NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR DEPARTMENT OF ELECTRICAL ENGINEERING

Revised Curriculum and Syllabi

Program Name Master of Technology in Power Systems Effective from the Academic Year: 2021-2022

Recommended by DPAC	: 23.07.2021
Recommended in PGAC	: 16.08.2021
Approved by the Senate	: 22.08.2021

Curriculum

		Semester - I					
Sl.No.	Code	Subject	L	Т	S	С	H
1	EE1001	EHV Transmission	3	1	0	4	4
2	EE1002	Power System Operation and Control	3	1	0	4	4
3	EE1003	High Voltage Engineering	3	1	0	4	4
4	EE90XX	Specialization Elective – I	3	0	0	3	3
5	EE90XX	Specialization Elective – II	3	0	0	3	3
6	EE1051	High Voltage Engineering Lab	0	0	4	2	4
7	EE1052	Computational Laboratory	0	0	4	2	4
		Total	15	3	8	22	26
		Semester - II					
Sl. o.	Code	Subject	L	Т	S	C	Η
1	EE2001	Power System Protection and Transients	3	1	0	4	4
2	EE90XX	Specialization Elective – III		1	0	4	4
3	EE90XX	Specialization Elective – IV		0	0	3	3
4	EE90XX	Specialization Elective – V		0	0	3	3
5	EE2051	Advanced Power System Laboratory	0	0	4	2	4
6	EE2052	Power System Simulation Laboratory		0	4	2	4
7	EE2053	Mini Project with Seminar	0	0	6	3	6
		Total	12	2	14	21	28
		Semester - III					
1	EE907X	Audit Lectures/Workshops					2
2	EE3051	Dissertation – I	0	0	24	12	24
3	EE3052	Seminar – Non-Project / Evaluation of	0	0	4	2	4
		Summer Training					
		Total	0	0	28	14	30
		Semester - IV					
1	EE4051	Dissertation – II / Industrial Project	0	0	24	12	24
2	EE4052	Project Seminar	0	0	4	2	4
		Total	0	0	28	14	28

Electives I and II

Subject Code	Subject Name
EE9011	Soft Computing Techniques
EE9014	Advanced Control system-I
EE9015	Power System Modelling
EE9016	Machine Learning & Expert System
EE9020	Electric Vehicles

Elective III

Subject Code	Subject Name
EE9027	Power System Dynamics and Control
EE9028	Power System Control and Instrumentation
EE9030	Distributed Generation System and Microgrid

Electives IV and V

Subject Code	Subject Name
EE9017	Renewable Energy Systems
EE9018	Embedded System
EE9019	FACTS Devices
EE9021	Digital Signal Processing
EE9022	Estimation of signals and Systems
EE9023	Process Instrumentation and Control
EE9024	Power System Optimization
EE9025	Power System Reliability and Planning
EE9026	Biomedical Instrumentation

Syllabus

Semester – I

EHV Transmission:

Department of Electrical Engineering									
Course Ti	tle of the course	Program Core	Total Nu	mber of con	tact hours		Credit		
Code		(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
EE1001 EI	HV Transmission	PCR	3	1	0	4	4		
Pre-requisites		Course Assessmer	Course Assessment methods (Continuous assessment(CA) and end						
	L.D. C.	assessment (EA))							
Power System- II, Power Elect	-I, Power System- tronics	CA+EA							
 Course On completion of the course, the students will be able to: CO1: Apply the knowledge of EHVAC and HVDC transmission to carry out and to mitigate different real life problems of power system. CO2: Explain the cause, effect and control of overvoltage in EHV transmissio CO3: Estimate the field intensity at any point in EHV system and design Transmission lines accordingly. CO4: Understand the basics of HVDC transmission and able to analyse the ope HVDC transmission systems with different types of converters. CO5: Learn the different modes of control and protection techniques in order t the HVDC transmission system effectively and mitigate the negative impact of malfunctions. 				carry out ansmission 1 design t se the ope in order to mpact of c armonics b	research n line. he EHV ration of o operate converter by filters.				
Covered	COOL Require knowledge about causes, notices and suppression of narmonics by inters AC Transmission: Role of EHV transmission, standard transmission voltages, power handling capacity and line loss, calculation of line and ground parameters, sequence inductances and capacitances. (05) Voltage gradients on conductors: field of line charges, surface voltage gradient on (06) Electrostatic field of EHV lines: Electric shock currents, capacitance of long object, (06) Electrostatic field of AC lines, electrostatic induction in un-energized circuit (06) Over voltages in insulated ground wires. (06) Over voltages in EHV lines caused by switching operations: origin of over voltages, over voltages caused by interruption of low inductive currents, interruption of capacitive currents ferro-resonance over voltages, calculation of switching surges. (06) Power frequency voltage control and over voltages: Generalized constant, no-load voltage conditions and charging current, power circle diagram, voltage control using synchronous condensers, shunt and series compensation, static reactor compensating systems. (07) DC Transmission: Introduction, Comparison of AC and DC Transmission, Types of DC Inks, Schematic diagram of a typical HVDC converter station. Recent trends in DC Transmission. (04)						 k, power k, power k, equence (05) dient on on actual g object, d circuit, (06) ges, over currents, l voltage chronous (07) s of DC s in DC (04) onverter, 		

	with grid control and with overlap (rectification, inversion, average direct current and voltage). Equivalent circuit of two-terminal DC link. (10)
	Misoperation of converters: Arcback, Arcthrough, Quenching, Misfire, Commutation
	failure. (02)
	Control of DC Transmission: Control of converters, Basic means of control, Power Reversal,
	Control characteristics, Starting and stopping of DC link. (05) Protection
	of DC Transmission: DC reactors, clearing line faults and reenergizing the line, HVDC
	circuit breakers, Overvoltage Protection. (05) Harmonics
	and Filters: Characteristic and uncharacteristic harmonics in converters; Causes, troubles and
	suppression of harmonics, Harmonic Filters. (04)
Track Dracher	
and/or reference material	 R. D. Begamudre, Extra High Voltage AC Transmission Engineering E. W. Kimbark, Direct Current Transmission: Vol.1, Wiley-Interscience.
	Reference Books:
	1. K. R. Padiyar, HVDC Power Transmission Systems, New Age International (P)
	Limited

CO vs PO mapping

Map in terms of 0,1,2,3

	Program Outcomes								
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	0	3	2	2	1			
CO2	1	1	3	2	2	0			
CO3	2	1	3	2	2	0			
CO4	2	2	3	2	2	1			
CO5	2	2	3	2	2	1			
CO6	2	1	2	2	2	1			

Power System Operation and Control:-

	Department of Electrical Engineering						
Course	Title of the course	Program Core	Total Nu	mber of con	tact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
EE1002	Power System	PCR	3	1	0	4	4
	Operation and						
	Control						
Pre-requisi	tes	Course Assessmen	nt methods (Continuous	s assessment	(CA) and	end
		assessment (EA))					
Power Sys II	tem-I, Power System-	CA+EA					
Course	• CO1: The	e students know the	e methods	employed f	for continuo	us monito	oring the
Outcomes	performar	ice of the systems, be	est possible	operation, s	system design	n and plan	ning.
	• CO2: Get	appropriate knowle	edge on mo	odern meth	ods of opera	tion & co	ontrol in
	energy ma	anagement systems a	nd security	constrained	operation.		
	• CO3: Kn	owledge provided	enables the	e students	to understar	nd the in	npact of
	engineerin	ng solutions on econo	omics, envir	conment and	l sustainable	developm	ent.
	• CO4: Giv	ven Specification v	vill give kr	nowledge o	on the syste	m, emph	asise on
	the desig	n of the system, pla	anning, pro	tection and	d application	1.	
Topics	Power Flow Stud	lies: Network model	l formulatio	n, power fl	low problem	, the Gau	ss-Seidel
Covered	and the Network	Raphson methods o	f solution, r	nodification	ns for voltage	e controlle	ed buses,
	the decoupled me	ethod of solution, op	timal power	r flow study	, DC power	flow, Dis	tribution
	system load flow	S.				Ľ	/]
	Power Systems S state estimation measurements, F estimation with F	State Estimation: Pro of ac network, sol Phasor Measurement MUs.	blem formu ved examp t Unit (PM	ulation, wei bles, detect IU), optima	ghted least-s ion and iden al placemen	quares est ntification t of PMU	timation, of bad Js, state [7]
	Economic Load network losses. S Newton's method	Dispatch: Economi Solution methods: th I, solution by dynam	c dispatch e lambda-it ic programr	problem, eration met ning.	dispatching hod, the grae	without a dient meth	and with nods, the [7]
	Unit Commitmer priority-list meth	nt: Introduction, Con ods, the dynamic-pro	straints in gramming	Unit Comm solution.	nitment. Solu	tion Meth	nods: the [4]
	Hydrothermal Sc The Short-Term Gradient Approx Problem, Hydro-	Hydrothermal Scheduling: Introduction, Hydroelectric Plant Models, Schedulin The Short-Term Hydrothermal Scheduling Problem, Short-Term Hydro-Sch Gradient Approach Dynamic-Programming Solution to the Hydrothermal Problem, Hydro-Scheduling Using Linear Programming.					roblems, uling: A heduling [6]
	Short-circuit Sture reactance, reactor symmetrical comfault calculation.	it Studies: Symmetrical fault calculation on 3-phase system, p reactors, Unsymmetrical Fault analysis and calculations 3-phase al component, Sequence impedances, sequence network. Sequence net ation.				vstem, pe 3-phase uence net	ercentage systems, work for 6]
	Power Systems S angle curve, Pow state stability, Tr area criterion, nur [8]	tability Studies: Stal ver angle relations for ansient Stability, Sw merical solution meth	bility limits or network c ing equation ods of swin	and power configuratio n, equivaler g equation,	transmission on, Transfer i nt systems, S methods of in	capability mpedance wing Cury mproving	y, Power e, Steady ve, equal stability.

	Automatic Generation Control: Control area, Model of Speed Governor, Turbine, Generator- load model, Block diagram representation of an isolated power system, steady state analysis and Dynamic response, Uncontrolled systems. multi-area load frequency control and state representation.[8]Introduction to Power Systems Security: Introduction, Factors Affecting Power System
	Security, Contingency Analysis. [3]
Text Books,	Text Books:
and/or	1. Power Generation, Operation and Control, By: A. J. Wood and B. F. Wollenberg
reference	Publisher: John Wiley & Sons, Inc.ISBN: 0-471-58699-4.
material	2. Modern Power System Analysis, By: D. P. Kothari & I. J. NagrathPublisher: Tata McGraw Hill Education, ISBN: 0-07-049489-4.
	Reference Books:
	1. Electric Energy Systems Theory An Introduction, ByO. I. Elgerd, McGraw Hill
	Education.
	2. Power System Operation and Control, By P. S. R. Murty, McGraw Hill.

