NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR DEPARTMENT OF ELECTRICAL ENGINEERING

Revised Curriculum and Syllabi

Program Name Master of Technology in Power Electronics and Machine Drives Effective from the Academic Year: 2021-2022

Recommended by DPAC	: 29.07.2021
Recommended in PGAC	: 16.08.2021
Approved by the Senate	: 22.08.2021

CURRICULUM

		Semester – I					
Sl. No.	Code	Subject	L	Т	S	C	H
1	EE1011	Advanced Power Electronics – I	3	1	0	4	4
2	EE1012	Machine Drives – I	3	1	0	4	4
3	EE1013	Advanced Control System – I	3	1	0	4	4
4	EE90XX	Specialization Elective – I	3	0	0	3	3
5	EE90XX	Specialization Elective – II	3	0	0	3	3
6	EE1061	Advanced Power Electronics	0	0	4	2	4
7	EE1062	Computational Laboratory	0	0	4	2	4
		Total	15	3	8	22	26
		Semester – II			•		•
Sl.	Code	Subject	L	Т	S	С	Η
No.							
1	EE2011	Advanced Power Electronics – II	3	1	0	4	4
2	EE90XX	Specialization Elective – III	3	1	0	4	4
3	EE90XX	Specialization Elective – IV	3	0	0	3	3
4	EE90XX	Specialization Elective – V	3	0	0	3	3
5	EE2061	Machine Drives Laboratory	0	0	4	2	4
6	EE2062	Advanced Control Laboratory	0	0	4	2	4
7	EE2063	Mini Project with Seminar	0	0	6	3	6
		Total	12	2	14	21	28
		Semester – III					
1	EE907X	Audit Lectures/Workshops					2
2	EE3061	Dissertation – I	0	0	24	12	24
3	EE3062	Seminar – Non-Project / Evaluation of	0	0	4	2	4
		Summer Training					
		Total	0	0	28	14	30
		Semester – IV					
1	EE4061	Dissertation – II / Industrial Project	0	0	24	12	24
2	EE4062	Project Seminar	0	0	4	2	4
		Total	0	0	28	14	28

Electives I and II

Subject Code	Subject Name
EE9032	Machine Analysis
EE9020	Electric Vehicles
EE9011	Soft Computing Techniques
EE9016	Machine Learning and Expert System

Elective III

Subject Code	Subject Name
EE9012	Machine Drives – II
EE9021	Digital Signal Processing
EE9030	Distributed Generation System and Microgrid

Electives IV and V

Subject Code	Subject Name
EE9029	Advanced Control System – II
EE9017	Renewable Energy Systems
EE9018	Embedded System
EE9019	FACTS Devices
EE9022	Estimation of signals and Systems
EE9026	Biomedical Instrumentation
EE9031	Special Electrical Machines

	Department of Electrical Engineering							
Course	Title	of the	Program	Total Nur	Number of contact hours			Credi
Code	course	e	Core	Lecture	Tutorial	Practical	Total	t
			(PCR) /	(L)	(T)	(P)	Hours	
			Electives					
		NGER	(PEL)					
EE1011	ADVA	NCED	PCR	3	1	0	4	4
	POWE	R						
	ELECI	RONICS -I	<u>~</u>					
Pre-requis	ites		Course Asse	essment meth	ods: Contin	uous Assessm	ent (CA)	and End
		F 1 1	Assessment ((EA))				
Power Ele	ectronics.	, Electrical			CA+E	A		
Machines	s, Contro	l Systems,						
Pov	wer Syste	ems.						
Course		• CO1	: To get acqua	unted with no	on-isolated &	isolated switc	h-Mode D	C-DC
Outcomes		conv	verters.					
		• CO2	2: To understar	nd the concep	t of converte	r dynamics and	d control.	
		• CO3	: To familiariz	ze with differe	ent gate and	base drive circ	uits for pov	wer
		devi	ces & wide ba	nd gap device	es.			
		• CO4	: To understand the concept of switch mode inverters, different PWM					
		tech	niques for Inverters & Multilevel Inverter					
		• CO5	5: To familiarize with EMI & EMC issues in power electronic systems.					
		• CO6	5: To get acquainted with the state of the art applications of power					
		elect	tronics in Indu	stry and utilit	y systems.			
Topics Co	vered	Basic power	electronic con	verters, Swite	ch-Mode DC	-DC Converte	rs, Isolated	
		Switching D	C Power Supplies, Other switching converters, Control requirements &					
		techniques, V	Voltage & curr	ent mode cor	ntrol, Practica	al converter de	sign	
		consideration	ns, Protection	in converter c	circuits. [10]			
		Converter dy	namics and co	ontrol [4]				
		Gate and Ba	se Drive circui	ts for Power	Devices, Intr	oduction to W	ide Band C	Bap
		Devices[6]	•			· • -	••	DI
		Switch Mod	e Inverters, Di	tterent PWM	techniques f	or Inverters: S	pace Vecto	r PWM
		technique. In	troduction of	Multilevel In	verter [12]		1114-1 (TD) #C	
		Electromagn	etic interferen	ce (ENII) and		etic Compatit	mity (EMC) issues:
		EMI reductio	on at Source, E	LIVII Filters, E	IVII Screenin	g, EMI Measu	rement and	l
		Application	18.			[4	•]	
		(i) Renewable	le Enerov Gen	eration Scher	nes (ii) Pow	er System Oua	lity Improv	/ement
		(iii) Other Industrial Applications				, cincint,		
		CTLI based applications in Generation and Distribution[20]						
Text Book	ïs,	Text Books:						
and/or refe	erence	1. N. Mohan	, T. M. Undela	and and W. P.	. Robbins, Po	ower Electronic	cs, Convert	ers,
material		Applications	and Design, J	ohn-Wiley &	Sons			
		2. L. Umana	2. L. Umanand, Power Electronics, Essential and Applications, Wiley India Pvt. Ltd.					

3. Joseph Vithayathil, "Power Electronics - Principles and Applications", McGraw Hill Inc., New York, 1995.
Reference Books:
1. E. Acha, V. G. Agelidis, O. Anaya-Lara and T. J. E. Miller, Power Electronic Control in Electrical Systems, Newnes
2. H. W. Whittington, Switch Mode Power Supplies: Design and Construction, Research Studies Press.

	Map in terms of 0,1,2,3					
			Program	Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	3	0	0
CO3	3	3	3	3	2	1
CO4	3	3	3	3	2	1
CO5	3	3	3	3	2	2
CO6	3	3	3	3	3	3

	Department of Electrical Engineering							
Course	Title of	of the	Program	Total Number of contact hoursCred				
Code	course	e	Core (PCR)	Lecture	Tutorial	Practical	Total	t
			/ Electives	(L)	(T)	(P)	Hours	
			(PEL)					
EE1012	MAG	CHINE	PCR	3	1	0	4	4
	DRI	VES-I						
Pre-requisi	ites		Course Assess	nent method	ls: Continuo	ous Assessme	nt (CA) a	and End
			Assessment (EA	.))				
Electrical N	Machines	s, Power			CA+EA			
Electroni	ics and C	ontrol						
5	System							
Course		• (CO1: Upon comple	eting this cou	rse, students	must be able t	o choose th	neir
Outcomes		e	electric drive syste	m based on th	he application	ns.		
		• (CO2: The students	must be able	to understar	d the dynamic	s of an elec	etric
		Ċ	lrive under starting	g and braking	conditions.	2		
		• (CO3: The students	must be able	to understar	d single and m	ulti-quadra	ant
	or			operation of drive: they must be able to analyze any type of $1\Phi \& 3\Phi$				
rectifiers fed DC motors as well as chopper fed DC motor			fed DC motors					
	 CO4: Upon completing this course, students must be able to control the speed. 				ne sneed			
		of an AC-AC & DC-AC converter feeding an electric drive						
			705 Students mu	ot ha abla to r	nodol on Elo	otrio Drivo	•	
		• (.05. Students mus	st be able to I	nouer an Ele	cure Drive.		

Topics Covered	Review of electric drive system, electrical machines, power converters and	control
	system.	[2]
	Characteristics of different types of loads encountered in modern drive appl	ications. [2]
	Dynamics of electric drive system, stability of an electric drive, Combined t	orque-
	speed characteristics of Motor-Load systems, speed-torque characteristics o	f electric
	drives under starting and braking conditions. [8]	
	Transient in electric drives under starting and braking conditions, Energy, a	ssociated
	with transient process of DC and AC motors, Rotor heating.	[4]
	Modeling of DC machines: Equivalent Circuit and Electromagnetic torque,	
	Electromechanical Modeling, State-space modeling.	[6]
	Phase Controlled DC Motor Drives: Introduction, principles of DC Motor S	peed
	Control, Phase-Controlled Converters, Steady state analysis of the single-ph	ase and
	three-phase Converter-Controlled DC motor drive, Chopper-Controlled DC	Motor
	Drive.	[14]
	Introduction Closed-Loop Operation, Dynamic simulation of the Speed con	trolled DC
	Motor drive, Applications.	[6]
	Speed control of induction motor: Basic Principles of Speed Control, Control	olling
	Speed Using Rotor Resistance, Rotor Voltage Injection, Controlling Speed	by the Slip
	Energy Recovery Method, Torque-Current Relationship, Controlling Speed	by
	Adjusting the Stator Voltage, Controlling Speed by Adjusting the Supply Fi	equency,
	Effect of Excessively High Frequency, Effect of Excessively Low Frequence	у,
	Voltage/Frequency Control.	[8]
	Synchronous motor variable speed drives, variable frequency control of syn	chronous
	motors, self-controlled synchronous motor drive using load-commutated the	ristor
	inverter. [4]	
	Example studies on commercial industrial drive products	[2]
Text Books,	TEXT BOOKS:	
and/or reference	• Werner Leonhard, Control of Electrical Drives, 3rd edition, Springer 2	2001.
material	• R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control,	Prentice
	Hall, edition 1, 2001.	
	 Advanced Electrical Drives- De Doncker, Rik, Pulle, Duco W.J., Velt Modern Dower Electronics and AC Drives, P. K. Pose 	man, Andre
	Modelli Fowel Electronics and AC Drives- B. K. Bose Reference Books:	
	1. Power Electronics and Motor Control – Shepherd, Hulley, Liang –	II Edition,
	Cambridge University Press	- 7
	2. Control of Electric Machines and Drives System-Seung Ki Su-Wile	v

CO vs PO mapping

	Map in terms of 0,1,2,3					
			Program	Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	0	3	3	2	2
CO2	2	0	3	3	1	0
CO3	2	1	3	3	1	3
CO4	3	1	3	3	2	2
CO5	3	1	3	3	1	2

6 | P a g e

			Department o	f Electrical	Engineering	7		
Course	Title of	of the	Program	Total Nur	nber of cont		Credit	
Code	course	e	Core	Lecture	Tutorial	Practical	Total	
			(PCR) /	(L)	(T)	(P)	Hours	
			Electives					
EE1012			(PEL)	2	1	0	4	4
EE1013	ADV	ANCED	PEL	3	1	0	4	4
Dres no guia	51.		Course Ace	accordent mot	nada. Cantin		(CA)	and End
Pre-requis	nes		Assessment ((EA))	lious. Colitii	luous Assessi	nent (CA)	
Control System B. Tech.	stem En	gineering			CA+I	ΞA		
Course		•	CO1: To lea	rn the perfo	rmance goa	ls of closed l	oop contro	ol system
Outcomes			design and th	ne methods (of analysis		-r	,
		•	CO2: To illu	strate differ	ent advance	d control syst	em topolog	gies, their
			design metho	ods and synt	hesis of the	controller des	signed	
		•	CO3: To dev	elop the con	cept of state	variable appr	oach for li	near time
			invariant sys	tem modelli	ng and cont	rol		
		•	CO4: To des	ign feedbac	k control in	State space d	omain	
		•	CO5: To des	ign observe	d based state	e feedback co	ntrol syste	m
		•	CO6: To des	ign Linear	Quadratic R	egulator, Kal	manBucy	Filter for
			optimal desig	gn in state sj	pace	U ,	5	
Topics Co	vered	Performa	nce Objective	es/ Goals:				
		Response	e and Loop Goals, Stabilization, Pole-placement, Tracking,					
		Robustne	ess, Disturban	ce Rejection	n, Noise Att	enuation [6]		
		Time Do	Domain Analysis Internal Model Principle (IMP). Frequency Response					
		analysis	by bode diag	ram and N	vouist criter	ion Loop Sl	naning Tea	chniques
		Sensitivi	tv analysis. U	tilities of Ga	ain and Phas	se Margin det	ermination	[8]
		Compens	sation:			. 6		L ⁻ J
		Feedforw	ard Control,	Feedback C	ontrol, Clas	sical Control	ler P, PI, P	ID, Lead
and Lag,			g, One degree-of-freedom (1 DOF) control, Two DOF configurations,					
Sylvester			ter matrix Formulation, Internal Model Control (IMC), Internal Model					
Principle			iple (IMP) [12]					
State Spa			del state mode	ation of Con	tinuous-tim	time systems:	oonvorsio	n of state
State moo			models to tra	nsfer function	ons in s-don	nain solution	s of state e	austions
variables etate tran			sition matrix	state transi	tion flow o	raphs. eigenv	alues, eige	envectors
		and stabi	ility similarity transformation, decompositions of transfer functions					
		canonica	1 state variable models, controllability and observability, Linear State					
		Variable	Feedback (L	SVF) contro	ol and pole	placement, F	ull Order	Observer
		and Redu	iced Order Ob	oserver, Des	ign example	es, MATLAE	b tools and	practical
		case stud	ies [20]					

