NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR DEPARTMENT OF MECHANICAL ENGINEERING

Revised Curriculum and Syllabi

Program Name Master of Technology in Machine Design Effective from the Academic Year: 2021-2022

Recommended by DPAC	:06.08.2021
Recommended in PGAC	: 16.08.2021
Approved by the Senate	: 22.08.2021

CURRICULUM

Sl.	Subject	vject					
No.	Code	Name of the Subject	L	T	S	С	Η
		Semester I					
1.	ME 1001	Machine Dynamics and Control	3	0	2	4	5
2.	ME 1002 Advanced Mechanics of Solids		3	0	2	4	5
3.	ME 1003	Analysis and Synthesis of Mechanisms	3	0	2	4	5
4.	ME 90XX	Elective-I	3	0	0	3	3
5.	ME 1051	Computational Laboratory	1	0	4	3	5
			Tot	tal Cı	redit	18	23
		Semester II					
1.	ME 2001	Machine Design	3	0	2	4	5
2.	ME 2002	Mechanical Vibrations	3	0	2	4	5
3.	ME 90XX	Elective-II	3	0	0	3	3
4.	ME 90XX	Elective-III	3	0	0	3	3
5.	ME 90XX	Elective-IV	3	0	0	3	3
6.	ME 2051	Machine Design Laboratory	0	0	3	1.5	3
7.	ME 2052	Computer Aided Design Laboratory	0	0	3	1.5	3
8.	ME 2053	Mini Project with Seminar	0	0	4	2	4
			Total Credit 22			29	
		Semester III					
1.	ME907X	Audit Lectures / Workshops/ Special Topics in Machine Design	1	0	0	0	1
2.	ME 3051	Dissertation - I	0	0	24	12	24
3.	ME 3052	Seminar - Non-Project / Evaluation of Summer Training	0	0	4	2	4
	Total Credit 14						30
		Semester IV					
1.	ME 4051	Dissertation - II / Industrial Project	0	0	24	12	24
2.	ME 4052	Project Seminar	0	0	4	2	4
			Tot	tal Ci	redit	14	28
TO	TAL CRED	IT POINT : 68, TOTAL CONTACT H	OUR	S: 11	0		

LIST OF SUBJECTS FOR ELECTIVE I AND II

Sl. No.	Subject Code	Name of the Subject			
1.	ME 9011	Applied Computational Methods			
2.	ME 9014	Operations Research			
3.	ME 9016	Mechatronics			
4.	ME 9018	Finite Element Methods			
5.	ME 9019	Robotics			
6.	ME 9022	Modern Manufacturing Processes			
7.	ME 9023	Computer Aided Design			
8.	ME 9026	Tribology			
9.	ME 9028	Material Handling Equipments			
10.	ME 9029	Optimization in Engineering Design			
11.	ME 9030	Design of Machine Tools			
12.	ME 9044	Fluid Power Systems and Control			

LIST OF SUBJECTS FOR ELECTIVE III AND IV

SI.	Subject	Name of the Subject
No.	Code	
1.	ME 9012	Introduction to Non-linear Dynamic Systems and Control
2.	ME 9013	Theory of Plates and Shells
3.	ME 9015	Theory of Elasticity and Plasticity
4.	ME 9017	Microsystem Design
5.	ME 9020	Knowledge Based Systems
6.	ME 9024	Mechanics of Composite and Functionally Graded Material
7.	ME 9025	Modelling and Simulation of Mechanical Systems
8.	ME 9050	Mathematical Methods in Engineering
9.	ME9063	Lubrication Engineering

SYLLABUS

Department of Mechanical Engineering							
Course	Title of the	Program Core	Total Nu	mber of conta	ect hours		Credit
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total	
		Electives (PEL)	(L)		(P)	Hours	
ME1001	Machine	PCR	3	0	2	5	4
	Dynamics and						
	Control						
Pre-requisites	8	Course Assessmer	nt methods ((Continuous ((CT) and en	d assessn	nent
		(EA))					
Fundamental	knowledge of	CT+EA					
Mechanics ar	nd Theory of						
Machines in	B.Tech/BE(Mech)						
Course	CO1: Students	will be able to form	nulate the	procedure fo	r modeling	various	types of
Outcomes	Machines	and/ or its compone	nts				
	CO2: Students v	vill learn to study the	e performan	ice of various	systems w	ith respec	t to time
	and the pr	ocedure to improve.					
	CO3: Students	will learn to identi	fy various	types of coo	ordinate fra	imes requ	uired for
	describing	g the behavior of diff	terent mecha	anisms.	1.		
	CO4: Students	lents will be able to formulate and evaluate behavior of linear time continuous					
	control sy	control systems.					
	CO5: Students v	vill be able to identif	y and critic	ally evaluate	current dev	elopment	s and
	emerging	trends within the fie	ld of contro	i systems.			Harris
Toming	Conception of France	l (La secolita de la seco	opics	Envetiene			Hours
Covered	Generalized Forc	es and Coordinates,	Lagrange s	Equations			8
Covereu	Cam dynamics						6
	Balancing of roto	rs, Field balancing	1 1				0
	Rotor dynamics,	Gyroscope: action ar	ia applicatio	ons tiona			8
	System Modeling	, Block diagrams, Th	ransier lunc	tions			4
	Dynamic respons	e of systems	4				4
	Structure of Cont	rol systems and Con	trol Laws				4
	PID control - prif	Enclose and design	a mlat				4
	Stability criteria -	- Frequency response plot 4					
	Koot locus plot a	analysis 4					
Tart Daala	State-space repres	sentations					4
Text Books,	1 Theory of Mo	ahaniama and Maahi	nas Chash	Mollik			
anu/01	2 Modern Centr	ol Engineering Ogo	nes, Unusil, ta	, iviaiiik			
material	2. Wiodern Contr	of Engineering, Oga	la				
	Reference Books	5					
	1. Theory of Ma	chines and Mechanis	sms, Shigley	y, Uicker			
	2. Automatic Co	ntrol System, Kuo	2.				

Department of Mechanical Engineering							
Course	Title of the	Program Core	Total Nur	mber of conta	act hours		Credit
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total	
		Electives (PEL)	(L)		(P)	Hours	
ME1002	Advanced	PEL	3	0	2	5	4
	Mechanics of						
	Solids						
Pre-requisite	S	Course Assessmen	nt methods ((Continuous ((CT) and en	d assessn	nent
		(EA))					
Solid Mecha	nics Course in B.	CT+EA					
Tech level							
Course	CO1: Student w	ill learn about 3-D st	tate of stress	s and strain			
Outcomes	CO2: Student w	ill learn to derive go	verning equ	ations related	l to solid m	echanics.	
	CO3: Student w	vill be able to sole v	various criti	cal engineer	ing problen	ns related	to solid
	mechanic	s like beam on el	astic found	ation, curve	d beam, p	late bend	ling and
	stability p	oroblem					
			Topics				Hours
Topics	Introduction						4
Covered	Stress and Stra	ains in 3-D – Cauc	hy formula	, Principal S	Stress, hydi	ostatic	
	stress, deviator	ric stress, Mohr cir	cle, octahe	dral stresses,	, principal	strain,	
	plane state of s	tress, plane state of s	train etc.				14
	Theories of fail	ure					6
	Beam on elastic	c foundations	condations				
	Bending of cur	ved beams – Crane F	looks & Ch	ains			5
	Bending of the	in plates (Equation	for thin re	ectangular an	d circular	plates,	0
	Navier's and Le	evy's solution for rec	tangular pla	ites)	• 1 1		8
	Elastic stability	, Euler's buckling lo	ad, Beam co	olumn for var	1005 load		6
	Unsymmetrical	bending, shear cent	re				8
Text Books.	Text Books:						
and/or	1. Advanced Me	chanics of Solids, L.	S. Srinath				
reference	2. Advanced Str	2. Advanced Strength of Materials, J. P. Denhartog					
material	3. Advance Mec	hanics of Materials.	A. P. Bores	i & R. J. Schi	midt		
	Reference Book	S :					
	1. Advanced Me	chanics of Solids, O	tto T. Bruhr	18			
	2. Solid Mechan	ics, Clive L. Dym, Ir	ving H. Sha	ames			
	3. Solid Mechan	ics, Kazimi	C				

	Department of Mechanical Engineering							
Course	Title of the	Program Core	Total Nu	mber of cont	tact hours		Credit	
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	Electives (PEL) (L) (T) (P) Hours					
ME1003	Analysis and	PCR	3	0	2	5	4	
	Synthesis of							
	Mechanisms							
Pre-requisi	tes	Course Assessme (EA))	ent methods	s (Continuou	ıs (CT) and	end asse	ssment	
Engineering	g Mechanics,	CT+EA						
Theory of M	lachine							
Course	CO1: Students v	will be able to unde	rstand the	need of mult	i-body mee	chanics		
Outcomes	CO2: Students	will be able to form	ulate and e	evaluate kine	ematic beh	avior of o	different	
	mechanis	sms						
	CO3: Students v	will be able to synth	nesize and a	analyse the r	nulti-body	systems i	nvolving	
	different t	ypes of mechanisms	•			r		
Tonics		1	Topics				Hours	
Covered	Introduction to planar mechanis inversion, mobility	rigid-link mechan ms, spatial mechan ty, transmission angl	isms : Kine nisms, equi e, deviation	matic pairs, ivalent mech angle etc.	kinematic nanism, kir	chains, nematic	3	
	Kinematic analy acceleration analy	ysis of rigid-link a system of planar mechan	mechanism nisms and sj	s: displacent patial mechan	ient, veloci iisms.	ity and	14	
	Synthesis of rig dimensional synt equation, Dimen numbers method linkages, Introduc	gid-link mechanisr thesis, Chebyshev p sional synthesis m , Bloch's method e ction to dimensional	ns: Type polynomials ethods e.g. etc., Couple synthesis of	synthesis, m s, Freudenste algebraic n er-curve synt f spatial mecl	number syncin's displation nethods, control of the site of the site of the synchronization	nthesis, cement omplex cognate	16	
	Analysis and sy	nthesis of Cams					10	
	Introduction to and Challenges or	compliant mechan f compliant mechani	isms : Histo sms, Analys	orical backgr sis of complia	ound, Adva	antages isms	7	
	Introduction to micromechanism	micro mechanisms : Science of miniaturism, Scaling laws in 6 ns, Advantages and current trends.						
Text Books,	Text Books:							
and/or	1. Kinematic Ana	alysis and Synthesis	by Mallik,	Ghosh, Dittr	ich			
reference	2. Kinematic Syn	thesis of Linkages,	Hartenberg	g, Denavit				
material	3. Compliant Med	chanisms, Howell	· · · ·	-				
	Reference Boo	ks:						
	1. Theory of Mac	chines and Mechania	sms, Uickei	r, Pennock, S	higley			
	2. Advanced Med	chanism Design: An	alysis & Syr	nthesis, Sano	lor, Erdma	n		

