcontroller, TMH
material	
	1

Reference Books:

- 1. John Uffenbeck, Microcomputers and Microprocessors, Pearson Education
- 2. Michel Slater, Microprocessor Based Design, PHI

Department of Electrical Engineering									
		Program Core	Tota	l Number o	of contact he	ours			
Course	Title of the	(PCR) /	Lectur	Tutoria	Practica	Total	Credi		
Code	course	Electives	P(I)	1 (T)	1 (P)	Hour	t		
		(PEL)	C (L)	1(1)	1(1)	S			
EE 9019	FACTS	PEL	3	0	0	3	3		
	DEVICES						5		
Pr	e-requisites	Course Assessm	nent metho	ods (Contin	uous (CT) a	nd end			
		assessment (EA	A))						
EEC401(P	OWERSYSTEMS-								
I)EEC	C501(POWER								
	51 EMS - 11			CI+EA					
EEC	SUS(PUWER								
	CIRCINICS)	here and the series	t of EACT	C daviaga	a a whole				
		vire knowledge ab	OUT FACT	nt applicati	$\cos a$ whole.	TS device	as in		
	• CO2. Acqu	2. Acquire knowledge about different applications of FAC1S devices in							
Course	$\bullet CO3:\Delta cou$	• CO3: A cquire an idea about modelling of various FACTS devices and their							
Outcome	es interaction	• COS.Acquire an fuel about moderning of various FACTS devices and then interaction in power system							
	• CO4: Unde	 CO4: Understand how FACTS devices improve various power system 							
	performance	performances like power flow control, stability etc							
	FACTS concep	t and General Sys	tem of Co	isideration	s.[2]				
	Checklist of po	ossible benefits fro	om FACTS	technolog	v.[1]				
	Lumped/Distrib	outed model analy	sis for Seri	ies and Shu	int compens	ation.[5]			
	Methods of Con	Methods of Controllable Var Generation: Variable Impedance Type Static Var							
	Generators, lun	Generators, lumped/distributed model analysis, TCR, TSR, TSC, FC-TCR.[8]							
	Switching Con-	Switching Converter Type Var Generators, STATCOM,							
	basicconcepts,1	basicconcepts, lumped/distributed model analysis, basic converter configurations.							
Topics	[8]								
Covered	I Static Series Co	ompensators:Basic	c principles	s of operation	on of TSSC	, TCSC, S	SSSC,		
	lumped/distribu	ited model analys	is Applicat	ions. [8] Static Vol	tage and I	Phase		
	angle regulator	s: TCVR and TCF	PAR, lump	ed/distribut	ed modelan	alysis,			
	Applications.[7]							
	Combined Con	pensators: Unifie	d Power F	low Contro	ller (UPFC)	, basic op	perating		
	principles, conv	ventional transmis	sion contro	ol capabiliti	es. Function	nal contro	ol of		
	shunt converter	and series conver	rter, basic o	control syst	ems for P a	nd Q cont	rol,		
	lumped/distribu	lumped/distributed model analysis.[11]							

	Introduction to steady state analysis and control, oscillation stability analysis and control by UPFC. Transient stability control by CSC, SSSC, SVC, STATCOM and UPFC. [8]
Text Books, and/or reference material	 Text Books: 1. Y.H. Song and A.T. Johns," Flexible AC Transmission Systems (FACTS), IET Power and Energy Series, Shankar's Book Agency Publisher (Indian Edition). 2. K.R. Padyyar," FACTS Controller in Power Transmission and Distribution", Reference Books: Mey Ling Sen, Kalyan K. Sen," Introduction To FACTS Controllers – Theory, Modeling And Applications, Wiley (IEEE) Publisher. N.G. Hingorani& L. Gyugyi, "Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems".