	Optimal Control Linear Quadratic Regulator (LQR), Linear Quadratic Guassian (LQG), LQR with state estimator, Kalman-Bucy filter/state estimator, Design Examples, Practical case studies [10]
Text Books,	Text Books:
and/or reference	1.Modern Control Engineering, K. Ogata,
material	2.Modern Control System Theory, M. Gopal,
	3.Feedback Control Theory, John Doyle, Bruce Francis, Allen Tannenbaum,
	4.Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P
	Andrews
	Reference Books:
	1.Linear Control System Analysis And Design With MATLAB, John J.
	D'Azzo and Constantine H. Houpis and Stuart N. Sheldon
	2. Linear Robust Control, Michael Green and David J.N. Limebeer

CO vs PO mapping

	Program Outcomes									
	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2	1	2	1	1	2				
CO2	2	1	2	1	1	2				
CO3	2	1	2	1	1	2				
CO4	3	1	2	3	3	2				
CO5	3	1	2	3	3	2				
CO6	3	1	2	3	3	2				

. . . .

- -

	Department of Electrical Engineering							
Course	Title of the	Program Core	Program Core Total Number of contact hours					
Code	course	(PCR) /	Lecture	Tutorial	Practical	Total	t	
		Electives (PEL)	(L)	(T)	(P)	Hour		
						S		
EE9032	Machine	PEL	3	0	0	3	3	
	Analysis							
Pre-requise	ites	Course Assessmen	nt methods:	Continuous	Assessment	(CA) a	and End	
_		Assessment (EA))	Assessment (EA))					
Electrical N	Aachines-I	CA+EA						
(EEC402) a	and Electrical							
Machines-I	I (EEC501)							
Course	• (CO1: To acquire know	vledge about	Generalized m	nachines and F	Reference	frame	
Outcomes	t	heory						
	• (CO2: To learn modeli	ng and analy	sis of three-ph	ase induction	machine		
	• (CO3: To learn modeli	ng and analys	sis of three-ph	ase synchrono	us machir	ne	
	• (CO4: To analyze stead	dy-state and t	ransient behav	vior of DC mad	chines		
1		2	v					

Topics Covered	Generalized Machines:Kron's primitive machine, Voltage, power and torque equations of Kron's primitive machine, Basic two-pole machine diagrams. [4]						
	Reference Frame theory: Equations of transformation, 3-axis to 2-axis transformation, Park's transformation, Clarke's transformation, Stanley's equations. [4]						
	Theory of symmetrical Induction machines:Voltage and torque equations in machine variables, dynamic modeling of three-phase induction machine, commonly used reference frames. [5]						
	Generalized model of three-phase induction machine in arbitrary reference frame, derivation of induction machine model in stator, rotor and synchronously rotating reference frames from the arbitrary reference frame model, steady-state equivalent circuit from dynamic equations. [6]						
	Per unit system, normalized model of induction machine, space-phasor model of induction machine, linearized equations of Induction machine, small-signal equations of induction machine, small displacement stability, eigenvalues. [5]						
	Synchronous Machines:Stator and rotor flux linkages, Voltage and torque equations in machine variables, mathematical modeling of synchronous machine, Swing equation, state-space representation of Swing equation. [6]						
	DC generator: Motional inductance, steady-state analysis, transient analysis under different conditions. [6]						
	DC motor: Steady-state analysis, transient analysis under different conditions, sudden application of inertia load. [6]						
Text Books,	Text Books:						
and/or reference	1. Analysis of Electrical Machinery: P. C. Krause						
material	2. Electric Motor Drives, Modelling Analysis and Control: R. Krishnan						
	Reference Books:						
	1. Modern Power Electronics and AC Drives: B. K. Bose						
	2. Generalized Theory of Electrical Machines: P. S. Bimbhra						

Map in terms of 0,1,2,3											
		Program Outcomes									
	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	3	3	3	3	1	2					
CO2	3	3	3	3	1	2					
CO3	3	3	3	2	1	1					
CO4	3	3	3	2	0	1					
CO5	3	3	3	2	0	1					

Department of Electrical Engineering									
Course	Title	of the	Program	Program Total Number of contact hours					
Code	cours	e	Core	Lecture	Tutorial	Practical	Total		
			(PCR) /	(L)	(T)	(P)	Hours		
			Electives						
			(PEL)						
EE9020	ELI	ECTRIC	PEL	3	0	0	3	3	
	VE	HICLES							
Pre-requis	ites		Course Asse	essment metl	hods: Contir	nuous Assessn	nent (CA)	and End	
			Assessment ((EA))					
Electric	cal Tech	nology			CA+I	ΞA			
Electri	cal Macl	nines I							
Course		• CC	D1: To acquire	an idea abou	it electric veh	nicles (EVs) an	d hybrid ele	ectric	
Outcomes		vel	hicles (HEVs)						
		• CC	D2: To learn the	he fundament	tals of differe	ent types of EV	's and HEV	s systems	
		and	d their compor	ents.					
		• C(D3: To study a	about the Elec	ctric Propulsi	on Units requi	red in EVs	and	
		HE	EVs.						
		• CC	D4: To learn al	oout the diffe	rent types of	Energy Source	es and Stora	ige units	
		use	ed in EVs and	HEVs system	ns.				
		• CC	D5: To study the	ne Impacts of	EVs and HE	EVs on power s	system and		
		En	vironment.						
		• CC	D6: To learn al	oout the EV s	imulation so	ftware and EV	simulation	for	
		de	signing and mo	odelling.					
Topics Co	vered								
		Introductio	on to Electric	Vehicles: His	story of Elect	ric Vehicles a	nd hybrid el	ectric	
		vehicles, Re	ecent EVs and	HEVs, EV A	dvantages, so	ocial and envir	onmental ir	nportance	
		of hybrid ar	nd electric vehi	cles, impact	of modern H	EVs on energy	supplies.	[6]	
		Conventior	nal Vehicles: H	Basics of vehi	cle performa	nce, vehicle po	ower source	•	
		characteriza	tion, transmiss	sion character	ristics, and m	athematical m	odels to des	scribe	
		vehicle perf	formance.					[4]	
		Structure 9	and Compone	nts of EVs a	nd HEVe• F	V systems HF	V systems	Concept	
		and archited	cture of hybrid	electric drive	trains serie	s and narallel o	of hybrid ele	ectric	
drive trains			torque and sn	torque and speed coupling of hybrid electric drive trains					
		arrive dumb,	, corque una op	eea eoupinig	or injoind on			[0]	
Electric Pr			ropulsion Unit: Introduction to electric components used in hybrid and						
electric veh			icles, Configuration and control of DC Motor drives, Configuration and						
		control of In	nduction Moto	r drives, conf	iguration and	l control of Per	rmanent Ma	ıgnet	
		Motor drive	es, Configuration	on and control	ol of Switch	Reluctance Mo	otor drives,	drive	
		system effic	ciency					[10]	

	Energy Sources and Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices. [8]
	Battery Charging Strategies for Electric Vehicles: Introduction, Battery Charging Parameters, Constant Current (CC) charging for Electric Vehicle batteries, Constant Voltage (CV) charging for Electric Vehicle batteries, CC/CV charging for lead acid and Li-ion batteries, Pulse charging for lead acid, NiCd/NiMH and Li-ion batteries, Charging termination techniques, Charging infrastructure, Battery chargers, Conductive chargers, Inductive chargers, Home charging, Public charging, Opportunity charging stations, Fast charging stations, Battery swapping stations. [5]
	Impacts on power system and Environment: Harmonic impact, Harmonic
	compensation, Current demand impact, Current demand minimization, Transportation
	pollution, Environment-sound EVs. [2]
	EV Simulation: Simulation Softwares, System level simulation, case studies of EV simulation [4]
Text Books,	TEXTBOOK:
and/or reference	Iqbal Husain, "Electric and Hybrid Vehicles Design Fundamentals"
material	Published by: CRC Press, Boca Raton, Florida, USA, 2003.
	REFERENCES:
	Chan, "Modern Electric Vehicle Technology", Oxford 2002Chau, K. T., "Energy
	systems for electric and hybrid vehicles", Institution of Engineering and Technology 2016.

CO vs PO mapping

Map in terms of 0,1,2,3

	Program Outcomes								
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	1	1	0	1	1			
CO2	2	1	1	0	1	1			
CO3	3	2	3	3	2	3			
CO4	3	2	2	1	1	2			
CO5	3	2	1	3	3	3			
CO6	3	3	3	3	1	3			

Department of Electrical Engineering								
Course	Title of	of the	Program	Total Nur	nber of cont	act hours		Credit
Code	course	9	Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	
EE9011	S	OFT	PEL	3	0	0	3	3
	COM	IPUTING						
	TECH	INIQUES						
Pre-requis	ites		Course Asse	essment metl	nods: Contir	nuous Assessr	nent (CA)	and End
D :	1 1 1	C	Assessment ((EA))	CA.I	7 4		
algorithm/I	Logic/Pro	ge of ogrammin			CA+I	ΞA		
g Course Outcomes On comple Course Outcomes On comple Course Cour			tion of the cou D1: For the give mpare classical D2: For a given gorithm (BCGA bes of crossove lection strategie D3: For a give rameters of ad ntrolling the gl D4: For a given fference vecto ustrate self-ada D5: For a given ificial neuron opagation algor D6: For a given owing informa se and defuzzif puting and Sof s, limitations of techniques, pra	rrse, the stude en linear and r l analytical m single object A) and real cor r, mutation ar es. en non-linear aptive partic obal explorat n standard be or in Different problem, log network (A rithm of ANN problem, des tion and com fication. t-Computing of hard comp actical examp	ents will be all non-linear pro- lethod and so ive problem oded genetic ad also unders or non-deri le swarm op ion and local enchmark pro- ntial Evolution gically clarify NN) and al v. scribe a fuzzy putational fl techniques, outing techni- oles associate	ble to: oblems under p oft computing t (SOP), apply b algorithm (RC stand the impace ivative problem timization (AH exploitation. oblem, explain ionary (DE) t nary (SADE) t y the impact of so stepwise e w knowledge ba ow with member Conventional a ques, merits a	practical lim echnique. binary coded CGA) with ct of differe n, tune the PSO) for ef the signifi technique a echnique. Thidden lay explicate the use controlled pership fun- & non-conv & demerits mputing tec	hitations, d genetic different nt parent e control ficiently cance of and also ers in an he back- er (FKBC) ction, rule ventional of soft- hniques.
		Fundament techniques algorithms Introduction Reproduction parent sele	tal concept of , types of op on of genetic a ion, Crossover, ction strategy,	f optimization timization te algorithm, Bi , Mutation, ir parent selecti	n technique chniques, con nary coding nportance of on methods,	s and necessi oding, fitness/ [2] & decoding, crossover and Flowchart/algo	ty of optin objective f Genetic me mutation o porithm, draw	mization function, odelling, perators, wback of

	binary coded genetic algorithm (BCGA), real coded genetic algorithm (RCGA), examples. [7]
	Introduction of Particle Swarm Optimization (PSO) algorithm, Bird flocking & fish schooling, velocity, inertia weight factor, pbest solution, gbest solution, local optima, global optima, Flowchart/algorithm, examples, new modifications of PSO, Parameter Selection in PSO. [7]
	Fundamentals of Differential Evolution algorithm, difference vector and its significance, Mutation and crossover, comparisons among DE, PSO and GA, Examples, new modifications of DE, Improved DE schemes for noisy optimization problems. [7] Fuzzy set theory, Fuzzy systems, crisp sets and fuzzy sets, fuzzy set operations and
	approximate reasoning, Fuzzification, inferencing and defuzzification, Fuzzy knowledge and rule bases, examples. [7]
	Biological neural networks, Model of an artificial neuron, neural network architecture, Characteristics of neural network, learning methods, Taxonomy of neural network architecture, Back propagation networks, architecture of a backpropagation network, back propagation learning, Examples, RBF network, Associative memory, Adaptive resonance theory. [7]
	Applications of Soft Computing to various fields of engineering. [2]
Text Books,	Text Books:
and/or reference	1. Devendra K. Chaturvedi, "Soft Computing- techniques and its application in
material	2 Carlos A Coello Garry B Lamont David A van Veldhuizen "Evolutionary
	Algorithms for solving Multi-objective Problems", Second Edition,
	Springer, 2007.
	Reference Books:
	Computing: A Computational Approach to Learning and Machine Intelligence Prentice Hall
	2.S. Rajasekaran and G. A. VijayalakshmiPai, Neural Networks, Fuzzy Logic
	and genetic Algorithm Synthesis and Applications, PHI
	3.51mon Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall
	4.L. A. Zadeh, Fuzzy Sets and Applications, John Wiley & Sons