CO vs PO mapping

Map in terms of 0,1,2,3

	Program Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	1	2	2	2		
CO2	3	2	1	2	2	2		
CO3	3	2	1	2	3	2		
CO4	3	2	1	2	2	1		

High Voltage Engineering:-

Department of Electrical Engineering								
Course	Title of the course	Program Core	Total Nu	mber of cor	ntact hours		Credit	
Code		(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
EE1003	High Voltage	PCR	4	1	0	4	4	
	Engineering							
Pre-requisi	tes	Course Assessmen	Course Assessment methods (Continuous assessment (CA) and end					
		assessment (EA))						
NIL		CA+EA						
Course	On completion of	f the course, the stud	ents will be	able to:				
Outcomes	• CO1: De	sign of the insulation	n requiremen	nt of the high	gh voltage po	wer appar	atus	
	• CO2: E	Employ suitable high	h voltage to	est method	s for assessi	ing the q	uality of	
	electrical	insulation.	C C			•	·	
	• CO3: Giv	ven details of high vo	ltage genera	ation schem	e and load sp	ecificatio	n, design	
	most suit	able circuit. Also, de	educe modif	fication for	further impro	ovement i	n desired	
	performa	nce.						
	• CO4: Gi	ven specification for	or measure	ment of hi	gh voltage,	design a	suitable	
	measurin	g instrument with	the help of	f primary	sensing elen	nents, so	that the	
	measurin	g instrument meets t	he specified	l measurem	ent constrain	ts.		
	• CO5: Ap	plication of knowled	ge; in conte	mporary iss	ues of high v	oltage eng	gineering	
	applied in	n various power syste	em utility.					
Topics	Overview of High	Voltage Engineerin	a Airasan	Insulation	Concept of I	Vialactric	Strangth	
Covered	Electric field and	voltage Englieering	g, All as all	motore for	the dependent	man of T	Suengui, Vialaatria	
	Electric field and		ation, Para	meters for	the depende		nelectric	
	strength, Introduct	tion to Breakdown of	f Insulation.			[5]		
	Breakdown of Gas	ses, Solids, Liquids,	and Vacuun	n.			[5]	
	Introduction to his	gh voltage generation	n for testing	. generation	n of high DC	voltages	from AC	
	and electrostatic	generator	8	, 8	8		[5]	
	Generation of AC	high voltages, resor	nant circuit	for generati	ion of high f	requency	and high	
	voltage, Tesla coil	s for high voltage, c	urrent, and f	frequency		[4	4]	
	Generation of imp	ulse voltages and cur	rrents:- Ana	lysis of diff	erent circuits	, Marx mi	ilti-stage	
	impulse generator					[6]		
	Methods of measure	easuring high DC and AC voltage (power frequency) and high currents.					ts. [4]	
	Measurement of i	mpulse voltage, swit	tching impu	lse voltage.			[4]	
	Measurement of h	nigh current, impulse	e, and high-f	requency tr	ansient curre	ents.	[4]	
	Insulation testing	, dissolve gas analys	is, detection	of partial c	lischarges.	[(5]	

	Introduction to the Lightning phenomenon, Insulation Co-ordination. Brief reviews of high voltage testing-Methods for different power system equipment. [4] Introduction to H.V. testing transformer design. Capacitive voltage transformer Introduction to partial discharge, and partial discharge testing. [4] Planning & design of a high voltage laboratory, Introduction to Safety in High Voltage Technology, Introduction of virtual Laboratory and ICT enabled concept for high voltage
	testing. [3]
Text Books, and/or reference material	 Text Books: 1. High Voltage Engineering by M. S. Naidu and V. Kamaraju, 2nd Ed., McGraw-Hill 2. High Voltage Engineering by C. L. Wadhwa, 2nd Ed., New Age International
	Reference Books:
	 High Voltage Engineering by J R Lucas, 2001 High Voltage Engineering: Fundamentals by E. Kuffel, W.S. Zaengl and J. Kuffel, 2nd Ed., Newnes High-Voltage Engineering: Theory and Practice by Khalifa M. (Ed.), Dekker Inc. High Voltage Engineering and Testing by H. M. Ryan, IET, 2001 High-voltage Test Techniques by Dieter Kind and Kurt Feser, Newnes, 2001. High Voltage Technology by L. L. Alston, Oxford University Press, 2006

CO vs PO mapping

Map in terms of 0,1,2,3

	Program Outcomes						
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	2	1	2	3	3	1	
CO2	1	0	3	3	3	0	
CO3	2	0	3	3	2	0	
CO4	3	1	3	3	1	1	
CO5	1	1	3	3	1	2	

9 | Page

SOFT COMPUTING TECHNIQUES

Department of Electrical Engineering							
Course	Title of the course	Program Core	Total Nu	mber of con	tact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
EE	SOFT	PEL	3	0	0	3	3
9011	COMPUTING						
	TECHNIQUES						
Pre-requisi	tes	Course Assessmen assessment (EA))	nt methods (Continuous	s assessment	(CA) and	end
Basic	knowledge of	CA+EA					
algorithm/I	Logic/Programming			11			
Course	On completion of	the course, the stud	ents will be	able to:			, , .
Outcomes	• COI: Fo	r the given linear a	nd non-line	ar problem	s under prac	tical limi	tations,
	compare	classical analytical n	nethod and	soft comput	ting techniqu	e.	
	• CO2: Fo	r a given single obj	ective prob	lem (SOP)	, apply bina	ry coded	genetic
	algorithm	n (BCGA) and real c	oded geneti	c algorithm	(RCGA) with	th differer	nt types
	of crosso	ver, mutation and als	so understan	d the impac	ct of differen	t parent se	election
	strategies						
	• CO3: For	a given non-linear o	r non-deriva	tive proble	m, tune the co	ontrol para	ameters
	of adapti	ve particle swarm o	optimization	(APSO) f	or efficiently	y controll	ing the
	global ex	ploration and local e	xploitation.				
	• CO4: Fo	r a given standard	benchmarl	k problem,	explain the	significa	ince of
	Difference	e vector in Differen	tial Evoluti	onary (DE)	technique a	nd also ill	lustrate
	self-adap	tive differential evol	utionary (S.	ADE) techn	ique.		
	• CO5: Fo	r a given problem.	logically cl	arify the ir	npact of hid	den laver	s in an
	artificial	neuron network (AN	N) and also	stepwise e	xplicate the l	ack-prop	agation
	algorithm	n of ANN		step mise e	-pireare and (prop	agaaron
	• CO6: Fo	r a given problem	describe a t	fuzzy know	ledge base (controller	(FKBC)
	chowing	information and con	ucsentie a l	flow with r	nembershin t	function 1	(I KDC)
	showing and dafu	ration and con	iiputationai	now with i	nembersnip	runction, i	uie base
Tranian				<u> </u>			
Covered	Hard Computing	g and Soft-Computi	ng techniq	ues, Conve	entional & i	ion-conve	ntional
Covered	approaches, minit	ations of nard compu		ues, merits		of soft-con	iputing
	techniques, practi	cal examples associa	ated with so	ft-computir	ng techniques	3. [3]	
	Fundamental con	cept of optimization	techniques	and necessi	ty of optimiz	ation tech	niques,
	types of optim	ization techniques,	coding,	fitness/obje	ctive functi	ion, algo	rithms.
	Introduction of	genetic algorithm	Binary co	ding & de	coding Ger	netic mod	delling
	Reproduction C	rossover Mutation	importance	a of crosso	ver and mu	tation on	erators
	narent selection	strategy parant cal	action meth	ode Flow	wer and mu hart/algorith	m drawh	back of
	binory addad con	strategy, parent set	Λ) real and	ad gapatic	laorithm (D)	TGA	
	[7]	cue argoriunni (DCO	n), icai cou	ca genetic i	ugoriunn (K	COA), the	impies.
	[']						

	Introduction of Particle Swarm Optimization (PSO) algorithm, Bird flocking & fish					
	schooling, velocity, inertia weight factor, pbest solution, gbest solution, local optima,					
	global optima, Flowchart/algorithm, examples, new modifications of PSO, Parameter					
	Selection in PSO. [7]					
	Fundamentals of Differential Evolution algorithm, difference vector and its significance,					
	Mutation and crossover, comparisons among DE, PSO and GA, Examples, new					
	modifications of DE, Improved DE schemes for noisy optimization problems. [7]					
	Fuzzy set theory, Fuzzy systems, crisp sets and fuzzy sets, fuzzy set operations and					
	approximate reasoning, Fuzzification, inferencing and defuzzification, Fuzzy knowledge					
	and rule bases, examples. [7]					
	Biological neural networks, Model of an artificial neuron, neural network architecture,					
	Characteristics of neural network, learning methods, Taxonomy of neural network					
	architecture, Back propagation networks, architecture of a backpropagation network, back					
	propagation learning, Examples, RBF network, Associative memory, Adaptive resonance					
	theory. [7]					
	Applications of Soft Computing to various fields of engineering. [2]					
Text Books,						
and/or	Text Books:					
reference	1 Devendre K. Chaturvedi "Soft Computing techniques and its application in					
material	electrical engineering" Springer 2008					
	2 Carlos A Coello Garry B Lamont David A van Veldhuizen "Evolutionary					
	Algorithms for solving Multi-objective Problems", Second Edition, Springer,					
	2007.					
	Reference Books:					
	1. Jyh-Shing Roger Jang, Chuen-Tsai Sun & Eiji Mizutani, Neuro-Fuzzy and Soft					
	Computing: A Computational Approach to Learning and Machine Intelligence,					
	Prentice Hall					
	2. S. Rajasekaran and G. A. VijayalakshmiPai, Neural Networks, Fuzzy Logic and					
	genetic Algorithm Synthesis and Applications, PHI					
	3. Simon Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall					
	4. L. A. Zadeh, Fuzzy Sets and Applications, John Wiley & Sons					

	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	3	1	1	1	1

CO2	2	2	1	1	1	1
CO3	2	2	2	2	1	1
CO4	2	2	2	2	1	1
CO5	2	3	2	2	2	1
CO6	2	3	3	2	2	2

ADVANCED CONTROL SYSTEM I

Department of Electrical Engineering							
Course	Title of the course	Program Core	Total Nu	mber of cor	tact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
EE9014	ADVANCED	PCR	3	0	0	3	3
	CONTROL						
	SYSTEM I						
Pre-requisi	tes	Course Assessmer	nt methods (Continuous	s assessment	(CA) and	end
		assessment (EA))					
Control Sys	stem Engineering in B	CA+EA					
Tech							
Course	On completion of	the course, the stude	ents will be	able to:			
Outcomes	• CO1: To	learn the performan	ce goals of	closed loop	control syst	em desigr	n and the
	methods	of analysis					
	• CO2: T	o illustrate differen	t advanced	control sy	stem topolo	gies. thei	r design
	methods	and synthesis of the	controller d	esigned	I	0 ,	U
	• CO3: To	develop the concer	t of state v	ariahle ann	roach for lin	ear time	invariant
	system m	action and control	n of state v	and the app			iii vai taitt
			. 1. 0	1			
	• CO4: To	design feedback con	trol in State	space dom	ain		
	• CO5: To	design observed bas	ed state feed	dback contr	ol system		
	• CO6: To	design Linear Quadr	atic Regula	tor, Kalmar	n Bucy Filter	for optim	al design
	in state sp	pace					
Topics	Performance Obje	Performance Objectives/ Goals:					
Covered	Response and Loc	Response and Loop Goals, Stabilization, Pole-placement, Tracking, Robustness, Disturbance					
	Rejection, Noise	Attenuation			[6	5]	
	Performance Ana	lysis and Tests:					

