NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR DEPARTMENT OF MECHANICAL ENGINEERING

Revised Curriculum and Syllabi

Program Name Master of Technology in Thermal Engineering Effective from the Academic Year: 2021-2022

Recommended by DPAC	:06.08.2021
Recommended in PGAC	: 16.08.2021 & 01.10.2021
Approved by the Senate	: 22.08.2021

CURRICULUM

Sl.	Subject	Name of the Subject	L	Т	S	С	н
No.	Code	Name of the Subject	L		5	C	
Sem	ester I			-			
1.	ME 1021	Advanced Thermodynamics	3	1	0	4	4
2.	ME 1022	Advanced of Heat Transfer	3	1	0	4	4
3.	ME 1023	Advanced Fluid Mechanics	3	1	0	4	4
4.	ME 90**	Specialization Elective - I	3	0	0	3	3
5.	ME 90**	Specialization Elective - II	3	0	0	3	3
6.	ME 1071	Heat Transfer Laboratory	0	0	4	2	4
7.	ME 1072	Computational Laboratory	0	0	4	2	4
			To	otal C	redit	22	26
Sem	ester II						
1.	ME 2021	Experimental Methods in Thermal Science	3	1	0	4	4
2.	ME 2022	Computational Methods in Thermal Science	3	1	0	4	4
3.	ME 2023	Mathematical Methods in Thermal Science	3	1	0	4	4
4.	ME 90**	Elective-III	3	0	0	3	3
5.	ME 90**	Elective-IV	3	0	0	3	3
6.	ME 2071	Thermal Engineering Laboratory	0	0	4	2	4
7.	ME 2072	Mini Project with Seminar	0	0	6	3	6
		Total Credit 23					28
Sem	ester III						
1.	XX90XX	AUDIT LECTURES / WORKSHOPS	0	0	0	0	2
2.	ME 3071	DISSERTATION - I	0	0	24	12	24
3.	ME 3072	SEMINAR - NON-PROJECT /	0	0	4	2	4
		EVALUATION OF SUMMER					
		TRAINING	T		1.4	14	20
C			1(otal C	realt	14	30
Sem	ester IV		0	0	24	10	24
1.	ME 4071	PROJECT	0	0	24	12	24
2.	ME 4072	PROJECT SEMINAR	0	0	4	2	4
			To	otal C	redit	14	28
		TOTAL CREDIT POINT: 73					

LIST OF ELECTIVES

Sl. No.	Course Code	Course Title
1	ME9011	Applied Computational Methods
2	ME9014	Operations Research
3	ME9018	Finite Element Methods
4	ME9020	Knowledge Based Systems
5	ME9025	Modelling and Simulation of Mechanical Systems
6	ME9029	Optimization in Engineering Design
7	ME9045	Advanced Theory of Turbomachinery
8	ME9047	Multiphase Flow and Heat Transfer
9	ME9053	Theory of Combustion
10	ME9054	Renewable Energy Sources
11	ME9055	Power Plant Engineering
12	ME9071	Advanced Energy Conversion
13	ME9072	Advanced I. C. Engine
14	ME9073	Biofluid Mechanics
15	ME9074	Microscale Transport Phenomena
16	ME9075	Solar Thermal Systems
17	ME9076	Thermodynamics of Complex Systems
18	ME9077	Advanced Refrigeration and Air-Conditioning
19	ME9078	Design of Thermal Systems
20	ME9079	Heat Transfer Equipment Design
21	ME9080	Design with Constructal Law
22	ME9081	Analysis of Thermal Power Cycles