CO vs PO mapping

Map in terms of 0,1,2,3 Program Outcomes PO3 **PO4 PO5 PO6 PO1 PO2 CO1 CO2 CO3 CO4** CO5 CO6

Department of Electrical Engineering								
Course	Title of	of the	Program	Total Nur	nber of cont	act hours		Credit
Code	course	e	Core	Lecture	Tutorial	Practical	Total	
			(PCR) /	(L)	(T)	(P)	Hours	
			Electives (DEL)					
FF0016	MA	CHINE	PFL	3	0	0	3	3
EE)010	LEAF	RNING &	T EE	5	0	Ŭ	5	5
	EXPER	T SYSTEM						
Pre-requis	ites: NA		Course Asse	essment metl	nods: Contir	nuous Assessn	nent (CA)	and End
			Assessment ((EA))				
EE1001(Fur	ndamenta	ls of			CA+H	ΞA		
power system	ms), EE	1002						
(Power Syst	em Oper	ation)						
Course)1. Understa	nd complexit	v of machine	learning algo	rithms and t	heir
Outcomes		• cc	nitations	nu compiexit	y of machine	c learning argon		licii
		• CC	D2: Be capable	e of confident	ly applying o	common Mach	ine Learnin	g
		alg	gorithms in pra	ctice and imp	lementing th	eir own		
		• CC	CO3: Understand modern notions in data analysis oriented computing					
						j	I	0
		• CC wo	D4: Be capab orld data.	le of perform	ing experime	ents in machine	e learning u	sing real-
			5. Ba capabla	of designing	machina laa	ming based or	port system	using
		rea	al-world data	of designing	machine rea	ining based ex	pert system	using
Topics Co	vered							
		Introducti	on: Definition	n of learning	systems. G	boals and appl	lications of	machine
		lea	rning. Aspects	of developin	g a learning	system	[4]	oring of
		hypotheses	Finding m	aximally sn	ecific hypo	theses Versio	on spaces	and the
		cai	ndidate elimina	ation algorith	m.		[5]	und the
				č				
		Decision T	Free Learning	: Concepts as	s decision tre	es. Recursive	induction o	f decision
		simple tree	ing the best s	tional comple	exity Occam	and information	n gain. Sea	rcning for
		pruning. [4]						uata, and
Bayesian La algorithm. Pa regression. B			Learning: Pr Parameter s Bayes nets an	robability th moothing. C d Markov net	eory and B denerative vs as for represe	ayes rule. Na s. discriminati nting depender	aive Bayes ve training ncies. [4]	learning . Logistic
		Instance-H past spec Experimen	Based Learnin bific example tal	ag: Construct s. k-Neares	ing explicit g t-neighbor	generalizations algorithm. C [4]	versus con ase-based	nparing to learning.

	Rule Learning: Translating decision trees into rules. Heuristic rule induction using								
	separate and conquer and information gain. First-order Horn-clause induction. [3]								
	Evaluation of Learning Algorithms: Measuring the accuracy of learned hypotheses. Comparing learning algorithms: cross-validation, learning curves, and statistical								
	hypothesis testing. [3]								
	Artificial Neural Networks: Neurons and biological motivation. Linear threshold								
	units. Perceptrons: representational limitation and gradient descent training.								
	Multilayer networks and backpropagation. Hidden layers and constructing intermediate,								
	distributed representations. Overfitting, learning network structure, recurrent networks.								
	[3]								
	Support Vector Machines: Maximum margin linear separators. Quadractic								
	programming solution to finding maximum margin separators. Kernels for learning								
	non-linear [4]								
	Expert System design: Face detection algorithm, Computer-aided diagnosis system [4]								
Text Books,	Text Books:								
and/or reference	1. Tom M. Mitchell, Machine Learning								
material	2. Christopher Bishop, Pattern Recognition and Machine Learning.								

Map in terms of 0,1,2,3										
		Program Outcomes								
	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	3	3	1	2	0				
CO2	3	3	3	2	2	0				
CO3	3	3	3	2	1	1				
CO4	3	3	3	2	1	1				
CO5	3	3	3	3	1	1				

CO vs PO mapping

			Department o	f Electrical	Engineering	5		
Course	Title of	of the	Program	Total Nur	nber of cont	act hours		Credit
Code	course	e	Core	Lecture	Tutorial	Practical	Total	
			(PCR) /	(L)	(T)	(P)	Hours	
			Electives					
			(PEL)					
EE1061	ADVANCED		PCR	0	0	4	4	2
	POWER							
	ELECTRONICS							
	LABOR	RATORY						
Pre-requis	ites		Course Assessment methods: Continuous Assessment (CA) and End					
			Assessment (EA))					
EE1012 (Advance	d Power	CA+EA					
Electronics - I)								
• CO1: To understand the principle of				ple of power	· electronics de	vices		
Outcomes								

15 | Page

	• CO2: To understand the detail operation of the ac-dc/ dc-dc/ ac-ac/ dc-ac
	CO2. To understand the implementation of the common ants for do and co
	• CO3: To understand the implementation of the components for dc and ac
	machine control.
	• CO4: To develop the ability to design and implement different converters
	and gate driver circuits
	• CO5: To understand the control of the converters
Topics Covered	1. Single Phase Bridge Inverter Using IGBT
	2. Three Phase SCR Module
	(a) Three Phase Half Controlled Bridge Rectifier with R and R-L
	load
	(b)Three Phase Fully Controlled Bridge Rectifier R and R-L load
	(c) Three Phase AC Voltage Controller with R and R-L load
	3 Speed Control of 30 AC Induction Motor Using IPM and MICRO-
	2407
	(a) Open Loop Control of Three Dhese Induction Motor hy using V/E
	(a) Open Loop Control of Three Phase induction Motor by using V/F control.
	(b)Closed Loop Control of Three Phase Induction Motor by using V/F
	control.
	4. Speed Control of DC Motor by Using Single Phase Triggering and
	Device module
	Some new experiments are to be added
	NPC Multilevel Inverter, Z-Source Inverter, Matrix Inverter
	5. Speed Control of 3-phase Induction Motor using PSIM
	6. Study of Characteristic of Buck, Boost & Buck-Boost Converter
	7. Modelling and control of Buck and Boost Converter by Using
	MATLAB
	8. Closed Loop Control of Boost Converter by Using Multisim
Text Books.	Text Books:
and/or reference	1. N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics,
material	Converters, Applications and Design, John-Wiley & Sons
	2. Joseph Vithayathil, "Power Electronics - Principles and Applications",
	McGraw Hill Inc., New York, 1995.
	Reference Books:
	1.Laboratory Manuals

CO vs PO mapping

Map in terms of 0,1,2,3										
		Program Outcomes								
	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	3	3	1	0	0				
CO2	3	3	3	3	2	1				
CO3	3	3	3	3	2	1				
CO4	3	3	3	3	2	1				
CO5	3	3	3	3	2	1				

16 | Page

			Department o	of Electrical	Engineering	5			
Course	Title of	of the	Program	Total Nur	nber of cont	act hours		Credit	
Code	course	e	Core	Lecture	Tutorial	Practical	Total		
			(PCR) /	(L)	(T)	(P)	Hours		
			Electives						
			(PEL)						
EE1062	COMP	UTATION	PCR	0	0	4	4	2	
	LABO	RATORY							
Pre-requis	ites		Course Asse	essment met	nods: Contir	nuous Assessr	ment (CA)	and End	
			Assessment ((EA))					
Computer Programming in					CA+I	EA			
MATLAB									
Course	Course • CO1: Acqui			idea about d	ifferent comp	outation techni	ques.		
Outcomes	Outcomes • CO			2: To develop programming skill in MATLAB for solving logical					
pr			oblems.	olems.					
	• C			skill to devel	op different	optimization te	echniques.		
		• C(D4: To acquire	skill to solve	ANN/Fuzzy	based problem	ns		
Topics Co	vered	1. To	study and prac	tice the basic	MATLAB n	programming.			
ropies eo	, or ou	2. To	solve the benchmark problems using Particle Swarm Optimization (PSO)						
		tecl	hnique						
		3. Tur	ning of PID Co	ntroller using	Adaptive Pa	article Swarm	Optimizatio	n	
		(AF	PSO) technique		, r		- r		
		4. Tur	ning of PID Co	ntroller using	Real Coded	Genetic Algor	rithm (RCG	A).	
		5. Spe	ed Control of	DC motor usi	ng Binary C	oded Genetic A	Algorithm (BCGA).	
		6 To	solve the bencl	hmark proble	ms using Dif	ferential Evolu	ition (DE) f	echnique	
		7 To	study the Air c	conditioning s	vstem using	Fuzzy Logic			
		8 To	study and perfe	orm the appli	cation of Art	ificial Neural I	Network (A	NN)	
		tecl	nique	ique					
			inque.						
Text Book	cs,	Text Book	s:						
and/or refe	and/or reference 1. Labo			poratory manuals					
material			-						

Map in terms of 0,1,2,3									
	Program Outcomes								
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	3	1	1	1	1			
CO2	2	2	1	1	1	1			
CO3	2	2	2	2	1	1			
CO4	2	2	2	2	2	1			