	Time Domain Analysis, Internal Model Principle (IMP), Frequency Response analysis by
	bode diagram and Nyquist criterion, Loop Shaping Techniques, Sensitivity analysis, Utilities
	of Gain and Phase Margin determination [8]
	Compensation:
	Feedforward Control, Feedback Control, Classical Controller P, PI, PID, Lead and Lag, One
	degree-of-freedom (1 DOF) control, Two DOF configurations, Sylvester matrix
	Formulation, Internal Model Control (IMC), Internal Model Principle (IMP) [12]
	State Space Representation of Continuous-time Systems:
	State model state models for linear continuous time systems, conversion of state variables
	models to transfer functions in s-domain, solutions of state equations, state transition matrix,
	state transition flow graphs, eigenvalues, eigenvectors and stability similarity transformation,
	decompositions of transfer functions, canonical state variable models, controllability and
	observability, Linear State Variable Feedback (LSVF) control and pole placement, Full
	Order Observer and Reduced Order Observer, Design examples, MATLAB tools and
	practical case studies [20]
	Optimal Control
	Linear Quadratic Regulator (LQR), Linear Quadratic Guassian (LQG), LQR with state
	estimator, Kalman-Bucy filter/state estimator, Design Examples, Practical case studies [10]
Text Books,	Text Books:
and/or	1. Modern Control Engineering, K. Ogata,
reference	2. Modern Control System Theory, M. Gopal,
material	3. Feedback Control Theory, John Doyle, Bruce Francis, Allen Tannenbaum,
	4. Kalman Filtering Theory and Practice, Mahinder S. Grewal and Angus P Andrews
	Reference Books:
	1. Linear Control System Analysis And Design With MATLAB, John J. D'Azzo and
	Constantine H. Houpis and Stuart N. Sheldon
	2. Linear Robust Control, Michael Green and David J.N. Limebeer

CO vs PO mapping

Map in terms of 0,1,2,3

	Program Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	1	2	1	1	2		
CO2	2	1	2	1	1	2		
CO3	2	1	2	1	1	2		

13 | Page

M. TECH. IN POWER SYSTEMS						
CO4	3	1	2	3	3	2
CO5	3	1	2	3	3	2
CO6	3	1	2	3	3	2

Power System Modelling:-

Department of Electrical Engineering									
Course	Title of the course	Program Core	Total Nu	mber of cor	tact hours		Credit		
Code		(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives (PEL)	(L)	(T)	(P)	Hours			
EE 9015		PEL	3	0	0	3	3		
	Power System								
	Modelling								
Pre-requis	ites	Course Assessment assessment (EA))	nt methods (Continuous	s assessment	(CA) and	end		
Power Sys	tem-I, Power System-	CA+EA							
II									
Course	On completion of	the course, the stud	ents will be	able to:					
Outcomes	• CO1: Ad	cquire an idea abo	ut modellin	ng of powe	er system el	ements a	nd their		
	interactio	on in power system.							
	• CO2: Ac	couire knowledge ab	out fault ana	alvsis.					
	• CO3· Le	arn control strategies	s for active	and reactiv	e nower man	agement i	n nower		
	system			und redeti (agement	in power		
	• CO4: Un	dorstand the concept	of power of	ustom sunol	ronous mad	nina moda	1		
	• CO4. UII	derstand the concept	of power s	ystem synci	itonous maci		1.		
·	• COS: Un	derstand the concept	of power s	ystem prote	ction as a wh	iole.			
Topics	Statia Analysia	and Model heaten	und motiv	ation for n	adalling of	nhusical	avatama		
Covered	hybrid dynamic r	nodel, power system	architecture	ation for n e.	lodening of	physical	[4]		
	Formulation: ne	twork equations, eq	uality and i	inequality c	constraints, a	ctive and	reactive		
	power flow wit	h in-phase transfor	mers and	phase shif	ting transfor	mers, de	coupling		
	properties, ac and	DC power flow mo	del.				[6]		
	Fault analysis [,] tr	ansients on a transn	nission line	. short circ	uit of a sync	hronous 1	nachine		
	generator model	generator model and Takahashi method for short circuit studies examples [7]					[7]		
	Senerator model				,pio		[,]		
	Power System D	ynamics and Stabilit	y: power sy	vstem stabil	ity, dynamic	s of powe	r system		
	and their modelli	ng. examples.	J 1 7			•	ر [7]		
	and then modelin								

	Synchronous Machine Models: Design and operating principle of rotor, stator and magnetic torque, stationary and dynamic operation of single phase equivalent circuit, phasor diagram, operational limits. [10]					
	Control of Electric Power Systems: Control of Active Power and Frequency, Spinning reserve, Supplementary reserves, Back-Up Reserves; Control of Reactive Power and Voltage, Supervisory Control of Electric Power Systems.[6]					
	Protections in Electric Power Systems: Design of Protections, Distance Protections, Out of					
	Step Protections, System Protections. [4]					
Text Books,	Text Books:					
and/or	1. Design of Machine Elements - V.B. Bhan S. Krishna, "An Introduction to					
reference	Modelling of Power System Components", springer, 2014.					
material	2. Nasser D. Tleis, "Power Systems Modelling and Fault Analysis", Elsevier, 2008					
	Reference Books:					
	1. G [°] oran Andersson, "Modelling and Analysis of Electric Power Systems", ETH Z [°] urich 2008					
	2. Mircea Eremia, Mohammad Shahidehpour, "Handbook of Electrical Power					
	System Dynamics: Modeling, Stability, and Control", Wiley-IEEE Press, 2013.					
	3. Milano, Federico, "Power System Modelling and Scripting", Springer, 2010.					

	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	0	2	1	1	0
CO2	1	0	2	2	1	0
CO3	1	1	1	0	1	1
CO4	0	1	1	1	1	0
CO5	3	1	2	2	1	0

		Department of Electrical Engineering						
Course	Titl	e of the course	Program Core	Total Nur	nber of con	tact hours		Credit
Code			(PCR) /	Lecture	Tutorial	Practical	Total	
			Electives (PEL)	(L)	(T)	(P)	Hours	
EE	Mac	hine Learning	PEL	3	0	0	3	3
9016	and	Expert System						
Pre-requisi	ites		Course Assessment (EA))	nt methods (Continuous	s assessment	(CA) and	end
NIL			CA+EA					
Course		On completion of	the course, the stude	ents will be	able to:			
Outcomes		• CO1: U	Inderstand complexit	ty of machin	ne learning	algorithms a	nd their lir	nitations
			Ĩ	2	U	U		
		• CO2: Be	capable of confident	tly applying	common N	Aachine Lear	ning algoi	rithms in
		practice a	nd implementing the	eir own				
						• • •		
		• CO3: Uno	derstand modern not	ions in data	analysis or	iented compi	uting	
		• CO4: B	e capable of perform	ning experir	nents in ma	chine learnin	g using re	al-world
		data.					88	
		• CO5: Be	capable of designin	ig machine	learning ba	ased expert s	system usi	ing real-
		world dat	a	-	-	-		-
Topics		Introduction: De	finition of learning	systems. Go	cals and ap	plications of	machine	learning.
Covered		Aspects of develo	ping a learning syste	em				[4]
	 Inductive Classification: Concept learning. General-to-specific ordering of hypotheses. Finding maximally specific hypotheses. Version spaces and the candidate elimination algorithm. [5] Decision Tree Learning: Concepts as decision trees. Recursive induction of decision trees. Picking the best splitting attribute: entropy and information gain. Searching for simple trees and computational complexity. Occam's razor. Overfitting, noisy data, and pruning. [4] Bayesian Learning: Probability theory and Bayes rule. Naive Bayes learning algorithm. 							
		and Markov nets	for representing depe	endencies.	ve training.	Logistic regi	ession. Ba	[4]
		Instance-Based Learning: Constructing explicit generalizations versus comparing to past specific examples. k-Nearest-neighbor algorithm. Case-based learning. Experimental [4]						
		Rule Learning: Translating decision trees into rules. Heuristic rule induction using separateand conquer and information gain. First-order Horn-clause induction.[3]						
		Evaluation of L Comparing learni testing.	Evaluation of Learning Algorithms: Measuring the accuracy of learned hypotheses. Comparing learning algorithms: cross-validation, learning curves, and statistical hypothesis esting. [3]					

Machine Learning & Expert System:-

	Artificial Neural Networks: Neurons and biological motivation. Linear threshold units. Perceptrons: representational limitation and gradient descent training. Multilayer networks and backpropagation. Hidden layers and constructing intermediate, distributed representations. Overfitting, learning network structure, recurrent networks. [3] Support Vector Machines: Maximum margin linear separators. Ouadractic programming
	solution to finding maximum margin separators. Kernels for learning non-linear [4]
	Expert System design: Face detection algorithm, Computer-aided diagnosis system [4]
Text Books,	Text Books:
and/or	1. Tom M. Mitchell, Machine Learning
reference material	Christopher Bishop, Pattern Recognition and Machine Learning.

	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	1	2	0
CO2	3	3	3	2	2	0
CO3	3	3	3	2	1	1
CO4	3	3	3	2	1	1
CO5	3	3	3	3	1	1

CO vs PO mapping

Electric Vehicles:-

Department of Electrical Engineering							
Course	Title of the course	Program Core	Total Nu	nber of con	tact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
EE	Electric Vehicles	PEL	3	1	0	4	4
9020							
Pre-requisites		Course Assessment methods (Continuous assessment (CA) and end assessment (EA))					

17 | Page

	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	1	0	1	1
CO2	2	1	1	1	1	1
CO3	3	2	3	2	2	3
CO4	3	2	2	2	1	2
CO5	3	2	1	3	3	3
CO6	3	3	3	3	1	3

CO vs PO mapping

High Voltage Laboratory:-

]	Department of Electr	rical Engine	ering			
Course	Tit	le of the course	Program Core	Total Nu	Total Number of contact hours			Credit
Code			(PCR) /	Lecture	Tutorial	Practical	Total	
			Electives (PEL)	(L)	(T)	(P)	Hours	
EE1051	Hig	h Voltage	PCR	0	0	3	3	2
	Lab	oratory						
Pre-requisi	tes		Course Assessmer assessment (EA))	nt methods (Continuous	s assessment	(CA) and	end
NIL			CA+EA					
Course Outcomes		On completion of the course, the students will be able to:						
	 CO1: Employ suitable high voltage test methods for assessing the quality of electrical insulation. CO2: Ascertain the adequate level of insulation by performing suitable test and measurement of applied stress. CO3: Design and Testing the insulation requirement of the high voltage power apparatus. CO4: Assess the ability of the insulation to withstand the operating stresses 					electrical test and e power		
Topics Covered		1. Calibration with sphe	on of power frequend re-sphere gap arrang	cy high volt gement	tage and me	easurement o	f partial d	ischarge

19 | Page

	M. TECH. IN POWER SYSTEMS
	 Measurement of Power Frequency voltage withstand test on HV line materials Study BDV strength test of insulating oils using 100 kV motorized kit
	4. Study BDV strength test for various pressure and vacuum
	5. Analysis of Electrostatic Field in a Parallel Plate Capacitor for Single & Multi Dielectrics Using ANSYS Software
	6. Analysis of Field Distribution of Dielectric Under Different Electrode Configuration Using ANSYS Software
	7. Study the characteristics of impulse voltage and wave shape of lightning impulse voltage
	8. Study of capacitance and tan delta of insulating material
	9. Measurement of solid insulation resistance
	10. To measure the current - voltage characteristics of a crystalline silicon solar cell11. Measurement by using 4 quadrant power supply and solar cell as load12. Measurement by using solar cell as power source under illumination
	13. Measurement of Partial Discharge in different types of insulation mediums
Text Books, and/or	Text Books:
material	1. High Voltage Engineering by M. S. Naidu and V. Kamaraju, 2nd Ed., McGraw-Hill
material	 High Voltage Engineering by C. L. Wadhwa, 2nd Ed., New Age International
	Reference Books:
	1. High-Voltage Engineering: Theory and Practice by Khalifa M. (Ed.), Dekker Inc.
	2. High Voltage Engineering and Testing by H. M. Ryan, IET, 2001
	3. High-voltage Test Techniques by Dieter Kind and Kurt Feser, Newnes, 2001