Department of	f Mechanical Engined	ering					
Course	Title of the	Program Core	Total Number of contact hours			Credit	
Code	course	(PCR)/	Lecture	Tutorial (T)	Practical	Total	
		Electives (PEL)	(L)		(P)	Hours	
ME1051	Computational	PEL	1	0	4	5	3
	Laboratory						
Pre-requisites	S	Course Assessmer	nt methods (Continuous (CT) and en	d assessm	nent
		(EA))					
Applied Com	putational Methods	CT+EA					
Course	CO1: Students v	vill get idea of differ	ent program	ming langua	ges		
Outcomes	CO2: Students v	vill learn to develop	algorithm fo	or different pr	oblems		
	CO3: Students	CO3: Students will learn to write computer program to solve different engineering				gineering	
	problems	using various numer	ical method	s			
	Introduction to p	rogramming using h	igh level la	nguage (C/C+	-+/Fortran/I	MATLAB	3)
Topics	Computer progra	amming for solving l	inear simul	taneous equat	ions, non-li	inear equa	ations
Covered	Numerical differ	entiation and integra	tion				
	Solution of ordin	ary differential equa	tions and so	plution of par	tial differen	tial equat	ions
	Eigen value prob	lems, Boundary valu	ue, Initial va	alue problems	5		
	Problems as assi	gned by the respective	ve teachers				
Text Books,	Text Books:						
and/or	1. Getting s	tarted with Mat lab E	By Rudra Pr	atap			
reference	2. Mat Lab	2. Mat Lab Programming for Engineers By S. J. Chapman					
material	3. Compute	3. Computer Programming in Fortran 90 and 95 by Rajaraman					
	Reference Book	S:					
	1. Numerical Me	thods By B. S. Grew	val			× 7 11	1.5
	2. Numerical Re	cipes in Fortran By V	<i>N</i> . H. Press	S. A. Teuko	lsky, W. T.	Vetterling	g and B.
	P. Flannery						

		leening				
gram Core	Total Nur	mber of conta	act hours		Credit	
CR) /	Lecture	Tutorial (T)	Practical	Total		
ctives (PEL)	(L)		(P)	Hours		
R	3	0	2	5	4	
Course Assessment methods (Continuous (CT) and end assessment (EA))						
+EA						
be able to i	dentify the	significant	loads on	various	Machine	
 Components CO2: Students will learn types of Lubrication methods and various design aspects of sliding contact bearings. CO3: Students will learn to visualize the stress in machine components having complicated shape. CO4: Students will be able to design machine components for given lifespan and also predict damage that can occur during its. 						
able to unders that can appear ife of gears.	tand the fur r on such ge	nctioning of g ears and meth	gears and the ods to be ad	e concept dopted for	of	
Тс	opics				Hours	
ution of Sliders Dil film thickne ing.	and Bearin ess, Load ca	gs, Long and urrying capac	Short Bear ity, Frictior	ings, 1 and	14	
shafts.					8	
and rotating di	scs.				13	
uating loads, Cu	umulative fa	atigue damag	e.		9	
6						
oad on gears 6						
logy , B. C. Ma of Materials, Se cs for Gear, E. 1	ajumder eely, Smith Buckinghan	1				
	Dil film thickne ing. shafts. and rotating di lating loads, Cu logy , B. C. Ma of Materials, Se es for Gear, E. I cal Design, A.	Dil film thickness, Load ca ing. shafts. and rotating discs. lating loads, Cumulative fa logy , B. C. Majumder of Materials, Seely, Smith es for Gear, E. Buckinghan cal Design, A. Burr	Dil film thickness, Load carrying capacing. shafts. and rotating discs. lating loads, Cumulative fatigue damag logy , B. C. Majumder of Materials, Seely, Smith	Dil film thickness, Load carrying capacity, Friction ing. shafts. and rotating discs. lating loads, Cumulative fatigue damage. logy , B. C. Majumder of Materials, Seely, Smith es for Gear, E. Buckingham cal Design, A. Burr	Dil film thickness, Load carrying capacity, Friction and ing. shafts. and rotating discs. aating loads, Cumulative fatigue damage. logy , B. C. Majumder of Materials, Seely, Smith es for Gear, E. Buckingham cal Design, A. Burr	

Department of Mechanical Engineering								
Course	Ti	tle of the course	Program Core	Total Nu	mber of cor	tact hours		Credit
Code			(PCR) /	Lecture	Tutorial	Practical	Total	
			Electives (PEL)	(L)	(T)	(P)	Hours	
ME2002	Μ	echanical	PCR	3	0	2	5	4
	Vi	brations						
Pre-requisi	ites		Course Assessmen	nt methods ((Continuous	s (CT) and er	nd assessm	nent
			(EA))					
Theory of M	Mach	ines	CT+EA					
Course		CO1: Understand	ing the fundamental	material for	r a modern	treatment of	vibrations	•
Outcomes		CO2: Application	of Lagrange equation	ons for lum	ped and con	tinuous syste	ems	
		CO3: Understand	ling fundamentals of	of beam th	eory; exten	sional, torsi	onal, and	flexural
		vibrations of bear	ns.					
		CO4: Understand	ing Self-excited vibi	ation, nonli	near vibrati	on etc.		
Topics		Topics				Hours		
Covered		Review of relev	vant mathematics: lin	near algebra	ι)			5
		Generalized co	-ordinates, Lagrange	s equations	3			5
		Single-DOF an	d multi-DOF vibrati	on				10
		Vibration Abso	orber					3
		Torsional vibra	tion		_			5
		Periodic excitat	tion and Fourier seri	es, impulse	and step res	sponse		8
		Vibration in co	ntinuous systems					5
		Self-excited vit	bration, Criterion of	stability; Ef	tect of frict	ion		6
		Introduction to	nonlinear vibration					9
Text Book	s,	Suggested Text I	Books:					
and/or		I. Mechanic	1. Mechanical Vibrations, S. S. Rao, Pearson					
reference		2. Fundame	2. Fundamental of Vibrations Leonard Meirovitch, Mc-Graw Hill					
material		5. Vibration	and Control, D. J. I	iinian, John	willey			
		<u>Keierence Books</u>	Vibrations & Tama	donni & C.	nham S V	ally Saharra	'a Out lin	o Sorios
		Mc-Graw Hi	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	uonni & Gi	anam S. Ko	eny, Schaum	s Out Im	e Series,
		2. Vibration Co	ondition Monitoring	of Machine	s, J. S. Rao,	Tata Mc-Gr	aw Hill	

Department of Mechanical Engineering							
Course	Title of the course	Program Core	Program Core Total Number of contact hours			Credit	
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
ME 2051	Machine	PEL	0	0	3	3	1.5
	Dynamics						
	Laboratory						
Pre-requis	ites	Course Assessment methods (Continuous (CT) and end assessment					
		(EA))					
ME2051		CT+EA					
Course	CO1: Acquire ba	sic idea about the ro	tor balancir	ıg			
Outcomes	CO2: To underst	and the method of ir	nplementati	on of differen	nt control la	WS	
Topics	Experiment on re	otor balancing					12
Covered	Experiment on C	ment on Gyroscope			12		
	Experiment on D	Digital Pendulum System			8		
	Experiment on T	on Twin Rotor MIMO System			8		
	Problems as assig	gned by the respectiv	ve teachers				16

Text Books,	Text Books:
and/or	1. Theory of Mechanisms and Machines, Ghosh, Mallik
reference	2. Modern Control Engineering, Ogata
material	Reference Books
	1. Theory of Machines and Mechanisms, Shigley, Uicker
	2. Automatic Control System, Kuo

	Department of Mechanical Engineering						
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives	(L)	(T)	(P)	Hours	
		(PEL)					
ME	Computer	PEL	0	0	3	3	1.5
2052	Aided Design						
	Laboratory						
Pre-requis	ites	Course Assessm	ent method	ls (Continuo	ous (CT) an	d end	
Machine I	Design, Analysis &	assessment (EA))				
synthesis of	of Mechanisms						
ME2051		CT+EA					
Course	• CO1: Able to understand scope and application of CAD/CAM tools in industry					ndustry	
Outcomes	• CO2: Able	to learn geometric	modelling	and comput	er graphics	s concept	in
	CAD tools	-	-	-	• •	-	
	• CO3: Able	to learn CAE softv	vare packag	ges			
Topics	Solid Modeling	using software pac	kages				
Covered	Graphics progra	mming using MAT	ГLĂВ				
	Demonstration of	of CAE software pa	ackages lik	e ANSYS, A	ADAMS		
	Computer Aideo	d Analysis of Mech	nanisms				
Text Book	s, Text Books:	•					
and/or	1. Mastering C.	AD/CAM by I. Zei	d				
reference	2. Computer G	raphics by Roy A I	Plastock				
material	Reference Boo	Reference Books					
	1. Finite Elemen	1. Finite Element Method by J.N.Reddy					