]	Department o	f Electrical	Engineering	5			
Course	Title o	of the	Program	Total Nur	nber of cont	act hours		Credit	
Code	course	;	Core	Lecture	Tutorial	Practical	Total		
			(PCR) /	(L)	(T)	(P)	Hours		
			Electives						
			(PEL)						
EE2011	ADVAN	ICED	PCR	3	1	0	4	4	
	POWER								
	ELECTR	RONICS-							
			<u> </u>		1 0 1				
Pre-requis	sites		Course Asse Assessment ((EA))	nods: Contir	uous Assessn	nent (CA)	and End	
Advanced P	Power Elec	ctronics			CA+I	EA			
– I (EE1012	2), Machin	ne							
Drives-I (EF	E1013)								
Course		• CC	01: To understa	and the conce	pt of modell	ing, controller	design & st	ability	
Outcomes		ana	alysis non-line	ar dynamics (of converters		C	·	
		• CC	D2: To get acqu	ainted with a	advanced cor	verters & their	r modeling.		
		• CC	CO3: To get acquainted with Resonant & soft-switching converters						
		• ((704: To understand the concept & operation of Multilevel Inverters						
			5: To learn th	e advanced m	radulation te	chniques for C	onverters/I	werters	
		• • • •	\mathbf{S} . To learn the	e auvalieeu li		lighting & lite		iverters	
Tarias Ca		Convert	0. 10 get acqu	dalling been	trollor dooig	a stability and	lucia Non 1	incon	
Topics Co	overed	converte		dennig &con	luoner design	ii, stabiiity alla	lysis, mon-i	Ineal	
		Same ad		tona. Madall		of Tri state L	لم محمد السما		
		Some au	Ivanced converters: Modelling & control of Tri-state, Interleaved,						
		Decemen	ase & Higher order converters, High Gain converters[12]						
		Denallal	at Converters: Classification of Resonant Converters, Series-Loaded and						
		Parallel-	Loaded Reson	ant Converte	r Topology, S	Soft Switching	converters	, Duai	
		Active B	ondge (DAB) (Converter [8]	1 40 m 0 1 0 0 1 0 0	Nautual Daint	Clammad ()		
		Flains C	el Converters:	Fundamenta	i topologies,	Neutral Point		NPC),	
		Flying C		erter, Cascad	ea Multileve	I Converters, C		level	
		voltage s	source inverter	s, application	is.	/1 .	[10]		
		Advance	a modulation	techniques fo	or Converters	/Inverters; spa	ce vector	1 1	
			ion, carrier bas		on, Phase shi		er modulatio	on, level	
		snifted n	nulticarrier mo	dulation, thir	a narmonic 1	njection PWM	, Max-Min	Zero	
		Sequenc	e Injected PW	M, Double Si	Ignal PWM (DSPWM)	[8]	[10]	
		Some pr	actical applica	uons of PE c	onverters, lite	erature study.		[10]	
Text Book	κs,	Text Bo	DKS:	T-1 · ·					
and/or refe	erence	I. Funda	imentals of Po	wer Electroni	cs, Robert W	. Erickson & I	D. Maksimo	OV1C,	
material		Kluwer A	r Academic Publisher						
	2.Power			r-Switching Converters, Simon Ang, Alejandro Oliva, Taylor & Francis					
	3.Advar			anced DC/AC Inverters: Fang Lin Luo, Hong Ye, CRC Press					
		Reference	ence Books:						
		1. The P	The Power Electronics Hand Book- Timothy L. Skyarnina, CRC Press						

2. Power Electronic Converters: Dynamics and Control in Conventional & Renewable Energy Applications. WILEY-VCH

CO vs PO mapping

	Program Outcomes									
	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	3	3	3	0	0				
CO2	3	3	3	3	2	1				
CO3	3	3	3	3	2	1				
CO4	3	3	3	3	2	1				
CO5	3	3	3	3	1	0				
CO6	3	3	3	3	3	3				

Department of Electrical Engineering Course Title of the Program Total Number of contact hours Credit Total Code Core Tutorial course Lecture Practical (PCR)/(L) (T) (P) Hours Electives (PEL) 0 **EE9012** MACHINE PEL 3 1 4 4 **DRIVES-II** Course Assessment methods: Continuous Assessment (CA) and End **Pre-requisites** Assessment (EA)) Machine Drives-I (EE1013), CA+EA Advanced Power Electronics, Control System Theory CO1: To learn mathematical modeling and analysis of different types of three-phase Course Outcomes machines in general CO2: To learn about control strategies of squirrel cage induction machine CO3: To learn about control strategies of wound rotor induction machine CO4: To learn about control strategies of permanent magnet synchronous machine CO5: To perform analysis and control of Switched reluctance motors CO6: To analyze and control Brushless dc motors **Topics** Covered Introduction to synchronously rotating reference frame and implementation in simulation environment. [8] Direct and Indirect Vector Control of Squirrel Cage Induction Machine (SQIM). Speed Sensorless Vector Control of SOIM. [8] Direct torque control (DTC) of SQIM, speed sensorless DTC of SQIM [5] Vector control of Wound Rotor Induction Machine with different power circuits [7]

Map in terms of 0,1,2,3

	Synchronous machines: Introduction, voltage and torque equations in machine variables, arbitrary reference frame variables and rotor reference variables, simulation of three-phase synchronous machines. [5]						
	Vector control of cycloconverter fed synchronous motor drive [5]]					
	Vector control of Permanent magnet synchronous machine, different control strategie flux weakening operation, constant torque mode controller, flux weakening controller sensorless control. [8]	s, ;,					
	Switched reluctance motor drives: Basic principle of operation, Torque equation, analysis, power electronics control of switched reluctance motor drives. [5]						
	Brushless dc motor drives: Construction. Principle of operation, Modelling and control of Brushless dc motors. [5]	ol					
Text Books,	Text Books:						
and/or reference	1. Modern Power Electronics and AC Drives- B. K. Bose						
material	2. Electric Motor Drives, Modelling Analysis and Control – R. Krishnan						
	Reference Books:						
	1. Electric Drives- Ion Boldea, Syed A. Nasar						
	2. Power Electronics and Variable Frequency Drives- B. K. Bose						

CO vs PO mapping

Т

	Map in terms of 0,1,2,3									
	Program Outcomes									
	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	3	3	3	3	3				
CO2	3	3	3	3	3	1				
CO3	3	3	3	3	3	1				
CO4	3	3	3	3	3	1				
CO5	3	3	3	3	2	1				
CO6	3	3	3	3	2	1				

Department of Electrical Engineering										
Course	Title	of the	Program	Total Nur	nber of cont	act hours		Credit		
Code	course	e	Core	Lecture	Tutorial	Practical	Total			
			(PCR) /	(L)	(T)	(P)	Hours			
			Electives							
			(PEL)							
EE9021	DI	GITAL	PEL	3	1	0	4	4		
	SI	GNAL								
	PROCESSING					l	(21)			
Pre-requis	ıtes		Course Assessment methods: Continuous Assessment (CA) and End							
0: 1 1/	a		Assessment ((EA))						
Signal and S	Systems	in B. Tech.			CA+	EA				
Course		• CO1:	To understand	the propertie	es signals and	systems.				
Outcomes		• CO2:	To understand	the concept of	of signal proc	cessing.				
		• CO3:	To analyze dis	crete time sig	gnals and syst	tems in time, f	requency do	omain.		
		• CO4:	To design digi	tal filters.						
		• CO5:	To get acquain	ted with digi	tal processor	s recently used				
Topics Co	vered	Discrete tin	me signals and	systems, pro	perties, conv	olution, analys	sis of discret	te time		
		systems in	time-domain				[4	4]		
		Frequency	domain repres	entation of d	iscrete time s	systems and sig	gnals, Gibbs			
		phenomen	on, band limite	d signals, sau	npling theore	em aliasing san	npling of co	ontinuous		
		time signal	s					[6]		
		Z- transfor	ms, region of c	convergence,	Z- transform	theorems and	properties,	methods of		
		Inverse Z-t	ransforms, and	alysis of disci	rete time sign	als and system	is in Z-dom	ain, pole-		
		zero plots,	stability [4]							
		Realization	of FIR Systems and IIR systems [4]							
		Discrete til	me Fourier trai	isform of dis	screte time si	gnals and syste	ems, Inverse	discrete		
		time Fouri	er transform, E	agen function	1 	TT I.	1	[6] DET		
		Discrete Fo	ourier transform	n (DFI), pro	perties of DF	1, Linear conv	Volution usi	ng DF1,		
		Computation	on of DF1 by I	FF1 algorithi	ns like decili	nation in freque				
		Unie Vorious Fi	ltar dasign task	niques for F	ID and IID fi	ltorg	[10]	0]		
		Sampling r	ate conversion	up and dow	in anu in in in rata campli	ing interpolati	[10] on and deci	mation [4]		
		Introductic	n to discrete H	l, up and dow lilbert Transf	form Comple	ex Canstrum A	nnligation	of Canstral		
		analysis	in to discrete 1		om, compic	x Capsulan, 7	[6]	51 Capstrai		
		Practical a	polications of l	DSP_DSP_pr	ocessors		[0]	[4]		
Text Book	S.	Text Books		2.51, 251 pr				r.1		
and/or refe	erence	1.Discr	ete Signal Proc	essing by A.	V. Oppenhei	m and R.W. So	chafer (Pren	tice-Hall).		
material		2.J. G. 1	Proakis& D. G	. Manolakis.	Digital Signa	al Processing:	Principles.	Algorithms		
		ana	Applications,	Applications, Prentice Hall of India.						
		Reference	Books:							
		1.Digita	al Signal proce	nal processing by Sanjit K. Mitra (Tata McGraw-Hill).						
		2.Theor	ry and Application of Digital Signal Processing by L. R. Rabiner and B. Gold,							
	Pe			n, 2004						

	Map in terms of 0,1,2,3									
	Program Outcomes									
	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	3	3	2	2	1				
CO2	3	3	3	2	2	1				
CO3	3	3	3	2	2	1				
CO4	3	3	3	2	2	1				
CO5	3	3	3	2	1	0				
CO6	3	3	3	2	1	0				

	Department of Electrical Engineering								
Course	Title	of the	Program	Total Nur	nber of cont	act hours		Credit	
Code	cours	e	Core	Lecture	Tutorial	Practical	Total		
			(PCR) /	(L)	(T)	(P)	Hours		
			Electives						
			(PEL)						
EE9030	DISTRIBUTED		PEL	3	1	0	4	4	
	GENI	ERATION							
	SYST	TEM AND							
	MIC	ROGRID							
Pre-requis	ites		Course Asse	essment metl	nods: Contin	uous Assessn	nent (CA)	and End	
			Assessment (EA))					
Power	System I	and II			CA+E	EA			
Course									
Outcomes		On comple	tion of the course, the students will be able to:						
		• CO1:	Understand th	e concept o	f distributed	generation (DG)		
		• CO2:]	Find optimal size, placement of DGs						
		• CO3:	Analyze the impact of grid integration and control aspects of DGs.						
		• CO4:]	Model and analyze a micro grid taking into consideration the planning						
		and or	perational issues of the DGs to be connected in the system						
		• CO5:	Study concept of Micro grid and its configuration						
			j	0		8			
Topics Co	vered	Introducti	on of Distr	ibuted gene	eration tecl	nnologies,Ne	ed for d	istributed	
1		generation	n, Renewable	sources in	distributed	generation, (Current sc	enario in	
		distributed	d generation,	Planning o	f DGs, Siti	ng and sizing	g of DGs,	Optimal	
		placement	t of DG sourc	es in distrib	ution system	s, Solar and	Wind Reso	ources for	
		distributed	d generational	nd Models [13].				
		Grid integ	gration of DG	s, Different	types of int	erfaces, Inve	rter based	DGs and	
rotating r			nachine-based interfaces, Aggregation of multiple DG units, Energy						
		storage el	ments, Batteries, ultracapacitors, flywheels [10].						

M. TECH. IN POWER	ELECTRONICS AND	MACHINE DRIVES
-------------------	-----------------	----------------

	Technical impacts of DGs on Transmission systems, Distribution systems, De- regulation, Impact of DGs upon protective relaying, Impact of DGs upon transient and dynamic stability of existing distribution systems [10]. Economic and control aspects of DGs, Market facts, issues and challenges, Limitations of DGs, Voltage control techniques, Reactive power control, Harmonias Power quality issues Poliability of DC based systems.
	and Dynamic analysis [12].
	introduction to micro-grids, Types of micro-grids, Autonomous and non- autonomous grids, Sizing of micro-grids, Modeling& analysis of Micro-grids with multiple DGs, Micro-grids with power electronic interfacing units, Grid Interface and Synchronization, Transients in micro-grids, Protection of micro- grids, Case studies on microgrid, Smart Grid Concepts, Control Methods and Applications [13].
Text Books,	TEXT BOOKS:
and/or reference	
material	1. H. Lee Willis, Walter G. Scott, 'Distributed Power Generation – Planning and Evaluation', Marcel Decker Press, 2000.
	2. M.GodoySimoes, Felix A.Farret, 'Renewable Energy Systems – Design and Analysis with Induction Generators', CRC press.
	3. Robert Lasseter, Paolo Piagi, ' Micro-grid: A Conceptual Solution', PESC 2004, June 2004.
	REFERENCE BOOKS:
	1 F. Katiraei, M.R. Iravani, 'Transients of a Micro-Grid System with Multiple Distributed Energy Resources', International Conference on Power Systems Transients (IPST'05) in Montreal, Canada on June 19-23, 2005.
	2. Z. Ye, R. Walling, N. Miller, P. Du, K. Nelson, 'Facility Microgrids', General Electric Global Research Center, Niskayuna, New York, Subcontract report, May 2005.