	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	3	2	0	0
CO2	1	3	2	1	1	1
CO3	3	2	2	1	0	0
CO4	2	3	3	1	1	1

Computation Laboratory:-

		Department of Electrical Engineering					
Course	Title of the course	Program Core	Total Number of contact hours				Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
EE 1052	Computation	PCR	0	0	4	4	2
	Laboratory						
Pre-requisi	ites	Course Assessmen	nt methods (Continuous	s assessment	(CA) and	end
		assessment (EA))					
NIL		CA+EA					
Course Outcomes Topics Covered	On completion of CO1: A and pro CO2: D CO3: I under p CO4: A approac 1. Introduction of	 On completion of the course, the students will be able to: CO1: Acquire knowledge on hard computing, soft computing, flowchart, algorithm and programming. CO2: Develop programming skill for different optimization techniques. CO3: Design tuning parameters of optimization techniques to obtain better results under practical limitations. CO4: Achieve the ability to solve realistic problems using non-conventional approaches like Fuzzy logic. Artificial neural network. 1. Introduction & Basic concepts of MATLAB. Different array and matrix operations. 					lgorithm er results ventional ns.
	 Perform basi Study hard constrained practical limitat 	c fundamental program computing and soft cont ons.	ming using mputing for	'if else' and	l 'for loop' and non-line	ar probler	ns under
	4. Apply binary (SOP).	v coded genetic algorith	rithm (BCG	A) for a g	viven single	objective	problem
	and parent selec	tion strategies for a m	inimization	problem. C	Compare the 1	esults.	nutation,
	6. Execute parti problem with d factors, upper an	cle swarm optimization efined /given populate and lower limits of state	on (PSO) fo ion, maxim e variables.	r a given no um iteratio	on-linear / st n, tolerance	andard be value, cor	nchmark astriction
	7. Design the efficiently contr	control parameters of olling the global explo	f adaptive pration and l	particle sw local exploi	arm optimiz tation to obta	ation (AF in optimu	PSO) for m result.
	8. Write code of with security co	8. Write code of Differential Evolutionary (DE) technique for a standard benchmark problem with security constraints.					
	9. Develop fuz information ar defuzzification.	9. Develop fuzzy knowledge base controller (FKBC) for a realistic problem and show information and computational flow with membership function, rule base and defuzzification.					nd show ase and

	10. For a given single training set with two inputs, two outputs and two hidden layers, execute
	"Forward Pass" to obtain outputs for the given initial weights, biases and inputs. Determine
	the total error. Apply backpropagation (Backward Pass) to update each of the weights.
	Assume learning rate.
Text Books, and/or reference material	Lab manual

CO vs PO mapping

	Program Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	3	1	1	1	1		
CO2	2	2	1	1	1	1		
CO3	2	2	2	2	1	1		
CO4	2	2	2	2	2	1		

Semester – II

Power System Protection and Transients

]	Department of Electr	rical Engine	ering				
Course	Title of th	itle of the course Program Core Total Number of contact hours					Credit		
Code			(PCR) /	Lecture	Tutorial	Practical	Total		
			Electives (PEL)	(L)	(T)	(P)	Hours		
EE 2001	Power	System	PCR	3	1	0	4	4	
	Protection	and							
	Transients								
Pre-requisi	tes		Course Assessmer	nt methods (Continuous	s assessment	(CA) and	end	
assessment (J									
EE 1002; I	Power Syste	ms	CA+EA						
Operation	and Control								
Course	•	CO1: Giv	en specification will	give knowle	edge about	the different	switching	transient	
Outcomes		conditions	s and its severity, by v	which one ca	n incorporat	e/design circu	uitry for Ti	ransients.	
	•	CO2: Giv	en specification leads	to knowled	ge about the	e lightning, pr	otection, i	nsulation	
		coordinati	on which will help t	to design the	e reliability	of the system	n and to a	design of	
		system/ ec	quipment.						
	•	CO3: The	students learn metho	ds employed	l for primar	y and backup	relaying-	design of	
		system pr	otection in electric po	ower system	s. Further, t	hey get acqua	ainted with	n various	

	M. TECH.	IN POWER	SYSTEMS
--	----------	-----------------	----------------

	types of relays along with their characteristics and connections, used in practice for
	 CO4: Knowledge provided enables the students to employ and design of in future diverse.
	protective schemes used in practice for protection transmission lines, transformers and
	generators.
Topics Covered	Normal Switching Transients: Circuit breaker making and breaking transients, Resistanceswitching, Load Switching, Capacitance Switching, Reactor Switching.[6]
	Abnormal Switching Transients: Current chopping, Arc furnace switching, Transformer Magnetizing Inrush Current, Arcing Ground Phenomenon, Current Limiting Static Circuit Breaker. [6]
	Lightning Protection: Mechanism of Lightning, over voltage due to lightning, protection of electrical apparatus against lightning strokes, behaviour of machine windings under transient conditions, Kilometric Fault. [6]
	Lighting protection schemes: Arrestors, Surge absorbers, Neutral Grounding.Lighting Over voltages and Protection of Substation Equipment, Switching Over voltages in EHV Substations, Switching Overvoltage in Medium Voltage Substations, Rating of Surge Arrester, Installation as Surge Arresters, Overhead Shielding Screen, Protective Angle. [6]
	Introduction to Insulation coordination, Over voltages and their Significance, Standard Voltage Levels, Insulation Level of an Equipment, Insulation Co-ordination of a Substation. [4]
	Protective Relays: Basic requirement; classification on the applications; principles of operation; over current relay, directional relay- characteristics and connections; distance relays - impedance, reactance and mho types; differential relays and percentage differential relays- voltage and current balance types; biased beam relay, negative sequence relay. [10]
	Protection of transmission lines: Unit and non-unit types; time and current graded systems; setting of relays for coordination; distance protection- impedance, reactance and mho types; three zone distance protection; pilot wire protection using current and voltage balance; Translay system; carrier current protection. [6]
	Protection of transformer: Types of faults- faults in auxiliary equipments, winding faults, overloads and external short circuits; gas actuated devices- pressure relief and pressure relay, rate of rise pressure relay, gas accumulator relay; biased differential protection for different transformer connections; earth fault protection; over current protection. [6]
	Protection of generator: Types of faults- stator faults, rotor faults, abnormal running conditions; biased differential protection for different stator connections; protection against earth fault, turn to turn fault, rotor earth fault, loss of field excitation; negative sequence protection. [6]
Text Books,	Text Books:
and/or	1. The Art and Science of Protective Relaying, By: C. R. Mason, Published by: Wiley
reference	Eastern Limited, ISBN: 978-81-7409-232-3
material	2. Electrical Transients in Power Systems, By: A. Greenwood, Published by: John Wiley&
	Sons, ISBN: 8126527293, 9788126527298
	Reference Books:
	1. Power System Engineering By: D. P. Kothari and I. J. Nagrath, Published by: Tata
	McGraw Hill, ISBN: 9780070647916.
	2. Power System Transients: A Statistical approach, By: C. S. Indulkar, D. P. Kothari& K. Ramalingam, Published by: PHI Learning Pvt. Ltd. ISBN: 978-81-203-4079-4

	Program Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	1	3	1	2		
CO2	3	3	1	2	1	1		
CO3	2	2	1	2	1	1		
CO4	3	3	1	2	1	2		

CO vs PO mapping

Power System Dynamics and Control:-

			Department of Elect	rical Engine	ering				
Course	Title of the c	ourse	Program Core	Program Core Total Number of contact hours					
Code			(PCR) /	Lecture	Tutorial	Practical	Total		
			Electives (PEL)	(L)	(T)	(P)	Hours		
EE9027	Power System	n	PCR	3	1	0	4	4	
	Dynamics and	d							
	Control								
Pre-requisi	tes		Course Assessmer	nt methods (Continuous	s assessment	(CA) and	end	
			assessment (EA))						
EE1001 (F	undamentals o	f	CA+EA						
Modern Po	ower System)								
Course	On comp	oletion of	the course, the stude	ents will be	able to:				
Outcomes									
	• (C O1: Ur	nderstand the fundar	nental conc	ept of stab	ility and the	character	istics of	
	I	ower sy	stem dynamics when	subjected t	o different	stresses.			
	•	C O2: Le	arn to model the con	ponents of	the power s	system for sta	ability stud	lies.	
		γ ∩3 • Δŀ	le to analyze the sta	hility of the	nower evet	em using dif	foront n	umerical	
		COS. At	to analyze the sta	binty of the	power syst	cill using uil.	iciciii ii	unicrical	
	r	nethods.							
	• (C O4: Le	arn to apply different	t control tec	hniques to i	mprove the c	lynamics o	of power	
	5	systems							

	M. TECH. IN POWER SYSTEMS
Topics Covered	Small Signal Stability: Introduction to machine modelling and different transformations. Modelling of different elements of power systems, Small Signal stability of a single machine infinite bus system, Effects of excitation system, Power system stabilizer, Small-signal stability of multi machine systems and very large systems, Small-signal stability enhancement. [18]
	Steady State Stability: Analysis of steady state stability of unregulated and regulated systems. [6]
	Transient Stability: An elementary view of transient stability, Numerical integration methods, Multimachine Stability Studies, Transient Stability Studies with the change of excitation of synchronous machine, Analysis of Transient Stability for different kinds of fault, Rapid Reclosing, Performance of protective relaying, Improvement of Transient Stability. [18]
	Voltage Stability: Basic concepts related to voltage stability, Voltage stability analysis, Voltage collapse, Examples of Voltage collapse, Prevention of voltage collapse. [6]
	Subsynchronous Oscillations:Turbine-generator torsional characteristics, Subsynchronous resonance, Impact of network-switching disturbances.[5]
	Mid-term and Long-term Stability: Nature of system response to severe upsets, Distinction between mid-term and long-term stability, Power plant response during severe upsets. [3]
Text Books, and/or reference material	 Text Books :- 1. Prabha Kundur, Power System Stability and Control, TMH 2. P. M. Anderson & A. A. Fouad, Power System Control and Stability, IEEE Series on Power Engineering Reference Books: 1. Power Systems Stability, Vol1 – E. W. Kimbark, Dover Publications, New York. 2. Power Systems Stability, Vol2 – E. W. Kimbark, Dover Publications, New York. 3. Power Systems Stability, Vol 3 – E. W. Kimbark, Dover Publications, New York.