SYLLABUS

Department of Mechanical Engineering									
Course	Title of	the	Program Core	ore Total Number of contact hours					
Code	course		(PCR) / Electives						
			(PEL)	Lecture	Tutorial	Practical	Total		
				(L)	(T)	(P) [#]	Hours		
ME1021	Advance	d	PCR	3	1	0	4	4	
	Thermod	ynamics							
Pre-requi	sites		Course Assessment n	nethods (Co	ontinuous (C	CT) and end	assessme	nt (EA))	
NIL			CT+EA						
Course O	utcomes	CO1: St	udents will be able to	understan	d the histo	ry, concepts	s, formul	ations and	
		apj	olications of Thermody	namics.					
		CO2: St	udents will be able to	analyze an	d solve var	rious practic	al proble	ems on the	
		ap	olications of Thermody	namics.		_	_		
		CO3: Stu	idents will be able to ap	oply various	solution te	chniques for	solving i	new	
		apj	plied and theoretical pro	oblems.			C		
		Topics	Covered					Hours	
		1. First	Law of Thermodyna	amics				5	
		1.1 First	law for closed syster	ns					
		1.2 First	law for open system	S					
		1.3 Stru	ctured presentation of the first law						
		1.3.1 Po	incaré's scheme						
		1.3.2 Ca	rathéodory's scheme						
		1.3.3 Ke	enan and Shapiro's s	econd sche	eme				
		1.3.4 Ar	plications to vapor c	vcle					
		2. Secor	d Law of Thermody	vnamics				10	
		2.1 Seco	and law for closed sys	stems					
		2.2 Seco	and law for open system	ems					
		2.3 Loc	al thermodynamic equ	ulibrium n	nodel				
		2.4 Entr	opy maximum and er	nergy minin	num princ	iples			
		2.5 Cara	théodory's two axior	ns		-p-••			
		2.5 A H	eat Transfer man's tw	o axioms					
		2.6 Reg	enerative power gener	ration in st	eam powe	r plants			
3 Entr			opy Generation		I I	1		7	
		3.1 Lost	available work						
		3.2 Non	flow processes						
		3.3 Stea	dy flow processes						
		3.4 Mec	Leady now processes lechanisms of entrony generation						
3.4 Met 3.4 1 H			Teat transfer across a finite temperature difference						
		3.4.2 Flo	ow with friction	r r					
		3.4.3 M	ixing						
		3.5 Entr	opy generation minin	nization					
		3.5.1 Th	e method						
		3.5.2 En	tropy generation num	nber				Page 4	
		3.5.3 En	tropy generation in st	team based	power ge	neration sys	stems		

	4. Exergy Analysis	7
	4.1 Nonflow systems	
	4.2 Flow systems	
	4.3 Generalized exergy analysis	
	4.4 Exergy analysis of steam based power generation systems	
	5. Irreversible Thermodynamics	3
	5.1 Conjugate fluxes and forces	
	5.2 Linearized relations	
	5.3 Reciprocity relations	
	6. Thermodynamic Relations	7
	6.1 The fundamental relation	
	6.1.1 Energy representation	
	6.1.2 Entropy representation	
	6.2 Legendre transform	
	6.3 Relation between thermodynamic properties	
	6.3.1 Maxwell's relations	
	6.3.2 Bridgman's table	
	6.3.3 Jacobians in thermodynamics	
	7. Stability of Thermodynamic Systems	5
	7.1 Stability conditions for thermodynamic potentials	
	7.2 Qualitative effect of fluctuations	
	7.3 Le Chatelier-Braun principle	
Text Books,	Text Books:	
and/or reference	1. A. Bejan, Advanced Engineering Thermodynamics, Wiley, 2016.	
material	2. E. P. Gyttopoulous, G. P. Beretta, Thermodynamics: Foundations and	
	Applications, Dover, 2015. 3 A B Pinpard Elements of Classical Thermodynamics Cambridge 1957	7
	4. A. Thess. The Entropy Principle: Thermodynamics for the Unsatisfied. S	pringer.
	2011.	F8,
	Reference Books:	
	1. R. S. Berry, V. Kazakov, S. Sieniutycz, Z. Szwast, A. M. Tsirlin, Thermo	odynamic
	Optimization of Finite-Time Processes, Wiley, 2000.	
	2. P. T. Landsberg, Thermodynamics and Statistical Mechanics, Dover, 201	4.
	3. M. Planck, Treatise on Thermodynamics, Dover, 2013.	

		Ι	Department of Med	chanical En	gineering			
Course	Title of	the course	Program Core	Total Nu	Total Number of contact hours			
Code			(PCR) /	Lecture	Tutorial	Practical	Total	
			Electives	(L)	(T)	(P) [#]	Hours	
			(PEL)					
ME1022	Advanced Heat		PCR	3	1	0	4	4
	Transfer							
Pre-requisi	ites		Course Assessment methods (Continuous (CT) and end assessment					
_			(EA))					
NIL			CT+EA					
Course Ou	tcomes			(1 (.				1. (
COI: Stude			ents will be able to understand the history, concepts, formulations and					nations and
applications of Heat Transfer.								