	Map in terms of 0,1,2,3									
		Program Outcomes								
	PO1	PO1 PO2 PO3 PO4 PO5 PO6								
CO1	3	2	0	0	1	1				
CO2	2	3	3	2	1	0				
CO3	1	2	2	0	1	1				
CO4	3	1	2	0	1	1				
CO5	1	1	1	0	1	0				

Department of Electrical Engineering									
Course	Title of	of the	Program	Total Nur	otal Number of contact hours				
Code	course	e	Core	Lecture	Tutorial	Practical	Total		
			(PCR) /	(L)	(T)	(P)	Hours		
			Electives						
			(PEL)						
EE9029	ADV	ANCED	PEL	3	0	0	3	3	
	CO	NTROL							
	SYS	TEMS II							
Pre-requis	ites		Course Asse	essment met	hods: Contir	nuous Assessn	nent (CA)	and End	
			Assessment ((EA))					
Advanced	Control	System I			CA+I	EA			
(1	EE9014)								
Course		• C(D1: To acquin	e the know	ledge of sar	npled data sy	stem, the	sampling	
Outcomes		an	d hold proces	s, understan	d, investiga	te and analyz	e the stabil	ity of the	
		dis	screte time sy	stems					
		• C(O2: To analy	ze the samp	ole data syst	tem both in t	ime and f	requency	
		do	omain						
		• C(O3: To learn o	ligital contro	ol for sampl	e data system	S		
		• C(O4: To get the	e idea of stat	e variable a	nalvsis for di	screte-time	e systems	
		• C(CO5: To understand dynamic property and stability of nonlinear systems						
			Contro design	control sys	tem for non	linear system	e nominea	i systems	
Topics Co	varad	Introduct	ion to Digita	Control: S	ample Date	System The	s s compling	proce	
Topics Co	vereu	Discrete	iscrete time signals and their classifications. Depresentation of discrete time						
		Discrete-	time signals a		ssifications	, Representati	ion of aisc	rete-time	
		signals	is as sequences, sampling rocess; sampling meorem; Allasing						
		Sampling	g of Continu	ous-time si	gnals, Sign	al reconstruc	tion, Disc	rete-time	
		Systems	and their clas	sifications, l	Finite dimer	isional LTI sy	stems	[8]	
		Difference	ce equations,	z-transform	theory, z-t	ransfer functi	ions (pulse	e transfer	
		functions	s), inverse z-	transform a	nd response	e of linear d	iscrete sys	stems, z-	
		transform	n analysis of s	ampled data	control syst	tems, z and s	domain rel	ationship	
		[6]	-	-	-			-	
		Stability	analysis in z	z-plane. Jur	v's stability	criteria. Ro	ot Locus	Analysis	
		Frequenc	v Response	of Sample of	ata system	Bilinear Tr	insformatio	on Bode	
		diagram	in w-nlane	si sumple ([6]	, Sinnour III	inground		
		Digital C	ontrollers. E	edhack Co	ntrol Class	ical Controlle	P DI D	ID Load	
		and Loc	-οπαυπείδ. Γί Γει	LUUALK CO	nuoi, Ciass		., , , , , , , , , , , , , , , , , , ,	ID, Leau	
		and Lag	[O]	tion of D'			model - (1 . 1	
		State Spa	ice Kepresent	ation of D1S	rele-lime S	ystems: State	model stat	e models	
		for linear	alscrete time	systems, co	nversion of	state variable	s models to	o transfer	
		functions	s in z-domain,	solutions of	f state equat	ions, state tra	nsition ma	trix, state	

I. TECH. IN POWER ELECTRONICS AND MACHINE DRIVES
transition flow graphs, eigenvalues, eigenvectors and stability similarity transformation, decompositions of transfer functions, canonical state variable models, controllability and observability, state feedback and pole placement, Observer Design, MATLAB tools and case studies [10]
Nonlinear Systems and Control:
Fundamentals of Nonlinear systems, dynamics, concept of stability and equilibrium point, Jacobian matrix and stability, domain of convergence, Phase plane analysis
Steady state frequency response analysis, Describing function, Extended Nyquist criteria
Lypunov stability Criteria, Application of Lyapunov stability, Popov criteria,
stabilization via state feedback, Feedback linearization [20]
 Text Books: 1. Discrete Time Control Systems, K Ogata 2. Digital Control System, B. C. Kuo 3. Applied Nonlinear Control, Slotine and Li, Prentice-Hall 1991
Reference Books: 1. Digital Control and State Variable Methods, M. Gopal 2. Digital Control Of Dynamic Systems, G.Franklin, J.Powell, M.L. Workman.
1

	Program Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	1	3	1	0		
CO2	3	2	1	3	0	1		
CO3	3	2	3	3	2	3		
CO4	1	1	1	3	3	1		
CO5	2	2	1	2	3	0		
CO6	3	2	1	2	3	3		

Department of Electrical Engineering							
Course	Title of the	Program	ogram Total Number of contact hours				
Code	course	Core	Lecture	Tutorial	Practical	Total	
		(PCR) /	(L)	(T)	(P)	Hours	
		Electives					
		(PEL)					
EE9017	RENEWABLE	PEL	3	0	0	3	3
	ENERGY						
	SYSTEMS						
Pre-requisit	tes	Course Asse	essment met	hods: Contir	nuous Assessr	ment (CA)	and End
		Assessment ((EA))				
Power S	ystem I and II			CA+I	EA		
Course							
Outcomes	On complet	ion of the cour	se, the stude	nts will be ab	le to:		
	• CC	01: know the N	lational and I	nternational	Energy Scenar	io	
	• CC	D2:.gain insigh	t of the solar	photovoltaic	system and ap	plication	
	• CC	D3: get acquain	ted with win	d power tech	nology and use	e	
	• CC	04: understand	the technolo	gy of bio-fue	l and tidal pow	ver generati	on
	• CC	O5: know about functioning of Fuel Cell					
	• CC	06: understand	issues of En	ergy Audit ar	nd Energy Mar	nagement	
	Introduction Internation World Ene of Energy Security, C Protocol re Solar photo Photovolta Solar Air (SAH), So Introduction of Solar Ce of PV cell. Structure for Wind power theory, Cla wind generg Power and recent dev wind energy	on: Energy sy al Energy scen rgy Challenges resources, cla carbon emission garding the Ca ovoltaic: Introdic concentratio Heating System lar Pond, Desi on to Solar Cell ell, Calculation , Grid Connect or PV power S er and its sour assification of rators- different maximum pow elopments, int gy [7] of tidal power	vstem as ele- nario, various s and Pledges assification, m n, carbon crea- urbon emission luction, solar on, Application m, Commerce gn of a SAH , Principle of n of Solar Ene- ted and OFF ystem[10] ces, site sele- wind machina- t types, wind- ver equation. ernational so- generation, c	ectrical systen non-conven , Energy Sust relative meri dit, Calculation (Figure 19) radiation & on of Solar E sial/Residentia (Solar Cell, V ergy from PV grid PV power ction criterion es. Wind mi d farms & gr Wind penetr cenario. Win	em, Energy of tional energy r tainability, Cha ts and demeri on of Carbon C its relation wit Energy, Therma al and Industr er Heater (SW Working of So V cell, Variation wer System, H on, wind charac Ils-different de id. Wind generation & its effect d energy collo	chain, Nat esources-in anging Patte its, Keys for redit with S h photovolt l Energy Co- rial Solar A H), Solar O lar Cell, Co- n of V-I cha ybrid Powe cteristics, n esign & the ration in In ects, econor ector, Appl Single and	ional and hportance, ern of uses or Energy olar Plant, aic effect. onversion, Air Heater Constants, nstruction racteristic er System, homentum ir control, dia. Wind nic issues, ication of two basin

Μ	I. TECH. IN POWER ELECTRONICS AND MACHINE DRIVES
	geothermal Energy, geothermal power plant. OTEC Principle, Open cycle and closed cycle. [4]
	Bio fuel, Conversion of biomass, Biofuel classification, Biomass production for Energy farming, direct combustion for heat-pyrolysis-thermochemical process, Anaerobic digestion- Digester sizing- waste and residues, vegetable oils and biodiesels, Applications of Biogas, Social and environmental aspects.[4]
	Fuel Cell: Basic construction & principle of operation of fuel cell, Fuel cell power plants & its integration with wind and solar photovoltaic systems. Geothermal Energy, Dry Steam power plant, Single and Double Flash power plant and integration in electrical system/Grid.[4]
	Energy conservation opportunities, Energy Audit, Saving of energy with energy economics. Energy Management and its basic principle with case studies [5]
Text Books, and/or reference	TEXT BOOKS:
material	1. G.D. Rai, Non-conventional energy resources, Khanna Publishers, New Delhi, 2003.
	2. N. G. Clavert, Wind Power Principle, their application on small scale, Calvert Technical Press.
	REFERENCE BOOKS:
	1. Fuel Cell Handbook, Parsons Inc.
	2. Earnest and T. Wizelius, Wind Power Plants and Projects development, PHI

	Map in terms of 0,1,2,3									
		Program Outcomes								
	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	2	0	0	1	1				
CO2	2	2	2	2	1	0				
CO3	2	2	2	0	1	1				
CO4	0	1	1	0	1	1				
CO5	1	1	1	0	1	0				
CO6	2	2	2	0	1	2				

			Department	of Electrica	l Engineerii	ng			
Course	Title	of the	Program	Total Nur	nber of cont	act hours		Credit	
Code	cours	e	Core	Lecture	Tutorial	Practical	Total		
			(PCR) /	(L)	(T)	(P)	Hours		
			Electives						
			(PEL)						
EE9018	EMI	BEDDED	PEL	3	0	0	3	3	
SYSTEM									
Pre-requisites Course Assessment methods: Continuous Assessment (CA) Assessment (EA))						A) and End			
	NIL				CA	+EA			
Course		• CO	1: Comparing	different mic	roprocessor a	architectures an	nd justifying	g their field	
Outcomes		of a	application.		•		5 5 6		
		• CO	2: Given perip	heral devices	such as men	nory, ADC, DI	Os, etc., de	sign of	
		inte	erfacing circuit	, and writing	algorithms to	o fulfil a given	specific ap	plication.	
		• CO	3: Programmir	ng processor	specific and p	processor inde	pendent sof	tware for	
		diff	erent complex	embedded sy	ystem applica	itions.			
		• CO	4: Developing	hardware and	d software fo	r a given appli	cations.		
		• CO	5: Knowledge	of advanced	microcontrol	lers and RTOS	S features an	nd their field	
		of a	applications.						
Topics Co	vered	Introduction	n to Embedded	systems:					
		Introduction	n - Features - 1	Microprocess	sors – ALU -	Von Neumann	n and Harva	rd	
		Architectur	e, Classificatio	n, SPP, ASIO	C, ASIP		[4]		
		CISC and R	AISC - Instructi	on pipelining	g. Fixed point	t and Floating	point proce	ssor [3]	
		General cha	racteristics of	embedded sy	stem, introdu	ction to differ	ent compon	ents etc [6]	
		Microcontro	oller 89CX51/5	52 Series: Ch	aracteristics a	and Features, (Overview of	f	
		architecture	es, and Peripher	rals, Timers,	Counters, Se	rial communic	ation, Digit	al I/O Ports	
		[4]							
		Microcontro	oller PIC Serie	s: Characteri	stics and Feat	tures, Overviev	w of archite	ctures, and	
		Peripherals,	, Interrupts, Tii	mers, watch-o	dog timer, I/C) port Expansi	on, analog-t	to-digital	
		converter, U	JART, I2C and	l SPI Bus for	Peripheral C	hips, Accessor	ries and spe	cial features.	
		[5]							
		ARM Arch	itecture: Evolu	tion, Charact	eristics and F	Features, Overv	view of arch	itectures,	
		Modes, Reg	gisters etc [8]					
		Digital Sign	nal Processor		[4]			
		Software ar	chitecture and	chitecture and RTOS:					
		Software A	Architecture: Round Robin- Round Robin with interrupts -Function Queue.						
		Scheduling							
		Architectur	e RTOS: Archi	itecture -Task	ks and Task S	tates -Tasks a	nd Data -Se	maphores	
		and Shared	Data Message	Queues -Ma	il Boxes and	pipes -Timer H	Functions -E	Events -	
		Memory M	anagement, Int	errupt Routin	nes.	[6]			
		Basic desig	gn using a real	time operatin	ig system:				
		Overview.	General princip	oles. Design o	of an embedd	ed system.			