Department of Mechanical							
		Eı	ngineering				
Course	Title	Program	Total Nu	mber of con	tact hours		Credit
Code	of the	Core	Lecture	Tutorial	Practical	Total	
	course	(PCR) /	(L)	(T)	(P)	Hours	
		Electives			. ,		
		(PEL)					
ME 2053	Mini Project	DCD	0	0	4	4	2
	with	FCK	U	U	4	4	2
	Seminar						
Pre-requisite	es	Course Assess	sment meth	ods (Contin	uous (CT)	and end a	assessment
-		(EA)					
NA		CT+EA					
Course	CO1: To b	be able to cond	duct review	v of literat	ure to arri	ive at se	elected
Outcomes	advanced to	pic for project v	vork.				
	CO2: Abilit	y to interpret ide	eas and thou	ughts into pi	ractice in a	project.	
	CO3: Abil	ity to analyze	the gap	between t	theoretical	and pr	actical
	knowledge.					-	
	CO4: To h	e able to write	e and pres	ent a techn	ical repor	t with s	uitable
	conclusion	as per internation	nal standard	15	iour repor		
	CO5: To h	a able to discu	ee and dan	and the ou	tcome of	the renor	rt in a
	COJ. 10 0	COS. To be able to discuss and depend the outcome of the report in a					
	seminar		11.		1		
Topics	Project as d	ecided based on	literature s	urvey with o	consultation	n with the	3
Covered	sup	supervisor					

	Department of Mechanical								
	Engineering								
Course	Title of	Program	Total Nu	mber of con	tact hours		Credit		
Code	the	Core	Lecture	Total					
	course	(PCR) /	(L)	(T)	(P)	Hours			
		Electives			~ /				
		(PEL)							
ME 3051	DISSERTATION	PCP	0	0	24	24	12		
	- I	FCK	U	U	2 4	24	12		
Pre-requisite	es	Course Assessment methods (Continuous (CT) and end							
_		assessment (EA))							
NA		CT+EA							
Course	CO1: Ability t	o interpret idea	as and thou	ghts into pra	ctice in a p	roject.			
Outcomes	CO2: Ability t	o analyze the g	gap between	n theoretical	and practic	cal			
	knowledge. CO	O3: Ability to o	compose te	chnical pres	entation in	the			
	conferences.	·	•						
	CO4: Ability t	o prepare for p	ublishing p	apers in jou	rnals.				
	CO5: Ability to propose for the patent rights for the projects.								
Topics	Project as deci	Project as decided based on literature survey with consultation with the							
Covered	supervisor	•							

		Departme	nt of Mech	anical			
		En	gineering				
Course	Title of	Program Core	Total Nu	mber of con	tact hours		Credit
Code	the	(PCR) /	Lecture	Tutorial	Practical	Total	
	course	Electives	(L)	(T)	(P)	Hours	
		(PEL)					
ME 3052 Seminar		PCR	0	0	1	1	2
	(Non		U	U	-	-	4
	Project)						
Pre-requisites Course Assessment methods (Continuous (C				ous (CT) a	nd end as	sessment	
(EA))							
NA		CT+EA					
Course	CO1: To b	e able to conduct	review of l	iterature to a	arrive at se	lected ad	vanced
Outcomes	topi	c for seminar.					
	CO2: To b	e able to summari	es the cond	cept of the cl	nosen topic	e systema	tically
	afte	r considerable stud	ly of the co	ontent from i	orimary as	well as s	econdary
	sout	ces	<i>.</i>	1	J		J
	CO3. To h	e able to write and	d present a	technical re	port with s	uitable co	onclusion
	as n	er international sta	andards				
	$CO4 \cdot To h$	e able to discuss a	and denend	the outcome	of the rer	ort in a s	eminar
Tarias	Tarias day					on mas	Unina
Topics	1 opics dec	ics decided by consultation with the supervisor					
Covered							

Department of Mechanical							
		Engi	ineering				
Course	Title of	Program	Total Nu	mber of con	tact hours		Credit
Code	the course	Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives					
		(PEL)					
ME 4051	DISSERTATION	DCD	Δ	0	24	24	10
	- II /	FCK	U	U	24	24	14
	INDUSTRIAL						
	PROJECT						
Pre-requisites Course Ass			essment me	thods (Cont	inuous (CT) and end	1
assessmen			(EA))				
NA		CT+EA					
Course	CO1: Ability to	interpret ideas	s and thoug	hts into prac	ctice in a pi	oject.	
Outcomes	CO2: Ability to	analyze the ga	ap between	theoretical a	and practic	al	
	knowledge. CO	3: Ability to co	ompose tec	hnical prese	ntation in t	he	
	conferences.						
	CO4: Ability to	prepare for pu	ublishing pa	apers in			
	journals.		01	•			
CO5: Ability to propose for the patent rights for the							
projects.							
Topics	Project as decided based on literature survey with consultation with the						
Covered	supervisor						

		Departme	nt of Mech	anical				
		En	gineering					
Course	Title of	Program	Total Nu	mber of con	tact hours		Credit	
Code	the	Core Lecture Tutorial Practical Total				Total		
	course	(PCR) /	(L)	(T)	(P)	Hours		
		Electives	. ,					
		(PEL)						
ME 4052	Project							
	Seminar	PCR	0	0	4	4	2	
Pre-requisite	es	Course Assessment methods (Continuous (CT) and end assessment						
-		(EA))						
NA		CT+EA						
Course	CO1: Abilit	y to assess know	ledge in the	e subject and	d the project	ct.		
Outcomes	CO2: Abilit	y to integrate tec	hnical ques	stion through	h all the ye	ars of		
	study.	-	-	-				
	CO3: Ability to express and communicate.							

SYLLABUS OF ELECTIVE SUBJECTS

	Ι	Department of Mecha	anical Engir	neering				
Course	Title of the	Program Core	Total Nu	mber of conta	et hours		Credit	
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total		
		Electives (PEL)	(L)		(P)	Hours		
ME9011	Applied	PEL	3	0	0	3	3	
	Computational							
	Methods							
Pre-requisite	S	Course Assessment methods (Continuous (CT) and end assessment						
		(EA))						
Engineering	Mathematics in B.	CT+EA						
Tech Level								
Course	CO1: Students	will be able to under	rstand com	mon numerica	al methods	and how	they are	
Outcomes	used to ol	otain approximate so	lutions.					
	CO2: Derive nu	imerical methods for	r various m	athematical of	operations a	ind tasks,	such as	
	interpolat	rpolation, differentiation, integration, the solution of linear and nonlinear						
	equations	, and the solution of	differential	equations.				
	CO3: Analyze a	nd evaluate the accu	racy of com	mon numeric	al methods.	·		
	~]	lopics				Hours	
Topics	Solution of line	ear simultaneous equ	ations, matr	ix Inversion			6	
Covered	Solution of nor	I-linear equation of o	one variable	and solution	of system o	t	6	
	non-linear simu	iltaneous equation					4	
	Interpolation a	nd curve fitting	<i>.</i> .				4	
	Numerical diffe	erentiation and integr	ration	1	(1 1 1.00	1	4	
	Solution of ord	inary differential equ	lations and	solution of pa	irtial differe	ntial	4	
	equations	ot Found on those of our					5	
	Discrete and Fa	ist Fourier transform	ation				5	
	Analysis of Elg	different types of De	undom volu	a Initial walk	o and Eigar		4	
	Application to	a residence and Eigen 4						
	Brief discussion	n on software for nu	merical solu	ution			2	
	Difer discussio	in on software for hu	incritar solt	mon			2	

Text Books,	Text Books:
and/or	1. Advanced Engineering Mathematics, E. Kreyszig
reference	2. Numerical Methods for Scientist and Engineers, R. W. Hamming
material	3. Applied Mathematics for Engineers and Physicists By Pipes and Harvill
	Reference Books:
	1. Introduction to Numerical Analysis, F. B. Hildebrand
	2. Fundamentals of Engineering Numerical analysis, P. Moin

	Department of Mechanical Engineering							
Course	Title of the course	Program Core	Total Nu	mber of cor	tact hours		Credit	
Code		(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
ME 9012	Introduction to	PCR	3	0	0	3	3	
	Non-linear							
	Dynamic Systems							
	and Control							
Pre-requis	ites	Course Assessment methods (Continuous (CT) and end assessment						
Nonlinear	Vibrations	(EA))						
Mechanica	l Vibrations							
CT+EA								
Course	• CO1: Uno	derstanding the vario	ous character	ristics of no	nlinear dyna	mic syster	n.	
Outcomes	• CO2: De	velopment of solutio	on procedure	es employin	g approxima	te method	s.	
	• CO3: Dev	velop the concept of	stability and	l different n	nethods for s	tability an	d	
	bifurcatio	n analysis.	. 1			1		
	• CO4: Ana	alysis of nonlinear sy	stem emplo	bying numer	rical techniqu	ies and co	mparing	
Topica		s with approximate n	nethous.				Hours	
Covered	Introduction G	I opics Hours						
Covered	Equilibrium so	Equilibrium colutions. Active and feedback concents for control						
	Well-developed	d analytical/semi-ar	nalytical a	nd numeri	cal methods	for	12	
	analysis	a analytical serie a	iaryticar a	na nameri	cui metriou	, 101	12	
	Study of perio	dic, sub-harmonic,	super-harm	onic and cl	naotic motio	ns of	9	
	uncontrolled ar	nd controlled nonline	ar dynamic	systems				
	Definition of	stability, Stability o	f linear sys	stems, Stab	ility of non	linear	9	
	systems, Liapu	nov theorems, frequ	lency doma	in criteria,	stability of	fixed		
	points, stability	of periodic solution	S					
	Control of peri	odic, sub-harmonic, s	super-harmo	onic and cha	aotic motions	8	10	
Text Book	s, <u>Suggested Text</u>	Books:						
and/or	1. Nayfeh, A. H.,	and Mook, D. T., N	onlinear Os	cillations, V	Viley-Intersc	ience.		
reference	2. Hayashi, C. No	onlinear Oscillations	in Physical	Systems, N	IcGraw-Hill.			
material	Reference Books	<u>.</u>						
	1. Nonlinear Ord	1. Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers,						
	D. Jordon and P.	Smith, Oxford	o					
	2. Evan-Ivanows	k1, R. M., Resonance	Oscillation	is in Mecha	nical System	s, Elsevie	r.	
	3. Nayteh, A. H.,	and Balachandran, I	B., Applied	Nonlinear I	Jynamics, W	iley.		
	4. Seydel, R., F	4. Seydel, R., From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis,						
	Elsevier.							