	M. TECH. IN THERMAL ENGINEERING	
	 CO2: Students will be able to analyze and solve various practical prob applications of Heat Transfer. CO3: Students will be able to apply various solution techniques for solving applied and theoretical problems. 	lems on the g new
	Topics Covered	Hours
	 1. Heat Conduction Fundamentals 1.1 Coordinate systems 1.2 Nondimensional analysis of heat conduction equation 1.3 Heat conduction equation for anisotropic medium 1.4 Lumped and partially lumped formulations 1.5 Orthogonal functions, boundary value problems, Sturm-Liouville problem, and Fourier series 2. Separation of Variables 2.1 Separation of variables in rectangular coordinate system 2.2 Separation of variables in cylindrical coordinate system 2.3 Separation of variables in spherical coordinate system 3. Approximate Analytic Methods 3.1 Integral method 3.2 Approximate analytic method of residuals 3.3 Galerkin method 3.4 Partial integration 	12
	 4. Heat Convection Fundamentals 4.1 Conservation equations 4.2 Rules of scale analysis 4.3 Heatlines for visualizing convection 5. Principle of Similarity to Heat Transfer 5.1 Derivation of dimensionless parameter from the differential equations 5.2 Application of Pi-theorem to establish self-similarity and reduce partial differential equation to ordinary ones 5.3 Dimensional analysis 6. Boundary Layer Theory 6.1 Fundamental problem in convective heat transfer 6.2 Similarity solutions 6.3 Other wall heating conditions 	22
Text Books, and/or reference material	 7.1 Thermodynamic properties of thermal radiation 7.2 Ideal conversion of blackbody radiation 7.3 Applications to solar energy harvesting Text Books: D. W. Hahn, M. N. Özisik, Heat Conduction, Wiley, 2012. A. Bejan, Convection Heat Transfer, Wiley, 2013. J. R. Howell, M. P. Menguc, R. Siegel, Thermal Radiation Heat Transfer, Cl Reference Books: V. S. Arpaci, Conduction Heat Transfer, Addison-Wesley, 1966. T. Cebeci, P. Bradshaw, Physical and Computational Aspects of Convective Transfer, Springer, 1998. 	RC, 2010. Heat

	J	Department of Mec	chanical En	gineering			
Course	Title of the course	Program Core	Total Nu	mber of con	ntact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives	(L)	(T)	(P) [#]	Hours	
		(PEL)					
ME1023	Advanced Fluid	PCR	3	1	0	4	4
	Mechanics		·1			1 1	
Pre-requisi	ites	(EA))	nent method	ds (Continu	ous (CT) and	d end asse	essment
NIL		CT+EA					
Course Ou	itcomes	CO1: Students	will be a	able to un	derstand th	e history	, concepts,
		formulatio	ns and app	lications of	Fluid Mecha	anics.	
		CO2: Students	will be at	ole to anal	yze and so	lve vario	us practical
		problems of	on the appli	cations of H	Fluid Mecha	nics.	
		CO3: Students w solving net	vill be able w applied a	to apply van	rious solutio cal problems	n techniqu s.	ues for
	Topics Covered						Hours
	Velocity, Acce	eleration and M	leration and Material Derivative. Local continuity				
	equation, Vorti	city and circulat					
	irrotational flow	v, Stream function for 2-D and 3-D flows, Newton's					
	momentum eq	ation, Constitutive Relations, Newtonian and non-					
	Newtonian fluid	ds, Moving co-ordinate system					
	Dimension ana similarities	lysis and similarities, Buckingham pi theorem, types of					7
	Navier-Stokes e	equation, Exact solutions of Navier-Stokes equations					7
	Boundary layer	theory, Integral form of Boundary layer equations					7
	Flow stability,	Turbulent flows: Correlations and spectra, Averaged				6	
	equations of mo						10
	Compressible	low: Speed of	sound, ba	sic equation	ons for 1-1	D flow,	10
	stagnation and	sonic properties,	normal an	d oblique	shock wave	e, Mach	
	cone						
Text Book and/or	s, Text Books: 1 W P Graebe	l. Advanced Flui	d Mechani	ics. Acade	mic. 2007		
reference	eference 2 P K Kundu I M Cohen Fluid Mechanics Academic 2001						
material	2. I. K. Kulluu, Reference Reel			nes, reau	cinic, 2001.	•	
	1 R A Grange	s. r. Fluid Mechania	cs Dover	2012			
	$2 \in M$ White	Viscous Fluid Fl	$\mathbf{OW} \mathbf{M}_{\mathbf{C}} \mathbf{M}_{\mathbf{C}$	$\omega_{\rm N}$ $\mu_{\rm H} = 0$	017		
	2. F. M. White, Viscous Fluid Flow, McGraw-Hill, 2017.						