Department of Electrical Engineering							
Course	Title of the course	Program	Total Nu	mber of con	tact hours		Credit
Code		Core (PCR)	Lecture	Tutorial	Practica	Total	
		/ Electives	(L)	(T)	1 (P)	Hours	
		(PEL)					
EE 9022	ESTIMATION	PEL	3	0	0	3	3
	OF SIGNALS						
	AND SYSTEMS						
Pre-requisi	tes	Course Asses	sment met	hods (Conti	nuous eval	uation (C	E) and
		end assessme	nt (EA))				
Advanced	Control SYSTEM I	CE+EA					
Course	CO1:	To develop	insight on	well know	n techniqu	ues for p	arameter
Outcome		estimation an	d identific	ation of unk	nown parai	meters us	ing these
S		estimation me	ethods for	linear as we	ll as nonlin	lear syste	ms
	CO2:	Familiarizatio	on with R	andom vari	ables , Sto	chastic I	Processes
		and Probabil	istic state	space mod	els, catego	rization	of noise,
		Investigation	of controll	lability and o	observabili	ty of linea	ar as well
		as nonlinear s	systems				
	CO3:	To develop c	oncept on	Bayesian fil	ltering, deri	ivation of	f Kalman
		filter as a spe	cial case o	f Bayesian f	ilter, famil	iarization	with the
		properties of	Kalman fil	ters and its	variants, ab	oility to de	esign and
		tuning Kalma	n filter				
	CO4:	To augment	the conc	ept of Kal	man filteri	ing for 1	nonlinear
		dynamic syst	ems, to a	ppreciate L	inearized I	Kalman f	filter and
		Extended Kal	lman filter	as the nonli	near versio	n of Kalr	nan filter

	CO5:	Understanding the general framework of Gaussian filter as a
		special case of Bayesian filter and deriving the variants of sigma
		point filters and Quadrature filter from the framework
	CO6:	To develop knowledge on Maximum likelihood estimation and
		its application for state and parameter estimation for dynamic
		system, Derivation of Cramer-Rao lower bound to investigate the
		accuracy aspects of the estimators.
Lecture#	Topics	Details
6	Parameter	Least Squares Estimation, The Recursive Least-Squares
	Estimation	Algorithm, Initial Conditions and Properties of RLS, Estimation
		of Time-varying Parameters, Multi-Output, Weighted Least
		Squares Estimation, Generalized least squares, A probabilistic
		version of the LS, Nonlinear least squares, Equation error
6	Introduction to	Metriv algebra and metriv calculus. Stability Controllability and
0	Linear Systems	Mainx algebra and mainx calculus, Stability, Controllability and
	and Probability	The Gauss Markov Discrete time Model Pendom variables
	theory	Transformations of random variables Multiple random
	theory	variables Stochastic Processes and Probabilistic state space
		models. White noise and colored noise
4	Bayesian Filtering	Origins of Bayesian filtering Optimal filtering as Bayesian
•	and introduction	inference. Algorithms for Bayesian filtering and smoothing.
	to Kalman filter	Bayesian filtering equations and exact solutions. Framework of
		the Kalman Filter, The Discrete Kalman Filter as a Linear
		Optimal Filter
3	Properties of	Minimum Variance and Linear Minimum, Variance Estimation;
	Kalman filters	Orthogonality and Projection, The Innovations Sequence, True
		Filtered Estimates and the Signal-to –Noise Ratio Improvement
		Property, Inverse Problems:
8	Variants of	Information filtering, Square root filtering, Correlated process
	Kalman Filter	and measurement noise, Colored process and measurement
		noise, Steady-state filtering, Adaptive Kalman filters, Gaussian
		Sum filters
3	Introduction to	The linearized Kalman filter, The extended Kalman filter,
	Nonlinear Kalman	Higher-order approaches
-	filtering	
6	General Gaussian	Unscented transformations, Unscented Kalman filtering,
	filtering	Quadrature rules for Gaussian Integral Approximations, Gauss
6	Output organ	Dringing of maximum likelihood. Cramer Dec. January 1
0	Output error	Principle of maximum likelinood, Cramer-Rao lower bound,
	Estimation	separts. Output error method
Toyt	LSumation Modelling and Dara	aspects, Output error method mater Estimation of Dynamia Systems by LD, Deal C, Cirila
Book	and I Singh Institu	tion of Engineering and Technology London United Kingdom
DOOK	ontimal State Estim	uon of Engineering and Technology, London, United Kingdom
	punnai State Estin	α α β