	Development Tool: Cross-Compiler, Cross-Assemblers, Linker/locator. PROM
	Programmers, ROM, Emulator, In-Circuit Emulators. Debugging Techniques. Instruction
	set simulators. The assert macro. [6]
Text Books,	Text Books:
and/or reference	1. Douglas V. Hall, Microprocessors & Interfacing, Tata McGraw-Hill
material	2. M. Predko, Programming & Customising 8051 Microcontroller, TMH
	Reference Books:
	1. John Uffenbeck, Microcomputers and Microprocessors, Pearson Education
	2. Michel Slater, Microprocessor Based Design, PHI

	Program Outcomes									
	PO1	PO1 PO2 PO3 PO4 PO5 PO6								
CO1	2	3	2	1	0	1				
CO2	1	2	3	1	1	1				
CO3	3	2	1	3	2	1				
CO4	1	2	1	3	0	0				
CO5	1	3	2	1	1	1				
CO6	1	2	3	3	2	2				

]	Department o	f Electrical	Engineering	5		
Course	Title of	of the	Program	Total Nun	nber of cont	act hours		Credit
Code	course	e	Core	Lecture	Tutorial	Practical	Total	
			(PCR) /	(L)	(T)	(P)	Hours	
			Electives					
			(PEL)					
EE9019	F	ACTS	PEL	3	0	0	3	3
	DE	VICES						
Pre-requisi	ites		Course Asse	essment meth	nods: Contin	uous Assessn	nent (CA)	and End
_			Assessment (EA))					
Power System	ms I and	l II, Power	CA+EA					
Electronics								
Course		On complet	completion of the course, the students will be able to:					
Outcomes		• CC	01: Understand	the concept	of FACTS de	evices as a who	ole.	
		• CC	02: Acquire ki	nowledge abo	out different	applications of	t FACTS of	levices in
		por	wer system.	••••	1 11.	. 1 6		NG 1 '
		•	D3: Acquire an	idea about m	nodelling and	control of var	1008 FACI	S devices
		and	1 their interaction	Ion in power	system.			
		•	Ut: Understand how FACIS devices improve various power system					
Topics Cov	warad	EACTS con	noopt and Con	e power now	<u>control</u> , stab	inty etc.		
Topics Co	vered	Charlelist -		erar System 0	CTS to ab z = 1	10115.[2]		
		Checklist o	or possible ben	ents from FA	CIS technol	ogy.[1]		
		Lumped/D	istributed mod	el analysis fo	r Series and	Shunt compens	sation.[5]	

	Methods of Controllable Var Generation: Variable Impedance Type Static Var								
	Generators, lumped/distributed model analysis, TCR, TSR, TSC, FC-TCR.[8]								
	Switching Converter Type Var Generators, STATCOM, basic concepts,								
	lumped/distributed model analysis, basic converter configurations. [8]								
	Static Series Compensators: Basic principles of operation of TSSC, TCSC, SSSC,								
	umped/distributed model analysis Applications. [8] Static Voltage and Phase angle								
	regulators: TCVR and TCPAR, lumped/distributed model analysis, Applications.[7]								
	Combined Compensators: Unified Power Flow Controller (UPFC), basic operating								
	principles, conventional transmission control capabilities. Functional control of shunt								
	converter and series converter, basic control systems for P and Q control,								
	lumped/distributed model analysis.[11]								
	Introduction to steady state analysis and control, oscillation stability analysis and								
	control by UPFC. Transient stability control by CSC, SSSC, SVC, STATCOM and								
	UPFC. [8]								
Text Books,	Text Books:								
and/or reference	1. Y.H. Song and A.T. Johns," Flexible AC Transmission Systems (FACTS), IET								
material	Power and Energy Series, Shankar's Book Agency Publisher (Indian Edition).								
	2. K.R. Padyyar," FACTS Controller in Power Transmission and Distribution",								
	Reference Books:								
	1. Mey Ling Sen, Kalyan K. Sen," Introduction To FACTS Controllers - Theory,								
	Modeling And Applications, Wiley (IEEE) Publisher.								
	2. N.G. Hingorani& L. Gyugyi, "Understanding FACTS: Concepts and Technology of								
	Flexible AC Transmission Systems".								

CO vs PO mapping

		Program Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	2	1	0	1			
CO2	3	3	2	1	1	1			
CO3	2	3	3	2	1	1			
CO4	2	3	3	2	0	1			

Map in terms of 0.1.2.3

]	Department of Electrical Engineering					
Course	Title of	of the	Program	Total Nur	nber of cont	act hours		Credit
Code	course	e	Core (PCR) / Electives	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	
			(PEL)					
EE9022	ESTI	MATION	PEL	3	0	0	3	3
	OF SI	GNALS &						
	SY:	STEMS		1				1 5 1
Pre-requis	ites		Assessment ((EA))	lods: Contir	iuous Assessn	nent (CA)	and End
Advanced	Control	System I			CA+I	EA		
Course		• CC	01: To develop	insight on w	ell-known te	chniques for p	arameter es	timation
Outcomes		and	d identification	of unknown	parameters u	using these esti	mation met	hods for
		lin	ear as well as r	nonlinear syst	tems.			
		• CC	02: Familiariza	tion with Ra	ndom variabl	es, Stochastic	Processes a	and
		Pro	babilistic state	e space mode	ls, categoriza	ation of noise,	Investigatio	on of
		COL	ntrollability an	d observabili	ty of linear a	s well as nonli	near system	IS.
		• CC	D3: To develop	concept on I	Bayesian filte	ering, derivatio	n of Kalma	n filter as
			a special case of Bayesian filter, familiarization with the properties of Kalman					
			filters and its variants, ability to design and tuning Kaiman filter.					
		•	204: To augment the concept of Kalman filter and Extended Kalman filter as					
		sys	systems, to appreciate Linearized Kalman filter and Extended Kalman filter as					
			the nonlinear version of Kalman filter.					
		• • • • • • • • • • • • • • • • • • • •	case of Bayesian filter and deriving the variants of sigma point filters and					
			use of Dayesian filter and deriving the variants of sigma point filters and					
			Ω_{0} Ω_{0					
		• CC	50. TO develop knowledge on maximum incentiou estimation and its					
		apj of	Cramer-Rao lower bound to investigate the accuracy aspects of the					
		est	imators		mvestigate	the decuracy d	spects of th	C
		CSt						
Topics Co	vered	Parameter	Estimation.	Least Squar	es Estimatio	on. The Recu	ursive Leas	st-Squares
		Algorithm.	Initial Condi	tions and P	operties of	RLS, Estimat	ion of Tim	e-varving
		Parameters	Multi-Outpu	it, Weighted	Least Sona	res Estimatio	n, General	ized least
		squares. A	probabilistic	version of the	ne LS. Nonl	inear least sou	ares. Equa	tion error
method A			Application of these methods [6]					
		7		Production of these methods [0]				
		Introductio	on to Linear S	systems and	Probability	theory: Matrix	algebra a	nd matrix
		calculus, S	tability, Controllability and observability for linear and nonlinear systems,					
		Disceretiza	tion, The G	auss -Marko	ov Discrete-	time Model,	Random	variables,
		Transforma	ations of rando	om variables,	Multiple ran	dom variables,	Stochastic	Processes
		and Probab	oilistic state spa	ace models, V	White noise a	nd colored noi	se [6]	

	Bayesian Filtering and introduction to Kalman filter: Origins of Bayesian filtering, Optimal filtering as Bayesian inference, Algorithms for Bayesian filtering and smoothing, Bayesian filtering equations and exact solutions, Framework of the Kalman Filter, The Discrete Kalman Filter as a Linear Optimal Filter [4]
	Properties of Kalman filters: Minimum Variance and Linear Minimum, Variance Estimation; Orthogonality and Projection, The Innovations Sequence, True Filtered Estimates and the Signal-to –Noise Ratio Improvement Property, Inverse Problems [3]
	Variants of Kalman Filter: Information filtering, Square root filtering, Correlated process and measurement noise, Colored process and measurement noise, Steady-state filtering, Adaptive Kalman filters, Gaussian Sum filters [8]
	Introduction to Nonlinear Kalman filtering: The linearized Kalman filter, The extended Kalman filter, Higher-order approaches [3]
	General Gaussian filtering: Unscented transformations, Unscented Kalman filtering, Quadrature rules for Gaussian Integral Approximations, Gauss Hermite filters, Cubature filters, Cubature Quadrature filters [6]
	Output error method of Estimation: Principle of maximum likelihood, Cramer-Rao lower bound, Maximum likelihood estimation for dynamic system, Accuracy aspects, Output error method [6]
Text Books,	Text Book:
and/or reference	Modelling and Parameter Estimation of Dynamic Systems by J.R. Raol, G. Girija and
material	J. Singh, Institution of Engineering and Technology, London, United Kingdom
	Optimal State Estimation: Kalman, $H\infty$ and Nonlinear Approaches by Dan Simon,
	Reference Book:
	Introduction to Random Signals and Applied Kalman Filtering by Robert Grover Brown & Patrick Y. C. Hwang, John Wiley & Sons
	Bayesian Filtering and Smoothing by Simo Sarkka, Cambridge University Press

CO vs PO mapping

Г

		Program Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	0	2	3	1	3			
CO2	1	0	1	2	1	2			
CO3	1	0	2	3	1	3			
CO4	1	0	2	3	2	3			
CO5	1	0	1	2	1	1			
CO6	1	0	1	3	1	3			