Course Code	Title of	the	Program Core (PCR) / Electives	Total Number of contact hours				
Coue	Course		(PEL)	Lecture (L)	Tutorial (T)	Practical (P) [#]	Total Hours	
ME2021	Experime Methods Thermal	ental in Science	PCR	3	1	0	4	4
Pre-requi	sites	belence	Course Assessment r	nethods (Co	ontinuous ((CT) and end	assessme	nt (EA))
Fluid Me Thermod Transfer	chanics, ynamics ar in UG Cou	nd Heat Irse	CT+EA					
Course Outcomes CO1: S m CO2: S m dy CO3: S an			tudents will be able asurements and basic m tudents will be able asurement techniques namic variables and the udents will be able to d basics of flow-visu earch.	to acquin nethods of c to develop for thern ermal radiati learn the fu ualization r	re knowled lata acquisi o a theored mal-and-tra ion. undamental methods fo	dge about tion and data tical unders nsport-prope s of wind to or experime	basic co a analysis standing o erties, th unnel mea entation a	oncepts of of various ermofluid- asurements and future
		Topics	Covered					Hours
		1.2 Stan 1.3 Dyn 1.4 Syst 1.5 Four 1.6 Dist	dards amic measurement em response rier analysis ortion					
		2. Data 2.1 Erro 2.2 Unc 2.3 Stati 2.4 Grap 2.5 Mul 2.5 Goo	analysis r analysis ertainty analysis stical analysis ohical analysis and cu tivariable regression dness of fit	rve fitting				7
		3. Phys measur 3.1 Intro 3.2 Simi 3.2.1 E Strouhal 3.3 Ope 3.4 Com 3.5 Inter 3.6 Surv	Sical laws of fluid ement techniques oduction ilarity analysis Examples involving I number, and Fourier n channel flow appressible flow facial phenomena yey of dimensionless p	mechanics Reynolds number	number,	e ir applica drag coe	fficient,	5 Page 8
		4 Flow	measurement and F	low-Viene	lization n	nethods		5
4. Flow 4.1 Pos 4.2 Flo			tive displacement me v-obstruction method	thods	uizativii II			5

Γ

	4.3 The sonic nozzle	
	4.4 Flow measurement by drag effects	
	4.5 Hot-wire and hot-film anemometers	
	4.6 Magnetic flow meters	
	4.7 Flow-visualization methods	
	4.7.1 The shadowgraph	
	4.7.2 The schlieren	
	4.7.3 The interferometer	
	4.7.4 The Laser Doppler Anemometer (LDA)	
	4 7 5 Smoke methods	
	4.7.6 Pressure probes and impact pressure in supersonic flow	
	5 Massurements of thermofluid-dynamic variables	6
	5.1 Temperature measurement	0
	5.2 Valacity masurement	
	5.2 Velocity measurement	
	S.S Pressure measurement	7
	6. Measurements of thermal-and-transport-property	/
	6.1 Viscosity measurement	
	6.2 Inermal conductivity measurement	
	6.5 Diffusion coefficient measurement	
	6.5 Humidity maggirement	
	6.6 Colorimotry	
	6.0 Calofinetry	
	6.7 Convection neat-transfer measurements	
	6.8 Heat-flux meters	
	7. Measurement of thermal radiation	4
	7.1 Measurement of thermal radiation	
	7.2 Measurement of emissivity, reflectivity and transmissivity	
	7.3 Measurements of solar radiation	
	7.4 Detection of nuclear radiation	
	8. Wind tunnel	4
	8.1 Introduction	
	8.2 Classification	
	8.3 Instrumentation and calibration of wind tunnels	
Text Books,	Text Books:	
and/or reference	1. Experimental methods for engineers by J. P. Holman	
material	2. Fluid mechanics measurement -Edited by R. J. Goldstein.	
	3. Measurement systems—application and design by E. O. Doebelin	
	4. Experimentation, validation, and uncertainty analysis for engineers by H	.W.
	Coleman and W.G. Steele Jr.	
	Reference Books:	
	1. Handbook of experimental fluid mechanics by Tropea et al.	
	2. Handbook of heat transfer by Rohsenow et al.	
	3. Instrumentation, measurements and experiments in fluids by E. Rathakri	shnan