Referenc	Introduction to Random Signals and Applied Kalman Filtering by Robert Grover
e Books	Brown & Patrick Y. C. Hwang, John Wiley & Sons
	Bayesian Filtering and Smoothing by Simo Sarkka, Cambridge University Press

Department of Electrical Engineering								
			Program	Tota	l Number o	of contact he	ours	
Course Code]	Fitle of the course	Core (PCR) / Elective s (PEL)	Lectur e (L)	Tutoria l (T)	Practica l (P)	Total Hour s	Credi t
EE 9028	P (IN	OWER SYSTEM CONTROL AND STRUMENTATIO N	PEL	3	0	0	3	3
	Pre-r	requisites	Course As assessmen	ssessment r t (EA))	nethods (C	ontinuous (CT) and e	end
EE1002 (Power	System Operation)			CT+E	EA		
Course Outcomes Course Course Course Course Course Course Course Course Course Course Course CO3: For a given observability with c CO4: Given applica using statistical ana CO5: Given conditi system for control a CO6: Application			power system, appry load frequency control with tuning of ers for the better stability etwork, control both active and reactive power flow with UPFC cation. power test system, optimally place PMUs optimally for full contingency. ation and data, evaluate to find suitable measurement system lysis tool. ion of some power system utility, design a suitable PLC based and operation including the programming of PLC. of knowledge; in contemporary issues of advanced plied for monitoring and control of power system.				ining of h UPFC for full system C based dvanced	
Topic: Covere	s ed	Instrumentation applied for monitoring and control of power system. Overview of Power System, Optimal Power Flow, Power System Stability, Conventional Control Scheme for Power System; [4] Automatic Generation Control: Automatic Voltage Regulator (AVR), Load Frequency Control (LFC) with tuning of Controller parameters; [7] Phasor Measurement Unit (PMU): Overview of Synchrophasor, PMU architecture,PMU Applications; [6] Smart Grid (SG): SG concept, Impact of SG for power system control & Measurement, Systems & Functions of SG [6] Measurement, Errors, Statistical Analysis of Errors [4] Sensors and Transducers, Signal Conditioning Circuit, Converters, Optical Insulator, Instrument transformers. [8] Supervisory control and data acquisition system: Functional blocks, Software and					d d ll vare and	

	Text Books:
	1. S. Sivanagaraju & G. Sreenivasan, "Power System operation and Control",
	Pearson 2010.
	2. Ernest O. Doebelin, Measurement system, Tata McGraw-Hill Education
Text Books,	3. Stuart A., Supervisory Control and Data Acquisition, Boyer International
and/or	Society of Automation
reference	
material	Reference Books:
	1. Surya Santoso, Mark F. McGranaghan, Roger C. Dugan, H. Wayne Beaty,
	Electrical Power Systems Quality, Access Engineering.
	2. Andres Carvallo, John Cooper, "The Advanced Smart Grid: Edge Power
	Driving Sustainability", Artech House, Boston London, 2011.

	Depar	rtment of Elec	Department of Electrical Engineering					
		Program Total Number of contact hours						
Course Code	Title of the course	Core (PCR) / Electives (PEL)	Lectur e (L)	Tutoria l (T)	Practica l (P)	Total Hour s	Credi t	
EE	PROCESS	DEI	2	0	0	2	2	
9023	N AND CONTROL	PEL	3	0	0	3	3	
Pre-requisites		Course Assessment methods (Continuous (CT) and end assessment (EA))						
	NIL	CT+EA						
 CO1: Given an application for measurement of liquid flow, choose suitabl sensor and also justify the selection. CO2: Given an application for measurement of temperature, choose suitabl sensor and also justify the selection CO3: Given single-parameter control application of an industrial process design suitable instrumentation loop using PLC CO4: Integration of different given elements of a process for control application. CO5: Compare different actuators for a given process control application. 					able table ss on.			