Department of Mechanical Engineering								
Course	Title of the	Program Core	Total Nu	mber of conta	ct hours		Credit	
Code	course	(PCR)/	Lecture	Tutorial (T)	Practical	Total		
		Electives (PEL)	(L)		(P)	Hours		
ME9013	Theory of Plates	PEL	3	0	0	3	3	
	and Shells							
Pre-requisite	es	Course Assessment methods (Continuous (CT) and end assessment						
		(EA))						
Advanced M	Iechanics of Solids	CT+EA						
Course	CO1: Students v	vill be able to use dif	fferent theor	ries to plate a	nd shell			
Outcomes	CO2: Students	will be able to us	e Theory o	of virtual dis	placement	to get ge	overning	
	equation	of different structura	l members l	ike beams, pl	ates shells	etc.		
	CO3: Students v	will be able to solve	different p	late, shell pro	blems usin	g analytic	cally and	
	numerical	ly						
	Stress strain rela	Stress strain relations, strain displacement relation, equations of equilibrium, virtual work					al work	
Topics	principle, Classi	cal plate theory, FSE	DT, HSDT.			(6)		
Covered	Pure bending an	d cylindrical bending	g of isotropi	c rectangular	plates, Nav	vier and L	evy	
	solutions of recta	angular plates				(6))	
	Bending of circu	lar plates				(4)	
	Bending analysis	s of laminated compo	osites plates			(6)		
	Approximate sol	ution methods for pl	ate problem	18		(6))	
	Dynamics of Pla	tes				(3))	
	Basic Concepts	of Shell Type of Stru	ictures – Me	embrane and l	Bending Th	eories for	•	
	Circular Cylindr	ical Shells				(9)	
Text Books,	Text Books:							
and/or	1. Theory and	Analysis of Elastic P	lates and Sl	nells, J. N. Re	eddy			
reference	2. Theory of Pl	ates and Shells, S. T	imoshenko					
material	Reference Book	s:						
	1. Mechanics of	Laminated Composi	te Plates an	d Shells Theo	ory and Ana	lysis, J. N	I. Reddy	
	2. Theories and A	2. Theories and Applications of Plate Analysis, R. Szilard						
	3 Plates Theory a	3. Plates Theory and Applications By K. Bhaskar and T. K. Varadan						

	Department of Mechanical Engineering								
Course	Title of the	Program Core	Total Nu	mber of cor	tact hours		Credit		
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
ME9014	Operations	PEL	3	0	0	3	3		
	Research								
Pre-requisite	S S	Course Assessment methods (Continuous (CT) and end assessment (EA))							
NIL		CT+EA							
Course Outcomes	 CO1: Students will be able to discuss the history, concepts, formulations and applications of operations research. CO2: Students will be able to analyze and solve conflicting problems on constrained linear optimization problems having single and multiple objectives. CO3: Students will be able to apply integer, dynamic programming methods for solving relevant problems. 								
Topics Covered	Origin, growth, definition, methodology and application of OR. 2 Linear Programming, Mathematical Modelling, Graphical Method of Solution, Sensitivity								

	Analysis.	10		
	Simplex Method, Big M and 2-Phase Methods, Duality in LP.	10		
	Transportation problem.	4		
	Assignment Problem	3		
	Sequencing problem.	3		
	Queuing model and Simulation.	4		
	Competitive Decision Making, Game Theory.	4		
	Duality Theory and Sensitivity Analysis.	4		
	Integer Programming, Binary Integer Programming.	4		
	Dynamic Programming.	4		
	LP- Softwares			
Text Books,	Text Books:			
and/or reference	 Basu, S. K., Pal, D. K., Bagchi, H., Operation Research for Engine Oxford & IBH Publishing Co. Pvt. Ltd., 1998 	ers, 2 nd Edition,		
material	2. Hillier, Fredrick S. and Lieberman, Gerald J., Introduction to Opera 7th Edition, TMH, 2001.	ations Research,		
	3. Taha, H. A., Operation Research, McMillan Publishing Co., London	n, 1982.		
	Reference Books:			
	1. Churchman, C. M., Ackoff, R. L., Arnoff, E.L., Introduction Research, Asia Publishing 0., 1962	n to Operation		
	2. Hanssmann, F., Operations Research in Production and Inventor Wiley & Sons, Inc., London, 1962.	y Control, John		

	Ľ	Department of Mecha	nical Engir	eering			
Course	Title of the	Program Core	Total Nu	mber of conta	ect hours		Credit
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total	
		Electives (PEL)	(L)		(P)	Hours	
ME 9015	Theory of	PEL	3	0	0	3	3
	Elasticity and						
	Plasticity						
Pre-requisite:	8	Machine design ar	nd production	on engineerin	g courses in	any B.Te	ech
		Mechanical Engin	eering Prog	ram.			
Strength of N	Iaterials	CT+EA					
Course	CO1: Students	will be able to ider	ntify the im	portance of u	ise of prope	erties of F	Plasticity
Outcomes	and Elasticity.						
	CO2: Students	udents will be able to gather knowledge about mechanics of different materials.					terials.
	CO3: Students	ents will be able to solve the problems of flexure in Cartesian as well as					ell as
	polar coo	ordinate systems.			1		c 1
	CO4: Apply di	fferent numerical a	and energy	methods to	solve pro	oblems of	t elastic
	materials.	vill be able to gather	knowladge	of mechanic	s of motal fo	rmina	
	Introduct	ion to alasticity: cor	Kilowieuge	of mechanics	Scolar V	nning. actor Ma	triv and
Topics	• Introduct	loli to elasticity. col	ototion Kr	opockor Dol	, Scalal, Ve	ctor, Ma	Symbol
Covered	Coordina	te transformation (A)	Ulleckel Del	ta alla alla	inating	Symbol,
covered	Diana stra	es and Plane strain	·) · Two dim	ansional prot	olome in Co	rtacion o	nd nolar
	• Thate sur	$e_{\rm S}$ (8)	. I wo unn	clisional prot		inconan a	nu potat
	Numerics	l and energy metho	de: Strain F	Energy and re	lated Princ	inles Priz	nciple of
	Virtual w	ork Principle of Mi	nimum Pote	ential Energy	and Compl	ementary	Energy
	Ravleigh.	Ritz Method (8)		innar Energy	and comp	ementar y	Lifergy,
	Thermal	stresses. Thermal	stresses in	hars Therm	al hending	of beau	n Basic
L	- Inclina	successes. morman	54 C55 C5 III	ours, mem	ui benuing	or ocan	ii, Duble

M. TECH. IN MACHINE DESIGN equation of Thermo elasticity. (2) Introduction to plasticity: Fundamentals of plastic deformation, Theories of failure • and yield criteria of metals. (6) Mechanics of metal forming processes - forging, rolling, drawing, bending, and • extrusion. Friction and lubrication in metal forming processes. Defects in metal working. (12) Text Books: Text Books, and/or 1. Theory of Elasticity, Timoshenko and Goodier 2. Engineering Plasticity: Theory and application to metal forming Processes, R. A. C. reference material Slater Reference Books: 1. Applied Plasticity, J. Chakrabarty

	Γ	Department of Mecha	unical Engir	neering			
Course	Title of the	Program Core	Total Nu	mber of conta	act hours		Credit
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total	
		Electives (PEL)	(L)		(P)	Hours	
ME9016	Mechatronics	PEL	3	0	0	3	3
Pre-requisites	3	Course Assessme (EA))	nt methods	s (Continuou	s (CT) an	d end as	sessment
Machine Dyn	amics and Control	CT+EA					
Course Outcomes	CO1: Students electronic CO2: Students control sy	will be able to ide s and electro-mecha will be able to form stems.	ntify the in nical system ulate and ev	mportance of 1s. valuate behav	f amalgama	ation betw ar time co	veen the
	CO3: Students digital for	CO3: Students will be able to formulate the procedure for converting analog signals to digital form and vice-versa.					
	CO4: Students	will be able to desc	ribe signals	s and its proc	cessing by	modern e	lectronic
	CO5: Students emerging	will be able to ident trends within the fie	tify and crit ld of mecha	tically evalua tronic system	ate current	developm	ents and
	Mechatronic Syst	ems: Introduction, A	pplication	of Mechatron	ics.		2
Topics	Sensors and Tran	sducers - Brief revie	w, Simple e	electronic eler	ments & Op	perational	
Covered	Amplifiers.						4
	Actuators: Pneum	natic, Hydraulic, Ele	ctrical & M	echanical act	uation syste	em, Micro	-
	actuators.		~ ~				6
	Modelling and Si	mulation of Physical	System: Sy	ystem models	, Dynamic	responses	of the
	system, System tr	ansfer functions.	1 1	T	A		6
	Digital logic: Nul	nder systems, Boole	an algebra,	Logic gales -	Applicatio	n gate, De	esign of
	Microprocessors	gic gales. and Micro Controlle	re. Introduc	tion Micron	rocassor Ar	chitacture	0
	Instruction codes	General requirement	ts for imple	ementation is	sues Exam	nles	, 6
	Programmable L	ogic Controllers: Bas	sic structure	. I/O processi	ing. Program	mming, T	imer.
	Inter relays and C	Counters.		, F			8
	Signal conditioning	ng & Digital commu	nication sys	stem: Basics	of signal co	nditioning	g,
	Filtering, Data ac	quisition and Digital	signal proc	essing, Digit	al commun	ication an	d
	Communication i	nterface.					8
	Mechatronic Sys	stems, Case Studies.					10
Text Books	, Text Books:						
and/or	1. Alciatore, D.	G. and Histand, M	. B., Introd	uction to Me	chatronics	and Meas	surement
reference	Systems, Mc	Graw Hill Publication	ons, 4th Edit	tion, 2012.			

material	2. Bolton, W., Mechatronics, Pearson Education India, 2008.
	3. Gaonkar, R.S., Microprocessor Architecture, Programming and Applications with
	8085, Penram Publishers India, 6th Edition, 2013.
	Reference Books:
	1. Malvino, A. P., and Bates, D. J., Electronic Principles, TMH Publishing Company Ltd.,
	New Delhi, 8 th Edition, 2016.
	2. Nise, N. N., Control Systems Engineering, 6 th Edition, John Wiley & Sons, Inc., USA,
	2011.