	Program Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	1	1	2	2		
CO2	2	1	2	2	1	1		

CO3	3	3	3	3	2	2
CO4	3	3	3	2	2	2

Power System Control and Instrumentation:-

			Department of Electr	rical Engineering				
Course	Ti	tle of the course	Program Core	Total Nu	mber of cor	ntact hours		Credit
Code			(PCR) /	Lecture	Tutorial	Practical	Total	
			Electives (PEL)	(L)	(T)	(P)	Hours	
EE9028	Pov	ver System	PEL	3	1	0	4	4
	Coi	ntrol and						
	Instrumentation					1		
Pre-requisi	ites		Course Assessmer (EA)	it methods (Continuous	s assessment	(CA) and	ena
EE1001 (E	unde	amentals of	$C \Delta \pm F \Delta$					
Power Sys	tem)	unentais of	CATLA					
Course	tem)	On completion of	the course, the stude	ents will be	able to:			
Outcomes		• CO1: Un	derstand various met	hods of OP	F			
		• CO2: Gai	in insight of controlli	ing active a	nd reactive	nower flow	with LIPF	C/IPFC
		• CO3: Un	derstand the concent	and implan	antation of			0,1110
		• CO3. Un	derstand the concept	and implem	contation of	f amort arid		
		• CO4: UN		and implem		i smart grid		
		• CO5: Get	t acquainted with cor	icept of erro	ors and vari	ous transduce	ers	
		• CO6: Kn	ow various aspects o	f SCADA a	ind PLC			
Topics Covered		Overview of Pow Conventional Con	er System, Optimal I ntrol Scheme for acti	Power Flow ve and reac	: Gradient tive power;	method and I	Newton m	ethod [6]
		Power System S systems;	tability: Energy fun	ction appro	each for Sl	MIB and mu	lltimachin [e power 5]
		Power Flow Cont Interline Power F	rol: Compensators fo low Controller;	or power flo	w control, l	Unified Powe	er Flow Co [5]	ontroller,
		Phasor Measurem computation, Stru [6]	nent Unit (PMU): Ov actures of WAMS an	verview of S nd WAMPA	Synchro pha AC, PMU	asor, PMU an Applications	chitecture , PMU pla	e, Phasor acement;
		Smart Grid (SG) measurement, De	: SG concept, Arch mand Response, Sma	itecture, Im art metering	and their f	G for power unctionalities	system co in Smart	ontrol & Grid;[8]
		Power systems in	strumentation:					

	Measurement, Errors, Statistical Analysis of Errors; [4]
	Signal Conditioning Circuit, Converters, Optical Insulator, Sensor and Transducer; Instrument transformers: C.T. and P. T., principle, characteristics, construction, errors, and transient behaviour etc.; [5]
	Power System Measurement: Voltage, Current, Phase, Power, Energy, Frequency, Power factor etc.; [3]
	Supervisory control and data acquisition system: Functional blocks, Software and Hardware features, operation, PLC architecture, Instructions and programming, Overview of DCS; [10]
	Measurement of transients and harmonic distortion: THD, Power Quality meter; [4]
Text Books,	Text Books:
and/or reference material	 D.P. Kothari & J.S. Dhillon, "Power System Optimization", PHI, 2010. S. Sivanagaraju & G. Sreenivasan, "Power System operation and Control", Pearson 2010.
	 Ernest O. Doebelin, Measurement system, Tata McGraw-Hill Education. A.G. Phadke & J.S. Thorp, "Synchronized Phasor Measurements and Their Applications" Springer publication, 2008. P.W.Sauer & M.A. Pai, "Power System Dynamics and Control", Pearson 2010.
	Reference Books: 1. Stuart A., Supervisory Control and Data Acquisition, Boyer International Society of
	 Automation Surya Santoso, Mark F. McGranaghan, Roger C. Dugan, H. Wayne Beaty, Electrical Power Systems Quality, Access Engineering.

	Program Outcomes						
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	2	1	3	2	2	2	
CO2	1	0	2	1	0	1	
CO3	2	1	3	1	1	1	
CO4	2	1	3	1	1	2	

CO5	1	0	2	0	0	1
CO6	1	1	2	2	2	1

Distributed Generation System and Microgrid:-

Department of Electrical Engineering								
Course	Title of the course	tle of the course Program Core			Total Number of contact hours			
Code		(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
EE9030	Distributed	PEL	3	1	0	4	4	
	Generation System							
	and Microgrid							
Pre-requisi	ites	Course Assessmer	nt methods (Continuous	s assessment	(CA) and	end	
		assessment (EA))						
Power Sy	stem I and II	CA+EA						
Course	On completion of	the course, the stude	ents will be	able to:				
Outcomes	• CO1: Un	derstand the conce	pt of distri	buted gene	eration (DG))		
	CO2: Fin	nd optimal size, pla	cement of	DGs				
	• CO3: Ar	alvze the impact o	f grid integ	ration and	control asp	ects of D	Gs.	
	• CO4: Me	odel and analyze a	micro grid	taking int	o considerat	tion the r	lanning	
	and oper	ational issues of th	e DGs to b	e connecte	d in the sys	tem		
	• CO5: St	idv concept of Mic	ro grid and	l its confio	uration			
	- CO3. Bu	ady concept of time	10 gild alle		urunon.			
Topics	Introduction of	Distributed generat	ion technol	logies Nee	ed for distri	huted ge	neration	
Covered	Renewable source	es in distributed general	neration. C	urrent scen	ario in distr	ibuted ge	neration,	
	Planning of DGs,	Siting and sizing of	DGs, Optim	al placeme	nt of DG sou	rces in dis	tribution	
	systems, Solar an	d Wind Resources fo	or distribute	d generatio	n and Models	s. [13]		
				-				
	Grid integration	of DGs, Different t	ypes of int	erfaces, Inv	verter based	DGs and	rotating	
	machine-based in	nterfaces, Aggregati	on of mult	iple DG ui	nits, Energy	storage e	elements,	
	Batteries, ultracap	pacitors, flywheels.					[10]	
	Technical impact	s of DGs on Transm	nission syst	ems Distri	bution system	ns De-re	gulation	
	Impact of DGs up	on protective relavin	ig. Impact o	f DGs upon	transient and	l dvnamic	stability	
	of existing distrib	oution systems.	-8, <u>F</u>			[10]	~~~···	
	Ũ	•						
	Economic and co	ntrol aspects of DG	s, Market fa	acts, issues	and challeng	ges, Limit	ations of	
	DGs, Voltage cor	ntrol techniques, Rea	ctive power	control, H	armonics, Po	wer qualit	y issues,	
	Reliability of DG	based systems, Stea	dy state and	l Dynamic a	analysis.	[12]]	
	Introduction to m	icro-orids Types of	micro-oride	Autonom	ous and non-	autonomo	us oride	
	Sizing of micro	ride Modeling & an	alveis of M	icro-oride	with multiple	DGs Mi	cro_oride	
	with power elect	ronic interfacing wi	to Crid Int	orfoce and	Supersonized	tion Trees	cionto in	
	with power electr	tonic interfacing uni	is, Gria int	erface and	Synchronizat	uon, 1 ran	sients in	

	micro-grids, Protection of micro-grids, Case studies on microgrid, Smart Grid Concepts, Control Methods and Applications.[13]
Text Books, and/or reference material	 TEXT BOOKS: 1. H. Lee Willis, Walter G. Scott , 'Distributed Power Generation – Planning and Evaluation', Marcel Decker Press, 2000. 2. M.Godoy Simoes, Felix A.Farret, 'Renewable Energy Systems – Design and Analysis with Induction Generators', CRC press. 3. Robert Lasseter, Paolo Piagi, ' Micro-grid: A Conceptual Solution', PESC 2004, June 2004. REFERENCE BOOKS: 1 F. Katiraei, M.R. Iravani, 'Transients of a Micro-Grid System with Multiple Distributed Energy Resources', International Conference on Power Systems Transients (IPST'05) in Montreal, Canada on June 19-23, 2005. 2. Z. Ye, R. Walling, N. Miller, P. Du, K. Nelson, 'Facility Microgrids', General Electric Global Research Center, Niskayuna

CO vs PO mapping

	Program Outcomes						
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	2	0	0	1	1	
CO2	2	3	3	2	1	0	
CO3	1	2	2	0	1	1	
CO4	3	1	2	0	1	1	
CO5	1	1	1	0	1	0	

Renewable Energy systems:-

Department of Electrical Engineering						
T	itle of the course	Total Number of contact hours	Credit			

Course Code		Program Core (PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	
EE9017	Renewable Energy	PEL	3	0	0	3	3
	Systems						
Pre-requis	ites	Course Assessmer	nt methods ((Continuous	s assessment	(CA) and	end
NII		assessment (EA)) $CA + FA$					
				-1.1. (
Outcomes	On completion of CO1: kr	t the course, the stud	ents will be d Internati	able to: onal Energ	gy Scenario		
	• CO2:.ga	in insight of the so	lar photovo	oltaic syste	em and appli	ication	
	• CO3: ge	t acquainted with v	vind power	r technolog	v and use		
	• CO4: ur	derstand the technol	plogy of bi	o-fuel and	tidal power	generati	on
	• CO5· kr	low about functioni	ng of Fuel	Cell	F	8	
	• CO6: ur	derstand issues of]	Energy Au	dit and En	ergy Manag	ement	
Topics			8,			,	
Covered	Introduction: Energy Energy scenario, Challenges and resources, classifi emission, carbon the Carbon emiss Solar photovolta Photovoltaic cone Air Heating Syst Pond, Design of Cell, Principle of of Solar Energy f	 Introduction: Energy system as electrical system, Energy chain, National and International Energy scenario, various non-conventional energy resources-importance, World Energy Challenges and Pledges, Energy Sustainability, Changing Pattern of uses of Energy resources, classification, relative merits and demerits, Keys for Energy Security, Carbon emission, carbon credit, Calculation of Carbon Credit with Solar Plant, Protocol regarding the Carbon emission, Introduction to Power Trading; [10] Solar photovoltaic: Introduction, solar radiation & its relation with photovoltaic effect Photovoltaic concentration, Application of Solar Energy, Thermal Energy Conversion, Sola Air Heating System, Commercial/Residential and Industrial Solar Air Heater (SAH), Solar Cell, Principle of Solar Cell, Working of Solar Cell, Construction of Solar Cell, Calculation of Solar Cell, Canada Cell, Canada Cell, Canada Cell, Construction of Solar Cell, Canada Cell, Canada Cell, Canada Cell, Canada Cell, Canada Cell, Construction of Solar Cell, Canada Ce					
	OFF grid PV po [10]	ower System, Hybri	d Power S	System, Stru	ucture for P	V power	System;
	Wind power and its sources, site selection criterion, wind characteristics, momentum of Classification of wind machines. Wind mills-different design & their control, generators- different types, wind farms & grid. Wind generation in India. Wind Pow maximum power equation. Wind penetration & its effects, economic issues, developments, international scenario. Wind energy collector, Application of wind energy [7]						n theory, ol, wind ower and s, recent l energy;
	Principles of tid systems, Estima geothermal Energ [4]	Principles of tidal power generation, components of power plant, Single and two systems, Estimation of energy, Maximum and minimum power ranges. Ocean geothermal Energy, geothermal power plant. OTEC Principle, Open cycle and closed c [4]					wo basin ean and ed cycle;
	Bio fuel, Conver farming, direct co Digester sizing- Social and enviro	rsion of biomass, Biombustion for heat-py waste and residues, wommental aspects;	ofuel class rolysis-ther vegetable of	ification, B rmochemica ils and biod	iomass prod al process, Ar liesels, Appli	uction for naerobic d cations of [4]	r Energy igestion- f Biogas,

	Fuel Cell: Basic construction & principle of operation of fuel cell, Fuel cell power plants & its integration with wind and solar photovoltaic systems. Geothermal Energy, Dry Steam power plant, Single and Double Flash power plant and integration in electrical system/Grid; [4]
	Energy conservation opportunities, Energy Audit, Saving of energy with energy economics.
	Energy Management and its basic principle with case studies; [5]
Text Books, and/or	TEXT BOOKS:
reference material	1. G.D. Rai, Non-conventional energy resources, Khanna Publishers, New Delhi, 2003.
	2. N. G. Clavert, Wind Power Principle, their application on small scale, Calvert Technical Press.
	REFERENCE BOOKS:
	1. Fuel Cell Handbook, Parsons Inc.
	2. Earnest and T. Wizelius, Wind Power Plants and Projects development, PHI