Topics Covered	Review of measurement principles, statistical analysis of measurement errors and error analysis. [4] Measurement of Flow; Orifice, venturi, pitot tube, rotameter, ultrasonic flow meter, electromagnetic flow meter, mass flow meter, etc. [4] Measurement of temperature, RTD, Thermistor, Thermocouple, Semiconductor type temperature sensor, IR sensor etc. [3] Measurement of liquid level; float, capacitive, ultrasonic, radar gauge etc. [4] Pressure measurement, Differential pressure, starin, force, displacement. [5] Measurement of Torque, Linear and angular displacement/speed etc.; [4] Actuators and Finalcontrol elements, Valves, Electrical, pneumatic, and hydraulic [4] Programmable Logic Controller (PLC), Distributed Control System [4] Process signal transmission, [3] Process Control; ON-OFF Control, PID Control, of interactive and non-interactive systems. [7]
Text Books, and/or reference material	 Text Books A. D. Helfrick and William David Cooper, Modern electronic instrumentation and measurement techniques, Prentice Hall John-G. Webster (ed.), The Measurement, Instrumentation, and Sensors: Handbook, Springer Reference Books: Curtis D. Johnson, Process control instrumentation technology, Prentice Hall Robert N. Thurston and Allan D. Pierce, Ultrasonic measurement methods, Academic Press William Bolton, Programmable Logic Controllers, Newness Stuart A. Boyer, Supervisory Control And Data Acquisition, International Society of Automation T. V. Kenneth and B. T. Meggitt, Optical Fiber Sensor Technology, Springer.

pp. 37/43

	Department of Electrical Engineering								
Course	Title of the course	Program	Total Nu	mber of con	tact hours		Credit		
Code		Core (PCR)	Lecture	Tutorial	Practica	Total			
		/ Electives	(L)	(T)	1 (P)	Hours			
		(PEL)			~ /				
EE 9041	ROBUST &	PEL	3	0	0	3	3		
	OPTIMAL								
	CONTROL								
Pre-requisi	tes	Course Asses	sment met	hods (Conti	nuous eval	uation (C	CE) and		
		end assessme	nt (EA))						
Advanced	Control Theory I	CE+EA							
		1							
Course	CO1:	To develop	concepts	of model	uncertainty	y, structu	ared and		
Outcome		unstructured	uncertaint	y, analyze t	he stability	y, compu	tation of		
S		gain margins	and phase	margins					
	CO2:	To acquire k	knowledge	on Linear	Fractiona	l Transfo	ormation,		
		structured rol	oust stabili	ty assessme	ent based of	n LFT, to	have an		
	-	exposure to μ	exposure to μ synthesis						
	CO3:	Familiarizatio	on with H2	control pro	blem, stabi	ility asses	ssment of		
		H2 controller	S						
	CO4:	Problem form	nulation a	and control	law desig	gn based	on H∞		
		Control							
	CO5:	To learn stand	lard optim	ization appi	oaches for	obtaining	g optimal		
		solution of co	ontrol prob	lems					
	CO6:	To develop	concept	on Dynan	nic progra	imming	and the		
		computation	procedures	5					
Lecture#	Topics			Details					
8	Model uncertainty	Model uncert	ainty, Sm	all Gain the	eorem, Stat	oility und	ler stable		
	and Robustness	unstructured	uncertaint	ties, unstru	ctured rob	ust perf	ormance,		
0		gain margins	and phase	margins	<u> </u>	1 ' 1	1		
8	Linear Fractional	Linear Fracti	ional Trar	isformation,	Structure	d singula	ar value,		
	Transformation	structured ro	bust stabi	ity and pe	riormance,	Overvie	ew on μ		
0	II Onting 1	Synthesis		C41		hlans 0			
ð	n ₂ Opumal	theory Stabil	zk proble	of \mathbf{U}_{1} contr	iu H2 pro	olem, S	eparation		
6	L Control	Problem for	mulation	Output for formula for the formula for the formula f	oners	[Cont	rol Full		
0		information	control	Full contro	l disturbo	1_{∞} Culling	loi, Full		
		Output estim	ation Sen	aration theo	ry Control	ller inter	aretation		
		Output estim	allon, Sep		ry, control	ner mier	pretation,		
8	Ontimization	Linear progra	mming an	d simpley n	nethod We	ierstrass'	theorem		
0	Spunnzauon	Karush Kuk	in Tucka	r ontimali	tv conditi	ione al	orithme		
		convergence	unconstra	ined ontimi	zation Lin	e search	methods		
		method of m	ultidimens	sional search	h. steenest	descent	methods		
		Newton's met	hod modi	fications to	Newton's r	nethod	monious,		
			mou, mou			nethou			