	Department of Mechanical Engineering								
Course	Title of the	Program Core	Total Nu	mber of co	ntact hours		Credit		
Code	course	(PCR) /	Lecture	Tutoria	Practical	Total			
		Electives (PEL)	(L)	l (T)	(P)	Hour			
						S			
ME 9017	Microsystem	PEL	3		0	3	3		
	Design								
Pre-requisit	es	Course Assessment methods (Continuous (CT) and end assessment (EA))							
Solid Mecha	nics, Fluid	CT+EA							
Mechanics,	Machine Design								
Course	CO1: Able to ur	nderstand scope and	d applicatio	n of Micro	systems				
Outcomes	CO2: Able to le	arn science behind	micro syste	m design.					
	CO3: Students	will be able to analy	ze micro sy	/stem by co	omputer aid	ed tools			
	CO4: Able to ur	derstand the differ	ent manufa	icturing teo	chnologies fo	or micro s	system.		
Topics							Hours		
Covered	Introduction: (Overview of Micro	osystems a	nd MEMS	, Scaling la	aws in	2		
	miniaturization, A	Application of micro	systems						
	Working Princ	iples of Microsys	stems: Mic	crosensors	like Piezor	esistive	7		
	pressure sensors	, micro-accelerome	ter, optical	sensors e	tc., microac	tuators,			
	micro pumps, mi	cro valves, micro ge	ars etc.			~			
	Engineering Sci	ence for Microsystery v molecular theory (em Design of matter an	and Manu d intermole	facturing: a cular forces	Scaling	4		
	Rigid body Med	hanics for Microsy	stem Desig	n: Scaling	effect in dvi	namics.	4		
	force and vibratio	on analysis			•••••• ••• •••		·		
	Mechanics of S	folid for Microsyst	tem Design	: Scaling	effect in ela	asticity,	5		
	bending analysis	of thin plates and be	ams, thin-fi	lm mechani	cs etc.				
	Thermo-fluid A	nalysis for Microsy	stem Desig	n: Scaling	effect in flu	id flow	4		
	and heat transfer	, fluid flow in submi	crometer sca	ale, microfl	uidics systen	ns, heat			
	conduction in sol	ids in submicron lev		C	<u>C - 1' 6</u>	Se ed the	4		
	electrostatic and	electromagnetic for	echanicai	alectromec	Scaling ell	tic and	4		
	dynamic microsy	stems	es, coupieu	electroniet	mannes of sta				
	Material for Mi	crosystems and MF	'MS				2		
	Madern Compu	tational Tools for N	Tierosyster	ne Docian o	nd Analysis	•	2		
	Microsystem Fo	hrication Technol	noies: Thin	film depo	sition Litho	• oranhv	6		
	etching, LIGA, si	licon micromachinin	ng, inkjet pr	inting etc.		grupny,	0		
	Microsystem Pa	ckaging:	<i>U</i> , <u>j</u>	0			2		
Text Books,	Text Books:	00							
and/or	Text Books:								
reference	1. Microsystem I	Design by Stephen D	Senturia						
	2. Micro and Sma	art Systems, by Anar	nthasuresh,	Vinoy, Gop	alakrishnan,	Bhat, Aat	re		

material	3. MEMS and Microsystems Design & Manufacture, by Tai Ran Hsu
	4. Introduction to Micromechanisms and microactuators, by A.Ghosh, B. Corves
	Reference Books:
	1. An Introduction to MEMS Engineering, by Nadim and Williams
	2. Foundation of MEMS, by Chang Liu

		Department of Mech	nanical Engi	ineering					
Course	Title of the	Program Core	Total Nu	mber of conta	act hours		Credit		
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total			
		Electives (PEL)	(L)	. ,	(P)	Hours			
ME9018	Finite Element	PEL	3	0	0	3	3		
Due un autoritée	Methods					1 1			
Pre-requisites		(EA)) Course Assessment methods (Continuous (CT) and end assessment							
Advanced Me	echanics of Solids	CT+EA	CT+EA						
Course	CO1: Students	will learn learn the	e theory a	nd characteri	stics of fin	nite eleme	ents that		
Outcomes	represent	engineering structure	es like bar a	ind beam.					
	CO2: Students v	will be able to solve s	structural, th	nermal, dynar	nic problen	ns.			
	CO3: Students w	ill be able to use con	nputer to so	le FEM probl	ems.				
	Brief review of	mathematical conc	ept, Matrix	x, gauss elin	nination me	ethod, Eig	genvalue		
Topics	solution, Numer	rical Integration, W	eighted res	idual method	ls, calculus	of varia	tion and		
Covered	Rayleigh-Ritz m	ethod				(6)			
	Introduction to	finite element meth	nods: Direc	t approach f	or standard	discrete	system.		
	Potential Energ	gy approach and y	virtual wor	k approach,	Variation	al approa	ach and		
	Galerkin's weig	hted residual approad	ch for contin	nuum	~ "	(6)			
	Interpolation po	lynomial – Lagrangia	an and Herr	nite. Natural	Co-ordinate	es, Pascal	triangle,		
	concept of contr	nuity, convergence c	riteria			(4)	1		
	Common eleme	ents: Bar elements,	beam ele	ements, trian	gular Elen	nents, rec	ctangular		
	elements	agrangian Elements	and Selend	ipity Elemen	its. Concep	(6)	uametric		
	Concept of time	-independent field n	roblem and	time indeper	ndent field i	nrohlem i	nvolving		
	differential equa	tions. Different type	s of Bounda	rv conditions		(6)	nvorving		
	Concept of mass	matrix. Vibration p	roblem and	dynamic rest	onse probl	em (6)			
	Introduction to	geometric non-line	earity and	material nor	n-linearity	in finite	element		
	analysis	e	2			(3)			
	Computer proce	dure for finite eleme	nt analysis			(3)			
Text Books	, Text Books:								
and/or	1. An Introduct	ion to the Finite Elen	nent Metho	d, J. N. Reddy	Y				
reference	2. Finite Elemen	t Procedures By K. J	. Bathe						
material	3. Text book of	Finite Element analy	sis, P. Sesh	nu					
	Reference Bool	KS:	~	C D					
	1. The Finite Ele	ement Method in Eng	gineering, S	. S. Rao			1 D T		
	2. The Finite E	lement Method its	Basis and	Fundamenta	I, U. C. Z	ienkiewic	n, K. L.		
	1 aylor, J. Z. Zhu 2. The Einite El	l mont Mothed in Fra	incomina L-	CCD					
	3. The Finite Ele	ement Method in Eng	gineering by	7 S. S. Kao					

	De	epartment of Mecha	anical Engir	neering			
Course	Title of the	Program Core	Total Nu	mber of co	ntact hours		Credi
Code	course	(PCR) / Electives (PEL)	Lecture	Tutoria	Practical	Total	t
		Electives (FEL)	(L)	1(1)	(P)	s noui	
ME9019	Robotics	PEL	3	0	0	3	3
Pre-requisit	i ces	Course Assessme (EA))	ent method	s (Continuo	ous (CT) and	l end asse	essment
Knowledge	on Mechanisms	CT+EA					
Course Outcomes	CO1: Students wi technologie	Ill be able to discuss s.	the history,	, concepts a	nd key comp	oonents of	robotics
CO2: Students will be able to analyse and solve problems spatial transform and inverse kinematics, dynamics of ulators, jacobian and sing trajectory for motion planning.				formation, singulariti	forward es, joint		
CO3: Students will be able to describe and compare various robot grippers, sensors, actuators and controllers and their perception.					,		
Topics Covered	Introduction to I Basic structure, cl Robot Arm Kine and Inverse kinen Linear and Ang Singularities. Introduction to Dy Trajectory Planni Robot Sensors: C sensor, Proximity Robot Grippers. Robot Controller	Robotics: Definition lassification, applica matics: Frame trans natics of serial manij ular Velocity of L ynamics of Serial M ng of Manipulator: J Contact type, non-co sensor, touch senso	a, Anatomy tions of rob sformation, pulator. inks and S anipulators: oint space s ontact type r, Force and	, Coordina ots. Denavit-Ha Statics of S Lagrange- scheme, Can , internal s l torque sen	te Systems, artenberg co Serial manip Euler formul rtesian space ensor, Exter sor, Encoder	Work Er 4 nvention, 12 pulator: Ja 8 ation. 8 scheme. 6 nal senso s, etc. 10 6 2	Forward cobians, r, Range
Text Books, and/or reference material	Text Books:1. Saha, S. K.,2. Pratihar, D.3. Fu, K., Gon3. Fu, K., GonIntelligence,4. Craig, J. J.,Wesley, 198Reference Boo1. Ghosal, A., F2nd reprint, 22. Spong, M. W.India New D	Introduction to Rob K., Fundamentals of nzalez, R. and Lee, McGraw- Hill Introduction to Rob 9. ks: Robotics: Fundamen 2008. ., Hutchison, S., and helbi 2006	otics, TMH Robotics, I , C. S. G., otics: Mech tal Concept Vidyasagar	Publishing Narosa Pub Robotics: nanics and s and Anal	Company Lt lishing House Control, Se Control, 2nd lysis, Oxford t Modeling at	id., New E e, India nsing, Via Edition, A l Universi nd Contro	Delhi sion and Addison- ty Press, l, Wiley