Mon in to £0123

Course Code Title of the course Program Core (PCR) / Electives Total Number of contact hours Credit EE9026 BIOMEDICAL INSTRUMENTA ION PEL 3 0 0 3 3 Pre-requisites Course Assessment methods: Continuous Assessment (CA) and End Assessment (EA)) Course Assessment methods: Continuous Assessment (CA) and End Assessment (EA)) Electrical & Electronic Measurement COI: Familiarise with biomedical transducers 0 0 3 3 Course COI: Familiarise with biomedical equipments and signal processing circuitry 0 CO3: Acquire knowledge about various clectrodes used in bio instrumentation. 0 0 4 1 Course COI: Familiarise for measurement of various physiological parameters in vivo and vitro. 0 CO3: Gaining knowledge about medical imaging 1 Topics Covered Introduction to biomedical transformer based and transformer less power supply. [4] 4 1 4 Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] 1 Medical instrumentation constrains, Various biomedical transducers. [4] Generation of Nernst Potentia				Department o	Department of Electrical Engineering					
Code course Core (PCR) / (PCR) / Electives (PEL) Lecture (T) Tutorial (P) Practical Hours Total Hours EE9026 BIOMEDICAL INSTRUMENTA ION PEL 3 0 0 3 3 Pre-requisites Course Assessment methods: Continuous Assessment (CA) and End Assessment (EA)) Course Assessment (EA)) Course Assessment (CA) and End Assessment (EA)) Electrical & Electronic Measurement Course Assessment methods: Continuous Assessment (CA) and End Assessment (EA)) Course Outcomes • CO1: Familiarise with biomedical transducers • CO2: Able to design of biomedical equipments and signal processing circuitry • CO3: Acquire knowledge about various physiological parameters in vivo and vitro. • CO5: Gaining knowledge about medical imaging Topics Covered Introduction to biomedical Instrumentation, biomedical electronics, Components of Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gain, Gain Bandwidth product, frequency response. [4] Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Use of electrodes for measurement of membrane potential, resting potential, Goldmann Equation, Measurement of membrane potential, resting potential, Coldmann Equation, Measurement of membrane potential, suction potential, Voltage Cl	Course	Title	of the	Program	Total Nur	nber of cont	act hours		Credit	
EE9026 BIOMEDICAL INSTRUMENTA ION PEL 3 0 0 3 3 Pre-requisites Course Assessment methods: Continuous Assessment (CA) and End Assessment (EA)) CA+EA Electrical & Electronic Measurement CO1: Familiarise with biomedical transducers Outcomes • CO1: Familiarise with biomedical quipments and signal processing circuitry • CO2: Able to design of biomedical equipments and signal processing circuitry • CO3: Acquire knowledge about various electrodes used in bio instrumentation. • CO4: Expertise for measurement of various physiological parameters in vivo and vitro. • CO5: Gaining knowledge about medical imaging Topics Covered Introduction to biomedical, frequency response. [4] Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Medical instrumentation on Frast Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model. [4] Use of electrodes for measurement of bio potential measurement. [4] Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4]	Code	cours	e	Core	Lecture	Tutorial	Practical	Total		
EE9026 BIOMEDICAL INSTRUMENTA ION PEL 3 0 0 3 3 Pre-requisites Course Assessment methods: Continuous Assessment (CA) and End Assessment (EA)) Course Assessment methods: Continuous Assessment (CA) and End Assessment (EA)) Electrical & Electronic Measurement CA+EA Course • CO1: Familiarise with biomedical transducers Outcomes • CO2: Able to design of biomedical quipments and signal processing circuitry • CO3: Acquire knowledge about various electrodes used in bio instrumentation. • CO4: Expertise for measurement of various physiological parameters in vivo and vitro. • CO5: Gaining knowledge about medical imaging Topics Covered Introduction to biomedical Instrumentation, biomedical electronics, Components of Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gain, Gain Bandwidth product, frequency response. [4] Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, Action potential, Voltage Clamp, Hodgekin Huxley Model. [4]				(PCR) /	(L)	(T)	(P)	Hours		
(PEL) (PEL) 3 0 0 3 3 Pre-requisites Course Assessment methods: Continuous Assessment (CA) and End Assessment (EA)) Indexter Course Course Assessment methods: Continuous Assessment (CA) and End Assessment (EA)) Electrical & Electronic Measurement CA+EA Course Outcomes • CO1: Familiarise with biomedical transducers • CO2: Able to design of biomedical equipments and signal processing circuitry • CO3: Able to design of biomedical equipments and signal processing circuitry • CO3: Able to design of biomedical equipments and signal processing circuitry • CO3: Gaining knowledge about medical imaging Topics Covered Introduction to biomedical Instrumentation, biomedical electronics, Components of Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gain, Gain Bandwidth product, frequency response. [4] Various types of signal conditioners, signal conditioning processes, Signal Acqusition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model. [4] Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potenti				Electives						
EE9026 BIOMEDICAL INSTRUMENTA ION PEL 3 0 0 3 3 Pre-requisites Course Assessment methods: Continuous Assessment (CA) and End Assessment (EA)) CA+EA Electrical & Electronic Measurement CA+EA Outcomes • CO1: Familiarise with biomedical transducers • CO2: Able to design of biomedical equipments and signal processing circuitry • CO3: Acquire knowledge about various physiological parameters in vivo and vitro. • CO2: Sale to design of biomedical imaging Topics Covered Introduction to biomedical Instrumentation, biomedical electronics, Components of Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gain, Gain Bandwidth product, frequency response. [4] Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Use of electrodes for measurement of bio potential, solon potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model. [4] Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4]				(PEL)						
INSTRUMENTA ION Course Assessment methods: Continuous Assessment (CA) and End Assessment (EA)) Electrical & Electronic Measurement CA+EA Course • CO1: Familiarise with biomedical transducers Outcomes • CO2: Able to design of biomedical equipments and signal processing circuitry • CO3: Acquire knowledge about various electrodes used in bio instrumentation. • CO4: Expertise for measurement of various physiological parameters in vivo and vitro. • CO5: Gaining knowledge about medical imaging Introduction to biomedical Instrumentation, biomedical electronics, Components of Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gain, Gain Bandwidth product, frequency response. [4] Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Use of electrodes for measurement of bio potential, goldmann Equation, Measurement of membrane potential, resting potential, Goldmann Equation, Measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement. [4] Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4]	EE9026	BION	MEDICAL	PEL	3	0	0	3	3	
ION Course Assessment methods: Continuous Assessment (CA) and End Assessment (EA)) Electrical & Electronic Measurement CA+EA Course Outcomes • CO1: Familiarise with biomedical transducers • CO2: Able to design of biomedical equipments and signal processing circuitry • CO3: Acquire knowledge about various electrodes used in bio instrumentation. • CO4: Expertise for measurement of various physiological parameters in vivo and vitro. • CO5: Gaining knowledge about medical imaging Topics Covered Introduction to biomedical Instrumentation, biomedical electronics, Components of Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gain, Gain Bandwidth product, frequency response. [4] Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Medical instrument of membrane potential, resting potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model. [4] Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement.		INST	RUMENTA							
Pre-requisites Course Assessment methods: Continuous Assessment (CA) and End Assessment (EA)) Electrical & Electronic Measurement CA+EA Outcomes • CO1: Familiarise with biomedical transducers Outcomes • CO2: Able to design of biomedical equipments and signal processing circuitry • CO2: Able to design of biomedical equipments and signal processing circuitry • CO3: Acquire knowledge about various electrodes used in bio instrumentation. • CO4: Expertise for measurement of various physiological parameters in vivo and vitro. • CO5: Gaining knowledge about medical imaging Topics Covered Introduction to biomedical Instrumentation, biomedical electronics, Components of Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gain, Gain Bandwidth product, frequency response. [4] Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model. [4] Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement. [4] <td></td> <td></td> <td>ION</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			ION							
Electrical & Electronic Measurement CA+EA Course Outcomes • CO1: Familiarise with biomedical transducers • CO2: Able to design of biomedical equipments and signal processing circuitry • CO3: Acquire knowledge about various electrodes used in bio instrumentation. • CO4: Expertise for measurement of various physiological parameters in vivo and vitro. • CO5: Gaining knowledge about medical imaging Topics Covered Introduction to biomedical Instrumentation, biomedical electronics, Components of Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gain, Gain Bandwidth product, frequency response. [4] Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model. [4] Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrodes, principle of operation of Ag/AgCl electrodes for bio potential measurement. [4] Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4]	Pre-requis	ites		Course Asse Assessment (essment metl (EA))	hods: Contir	nuous Assessr	ment (CA)	and End	
Measurement Course Outcomes • CO1: Familiarise with biomedical transducers • CO2: Able to design of biomedical equipments and signal processing circuitry • CO3: Acquire knowledge about various electrodes used in bio instrumentation. • CO4: Expertise for measurement of various physiological parameters in vivo and vitro. • CO5: Gaining knowledge about medical imaging Topics Covered Introduction to biomedical Instrumentation, biomedical electronics, Components of Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gain, Gain Bandwidth product, frequency response. Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model. [4] Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement. [4] Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4]	Electric	al & Ele	ectronic			CA+I	EA			
Course Outcomes • CO1: Familiarise with biomedical transducers • CO2: Able to design of biomedical equipments and signal processing circuitry • CO3: Acquire knowledge about various electrodes used in bio instrumentation. • CO4: Expertise for measurement of various physiological parameters in vivo and vitro. • CO5: Gaining knowledge about medical imaging Topics Covered Introduction to biomedical Instrumentation, biomedical electronics, Components of Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gain, Gain Bandwidth product, frequency response. [4] Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model. [4] Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrodes, principle of operation of Ag/AgCl electrode, Equivalent and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4] Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Pro	Me	easureme	ent							
Outcomes • CO2: Able to design of biomedical equipments and signal processing circuitry • CO3: Acquire knowledge about various electrodes used in bio instrumentation. • CO4: Expertise for measurement of various physiological parameters in vivo and vitro. • CO5: Gaining knowledge about medical imaging Topics Covered Introduction to biomedical Instrumentation, biomedical electronics, Components of Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gain, Gain Bandwidth product, frequency response. [4] Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Use of electrodes for measurement of bio potential, resting potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model. [4] Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement. [4] Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4]	Course		• CO1:	Familiarise wi	th biomedica	l transducers				
 CO3: Acquire knowledge about various electrodes used in bio instrumentation. CO4: Expertise for measurement of various physiological parameters in vivo and vitro. CO5: Gaining knowledge about medical imaging Topics Covered Introduction to biomedical Instrumentation, biomedical electronics, Components of Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gain, Gain Bandwidth product, frequency response. [4] Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model. [4] Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement. [4] Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4] 	Outcomes		• CO2:	Able to design	n of biomedic	cal equipmen	ts and signal p	rocessing c	ircuitry	
 CO4: Expertise for measurement of various physiological parameters in vivo and vitro. CO5: Gaining knowledge about medical imaging Topics Covered Introduction to biomedical Instrumentation, biomedical electronics, Components of Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gain, Gain Bandwidth product, frequency response. [4] Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model. [4] Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement. [4] Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4] 			• CO3:	Acquire know	ledge about v	various electr	odes used in bi	io instrume	ntation.	
• CO5: Gaining knowledge about medical imaging Topics Covered Introduction to biomedical Instrumentation, biomedical electronics, Components of Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gain, Gain Bandwidth product, frequency response. [4] Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model. [4] Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement. [4] Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4]			• CO4:	Expertise for r	neasurement	of various pl	nysiological pa	rameters in	vivo and	
• COS: Gaining knowledge about medical imaging Topics Covered Introduction to biomedical Instrumentation, biomedical electronics, Components of Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gain, Gain Bandwidth product, frequency response. [4] Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model. [4] Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement. [4] Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4]			vitro.		1. 1 1		•			
Topics Covered Introduction to biomedical Instrumentation, biomedical electronics, Components of Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gain, Gain Bandwidth product, frequency response. [4] Various types of signal conditioners, signal conditioning processes, Signal Acqusition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model. [4] Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement. [4] Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4]	Tanias Ca	wanad	• COS:	5: Gaining knowledge about medical imaging						
Analog and digital circuits, Analog & digital circuit design, Multistage amplifier gain, Gain Bandwidth product, frequency response.[4]Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply.[4]Medical instrumentation constrains, Various biomedical transducers.[4]Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model.[4]Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement.[4]Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording.[4]	Topics Co	vered	Introduction	to biomedical Instrumentation, biomedical electronics, Components of						
Gain Bandwidth product, frequency response.[4]Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply.[4]Medical instrumentation constrains, Various biomedical transducers.[4]Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model.[4]Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement.[4]Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording.[4]			Analog and	digital circuits	s, Analog & c	ligital circuit	design, Multis	stage amplif	fier gain,	
Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model. [4] Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement. [4] Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4]			Gain Bandv	width product,	frequency res	sponse.		[4	ŀ]	
Various types of signal conditioners, signal conditioning processes, Signal Acquisition, graphical user interface, Transformer based and transformer less power supply. [4]Medical instrumentation constrains, Various biomedical transducers.[4]Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model.[4]Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement.[4]Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording.[4]										
Yurbus types of signal conditioners, signal conditioning processes, fignal requirement, graphical user interface, Transformer based and transformer less power supply. [4] Medical instrumentation constrains, Various biomedical transducers. [4] Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model. [4] Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement. [4] Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4] Analysis of ECG Signals, Pacemakers, Different types of pacing modes, Physiological [4]			Various tyr	pes of signal co	nditioners si	ional conditio	oning processe	s Signal A	causition	
Medical instrumentation constrains, Various biomedical transducers.[4]Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model.[4]Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement.[4]Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording.[4]			graphical us	ser interface, Transformer based and transformer less power supply. [4]						
Generation of Nernst Potential, Establishment of diffusion potential, Goldmann Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model.[4]Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement.[4]Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording.[4]			Medical ins	strumentation of	constrains, V	arious biome	dical transduce	ers.	[4]	
Equation, Measurement of membrane potential, resting potential, action potential, Voltage Clamp, Hodgekin Huxley Model.[4]Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement.[4]Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording.[4]Analysis of ECG Signals, Pacemakers, Different types of pacing modes, Physiological[4]			Generation	of Nernst Pote	ential, Establi	shment of di	ffusion potenti	ial, Goldma	nn	
Voltage Clamp, Hodgekin Huxley Model.[4]Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement.[4]Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording.[4]Analysis of ECG Signals, Pacemakers, Different types of pacing modes, Physiological			Equation, N	leasurement of	f membrane p	otential, rest	ing potential, a	action poter	ntial,	
Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement. [4] Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4] Analysis of ECG Signals, Pacemakers, Different types of pacing modes, Physiological			Voltage Cla	mp, Hodgekin	Huxley Mod	lel.			[4]	
Use of electrodes for measurement of bio potentials, polarization in electrodes, principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement. [4] Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4] Analysis of ECG Signals, Pacemakers, Different types of pacing modes, Physiological										
principle of operation of Ag/AgCl electrode, Equivalent circuit of electrode, motion artifact, various types of electrodes for bio potential measurement. [4] Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4] Analysis of ECG Signals, Pacemakers, Different types of pacing modes, Physiological			Use of elect	trodes for meas	surement of b	io potentials,	, polarization i	n electrodes	8,	
artifact, various types of electrodes for bio potential measurement.[4]Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording.[4]Analysis of ECG Signals, Pacemakers, Different types of pacing modes, Physiological and the second se			principle of	operation of A	Ag/AgCl elect	trode, Equiva	lent circuit of	electrode, n	notion	
Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4] Analysis of ECG Signals, Pacemakers, Different types of pacing modes, Physiological	artifact, var			ious types of e	lectrodes for	bio potential	measurement.		[4]	
Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording. [4] Analysis of ECG Signals, Pacemakers, Different types of pacing modes, Physiological										
ECG amplifiers, Problems encountered in ECG recording. [4] Analysis of ECG Signals, Pacemakers, Different types of pacing modes, Physiological	Measurem			ent of ECG, Ei	nthoven trian	gle method,	unipolar and b	ipolar limb	leads,	
Analysis of ECG Signals, Pacemakers, Different types of pacing modes, Physiological			ECG amplif	fiers, Problems encountered in ECG recording. [4]					[4]	
interference of the second sec			Analysis of	f ECG Signals	Pacemakers	Different tv	pes of pacing	nodes Phy	siological	
effects of electric currents, Defibrillators. [4]			effects of el	ectric currents	, Defibrillator	rs.		· · · · · · · · · · · · · · · · · · ·	[4]	