pp. 38/43

4	Dynamic	The optimal control law, The principle of optimality, Dynamic					
	Programming	programming concept, Recurrence relation, computational					
		procedure, The Hamilton-Jacobi Bellman equations.					
Text	John C. Doyle, Bruce A. Francis, Allen R. Tannenbaum, Feedback Control Theory,						
Book	Macmillan Publishing Co., 1990						
	D.E.Kirk, Optimal	Control Theory- An Introduction, Dover Publications, New York,					
	2004						
	Green M., Limebeer	Green M., Limebeer D.J.N., Linear Robust Control, Pearson Education					
Referenc	K. Zhou, J. C. Doy	le, K. Glover, Robust and Optimal Control, Prentice Hall Inc.,					
e Books	Upper Saddle River, NJ, 1995						
	B. D. O. Anderson	and J. B. Moore, Optimal Control: Linear Quadratic Methods,					
	Prentice Hall, 1995						

	Department of Electrical Engineering, NIT Durgapur							
Course Code	Title of the	Program	Total Nu	umber of co		Credi		
	course	Core (PCR)	Lectur	Tutoria	Practica	Total	t	
		/ Electives	e (L)	1 (T)	1 (P)	Hour		
		(PEL)				S		
EE 9042	Medical	PCR	3	0	0	3	3	
	Imaging							
	Systems							
Pre-requisites		Course assess	ment meth	ods (contir	nuous (CT) a	and end		
assessment (EA))								
Basic understanding on CT+EA								
engineering physics,								
engineering mathematics,								
electrical techno	ology, analog							
and digital elect	ronics.							
Course Outcom	es • CO1: U	Jnderstanding th	ne fundame	entals of me	edical imagi	ng techni	ques	
	• CO2: 7	Fo study and lea	rn the X-R	ay radiogra	phy and X-	Ray tome	ography.	
	• CO3: 7	Fo study about the	he Magneti	ic Resonan	ce Imaging	(MRI)		
	procedu	ures.						
	• CO4: I	Learn about the	ultrasound	imaging m	ethods.			
	• CO5: 7	To learn the nucl	lear medici	ine procedu	res and inst	rumentati	ions.	
	• CO6: 7	To learn about th	ne modern	trends on n	nedical imag	ging proce	edures.	
Topics Covered	1. Introd	luction to Medi	cal Imagir	ng: Introdu	ction to Hur	nan Anato	omy and	
	Physic	ology, Human B	ody parts a	and Organs	and Their f	functions,	Human	
	Health	h and Disease, Medical Diagnostic Tools and Technologies,						
	Introdu	action to medica	al Imaging	Technique	s, Different	Medical	Imaging	
	Modal	ities. (8L).						
	2. Funda	mentals of X-I	Ray radiog	graphy: In	troduction to	o X-Rays	, X-Ray	
	tube, X	K-Ray generatio	n procedur	e, X-Ray I	Radiography	[,] instrume	entation,	