	Γ	Department of Mecha	anical Engin	eering					
Course	Title of the	Program Core	Total Nu	mber of conta	ect hours		Credit		
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total			
		Electives (PEL)	(L)		(P)	Hours			
ME9020	Knowledge	PEL	3	0	0	3	3		
	Based Systems								
Pre-requisites	8	Course Assessment methods (Continuous (CT) and end assessment (EA))							
NIL		CT+EA							
Course Outcomes Topics Covered	CO1: Students wi CO2: Students wi solving eng CO3: Students wi Introduction to e developing expe for developing expe for devel	ill be able to understa ill be able to apply k ineering problems ill be able to apply co xpert systems – Defi rt system – offline tr xpert systems – Hard y, Fuzzy Logic Cont (NN) Controllers – I ent neural networks sation tools – tradition tic algorithms (GAs) iques of soft comput ons on GA, FLC and NN	and need of nowledge of ombined sof inition, Nee aining/learn d Computing rollers (FLC back propag etc. onal (direct so , simulated ing – GA-F	soft computi f different sof ft-computing d for expert s ing AND on- g vs. Soft Cor C). sation networl search and gr annealing etc LC, GA-NN,	ng techniqu ft computin techniques ystems, Me line trainin mputing. 6 k, SOM, rae adient base c.) techniqu NN-FLC, 0	es g methods ethods of g/learning dial basis 10 d) and non es. 16 GA-FLC-	s for g Tools 10 function n- NN		
Text Books, and/or reference material	Text Books:1. D. K. PratilOptimizationPublishers, N2. David E. C.Learning, Ad3. Simon HaylEducation, Ir4. Timothy J. I2011.Reference Book1. Soft ComputiPress	har, Soft Computir , Theory and Prac- lew Delhi, 2010. Goldberg, Genetic A Idison-Wesley, Read kin, Neural Netwo adia Ross, Fuzzy Logic ss: ng and Its Applicatio	ng, Narosa tics, 3rd E Algorithms ling, Mass, 1 rk and Le with Engin	Publishers, nlarged Edit in Search, 1989. earning Mac eering Appli & 2, Kumar S	2011S.S. ion, New Optimizati hines, 3rd cations, 3r . Ray, App	Rao, Eng Age Inter on and Edition, d Edition	gineering rnational Machine Person , Wiley, nic		

Department of Mechanical Engineering								
Course	Title of the	Program Core	Total Nu	mber of conta	act hours		Credit	
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total		
		Electives (PEL)	(L)		(P)	Hours		
ME 9022	Modern	PCL	3	0	0	3	3	
	Manufacturing							
	Processes							
Pre-requisite	es	Course Assessmen	nt methods ((Continuous ((CT) and en	d assessn	nent	
		(EA))						
		CT+EA						
Course	CO1: Cutting edg	CO1: Cutting edge technology for nonconventional/precision machining.						
Outcomes	CO2: Emerging t	rends in metal remov	al processe	S	6			
	CO3: Exposure to	basic Micromachin	ing Process	es				
	1		0					
	Topics					Hour	s	
Topics	Introduction						1	
Covered	ECM: Working	Principle; ECM Ma	achine Too	l; Process p	erformance	s;	7	
	Advantages, limi	tations and applicati	ons; ECG-	Working Prin	nciples; EC	G		
	Machine Tool;	Process performan	nces; Adva	antages, lim	itations an	d		
	applications; E	lectrochemical De	burring (ECDe), Sh	aped Tub	e		
	Electrolytic Macl	nining (STEM).	e (,,,	1			
	EDM: Working	Principles, EDM	Machine	Tool – Po	wer Supply	ν,	6	
	Dielectric System	n, Electrodes, Servo-	system, Pul	se generating	Circuits an	d		
	analysis, Proces	s Variables and	Process C	Characteristics	s; Electrica	ıl		
	Discharge Grindi	ng						
	Wire-cut EDM:	Working Principl	es, EDM	Machine T	ool, Proces	s	2	
	Variables and Pro	cess Characteristics						
	USM: Working	Principles, USM M	lachine Too	ol, Mechanic	s of cutting	5,	2	
	Process capabiliti	es, Advantages, limi	tations and	applications.				
	LBM: Production	n of LASERs, Wor	rking Princ	iples of LBI	M, Types o	of	4	
	LASERs, Proc	ess characteristics	, Advanta	ages, Limit	ations an	d		
	Applications.							
	EBM: Productio	on of Electron Be	am, Worki	ng Principle	es of EBM	1,	3	
	Focusing and	control of electro	on beam,	Process ch	aracteristic	8,		
	Advantages, Lim	itations and Applicat	tions.					
	AJM, Water Jet N	Machining and Abras	sive Water J	et Machining	5		4	
	Chemical Machir	ning					2	
	Microfabrication	and Micromachining					7	
	Rapid Prototypin	g					4	
Text Books,	Text Books:							
and/or	1. Nonconventio	nal Machining Proce	ess, V.K.Jai	n				
reterence	2. Modern Mach	uning Process, Pand	ey and Shav	W				
material								
	Reference Book		1 N / 11'1					
	1. Manufacturin	g Science, Ghosh an	a Mallık					
	2. Nonconventio	nai Machining Proce	ess, P.K.M18	sra				

	Γ	Department of Mecha	anical Engir	eering					
Course	Title of the	Program Core	Total Nu	mber of cor	tact hours		Credit		
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
ME9023	Computer	PEL	3	0	0	3	3		
	Aided Design								
Pre-requisite	S	Course Assessmen	nt methods	(Continuous	s (CT) and er	nd assessm	nent		
N 1' D	•	(EA))							
Machine De	sign	CI+EA							
Course	CO1: Able to understand scope and application of CAD/CAE tools in industry								
Outcomes	CO2: Able to lea	CO2: Able to learn geometric modeling and computer graphics concept in CAD tools.					ools.		
	CO3: Students v	The able to analyze mechanisms by computer aided tools							
Topics	Introduction: Cur	mont trands in Desig	nt design an	footuring I	Fundamental	concent ($\frac{AD}{\Delta f C A D}$		
Covered	CAM-CAE Prod	uct Life_cycle (2)	tent trends in Design & Manufacturing, Fundamental concept of CAD-						
	Computer Graphics: Fundamentals of Geometric transformations, Viewing transformations, Projections, Clipping, & Hidden line/surface removal, Graphics standards, CAD-CAM Data Exchange. (8)								
	Geometric Mode Surface entities, (10)	eling: Types and r Solid modeling and	nathematica concepts o	l represent f B-rep and	ation of Wa	ire-frame sentation s	entities, schemes.		
	Engineering Ana Finite Element M	lysis Tools: Comp odeling (FEM) in de	uter aided esign. (6)	analysis of	multi-body	systems,	Role of		
	Design Optimiza problems, Non-li	tion: Problem form near programming m	ulation, un nethods. (10	constrained)	and constra	ined opti	mization		
	Virtual Prototypi applications in M	ng: Introduction to echanical Engineering	Virtual Prong. (4)	totyping &	Virtual Rea	ality Tools	s and its		
Text Books,	Text Books:								
and/or	1. Mastering CA	D/CAM, I. Zeid							
reference	2. Geometric Mo	odeling, M. Mortens	on						
material	Reference Book	S:			1				
	1. Mathematical	Determination Theory	uter Graphic	s, Koger, A	aams				
	2. Engineering C	pumization, Theory	and Practic	æs, 5. 5. Ra	10				

Department of	Mechanical Enginee	ering					
Course	Title of the	Program Core Total Number of contact hours Credit				Credit	
Code	course	(PCR) /	Lecture	Tutorial (T)	Practical	Total	
		Electives (PEL)	(L)		(P)	Hours	
ME9024	Mechanics of	PEL	3	0	0	3	3
	Composite and						
	Functionally						
	Graded						
	Materials						
Pre-requisites		Course Assessmer	nt methods ((Continuous (CT) and en	d assessn	nent
		(EA))					
Advanced Me	Advanced Mechanics of Solids CT+EA						
Course	CO1: Students	vill learn why and how different materials are combined to get a new					
Outcomes	material w	ith better properties	and what w	vill be the pro	perties of n	ew mater	ials.

Page | 23

	CO2: Students will be able to analyze composite structures like beam plates.	
	CO3: Students will learn about the mechanics FGM.	
	Composites, various reinforcement and matrix materials (2)	
Topics	Manufacturing of composites materials (3)	
Covered	Concept of orthotropic, transversely isotropic material, stress-strain relation for orth	notropic
	and transversely isotropic material. Engineering constants for these ma	aterials,
	Transformation of stress and strain. (8)	
	Micromechanical behavior of lamina (6)	
	Macro mechanical behavior of lamina, Classical lamination theory, Laminate stiffne	ess of a
	few cases, Stress strain variation in a laminate (8)	
	Equation of equilibrium for laminated plates for bending, Solution technique for ben	ding of
	simply supported laminated plates under uniformly distribute transverse	load.
	Failure criterion of composites (3)	
	Introduction to FGM (3)	
Text Books,	Text Books:	
and/or	1. Fiber-Reinforced Composites: Materials, Manufacturing, and Design, P. K. Mal	llick
reference	2. Mechanics of Composite Materials, R. M. Jones	
material	3. The behaviour of Structures Composed of Composite Materials By J. R. Vins	son and
	L. Sierakowski	
	Reference Books:	
	1 Machanics of Lamineted Composite Distas and Shalls Theory and Analysis L M	Daddy
	1. International Composite Flates and Shens Theory and Analysis, J. N.	Reduy
	2. Engineering Mechanics of Composite Materials, Daniel	