Course	Durse Title of the Program Core Total Number of contact hours ode course (PCP) / Electives					Credit		
Code	course		(PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P) [#]	Total Hours	
ME2022	Computa Methods Thermal	tional in Science	PCR	3	1	0	4	4
Pre-requi	sites		Course Assessment n	nethods (Co	ontinuous (C	CT) and end	assessme	nt (EA))
Fluid Me Thermod Transfer	chanics, ynamics ar in UG Cou	nd Heat rse	CT+EA					
Course Outcomes CO1: St lin (C CO2: S co CO3: St of			udents will be able to ear and non-linear a DEs), and partial different tudents will be able mplexity, accuracy, stabulation udents will be acquainted complex equations like which are rarely availab	learn and i lgebraic e ential equat to acquire bility, and e ed with the e the Navie ble.	implement quations, o ions (PDEs e working rrors in solu numerical to r-Stokes eq	solution pro ordinary dif) on a comp knowledge ation proced echniques of uations, the	cedures f fferential uter. of com ures. f obtaining analytica	or solving equations nputational g solutions l solutions
		Topics	Covered					Hours
		Introduct numerica and thei engineer mechanio	tion: Concepts of con al schemes. Various fir r applications to fund ing and applied scient cs and heat transfer.	nsistency, nite differer lamental pa nces. Case	stability, a nce and fini artial differ studies s	nd converg ite element rential equa relected fro	ence of methods tions in m fluid	10
Finite D Forward derivativ discretiz non-unif schemes Fourth Shooting iteration hyperbo the meth The La Fourier and erro thermal standard MacCor Compres			ifference Method: Class , Backward difference es using Taylor's s ation. Fourier (von Ne orm Grids, Grid Inde . Boundary treatments order Runge-Kutta n ; method, Predictor-co with applications to ic problems: Model pro ods of lines.	sification, I re, Discret eries, Tru umann) ac ependence . Euler e nethods an rrector me flow and oblems and	nitial and B ization of ncation er curacy ana Test. Bas explicit and nd Newtor thods and heat transf stability est	spatial ar spatial ar ror and o lysis. Unife ic finite di l implicit r n-Raphson Nachsheim- er. ; Parabe imates. Exar	nditions, nd time order of orm and afference nethods, method, -Swigert olic and mples of	17
			R-Richtmyer equivalen veries. Von- Neumann s r estimates. Keller Box boundary layers. ; Conv discretization, Up-v mack Method and ssible Navier–Stokes Eq	ce theoren tability ana and Smith vection dom winding a Beam–Wa juations.	n. Stability lysis. Consi 1's method ninated prob nd Highe rming Scl	analysis. stency, conv with applica plems: The f r order r neme for	Discrete vergence ations to ailure of nethods. solving	17

	Text Books:
Text Books,	1. Fundamentals of engineering numerical analysis by P. Moin, Cambridge
and/or reference	University Press.
material	2. Computational methods for fluid dynamics by J. H. Ferziger, M. Perić, R. L.
	Street, Springer International Publishing
	3. Computational fluid mechanics and heat transfer by R.H. Pletcher, J. C. Tannehill,
	D.A. Anderson, Hemisphere Publishing Corporation.
	4. Computational fluid dynamics. The basics with applications by JD Anderson,
	McGraw Hill Education.
	5. Numerical solution of partial differential equations: Finite Difference Methods by
	G. D. Smith, Oxford University Press.
	Reference Books:
	1. Numerical heat transfer fluid flow by S.V. Patankar, Hemisphere Publishing Co.
	2. Computational fluid flow and heat transfer by K.Muralidhar and T.Sundararajan,
	Narosa Publishing House.
	3. Computer Simulation of flow and heat transfer by P.S. Ghoshdasdidar, TMH Ltd.