	X-Ray dosage, X-Ray attenuations, introduction to X-Ray planner
	radiography, advantages and limitations. (5L).
	3. X-Ray Computed Tomography: Introduction to computed tomography,
	radiography versus tomography, introduction to X-Ray tomography, CT
	instrumentation CT instrumentation CT Clinic CT Image
	Reconstruction Fourier Slice Theorem Radon Transform CT
	Paconstruction Algorithm CT procedure and presentions, educations advantages and
	limitations (9)
	limitations (8L).
	4. Magnetic Resonance Imaging (MRI): Introduction to MRI, Physics or
	magnetic resonance, MRI instrumentation, MRI Clinic, MRI procedure
	and precautions, MRI versus CT, advantages and limitations, risk factors
	in MRI, introduction to functional MRI (fMRI), Magnetic resonance
	spectroscopy (MRS). (6L).
	5. Ultrasound imaging methods: Introduction to ultrasonography (USG),
	Physics of ultrasound, piezoelectric materials, ultrasound generation,
	ultrasonography instrumentation. USG procedure and precautions.
	Doppler effect. Doppler imaging colour Doppler advantages and
	limitations. (6L).
	6. Nuclear medicine procedures: Introduction to nuclear medicine.
	radioisotopes gamma camera scintillation camera Emission Computed
	Tomography (ECT) positron emission tomography (PET) Single Photon
	Emission Computed Tomography (SDECT) SDECT Classifications
	Diston Application advantages and limitations (GL)
	7 Descrit Description advantages and miniations . (0L).
	7. Recent Development in Medical Imaging: Thermal Imaging, Electrical
	Tomography, Optical Tomography, multimodal imaging. (3L)
Text Books,	Text Books
and/or Reference	1. Handbook of Biomedical Instrumentation - R.S. Khandpur, TMG
Material	2. Medical Imaging Signals and Systems, 1e, by Prince and Links, 2008,
	Pearson Education (2008)
	Reference Books:
	1. Medical Instrumentation Application and Design, 4-Ed, by John G.
	Webster, Wiley (2015)
	2. The Essential Physics of Medical Imaging Hardcover, by Jerrold T.
	Bushberg (Author), I Anthony Seibert (Author), Edwin M. Leidholdt
	(Author) John M Boone (Author) 2011 Lippincott Williams and
	Wilkins (2011)
	3 Handbook of Medical Imaging Volume 1 Drysics and
	5. Handbook of Medical Inlaging, Volume 1. Thysics and Bayahaphysics (Press Monographs) Departurely 2000 by Dishard I
	r sychophysics (riess wionographis) Paperback, 2000 by Kichard L.
	v an Metter (Autnor), Jacob Beutel (Autnor), SPIE Press (2000)
	4. Principles of Medical Imaging Kindle Edition, by K. Kirk Shung
	(Author), Michael Smith (Author), Benjamin M. W. Tsui (Author),
	Academic Press (2 December 2012)