	Measurement of blood pressure, measurement of blood pH, measurement of blood flow, measurement of heart sounds, use of Surface PlasmonResonance for detection of toxins. [6]
	Introduction to medical imaging, Radiography, Computerized tomography, X Ray,- CT, MRI, PET, SPET, Gamma Camera, Ultrasound Imaging, Color Doppler, Recent trends in medical imaging EIT DOT PAT AEI [8]
Text Books	Text Books:
and/or reference material	 John Enderle. Joseph Brinzino, <i>Introduction to Biomedical Engineering</i>, Elsevier, 2012.
	2.John G Webster, <i>Medical Instrumentation, Application & Design</i> , John Wiley & Sons, 2009
	Reference Books:
	1. L. Cromwell, Fred J. Weibell, Erich A. Pfeiffer, <i>Biomedical Instrumentation & Measurements</i> , PHI, 2014
	2. Arthur C Guyton, John E Hall, Textbook of Medical Physiology, Elsevier, 2006

	Map in terms of 0,1,2,3								
			Program	Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	1	1	0	0	2			
CO2	3	2	3	0	0	3			
CO3	2	2	2	0	0	1			
CO4	3	3	3	0	0	3			
CO5	2	2	2	0	0	1			

	Department of				Engineering			
Course	Title	of the	Program	Total Nu	umber of co	ntact hours		Credit
Code	course	e	Core (PCR) /	Lectur	Tutorial	Practical	Total	
			Electives	e (L)	(T)	(P)	Hours	
			(PEL)					
EE9031	SI	PECIAL	PEL	3	0	0	3	3
	ELE	CTRICAL						
	MA	CHINES						
Pre-requisi	ites		Course Assess	ment meth	ods: Contin	uous Assessr	ment (CA)	and End
_			Assessment (EA	.))				
EEC 01 (Ele	ectrical T	Cechnology)			CA+I	EA		
Course		• CO1	: To analyze and	control the	operation of	Stepper motor		
Outcomes		• CO2	2: To analyze the o	operation of	Switched Re	eluctance moto	or	
		• CO3	3: To understand the	he operation	n of PM dc m	notor and Brush	hless dc mo	tor
		• CO4	: To learn the wor	rking of Sir	igle-phase sy	nchronous mot	tors	
		• CO5	5: To acquire knov	vledge abou	ıt Linear Indu	action and Syn	chronous m	otor
Topics Co	vered	Stepper Mo	tors: Construction	nal features	, Principle of	operation, Per	manent mag	gnet
		stepper moto	or, Variable reluct	ance motor.	, Hybrid mot	or, Single and	multi-stack	• •,
		Configuration	ns, I orque equation	epping motors [10]				
		Switched R	epping motors.	uctones Motors: Constructional features Principle of operation Torque				
		production	teady state performance prediction. Power Converters Methods of Rotor					
		position sens	sensing Closed loop control of SRM [10]					
		Brushless D	binding , Closed loop condition branching, Principle of operation, Magnetic circuit					
		analysis, Mo	Motor characteristics and control. [8]					
		Permanent	Magnet Material	ls and Mot	ors: Introduc	tion; minor hy	steresis loop	ps and
		recoil line; s	tator frames of con	nventional	PM dc motor	s; Equivalent c	circuit of a p	permanent
		magnet, Peri	manent Magnet Sy	/nchronous	Motors- Prir	ciple of operat	tion, EMF a	ind Torque
		equations, S	ynchronous React	ance, Phase	or diagram, I	orque/speed cr	naracteristic	S. [8]
		Rotary type	ICTION and Synch. IM Schematic of	I IM drive	for electric tr	pillent of a Do	nment of or	LINI IIOIII pe_sided
		LIM Equiva	alent circuit of LIN	A Linear S	vnchronous i	notor	[4]	lic-slucu
		Single-Phas	e Synchronous M	fotors: Sin	gle Phase Re	luctance and h	ysteresis mo	otors. [4]
Text Book	s,	Text Books:	-		-		-	
and/or refe	erence	1. K. Venkat	taratnam, Special	Electric Ma	chines, Univ	ersities Press.		
material		2. T. Kenjo a	and A. Sugawara,	Stepping M	lotors and Th	eir Microproc	essor Contro	ols,
		Reference B	ooks:	р .				1
		1. T. Kenjo a	and S. Nagamori,	Permanent	Magnet and	Brushless DC	Motors2. T.	J.E. Miller,
		Brushless Pe	manent Magnet	and Kelucta	nice motor D	inves, Clarend	on Press, 19	107.

CO vs PO mapping

	Map in terms of 0,1,2,3								
			Program	Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	2	3	1	1	0			
CO2	2	2	3	1	1	0			
CO3	2	2	3	2	1	1			
CO4	2	2	3	0	0	0			
CO5	2	2	3	0	0	0			

35 | P a g e

Departme				of Electrical	Engineering	T			
Course	Title o	of the	Program	Total Nur	nber of cont	act hours		Credit	
Code	course	2	Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours		
EE2061	MA	CHINE	PCR	0	0	4	4	2	
	DR	RIVES							
	LABO	RATORY							
Pre-requis	ites		Course Assessment methods: Continuous Assessment (CA) and End						
			Assessment ((EA))					
Machine I	Drives-I (EE1013)			CA+I	EA			
Course		• CC	D1: To learn ab	out TMS320	F2812 and T	MS320F28335	5 DSP proce	essors and	
Outcomes		int	erfacing with (CC Studio					
		• CC	D2: Ability to c	control the sp	eed of an ind	uction motor u	sing Intelli	gent	
		Po	wer Module (I	PM), Micro-2	28335 and al	so Micro-2812	DSP proce	essors.	
		• CC	D3: Ability to c	control the sp	eed of a BLE	C motor using	g Intelligent	Power	
		Mo	odule (IPM), N	/licro-28335 a	and also Mici	ro-2812 DSP p	rocessors.	N 7 1 1	
		• CC	(IPM) Micro 28335 and also Micro 2812 DSP processors						
			(M), (M) , (M)	sss and also	MICIO-2012	DSP processor	S. sing Multi	Loval	
		• CC	verter Micro-?	8335 and als	o Micro-281	2 DSP process	ors	Level	
Topics Co	vered	1 Introdu	action to TMS320F2812 DSP processor and interfacing with CC Studio and						
Topies Co	verea	Micro-28	cro-2812 trainer Kit.						
		2. Introdu	Introduction to TMS320F28335 DSP processor and interfacing with CC Studio						
		and Micro	licro-28335 trainer Kit.						
		3. Speed of	eed control of Induction Motor using Intelligent Power Module (IPM) and						
		Micro-28	ro-28335 trainer (open and closed loop control).						
		4. Speed of	Speed control of BLDC motor using Intelligent Power Module (IPM) and Micro-						
		28335 tra	iner (open and	closed loop of	control).	_			
		5. Speed of	Speed control of Induction Motor using Intelligent Power Module (IPM) and						
		Micro-28	-2812 trainer (open and closed loop control).						
		6. Speed (Speed control of BLDC motor using Intelligent Power Module (IPM) and Micro-						
		7 Speed (control of PMS	SM motor usi	ng Intelligen	t Power Modu	le (IPM) an	d Micro-	
		28335 tra	iner (open and	closed loon	control).		ie (11 191) all		
	8. Speed cont			control of PMSM using Intelligent Power Module (IPM) and Micro-2812					
		trainer (or	oppen and closed loop control).						
		9. Speed of	eed control of Induction Motor using Micro-28335 trainer and Multi-Level						
		Inverter (ter (open and closed loop control).						
		10. Speed	control of Ind	uction Motor	using Micro	-2812 trainer a	and Multi-L	level	
		Inverter (open and closed loop control).							

Text Books,	Text Books:
and/or reference	1. Modern Power Electronics and AC Drives: B. K. Bose
material	2. Electric Motor Drives, Modelling Analysis and Control: R. Krishnan
	Reference Books:
	1. Laboratory manuals

Map in terms of 0,1,2,3

	Program Outcomes						
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	3	3	2	1	
CO2	3	3	3	3	2	1	
CO3	3	3	3	3	2	1	
CO4	3	3	3	3	2	1	
CO5	3	3	3	3	2	1	

Department of Electrical Engineering								
Course	Title of the		Program	Total Number of contact hours			Credit	
Code	course		Core	Lecture	Tutorial	Practical	Total	
			(PCR) /	(L)	(T)	(P)	Hours	
			Electives					
			(PEL)					
EE2062	ADV	ANCED	PCR	0	0	4	4	2
	COI	NTROL						
	LABO	RATORY						
Pre-requisi	ites		Course Assessment methods: Continuous Assessment (CA) and End Assessment					
_			(EA))	(EA))				
Control	System '	Theory			CA	A+EA		
Course		• CO	1: To understa	To understand the dynamic behaviour of real-time nonlinear systems.				
Outcomes	• CO2: To simulate physical systems in real-time environment.							
		• CO	3: To design control system to improve the performance characteristics of real-					
tim		e systems.						
• CO		4: To determine the parameters and transfer function of physical systems from						
real		l-time experimentation.						
• ((• CO	05: To get acquainted with MATLAB programming, MATLAB-SIMULINK in					
ord		er to simulate analyze and design of control system design for different plants						
		under consideration						
Topics Covered Hardware experiments: 8 working day					ting days			
-	Design and Real-time implementation of PID, LSVF & LQR controllers for							
		1. Cart-inverted pendulum system						
			2. Twin rotor MIMO system					
		3. Magnetic levitation (MAGLAV) system						
			4. Servo syst) system				
Software E			Experiments:	7 working days				king days

101	I. TECH. IN TOWER ELECTRONICS AND MACHINE DRIVES						
	1. Design of a suitable controller for a given time delayed unity negative feedback closed						
	loop system using root locus technique.						
	2. Design of lead, lag, lead-lag controller for a given unity negative feedback closed loop						
	system using frequency domain design methods.						
	3. Design of linear quadratic optimal controller for a given continuous-time LTI plant.						
	4. Design of optimal state feedback controller for LTI plant where some of the states are						
	not measurable.						
	5. Design of Kalman estimator when the sensors give noisy measurement for problem 3.						
	6. Design of $H\infty$ full information controller for a given LTI plant.						
	7. Design of a controller using frequency domain design technique for a unity negative set of the s						
	feedback closed loop system with a given continuous-time plant						
Text Books,	Text Books:						
and/or reference	1. Modern Control Engineering, K. Ogata,						
material	2. Modern Control System Theory, M. Gopal,						
	3. Discrete Time Control Systems, K Ogata						
	4. Control System Engineering, 7th Edition, Norman S. Nise, Wiley						
	5. Digital Control System, B. C. Kuo						
	6 Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P Andrews						
	Reference Books:						
	1. Linear Control System Analysis And Design With MATLAB, John J. D'Azzo and						
	Constantine H. Houpis and Stuart N. Sheldon						
	2. Linear Robust Control, Michael Green and David J.N. Limebeer						

CO vs PO mapping

	Program Outcomes						
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	2	1	3	3	3	1	
CO2	2	1	3	3	2	2	
CO3	3	1	3	3	2	2	
CO4	3	1	3	3	2	1	
CO5	3	1	3	3	3	1	

Map in terms of 0,1,2,3