	Program Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	1	3	2	2	2		
CO2	1	0	2	1	0	1		
CO3	2	1	3	1	1	1		
CO4	2	1	3	1	1	2		
CO5	1	0	2	0	0	1		
CO6	1	1	2	2	2	1		

Embedded System:-

Department of Electrical Engineering								
Course	Title of the course	Program Core	Program Core Total Number of contact hours					
Code	e (PCR) /		Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
EE9018	Embedded System	PEL	3	0	0	3	3	
Pre-requisi	ites	Course Assessmen	nt methods (Continuous	s assessment	(CA) and	end	
NU		assessment (EA))						
NIL		CA+EA						
Course	On completion of	t the course, the stud	ents will be	able to:			a in field	
Outcomes	• COI:	Comparing different	microproce	essor archite	ectures and ju	istirying ti	neir field	
	of app		• 1				. · .	
	• CO2:	Given peripheral d	evices such	as memor	y, ADC, DR	Js, etc., d	lesign of	
	interia	acing circuit, and wri	iting algorit	nms to fulfi	i a given spe		cation.	
	• CO3:	Programming proce	ssor specifi	c and proc	essor indeper	ndent soft	ware for	
		Developing 1 and	ed system a	ppiications.				
	• CO4:	Developing hardwar	e and softw	are for a gr	ven applicatio	ons.	11	
	• CO5: Knowledge of advanced microcontrollers and RTOS features and t					heir field		
	of app	olications.	1 1		1	1		
	• CO6:	Given single task ap	plication de	sign a micr	oprocessor b	ased syste	m.	
Covered	Introduction to En	nbedded systems:						
	Introduction – Fea Classification, SP	tures – Microprocess P, ASIC, ASIP;	sors – ALU	- Von Neur	nann and Hai	rvard Arch [3]	nitecture,	
	CISC and RISC -	Instruction pipelinin	g. Fixed poi	nt and Floa	ting point pro	ocessor;	[2]	
	General character	istics of embedded sy	ystem, intro	duction to c	lifferent com	ponents et	ac; [5]	
	Microcontroller 89 and Peripherals, T	9CX51/52 Series: Cl 'imers, Counters, Ser	naracteristic ial commun	s and Featu ication, Dig	res, Overvie gital I/O Port	w of archi s;	tectures, [5]	
	Microcontroller P Peripherals, Inter converter, UART [5]	Microcontroller PIC Series: Characteristics and Features, Overview of architectures, and Peripherals, Interrupts, Timers, watch-dog timer, I/O port Expansion, analog-to-digital converter, UART, I2C and SPI Bus for Peripheral Chips, Accessories and special features; [5]						
	ARM Architectur Modes, Registers	re: Evolution, Chara etc	acteristics a	and Feature	es, Overview	of archi	tectures, [5]	
	Digital Signal Pro	ocessor					[5]	
	Software architect	ure and RTOS:						

	Software Architecture: Round Robin- Round Robin with interrupts -Function Queue. Scheduling
	Architecture RTOS: Architecture -Tasks and Task States -Tasks and Data -Semaphores and Shared Data Message Queues -Mail Boxes and pipes -Timer Functions -Events -Memory Management, Interrupt Routines; [6]
	Basic design using a real time operating system:
	Overview. General principles. Design of an embedded system.
	Development Tool: Cross-Compiler, Cross-Assemblers, Linker/locator. PROM Programmers, ROM, Emulator, In-Circuit Emulators. Debugging Techniques. Instruction set simulators. The assert macro. [6]
Text Books, and/or	Text Books:
reference	1. Douglas V. Hall, Microprocessors & Interfacing, Tata McGraw-Hill
material	2. M. Predko, Programming & Customising 8051 Microcontroller, TMH
	Reference Books:
	1. John Uffenbeck, Microcomputers and Microprocessors, Pearson Education
	2. Michel Slater, Microprocessor Based Design, PHI

	Program Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	3	2	1	0	1		
CO2	1	2	3	1	1	1		
CO3	3	2	1	3	2	1		
CO4	1	2	1	3	0	0		
CO5	1	3	2	1	1	1		
CO6	1	2	3	3	2	2		

Flexible AC Transmission Systems Devices:-

Department of Electrical Engineering							
Course	Title of the course	Program Core	Total Nu	mber of cor	ntact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
EE9019	Flexible AC	PEL	3	1	0	4	4
	Transmission						
Dro roquia	Systems Devices	Course Accessme	nt mathada (Continuou	accomment	$(\mathbf{C}\mathbf{A})$ and	and
Pre-requisi	les	2 Course Assessment (EA))	nt methods (Continuous	sassessment	(CA) and	end
EEC401(Pc	wer Systems-I)	CA+EA					
EEC501(Pc	ower Systems I)						
EEC503(P	ower Electronics)						
Course	On completion o	f the course, the stud	ents will be	able to:			
Outcomes	• CO1: U	nderstand the concep	t of FACTS	devices as	a whole.		
	• CO2: A	cquire knowledge ab	out differen	t applicatio	ns of FACTS	6 devices	in power
	system.						
	• CO3:Ac	quire an idea about i	modelling a	nd control	of various FA	ACTS dev	vices and
	their interaction in power system.						
	CO4: Understand how FACTS devices improve various power system performan						ormances
	like pow	ver flow control, stab	ility etc.				
Topics	FACTS concept	and General System	of Consider	ations.			[2]
Covered	Checklist of pos	sible benefits from F	ACTS tech	nology.			[1]
	Lumped/Distribu	ited model analysis for	or Series and	d Shunt cor	npensation.		[5]
	Methods of Con	trollable Var Genera	tion: Variabl	e Impedan	ce Type Stat	ic var Ge	nerators,
	Switching Conve	eu mouel analysis, Tu arter Type Var Gener	CK, ISK, I ators STAT	SC, FC-IC	K.	umped/di	[0] stributed
	model analysis	asic converter config	aurations	i CONI, Da	sie concepts,	umpeu/u	[8]
	Static Series C	compensators: Basic	principles	of operation	on of TSS	C. TCSC	SSSC.
	lumped/distribut	ed model analysis	Application	s. [8] Sta	tic Voltage	and Phas	se angle
	regulators: TCV	R and TCPAR, lumpe	ed/distribute	ed model an	alysis, Appli	cations.	[7]
	Combined Com	pensators: Unified	Power Flo	w Control	ller (UPFC)	, basic c	operating
	principles, conv	entional transmission	n control c	apabilities.	Functional	control of	f shunt
	converter and ser	ries converter, basic c	ontrol syste	ms for P an	d Q control,	lumped/di	stributed
	model analysis.				[11] Intr	oduction	to steady
	state analysis an	d control, oscillation	n stability a	nalysis and	l control by	UPFC. 1	ransient
Tart Doolr	Stability control	$\frac{\text{by CSC, SSSC, SVC}}{\text{by CSC, SVC}}$, STAICO	vi and UPF	$C. [\delta]$		
and/or	s, I ext Dooks:	A T. Johns "Flevibl	e AC Trans	mission Sv	stems (FACT	S) IET P	ower and
reference	Energy Series, S	hankar's Book Agend	cv Publisher	· (Indian Ec	lition)	<i>S)</i> , IL I I (Swer and
material	2. K.R. Padyvar.	"FACTS Controller	in Power Ti	ansmission	and Distribu	tion".	
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Reference Book	s:					
	1. Mey Ling Sen	, Kalyan K. Sen," Int	roduction T	o FACTS	Controllers –	Theory, N	Aodeling
	And Application	s, Wiley (IEEE) Pub	lisher.				
	2. N.G. Hingora	ni & L. Gyugyi, "U	Inderstandir	ng FACTS:	Concepts a	nd Techn	ology of
	Flexible AC Tra	nsmission Systems".					

	Program Outcomes									
	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	2	2	1		1				
CO2	3	3	2	1	1	1				
CO3	2	3	3	2	1	1				
CO4	2	3	3	2		1				

CO vs PO mapping

Digital Signal Processing:-

		Department of Electr	rical Engine	ering				
Course	Title of the course	Program Core	Total Nu	mber of con	tact hours		Credit	
Code		(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives (PEL)	(L)	(T)	(P)	Hours		
EE9021	Digital Signal	PCR	3	1	0	4	4	
	Processing							
Pre-requisi	ites	Course Assessmer	nt methods (Continuous	assessment	(CA) and	end	
		assessment (EA))						
Signal and	Systems in BTech	CA+EA						
Course	On completion of	the course, the stude	ents will be	able to:				
Outcomes	• CO1: Un	derstand the properti	es signals a	nd systems.				
	• CO2: Un	derstand the concept	of signal p	rocessing.				
	• CO3: An	alyze discrete time si	gnals and sy	stems in tin	ne as well as	frequency	domain.	
	• CO4: De	sign digital filters.						
	• CO5: Ge	t acquainted with dig	gital process	ors recently	used.			
Topics	Discrete time sign	nals and systems, pro	perties, con	volution, a	nalysis of dis	crete time	systems	
Covered	in time-domain;					[4]		
	Frequency domai	n representation of d	iscrete time	systems an	d signals, Gi	bbs phen	omenon,	
	band limited sig	nals, sampling theo	orem aliasir	ng sampling	g of continu	ous time	signals;	
	[6]	[6]						
	Z- transforms, re	Z- transforms, region of convergence, Z- transform theorems and properties, methods of						
	Inverse Z-transfo	rms, analysis of disc	rete time si	gnals and s	ystems in Z-	domain, p	ole-zero	
	plots, stability;					_	[4]	

	Realization of FIR Systems and IIR systems;	[4]
	Discrete time Fourier transform of discrete time signals and systems, Inverse discrete t	time
	Fourier transform, Eigen function;	[6]
	Discrete Fourier transform (DFT), properties of DFT, Linear convolution using D	OFT,
	Computation of DFT by FFT algorithms like decimation in frequency and decimatio	n in
	time;	[8]
	Various Filter design techniques for FIR and IIR filters;	[10]
	Sampling rate conversion, up and down rate sampling, interpolation and decimation;	[4]
	Introduction to discrete Hilbert Transform, Complex Capstrum, Application of Caps	stral
	analysis;	[6]
	Practical applications of DSP, DSP processors.	[4]
Text Books, and/or reference material	 Text Books: 1. Discrete Signal Processing by A.V. Oppenheim and R.W. Schafer (Prentice-Hall 2. J. G. Proakis & D. G. Manolakis, Digital Signal Processing: Principles, Algorit and Applications, Prentice Hall of India. 	l). hms
	 Reference Books: 1. Digital Signal processing by Sanjit K. Mitra (Tata McGraw-Hill). 2. Theory and Application of Digital Signal Processing by L. R. Rabiner and B. G. Pearson Education, 2004 	iold,

	Program Outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	3	3	3	2	2	1					
CO2	3	3	3	2	2	1					
CO3	3	3	3	2	2	1					
CO4	3	3	3	2	2	1					
CO5	3	3	3	2	1	0					