	Department of Electrical Engineering							
Course	Title of the course	Program	Total Nu	umber of co	ntact hours		Credi	
Code		Core	Lectur	Tutoria	Practica	Total	t	
		(PCR) /	e (L)	1 (T)	1 (P)	Hour		
		Electives				S		
		(PEL)						
EE 9013	IMAGE	PEL	3	0	0	3	3	
	UNDERSTANDIN							
	G							
Pre-requis	ites: NA	Course Ass	essment m	ethods (Co	ntinuous (C'	T) and en	d	
		assessment	(EA))					
		CT+EA						
Course	• CO1: Good u	inderstanding	of several	image enha	incement teo	chniques	and	
Outcomes	their applicat	ion to solve re	eal life prol	blem		1		
	CO2: Suffici	ient expertise	in both the	ory and app	olication of	several ir	nage	
	processing ta	sks such as in	nage restor	ation, imag	e compressi	on, and in	mage	
	segmentation	l.						
	CO3: Expert	ise of several	techniques	for analysi	s of images			
	• CO4: Understanding the methods of feature extraction and pattern							
	classification	•						
	CO5: Develo	p basic proble	em solving	skills as th	ey apply to	different		
	situations as	an engineer						
Topics	Introduction: In	nage digitiza	tion, Pixel	relationsh	ip, Distance	e transfo	rmation,	
Covered	Image transforma	tion viz. 2-D	DFT, 2-D	discrete co	sine transfor	rm (DCT) [5]	
	Image Enhance	ment: Point	and alge	braic oper	ations, edg	e detect	ion and	
	sharpening, Filter	ring in the sp	atial doma	ain, Histog	ram equaliz	ation, Hi	stogram	
	specification, Sha	rpening filter	s and gradi	ent operato	ors, Introduc	tion to fr	equency	
	domain filtering	using Fourie	er Transfor	rm; Basics	of 2D Fo	urier Tra	ansform,	
	Butterworth and C	Gaussian filter	S.				[7]	
	Image Restoration	on: Degradatio	on models,	Mean Filte	ers, Order St	atistics, A	Adaptive	
	filters, Band reje	ect Filters, Ba	and pass I	filters, Not	tch Filters,	Optimun	n Notch	
	Filtering, Inverse	Filtering, Wi	ener filteri	ng.		[5		
	Color Image Pr	ocessing: Co	lor image	tundamen	tals - RGB	, HSI an	d CMY	
	models [5]	models [5]						
	Image Segmenta	tion: Contou	r and shap	e depender	it feature ex	straction,	textural	
	teatures, region-based and feature-based segmentation and level set method					a [6]		
	Features for Rec	ognition: Bin	ary Image	Analysis, P	attern Reco	gnition C	oncepts,	
	Snape based feat	ure extraction	, l'exture t	based featu	re extractio	n, Conter	n-Based	
	Image Ret	neval,	leatures	IOr	image	rec	ognition	
	[12]							

Text Books,	Text Books:
and/or	1. Digital Image Processing by Rafael C Gonzalez & Richard E Woods
reference	2. Fundamentals of Digital Image Processing by Anil K Jain
material	3. Digital Image Processing by William K Pratt

Department of Electrical Engineering								
Course	Title of the	Program Core	Total Number of contact hoursC			Credi		
Code	course	(PCR) /	Lectur	Tutoria	Practica	Total	t	
		Electives	e (L)	1 (T)	$1(P)^{\#}$	Hour		
		(PEL)				S		
EE 2071	Advanced	PCR	0	0	4	4	2	
	Control System							
	Laboratory							
Pre-requis	ites	Course Assessment methods (Continuous evaluation (CE) and						
-		end assessment (EA))						
ADAVAN	ICED CONTROL	CE+EA						
SYSTEM	I XXEE10YY							
Course	• CO1: T	o understand the o	dynamic be	ehaviour of	real-time no	onlinear s	ystems.	
Outcomes	• CO2: T	o simulate physical systems in real-time environment.						
	• CO3:	To design feedback controllers to improve the performance						
	characte		eristics of real-time systems.					
	• CO4: T	• CO4: To determine the parameters and transfer function of physical systems						
	from re	real-time experimentation.						
	• CO5: T	To get acquainted with MATLAB programming, MATLAB-						
	SIMUL		INK in order to simulate, analyze and design of control system					
design f • CO6: T		for different plants under consideration						
		o apply and verify modern and advanced control algorithms for real-						
	time sy	stems						
Topics	Hardware exp	eriments:					8	
Covered	working days	working days						
	Design and Real-time implementation of PID, LSVF & LQR controllers for				or			
	1. Digital Cart-inverted pendulum system							
	2. Digital Twin rotor MIMO system							
3. Di		gital Magnetic levitation (MAGLAV) system						
	4. Dig	ital Servo system					_	
	Software Expe	oftware Experiments: 7					/	
	working days	working days						
	1. Des	ign of a suitable	controller	tor a given	time delay	ed unity	negative	
	feed	back closed loop	system usi	ng root loc	us technique	e.		