Department of N	Pepartment of Mechanical Engineering									
Course	Title	of	the	Program	Core	Total Nu	mber of conta	et hours		Credit
Code	course			(PCR)	/	Lecture	Tutorial (T)	Practical	Total	
				Electives	(PEL)	(L)		(P)	Hours	
ME 9025	Modelin	g	and	PEL		3	0	0	3	3
	Simulati	on	of							
	Mechani	ical								
	Systems									
Pre-requisites	S			Course A	ssessme	nt methods	G (Continuou	s (CT) and	d end as	sessment
				(EA))						
ME1001				CT+EA						
Course	CO1:	Stuc	lents v	will be able	e to ider	tify the im	portance of	modelling	and simu	lation of
Outcomes		Eng	ineerii	ng systems						
	CO2: 3	Stud	ents w	ill be able t	o model	and simulat	te behavior of	f any engin	eering sys	tem.
	CO3: 5	Stud	ents w	ill be able t	o interre	late between	n systems in o	different en	ergy dom	ains.
	Elemen	its of	f analy	ytical mech	anics; cl	assification	of constrain	s, Principle	es of virtu	al work,
Topics	Lagrang	ge's :	first ec	quation. Lag	grange's	second equa	ation. Hamilt	on's equation	ons. (6)	
Covered	Nonhol	onoi	mic m	echanical s	ystem dy	namics, Ro	outh and Gib	b's equation	n, Kane d	lynamics
	with ap	plica	ation to	o multi body	y system	s. (6)				
	Modelli	ing o	of syst	tems involv	ing cont	inuous med	lium. Hamilto	on's princij	ple for co	ntinuous
	medium	n. El	dements of thermo-continuum and theory of constitutive relations.							
	(8)		1.0.							
	Modelli	ing a	and Si	mulation of	n of Physical System: System models, Dynamic responses of the					
	system,	Sys	tem tr	ansier funct	IONS.(6)					
	Fundan	The	ai topi	cs in bond	graph me	ouelling of	physical syst	ems: Eleme	ents of mu	iiui-bond
	graphs,	1 ne	-11110-1	necnanical	bond gr	apris and c	sommuous sy	sterns and	other sys	sterns or

Page | 24

	typical interest. Introduction to various system simulation software. (14)
Text Books,	Text Books:
and/or	1. Advanced Dynamics of Mechanical Systems, F.Cheli, G.Diana
reference	2. Bondgraph in Modeling, Simulation& Fault Identification, Mukherjee, Karmakar,
material	Samantaray
	Reference Books
	1. System Dynamics, D. C. Karnopp, D. L. Margolis, R. C. Rosenberg
	2. Modeling and Simulation of Dynamic Systems, R.L.Woods, K.L.Lawrence

Department of Mechanical Engineering										
Course	Title of the	Program Core	Total Nu	mber of cor	ntact hours		Credit			
Code	course	(PCR)/	Lecture	Tutorial	Practical	Total				
		Electives (PEL)	(L)	(T)	(P)	Hours				
ME 9026	Tribology	PEL	3	0	0	3	3			
	8/		-	-	-	-				
Pre-requisite	es	Course Assessme	nt methods	(Continuou	s (CT) and end	nd assessn	nent			
1		(EA))								
Mechanics, S	Solid Mechanics,	CT+EA								
Fluid Mecha	nics									
Course	CO1: To lea	rn the basic knowled	lge of surfac	ce topograp	hy and conta	ct between	n			
Outcomes	engineering	surfaces.	C	101	5					
	• CO2: To le	arn the basic theory a	and applicat	ion of fricti	on and wear	for differe	ent			
	materials	•								
	• CO3: To lea	rn about lubricants a	and lubricati	on for diffe	rent bearings	3				
	CO4: Introd	uced to Biotribology	ced to Biotribology of human joints							
	CO5: Introd	uced to Microtribolo	ogy for MEN	MS applicat	ions					
Topics	Surface top	ography: Measure	ement of s	urface top	ography; Qu	uantifying	surface			
Covered	roughness; T	he topography of eng	gineering su	$\hat{(2)}$						
	Contact bet	ween surfaces: Hertzian contact – sphere on sphere contact and cylinder								
	on cylinder c	ontact; Contact between rough surfaces. (4)								
	Friction and	I Wear of contact surfaces: Laws and Theories of friction and wear;								
	Friction and	Wear of different materials; Application to friction materials. (8)								
	Lubricants	and lubrication: V	iscosity of	lubricants;	Composition	and prop	perties of			
	oils and grea	ases; Reynolds equa	ation; Type	of lubricat	ions - Hydro	ostatic lub	prication,			
	Hydrodynam	ic lubrication; Elasto	ohydrodyna	mic lubrica	tion; Bounda	ry lubrica	tion, and			
	application to	bearings. (16)								
	Microtribol	ogy: Surface forces	s and adhe	sion; Aton	nic force m	icroscopy	(AFM);			
	Friction, wea	r and lubrication on	atomic leve	l; Applicati	ons to MEM	S. (6)				
	Biotribology	y: Natural human joints; Structure and properties of articular cartilage:								
	Mechanism of	of synovial lubrication	on: Mechani	sm of articu	ılar cartilage	damage;	Artificial			
	joint replacements; Skin Tribology (6)									
Text Books,	Text Books:									
and/or	d/or 1) Engineering Tribology - Dr. Prasanta Sahoo, PHI Publisher									
reference	erence 2) Introduction to Tribology of Bearings B. C. Majumder, S Chand Publisher									
material	Reference Book	s:	-	-						
	1) Principles of	Tribology J.Halling, Palgrave Macmillan Publisher								
	, Ellis Horv	ood Ltd								

Department of Mechanical Engineering								
Course	Title of	Program Core	Total N	Total Number of contact hours			Credit	
Code	the	(PCR) /	Lecture	Tutorial	Practical	Total		
	course	Electives (PEL)	(L)	(T)	(P)	Hours		
ME 9028	Material							
	Handling	PEL	3	1	0	4	4	
	Equipment							
Pre-requisites		Course Assessme	nt method	s (Continuo	ous (CT) ar	nd end as	sessment	
		(EA))						
ME1001		CT+EA						
Course	CO1: Students	will be able to ident	ify the imp	portance of	use of med	chanical	handling	
Outcomes	machine	ies.						
	CO2: Students	will be able to desig	gn differen	t types of co	onveyors a	nd crane	×S.	
	Classification of	materials and equip	ment.				2	
Topics	Conveying equip	ment: Belt conveyo	or, Constru	ction and la	ayouts, Bel	lt selection	on and power	
Covered	calculation.					8	3	
	General features and calculations of capacity and power of bucket elevator. 2					2		
	Apron, Scraper a	Apron, Scraper and screw conveyors; Roller conveyor, Chain-trolley conveyor,						
	pneumatic conve	eying.				6		
	Principles of wo	rking of vibratory c	onveyor, h	igh angle co	onveyor, p	ipe conv	eyor, long	

Department of Mechanical Engineering								
Course	Title of the	Program Core	Total Nu	mber of cont	tact hours		Credit	
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
ME9029	Optimization	PEL	3	0	0	3	3	
	in Engineering							
	Design							
Pre-requisit	es	Course Assessme (EA))	nt methods	s (Continuou	is (CT) and	end asse	ssment	
NIL		CT+EA						
	CO1: Students w	ill be able to descri	be and forn	nulate optim	ization pro	oblems		
Course	CO2: Students w	ill be able to apply l	knowledge	of different	optimizatio	on metho	ds for	
Outcomes	solving eng	gineering problems						
	CO3: Students w	ill be able to differe	ntiate betv	veen optimiz	ation meth	nods and	suggest	
	a suitable t	echnique applicabl	e for a spec	ific problem				
Topics	Introduction: E	Engineering Appli	cation, St	atement a	nd Classi	fication	of the	
Covered	Optimization Pro	oblem, Classification	n, formulat	ion procedu	res.		4	
	Classical Method	ds: Single Variable	Optimizati	on; Multivar	iable Optin	mization	without	
	any Constraints	with Equality and	Inequality	Constraints	s, Kuhn–Tu	icker Cor	ditions;	
	Linear Optimiza	ation Methods, Or	ne-Dimensi	onal Minim	ization Me	ethod. U	nimodal	
	Function.						6	
	Elimination Met	hods: Exhaustive se	arch, Fibor	nocci and Gol	lden Metho	od.	4	
	Interpolation Me	ethod – Quadratic a	nd Cubic In	terpolation	Method.		2	
	Unconstrained I	Minimization Meth	od Univ	variate, Con	jugate Dire	ections, S	Steepest	
	Descent (Cauch	y) Method, Newto	Method, Newton's Method, Marguardt Method, Ouasi-Newto					
	Method.							
	Constrained Mir	nimization Method	, Random	Search Met	hods, Seau	iential O	uadratic	
	Programming. E	Basic Approach of	the Penal	ty Function	Method,	Interior	Penalty	

	Function Method, Exterior Penalty Function Method.	5				
	Non-traditional Optimization Techniques - Genetic Algorithms. Simulated ann	ealing.				
	Particle swarm optimization. Ant Colony Optimization. Tabu search.	16				
	Reduction of size of an optimization problem. Scaling of design variable	s and				
	constraints.	3				
	Multi-objective optimization problems, DPGA, NSGA	6				
	Introduction to optimization Toolbox in MATLAB.	4				
Text Books,	Text Books:					
and/or	1. S.S. Rao, Engineering Optimization, Theory and Practics, 3rd Enlarged E	dition,				
reference	New Age International Publishers, New Delhi, 2010.					
material	2. Ashok D. Belegundu and Tirupathi R Chandrupatla, Optimization Concepts a	nd				
	Applications in Engineering, Pearson Education 1999, First India Reprint, 20	002.				
	Reference Books:					
	1. G. N. Vanderplaats, Numerical Optimization Techniques for Engineering I	Design				
	with Applications, McGraw-Hill, New York, 1984.					
	2. R. L. Fox, Optimization Methods for Engineering Design, Addison- Wesley, Re Mass, 1971.	ading,				

	Γ	Department of Mechan	ical Engin	leering					
Course	Title of the	Program Core	Total N	umber of cor	ntact hours		Credit		
Code	course	(PCR) / Electives	Lecture	Tutorial (T)	Practical	Total			
		(PEL)	(L)		(P)	Hours			
ME 9030	Design of	PCL	3	0	0	3	3		
	Machine Tools								
Pre-requisite	S	Course Assessment (EA))	methods ((Continuous ((CT) and en	d assessn	nent		
Fundamental	knowledge of	CT+EA							
Design of M	achine Elements								
Course	CO1: In depth stu	dy of machine tools c	onstructio	n and design.					
Outcomes	CO2: Introduction	n to machine tools auto	omation.	-					
	CO3: Introduction	n of Machine tools cor	ntrol syste	m					
	CO4: Familiarisa	tion with NC and CNC	C Machine	e tools					
	Topics					Hours	Hours		
Topics	Machine Tools D	rives: Layout and Des	ign of Sp	eed and Feed	Gear boxe	8,	12		
Covered	Stepless speed va	riation.							
	Machine tool gui	des beds and columns.					3		
	Hydrostatic and h	ydrodynamic lubrication.					3		
	Design of lead sc	rews, recirculating bal	l-screws.				4		
	Design of machin	e tool spindles.					3		
	Static and dynam	ic stiffness of machine	tool struc	ctures. Vibrat	ion of		6		
	machine tools, Cl	hatter and stick slip vit	orations.				-		
	Control of machin control.	ne tools: Hydraulic and	d Electrica	al controls, N	umerical		8		
	Static and dynam	d dynamic acceptance tests, Built in inspection units. 3							
Text Books,	Text books:								
and/or	1. Principle of M	1. Principle of Machine Tools, Sen and Bhattacharya							
reference	2. Computer Con	2. Computer Control of Manufacturing Systems, Koren Y.							
material	Reference books	:							
	1. Machine Tool	Engineering, N.K.Me	hta						
	2. Numerical Co	ntrol & Computer Aid	ed Manuf	acturing, Kui	ndra, Rao, T	iwari.			