Estimation of Signals and Systems:-

Department of Electrical Engineering							
Course	Title of the course	Program Core	Total Nu	mber of con	tact hours		Credit
Code		(PCR)/	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
EE0022	Estimation of	PEL	3	0	0	3	3
EE9022	Signals and						
D	Systems						1
Pre-requisi	ites	Course Assessment (EA)	nt methods (Continuous	s assessment	(CA) and	end
Advanced	Control System I	CA+EA					
Course	On completion of	the course the stud	ents will be	able to:			
Outcomes	 Course On completion of the course, the students will be able to: CO1: Develop insight on well-known techniques for parameter estimation a identification of unknown parameters using these estimation methods for linear well as nonlinear systems. CO2: Familiarization with Random variables , Stochastic Processes a Probabilistic state space models, categorization of noise, Investigation controllability and observability of linear as well as nonlinear systems. CO3: Develop concept on Bayesian filtering, derivation of Kalman filter as a spec case of Bayesian filter, familiarization with the properties of Kalman filters and variants, ability to design and tuning Kalman filter. CO4: Augment the concept of Kalman filter and Extended Kalman filter as the nonlinversion of Kalman filter. CO5: Understanding the general framework of Gaussian filter as a special case Bayesian filter and deriving the variants of sigma point filters and Quadrature fil from the framework CO6: Develop knowledge on Maximum likelihood estimation and its application state and parameter estimation for dynamic system, Derivation of Cramer-Rao low 						tion and linear as ses and ation of a special rs and its stems, to nonlinear a case of ure filter cation for ao lower
TopicsParameter Estimation: Least Squares Estimation, The Recursive Least-Squares AlgoriCoveredInitial Conditions and Properties of RLS, Estimation of Time-varying Parameters, M Output, Weighted Least Squares Estimation, Generalized least squares, A probabil version of the LS, Nonlinear least squares, Equation error method, Application of t methods;Introduction to Linear Systems and Probability theory: Matrix algebra and matrix calc Stability, Controllability and observability for linear and nonlinear systems, Disceretiza The Gauss -Markov Discrete-time Model, Random variables, Transformations of ran variables, Multiple random variables, Stochastic Processes and Probabilistic state s models, White noise and colored noise;Bayesian Filtering and introduction to Kalman filter: Origins of Bayesian filtering, Opt filtering equations and exact solutions, Framework of the Kalman Filter, The Dis Kalman Filter as a Linear Optimal Filter;						gorithm, s, Multi- babilistic of these 6] calculus, etization, calculus, calculus, etization, calculus	

	Properties of Kalman filters: Minimum Variance and Linear Minimum, Variance Estimation; Orthogonality and Projection, The Innovations Sequence, True Filtered Estimates and the Signal-to –Noise Ratio Improvement Property, Inverse Problems; [3]
	Variants of Kalman Filter: Information filtering, Square root filtering, Correlated process and measurement noise, Colored process and measurement noise, Steady-state filtering, Adaptive Kalman filters, Gaussian Sum filters; [8]
	Introduction to Nonlinear Kalman filtering: The linearized Kalman filter, The extended Kalman filter, Higher-order approaches; [3]
	General Gaussian filtering: Unscented transformations, Unscented Kalman filtering, Quadrature rules for Gaussian Integral Approximations, Gauss Hermite filters, Cubature filters, Cubature Quadrature filters; [6]
	Output error method of Estimation: Principle of maximum likelihood, Cramer-Rao lower bound, Maximum likelihood estimation for dynamic system, Accuracy aspects, Output error method; [6]
Text Books,	Text Books:
and/or reference material	 Modelling and Parameter Estimation of Dynamic Systems by J.R. Raol, G. Girija and J. Singh, Institution of Engineering and Technology, London, United Kingdom Optimal State Estimation: Kalman, H∞ and Nonlinear Approaches by Dan Simon.
	Reference Books:
	 Introduction to Random Signals and Applied Kalman Filtering by Robert Grover Brown & Patrick Y. C. Hwang, John Wiley & Sons Bayesian Filtering and Smoothing by Simo Sarkka, Cambridge University Press
	2. Dayesian r mering and Smoothing by Sinto Sarkka, Camorage University riess

	Program Outcomes									
	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	0	2	3	1	3				
CO2	1	0	1	2	1	2				

CO3	1	0	2	3	1	3
CO4	1	0	2	3	2	3
CO5	1	0	1	2	1	1
CO6	1	0	1	3	1	3

Process Instrumentation and Control:-

	Department of Electric				ering			
Course	Ti	tle of the course	Program Core	Total Nu	nber of con	tact hours		Credit
Code			(PCR) /	Lecture	Tutorial	Practical	Total	
			Electives (PEL)	(L)	(T)	(P)	Hours	
		Process	PEL	3	0	0	3	3
EE9023	Ins	trumentation and						
		Control						
Pre-requisi	tes		Course Assessmer	nt methods (Continuous	assessment	(CA) and	end
			assessment (EA))					
NIL			CA+EA					
Course		On completion of	the course, the stude	ents will be	able to:			
Outcomes		• CO1: Giv	ven an application fo	r measuren	nent of liqu	id flow, choo	ose suitabl	e sensor
		and also j	ustify the selection.					
		• CO2: Giv	ven an application fo	r measurem	ent of temp	erature, cho	ose suitabl	e sensor
		and also j	ustify the selection.					
		• CO3: Giv	ven single-parameter	r control ar	oplication of	of an industr	ial proces	s design
		suitable in	nstrumentation loop	using PLC			1	U
		• CO4: Integration of different given elements of a process for control application						
		 CO5: Compare different actuators for a given process control application. 						
						s control app	neauon.	
		• CO6: Giv	en application desig	n of a PID c	control system	em.		

Topics Covered	Review of measurement principles, statistical analysis of measurement errors and error analysis; [4]
	Measurement of Flow; Orifice, venturi, pitot tube, rotameter, ultrasonic flow meter, electromagnetic flow meter, mass flow meter, etc.; [4]
	Measurement of temperature, RTD, Thermistor, Thermocouple, Semiconductor type temperature sensor, IR sensor etc.; [3]
	Measurement of liquid level; float, capacitive, ultrasonic, radar gauge etc.; [4]
	Pressure measurement, Differential pressure, starin, force, displacement; [5]
	Measurement of Torque, Linear and angular displacement/speed etc.; [4]
	Actuators and Finalcontrol elements, Valves, Electrical, pneumatic, and hydraulic; [4]
	Programmable Logic Controller (PLC), Distributed Control System; [4]
	Process signal transmission; [3]
	Process Control; ON-OFF Control, PID Control, of interactive and non-interactive systems; [7]
Text Books, and/or reference material	 Text Books 1. A. D. Helfrick and William David Cooper, Modern electronic instrumentation and measurement techniques, Prentice Hall. 2. John-G. Webster (ed.), The Measurement, Instrumentation, and Sensors: Handbook, Springer.
	 Reference Books: Curtis D. Johnson, Process control instrumentation technology, Prentice Hall Robert N. Thurston and Allan D. Pierce, Ultrasonic measurement methods, Academic Press William Bolton, Programmable Logic Controllers, Newness Stuart A. Boyer, Supervisory Control And Data Acquisition, International Society of Automation T. V. Kenneth and B. T. Meggitt, Optical Fiber Sensor Technology, Springer.

Program Outcomes								
PO1	PO2	PO3	PO4	PO5	PO6			

CO1	1	3	3	2	1	0
CO2	1	3	1	2	2	0
CO3	1	2	2	3	3	2
CO4	1	1	2	3	2	1
CO5	1	2	1	2	1	1
CO6	1	1	1	3	2	1

Power System Optimization:-

Department of Electrical Engineering								
Course	Tit	le of the course	Program Core	Total Nu	mber of cor	ntact hours		Credit
Code			(PCR) /	Lecture	Tutorial	Practical	Total	
			Electives (PEL)	(L)	(T)	(P)	Hours	
	Pov	ver Systems	PEL	3	1	0	4	4
EE9024	Op	timization						
Pre-requisi	tes		Course Assessment	nt methods (Continuou	s assessment	(CA) and	end
Dowor Sug	tom	Operation and	$C \Delta \pm F \Delta$					
Power Sys	tem	Speration and	CATLA					
Analysis								
Course		On completion of	the course, the stud	ents will be	able to:			
Outcomes		• CO1: ide	ntify and understand	different po	ower system	n optimizatio	n problem	1.
		• CO2: lea	rn the basic design	procedure	for repres	enting differ	ent powe	r system
		problems	in the context of opt	timization.				
		• CO3: und	derstand different so	olution strate	egies to sol	lve power sy	stem opti	mization
	problems.							
		• CO4: und	lerstand different sol	lution strate	gies to opti	mally tune d	ifferent co	ontrollers
		used in p	ower system.					

	M. TECH. IN POWER SYSTEMS
Topics Covered	Solution Tools for Economic Load Dispatch (ELD) without losses and with losses; security constraint combined Economic and Emission Dispatch (SC-CEED), Examples; [6]
	Solution Tools for Optimal Hydrothermal Scheduling for short-range fixed head and variable head hydrothermal systems; [6]
	Solution Tools for Optimal Power Flow: Transmission loss optimization, Cost optimization and total voltage deviation optimization with and without compensating devices; [8]
	Solution Tools for Optimal Reactive Power Dispatch; [6]
	Optimal Automatic Generation Control, Optimal AVR control and optimal tuning of Controller coefficients; [6]
	Solution Tools for Optimal allocation of FACTS devices considering both technical and economical aspects; [6]
	Solution Tools for finding Optimal size and location of DG for the improvement system voltage profile and overall losses; [6]
	Optimization tools for optimally tuning the power system stabilizers for Small Signal stability improvements; [10]
Text Books, and/or reference	Text Books:
material	 D.F. Koman and J.S. Dinnon, Power System Optimization, Prenice Hall of India J. A. Momoh, Electric Power system Applications of Optimization, CRC Press
	Reference Books:
	J. Zhu, Optimization of power system operation, John Wiley & Sons

	Program Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	0	1	1	0	0		
CO2	1	0	2	1	0	0		
CO3	2	0	2	2	1	0		

M. TECH. IN POWER SYSTEMS							
CO4	2	0	2	2	1	0	

Power System Reliability and Planning:-

		Department of Elect	rical Engine	eering			
Course	Title of the course	Program Core	Total Nu	mber of cor	ntact hours		Credit
Code		(PCR)/	Lecture	Tutorial	Practical	Total	
	D 7	Electives (PEL)	(L)	(T)	(P)	Hours	
EE0025	Power System	PEL	3	1	0	4	4
EE9025	Planning						
Pre-requisi	ites	Course Assessme	nt methods (Continuou	s assessment	(CA) and	end
i ie iequisi		assessment (EA))	in methods (Commuou	, assessment	(eri) und	ena
EEC401(PC	OWERSYSTEMS-I)	CA+EA					
EEC501(PC	OWER SYSTEMS-II)						
Course	On completion of	f the course, the stud	ents will be	able to:			
Outcomes	• CO1: U	nderstand the impo	rtance of	maintaining	g reliability	of power	system
	compone	ents	.1 1 0			1. 6	
	• CO2: Ap	ply the probabilistic	methods for	or evaluation	ig the reliabi	lity of ge	neration,
		sion and distribution	dole of evet	ng differen	onts used in a	luices.	studios
	• CO3. As	rmulate expressions f	for Reliabilit	tv analysis (of series_para	llel and M	on_series
	narallel s	vstems		ly analysis (n series-para		011-501105
	• CO5: De	ive expressions for Time dependent and Limiting State Probabilities using					
	Markov	models.					8
	• CO6: P	erform necessary a	nalysis req	uired for	generation,	transmiss	ion and
	distributi	on systems expansio	n.		-		
Topics		_					
Covered	Basic Reliability	Concepts:					
	The general ratio	ability function Th	a avnonan	tiol distribu	ution Dofin	sition of	different
	reliability indice	s Mean time to fai	ilures serie	s and nara	llel systems	Markov	process
	continuous Mark	ov process. Recursive	e techniques	s and para	ries and paral	lel system	models.
	[10]	••• pro••ss, re••sist		,, 2pre 30	ine mie para	liei system	
	Generating Capa	city – Basic Probabil	ity Methods	5:			
	The generation s	ystem model, Loss o	f load indice	es, Capacity	v expansion a	nalysis, s	cheduled
	outages. Load for method.	brecast uncertainty I	Loss of ene	rgy indices	s. The freque	ency and	duration 8]
	Transmission Sys	stems Reliability Eva	luation:				
	Radial configura selection, System	ation, Conditional p a and load point India	probability a	approach,	Network cor	nfiguration	1s, State [8]