	2. Design of lead, lag, lead-lag controller for a given unity negative				
	feedback closed loop system using frequency domain design methods.				
	3. Design of linear quadratic optimal controller for a given continuous-time				
	LTI plant.				
	4. Design of optimal state feedback controller for LTI plant where some of				
	the states are not measurable.				
	5. Design of Kalman estimator when the sensors give noisy measurement				
	for problem 3.				
	6. Design of H_{α} full information controller for a given LTI plant.				
	7. Design of digital controller using frequency domain design technique for				
	a unity negative feedback closed loop system with a given continuous-				
	time plant				
Text Books,	Text Books:				
and/or	1. Modern Control Engineering, K. Ogata,				
reference	2. Modern Control System Theory, M. Gopal,				
material	4. Discrete Time Control Systems, K Ogata				
	5. Digital Control System, B. C. Kuo				
	6. Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P				
	Andrews				
	Reference Books:				
	1. Linear Control System Analysis And Design With MATLAB, John J. D'Azzo				
	and Constantine H. Houpis and Stuart N. Sheldon				
	2. Linear Robust Control, Michael Green and David J.N. Limebeer				

Department of Electrical Engineering							
Course	Title of the	Program Core	Total Number of contact hours			Credi	
Code	course	(PCR) /	Lectur	Tutoria	Practica	Total	t
		Electives	e (L)	1 (T)	1 (P)	Hour	
		(PEL)				S	
EE 2072	Intelligent	PCR	0	0	2	6	2
	System						
	Laboratory						
Pre-requisites: NA		Course Assessment methods (Continuous (CT) and end					
		assessment (EA))					
		CT+EA					
Course • CO1: Able		to implement several image processing algorithms.					
Outcomes • CO2: To un		nderstand the designing method of bandpass filter using OpAmps.				Amps.	
	• CO3: To u	nderstand the arbit	trary signa	l simulatior	n and proces	sing.	
	• CO4: To u	nderstand the base	ed data acq	uisition wit	h NI Hardw	are.	
	• CO5: To u	nderstand advance	ed statistica	ıl analysis o	of physiolog	gical sign	als
	CO6: Imple	ementation of dist	ributed pro	cess monit	oring and co	ontrol	

Topics	Exp-01: Implementation of face detection algorithm using public database					
Covered	Exp-02: Computer aided diagnosis of breast cancer using public dataset					
	Exp-03: Understanding An Multifrequency Signal Generator Circuit Using High					
	Frequency OpAmps					
	Exp-04: Design of A Variable Gain Variable Bandwidth Bandpass Filter using					
	High Frequency OpAmps					
	Exp-05: Realization of Arbitrary Signal Simulation and Processing in NI					
	LabVIEW					
	Exp-06: Design and Development of an Arduino Based Proximity Sensing					
	Instrumentation for Home Security					
	Exp-07 : Feature extraction of ECG signal by using higher order statistic					
	Exp-08: Implementation of Sensor Network and control of process parameters.					
Text Books,	Text Books:					
and/or	3. Christopher Bishop, Pattern Recognition and Machine Learning.					
reference	4. LabVIEW for Everyone (National Instruments Virtual Instrumentation					
material	Series) Paperback – Import, 16 November 2001, Prentice Hall (2001)					
	5. Arduino Projects for Engineers, Paperback, July 2016 by Neerparai Rai					
	(Author), BPB Publications (2016)					