	Depart	ent of Mechanical Engineering						
Course	Title of the course	Program	Total N	Number of	contact hou	rs	Credi	
Code		Core (PCR) /	Lectu	Tutoria	Practical	Total	t	
		Electives	re (L)	1 (T)	(P)	Hour		
		(PEL)				S		
ME9044	Fluid Power Systems	PEL	3	0	0	3	3	
	and Control							
Pre-requis	sites	Course Assess	sment me	thods (Cor	ntinuous (C	Γ) and en	d	
		assessment (E	A))					
Fluid Me	chanics, Control	CT+EA						
Engineeri	ng							
Course	CO1: To build up c	concept of hydrau	ulic and p	oneumatic	power syste	m and the	eir	
Outcomes	application areas.				_			
	CO2: To familiaris	e the students ab	out funct	ioning of s	several com	ponents c	of	
	hydraulic power sy	stem and technic	lues for d	lynamic an	alysis of the	ose comp	onents.	
	CO3: To make the	n able to design	hydraulic	c power pa	ck using sev	veral		
	components for par	ticular application	on accord	ing to spec	cific require	ments.		
	cO4. 10 linake tilel	roubleshoot the	roblem	erising ou		an nyura	unc	
Topics	Introduction: intro	duction concept	of hydra	$\frac{1}{1}$	n. Neumatic no	wer syste	am and	
Covered	their application ad	vantages and dis	advantao	es basic h	vdraulic and	d nneum	atic	
Covered	circuit, fluid flow f	fundamentals, flo	ow throug	by orifice a	nd conduit.	minor lo	usses (5)	
	Hydraulic Fluid: d	ensity, viscosity.	effective	bulk mod	ulus: therm	al proper	ties and	
	equation of state; ch	emical propertie	s-contam	ination an	d filtration;	types of		
	hydraulic fluid, sele	ction of hydraulic fluid (3)						
	Hydraulic Pump, N	Motor and Actuator: types and construction of basic hydraulic						
	pumps and motor; r	otary and linear actuators-types and construction, dynamics of						
	hydraulic pumps and	d motor. (6)						
	Control Valves: typ	pes of valves and their configurations and symbols, spool						
	valves, poppet valve	e, flapper nozzle valve, functioning of pressure relief and						
	pressure reducing v	alves, direction control valves and pressure compensated flow						
	control valves and the	heir dynamic analysis (10)						
	Fluid Power System	m and Dynamics : basic fluid power systems; dynamics of						
	valves, valve flow c	haracteristics, flo	ow force	and spool	stiction, fric	tion in va	alve	
	dynamics actuatory	ge now unough	varve and	mulator (1	(1)	JII IIIle		
	Flectro-hydraulic	Servo System: ty	une accu	HSV_{S} per	. 4) manent ma	met tora	10	
	motor two stage fla	nper nozzle FHS	SV dynan	nics with f	edback cor	strol desi	ion and	
	control of elctro-hy	fraulic servo me	chanism	stability a	nd frequenc	v respons	se	
	analysis (10)		. ,	stubility u	na noquene	j iespoin		
Text Boo	ks, Text Books:							
and/or	1. Hydraulic Contro	and Sons In	nc.					
reference	2. Fundamentals of	Fluid Power Cor	ntrol by W	Vatton J. C	ambridge U	Jniversity	Press.	
material	3. Fluid Power Engi	ineering by M G Rabie, McGraw Hill						
	Reference Books							
	1. Fluid Power Syst	ems: modeling, s	simulatio	n and micr	ocomputer	control by	y John	
	Watton, Prentice Ha	Ill International.	_					
	2. Fluid Power Cor	trol by Blackbu	m, J. F.,	G. Reetho	of, and J. L.	Shearer	, New	
	York: Technology	Press of M. I. T. and Wiley.						

PROGRAM OUTCOMES

- PO1: Technical knowledge: Project work improves the knowledge of students about Machine Design as the allotted topics are based on the Machine Design field.
- PO2: Technical report writing: For executing the project work and compilation of the data, the presentation of results a technical report writing skill is required. Therefore, project work develops the technical report writing skill in the students.
- PO3: Demonstrate a degree of mastery: The execution of project work and compilation of the data, a planning is required. Therefore, project work develops the planning ability in students. Students analyze, evaluate and apply the collected information /data systematically and on that basis make defensible decisions.
- PO4: Professional ethics and responsibilities: While writing project report, students are instructed to follow ethical practice by directing them to avoid plagiarism and citing the works of other researchers properly in the text.
- PO5: Life-long learning: Execution of the project work develops the ability in the students to continuously update their knowledge through internet portals, journals, text books, reference books. They come to know via internet that information has been continuously modified and not remain limited to text books, and therefore, updating the knowledge on the regular basis is essential.

Course Code	Course Title	Connected POs
ME 1001	Machine Dynamics and Control	PO1, PO2, PO3
ME 1002	Advanced Mechanics of Solids	PO1, PO2, PO3, PO4
ME 1003	Analysis and Synthesis of Mechanisms	PO1, PO2, PO3, PO4
ME 1051	Computational Laboratory	PO1, PO2, PO3, PO4, PO5

MAPPING BETWEEN COURSES AND POs

Page | 29

ME 2001	Machine Design	PO1, PO2, PO3, PO5
ME 2002	Mechanical Vibrations	PO1, PO3, PO5
ME 2051	Machine Dynamics Laboratory	PO1, PO2, PO3, PO4, PO5
ME 2052	Computer Aided Design Laboratory	PO1, PO2, PO3, PO4, PO5
ME 2053	Mini Project with Seminar	PO1, PO2, PO3, PO4, PO5
ME 3051	Dissertation - I	PO1, PO2, PO3, PO4, PO5
ME 3052	Seminar - Non-Project	PO1, PO2, PO3, PO4, PO5
ME 4051	Dissertation - II	PO1, PO2, PO3, PO4, PO5
ME 4052	Project Seminar	PO1, PO2, PO3, PO4, PO5

MAPPING BETWEEN COs AND POs

Points are given in terms no (N), low (L), medium (M) and high (H) correlation.

Course	Course Title		POs						
Code	Course 1 tie	COs	PO1	PO2	PO3	PO4	PO5		
		CO1	Н	М	Н	Ν	Н		
		CO2	Н	N	М	Ν	Ν		
ME 1001	Machine Dynamics and Control	CO3	Н	Ν	М	Ν	L		
		CO4	Н	Н	Н	Ν	Н		
		CO5	Н	Ν	Н	Ν	Н		
		CO1	Н	Ν	Н	Ν	М		
ME 1002	Advanced Mechanics of Solids	CO2	Н	М	Н	Ν	М		
		CO3	Н	М	Н	Ν	Н		
	Analysis and	CO1	Н	М	Н	Ν	Ν		
ME 1003	Synthesis of	CO2	Н	М	Н	Ν	Н		
	Mechanisms	CO3	Н	М	Н	Ν	Ν		
		CO1	Н	Н	Н	М	Ν		
ME 1051	Computational Laboratory	CO2	Н	Н	Н	Ν	Ν		
		CO3	Н	Н	Н	Ν	N		
ME 2001	Machine Design	CO1	Н	Ν	Н	Ν	Ν		

Page | 30

		CO2	Н	Ν	М	Ν	L
		CO3	Н	Ν	Н	N	N
		CO4	Н	Н	Н	Ν	Н
		CO5	Н	Ν	Н	Ν	М
		CO1	Н	Ν	L	Ν	N
ME 2002	Advanced	CO2	Н	Ν	Н	Ν	L
NIE 2002	Vibrations	CO3	Н	Ν	М	Ν	L
		CO4	Н	Ν	М	Ν	М
ME 2051	Machine Dynamics	CO1	Н	Н	Н	М	Ν
NIE 2051	Laboratory	CO2	Н	Н	Н	М	М
		CO1	Н	Н	Н	Ν	М
ME 2052	Design Laboratory	CO2	Н	Н	Н	Ν	М
		CO3	Н	Ν	М	Ν	Ν
	Mini Project with Seminar	CO1	Н	Н	Н	Н	Н
ME 2053		CO2	Н	М	Н	L	Ν
		CO3	Н	Н	Н	Н	Н
		CO1	Н	Н	Н	Н	Н
ME 3051	Dissertation - I	CO2	Н	М	Н	L	Ν
		CO3	Н	Н	Н	Н	Н
		CO1	Н	Ν	Н	Н	Н
ME 2052	Seminar Non-	CO2	Н	Н	Н	L	Ν
NIE 3052	Project	CO3	L	Н	L	М	Ν
		CO4	L	Н	L	Н	М
		CO1	Н	Н	Н	Н	Н
ME 4051	Dissertation - II	CO2	Н	М	Н	L	Ν
		CO3	Н	Н	Н	Н	Н
		CO1	Н	Ν	Н	Ν	Н
ME 4052	Project Sominar	CO2	Н	Н	Н	Ν	Н
WIE 4052	i ioject sciiiiiai	CO3	Н	М	Н	М	М
		CO4	Н	Н	Н	М	Н