	Distribution Systems Reliability Evaluation:
	Evaluation Techniques, Additional interruption indices, Application to radial systems, Effect of lateral distribution protection, Effect of disconnects, Effect of protection failures, Effect of transferring loads. [10]
	Generation Planning:
	Comparative economic assessment of individual generation projects, Investigation and simulation models, Heuristic and linear programming models, Probabilistic generator and load models. [8]
	Transmission Planning:
	Deterministic contingency analysis, Probabilistic transmission system, reliability analysis. Reliability calculations for single area and multi,-area power systems. [8]
	Distribution Planning:
	Network configuration design consisting of different schemes. [4]
Text Books,	TEXT BOOKS:
and/or reference material	1. "Reliability evaluation of Engineering systems", Roy Billinton and Ronald N Allan, BS Publications.
	 "Reliability Engineering", Elsayed A. Elsayed, Prentice Hall Publications. Roy Billinton and Ronald Allan Pitam: Reliability Evaluation of Power Systems, springer, 1996.
	REFERENCES: 1. "Reliability Engineering: Theory and Practice", By Alessandro Birolini, Springer Publications
	 2. "An Introduction to Reliability and Maintainability Engineering", Charles Ebeling, TMH Publications.
	3. "Reliability Engineering", E. Balaguruswamy, TMH Publications.

CO vs PO mapping

		Program Outcomes						
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	0	0	0	0	0		
CO2	1	0	1	0	0	0		
CO3	1	0	1	0	0	0		

44 | Page

	M. TECH. IN POWER SYSTEMS								
CO4	1	0	1	0	0	0			
CO5	1	0	1	0	0	0			
CO6	2	0	2	1	1	0			

Biomedical Instrumentation:-

Department of Electrical Engineering							
Course	Title of the course	Program Core	Total Nu	mber of cor	ntact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
EE9026	Biomedical	PEL	3	0	0	3	3
	Instrumentation						
Pre-requisi	tes	Course Assessmen	nt methods (Continuous	s assessment	(CA) and	end
		assessment (EA))					
EEC 302 (Electrical &	CA+EA					
Electronic	Instrumentation)						
Course	On completion of	f the course, the stud	ents will be	able to:			
Outcomes	• CO1: Fai	miliarise with biomed	dical transd	ucers			
	• CO2: Al	ole to design of biom	edical equip	pments and	signal proces	ssing circu	iitry
	• CO3: Ac	quire knowledge abo	out various	electrodes ı	used in bio in	strumenta	tion.
	• CO4: Ex	pertise for measure	ment of var	ious physic	ological para	meters in	vivo and
	vitro.						
	• CO5: Ga	ining knowledge ab	out medical	imaging			
Topics	Introduction to b	iomedical Instrument	tation, biom	edical elect	tronics, Com	ponents of	f Analog
Covered	and digital circu	its, Analog & digi	tal circuit	design, M	ultistage am	plifier ga	in, Gain
	Bandwidh produc	ct, frequency respons	se.				[4]
	Various types of	f signal conditioner	s signal co	nditioning	processes	Signal Ac	ausition
	graphical user int	erface. Transformer	based and t	ransformer	less power si	ipply.	[4]
	8				F - ··		[.]
	Medical instrume	entation constraints, V	Various bio	medical trai	nsducers.		[4]
	Generation of N	ernst Potential, Esta	blishment of diffusion potential, Goldman Equation,				
	Measurement of	membrane potential	l, resting potential, action potential, Voltage Clamp,				
	Hodgkin Huxley Model				[4]		
	Use of electrodes for measurement of bio potentials, polarization in electrodes, princi					nciple of	
	operation of Ag/	AgCl electrode, Equ	uivalent cir	cuit of elec	trode, motio	n artifact,	, various
	types of electrode	es for bio potential m	easurement	•			[4]

	Measurement of ECG, Einthoven triangle method, unipolar and bipolar limb leads, ECG amplifiers, Problems encountered in ECG recording [4]
	Analysis of ECG Signals, Pacemakers, Different types of pacing modes, Physiological effects of electric currents, Defibrillators. [4]
	Measurement of blood pressure, measurement of blood pH, measurement of blood flow, measurement of heart sounds, use of Surface PlasmonResonance for detection of toxins. [6]
	Introduction to medical imaging, Radiography, Computerized tomography, X Ray,-CT, MRI, PET, SPET, Gamma Camera, Ultrasound Imaging, Color Doppler, Recent trends in medical imaging, EIT, DOT, PAT, AEI. [8]
Text Books, and/or reference material	 Text Books: 1. John Enderle. Joseph Brinzino, Introduction to Biomedical Engineering, Elsevier, 2012. 2. John G Webster, Medical Instrumentation, Application & Design, John Wiley & Sons, 2009. Reference Books: 1. L. Cromwell, Fred J. Weibell, Erich A. Pfeiffer, , Biomedical Instrumentation & Design (2014)
	 Arthur C Guyton, John E Hall, Textbook of Medical Physiology, Elsevier, 2006.

CO vs PO mapping

		Program Outcomes							
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	1	1	0	0	2			
CO2	3	2	3	0	0	3			
CO3	2	2	2	0	0	1			
CO4	3	3	3	0	0	3			
CO5	2	2	2	0	0	1			

Advanced Power System Laboratory:-

Department of Electrical Engineering

46 | Page

Course	Title of the course	Program Core	Total Number of contact hours				Credit					
Code		(PCR) /	Lecture	Tutorial	Practical	Total						
		Electives (PEL)	(L)	(T)	(P)	Hours						
EE2051	Advanced Power	PCR	0	0	4	4	2					
	System Laboratory											
Pre-requisi	ites	Course Assessmer	Course Assessment methods (Continuous assessment (CA) and end									
		assessment (EA))	assessment (EA))									
Basic Idea	on Power System	CA+EA										
Laboratory	On completion of	the course the stud	onto will bo	able to:								
Outcomes		velop suitable experi	imental sch	able to.	ferent nower	· system re	lave and					
Outcomes	• COLDC	d their operation for	nrotecting	real nower	svstem	system it	Jays and					
	• CO2: De	velop suitable exper	imental sch	emes for ev	valuating diff	erent perf	ormance					
	paramete	rs of a power system	with and wi	ithout consi	dering Static	Var Com	pensator.					
	• CO3: Un	derstand and analyze	e the perform	nance of ser	ries and paral	lel connec	ted solar					
	PV system	ms.										
	• CO4: Kr	now the appropriate	connections	s of CT and	l PT in the p	ower syst	tem after					
	performin	ng initial tests on the	m.				_					
	• CO5: In	terpret the experiment	ntal results a	and correlat	e them with t	he practic	al power					
Tonias		tional and non direc	tional over	aurrant ral	2.5.7							
Covered	1. Study of difec	of and validation of	f Over over	-current rend	1y rth fault prot	action col	nome for					
covered	2. Development	of and vandation of	i Over-culi		i in tauti prot	ection ser	leme for					
	2 Development	ord validation of Da	mallal faada	" mustastion								
	5. Development	and validation of Pa		r protection	ata ati an a aha	and of the						
	4. Development	of and validation of	Negative s	equence pr	otection sche	eme of thr	ee-phase					
	induction mo	DIOR	11	1 1:66	-1		11					
	5. Study of bla	sed differential relay	y and blase	a amerenti	al protection	of a sing	gie phase					
	transformer	·····			2442							
	6. Study of Num	ierical Distance prote	ection Relay		·442	1 0	2 1					
	7. Development	of and validation	of Restric	cted E/F p	protection sc	neme of	3-phase					
	transformer	1 . 1										
	8. Study of simu	lated transmission li	ne									
	9. Testing of rat	io, polarity, magnetiz	zing charact	teristic of C	T and PT.							
	10. To demonstr and tempera	rate the I-V and P-V ture level.	characteris	tics of PV	module with	varying F	Radiation					
	11. To demonstra modules.	trate the I -V and P-V characteristics of series and parallel combination of P					on of PV					
	12. To study the	effect of variation in	n tilt angle o	on PV modu	le power.							
13. To study the shading effect on module output power.14. To study the use of Bypass Diode and Blocking Diode on module of 15. To workout power flow calculations of stand-alone PV system co load with battery.					on module ou system cons	tput powe idering D	er. C & AC					

Text Books, and/or reference material	Reference Books: 1. Protective Relays Application Guide by GEC Measurements (1983) 2. Laboratory Manuals
--	--

CO vs PO mapping

	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	3	1	0	0
CO2	2	1	3	1	0	0
CO3	2	1	3	1	0	0
CO4	2	1	2	0	0	0
CO5	1	0	2	0	0	0

Power System Simulation Laboratory:-

Department of Electrical Engineering							
Course	Title of the course	Program Core	Program Core Total Number of contact hours Cre				Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
	Power System	PCR	0	0	4	4	2
EE2052	Simulation						
	Laboratory						
Pre-requisites		Course Assessment methods (Continuous assessment (CA) and end					
		assessment (EA))					
Power system Operation and		CA+EA					
Analysis							
Course	On completion	of the course, the stu	dents will b	e able to:			
Outcomes	CO1: develop c	CO1: develop coding skill using MATLAB.					
	CO2: Implement MATLAB software to solve load flow analysis problem by Gauss-Seidel						
	method and Newton Raphson method						
	CO3: Implement MATLAB software to solve Economic Load Dispatch Problems						5
	CO4: Acquire s	CO4: Acquire skill to develop and study different models of power system in MATLAB					
	SIMULINK.	SIMULINK.					

M. TECH. IN POWER SYSTEMS						
1. Topics Covered	 Introduction & Basic concepts of MATLAB. Different array and matrix operations. Perform advanced programing using 'if else' and 'for loop' Perform advanced programing using 'while loop' Perform hand calculation for YBUS matrix for a given Power System. Write Matlab program for obtaining the same YBUS matrix. Perform hand calculation for obtaining Load Flow solution using Gauss-Seidel method for one iteration. Write Matlab program for the same. Obtain the converged solution. Perform hand calculation for obtaining Load Flow solution using Newton Raphson method for one iteration. Write Matlab program for the same. Obtain the converged solution. Study of Economic Load Dispatch Problems considering various linear and non-linear constraints in MATLAB. 					
	2. 8. MATLAB Simulink to study the load-frequency analysis.					
Text Books, and/or reference material	Lab manual					

	Program Outcomes					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	0	2	2	1	1
CO2	3	0	3	2	2	1
CO3	2	0	2	2	2	2
CO4	3	0	2	0	1	1