Department of Mechanical Engineering							
Course	Title of the course	Program	Total Nu	mber of cont	act hours		Credit
Code		Core (PCR)	Lecture	Tutorial	Practical	Total	
		/ Electives	(L)	(T)	(P) [#]	Hours	
		(PEL)					
ME2023	Mathematical	PEL	3	1	0	4	4
	Methods in Thermal						
	Science						
Course Out	tcomes	CO1: Student	s will be ab	le to inculcat	e nonstandar	d	
		analytical and	semi-analy	rtical method	s especially i	n	
		solving proble	ems of phys	ical interest i	in the area of		
		thermodynam	ics, heat tra	nsfer, and flu	uid mechanic	s.	
		CO2: Student	s will be ab	le to master t	heir skills es	pecially	
		non-computer	based phys	sical solution	of problems	of	
		practical inter	est.				
		CO3: This coi	urse eventu	ally enable th	he students to	abridge	
		the apparently	unmanifes	ted gap betw	een the expe	riment	
		and the compl	utation.	• .1 . 1			
		CO4: This sut	oject will tra	ain the stude	nts to obtain a	an	
		intuitive vand	ation of the	results etthe	r obtained fro	om the	
		CO5. This cut)II. maa ayidaa ti	a students to	a altra	
		COS: This suc	Ject III esse	ally in the or	ie students to	solve	
		thermodynam	ion hoot tro	ally in the ar	ea or	0	
	Tania Covarad	thermodynam	ics, neat tra	insier, and m	ind mechanic	5.	Haung
	Topics Covered						nours
	1. Perturbation Meth	ods in Heat Tr	ansfer				5
	1.1 Regular perturbati	on expansions					
	1.2 Singular perturbat	ion expansions					
	1.3 Method of strained	d coordinates					
	1.4 Method of mate	ched asymptotic	c expansio	ns vis-á-vis	Bejan's me	ethod of	
	intersecting asymptotes.						
	1.5 Examples with industrially important problems						
	2. Similarity Analyse	s of Boundary	Value Prob	olems in Hea	t Transfer		5
	2.1 Free parameter me	ethod					
	2.2 Group theory meth	nod					

	M. TECH. IN THERMAL ENGINEERING	
	2 3 Dimensional analysis vis-á-vis scaling analysis	
	2.4 Role of coordinate systems in similarity analyses	
	2.5 Examples with industrially important problems	
	3. Finite Fourier Transform (FFT) Method for Conduction and Diffusion	5
	Problems	
	3.1 Basis function as a solution for eigen value problems	
	3.2 Representation of an arbitrary function using orthonormal function	
	3.3 Self-adjoint eigen value problems	
	3.4 Point source solutions	
	3.5 Examples with industrially important problems	4
	4. Applications of Dunamel's Theorem in Heat Transfer	4
	4.1 Duranier's theorem for continuous time dependent boundary conditions	
	4.2 Treatment of discontinuity 4.3 Duhamel's theorem for internal heat generation	
	4.4 General statement of Duhamel's theorem	
	4.5 Examples with industrially important problems	
	5. Applications of Green's Function for Solution of Heat Conduction Problems	5
	5.1 Green's function approach for solving nonhomogeneous transient heat	
	conduction	
	5.2 Determination of Green's function	
	5.3 Representation of point, line, and surface heat sources with delta functions	
	5.4 Products of Green's functions	
	5.5 Examples with industrially important problems	
	6.Applications of Goodman's Heat Balance Integral Method for Heat	5
	Transfer Problems	
	6.1 Linear neat conduction equation with fixed boundaries	
	6.3 Problems involving phase change	
	6.4 Unsteady convection problems	
	6.5 Examples with industrially important problems	
	7. Applications of Conformal Mapping in Heat and Fluid Flow Problems	5
	7.1 Selection on mapping functions	
	7.2 Steady state heat conduction in doubly connected regions	
	7.3 Transient heat transfer in isotropic and anisotropic media	
	7.4 Free streamline flow and the Hodograph method	
	7.5 Examples with industrially important problems	
	8. Applications Variational Principles to Fluid Flow, Heat and Mass Transfer	5
	8.1 The method of weighted residuals	
	8.2 Variational principles for Navier-Stokes equation	
	6.5 Least square interpretation of weinstein's methods	
	8.5 Examples with industrially important problems	
	9 Integral Transforms and Operational Methods in Heat Conduction	5
	9 1 Properties of Laplace Transform	5
	9.2 Inversion of the Laplace Transform	
	9.3 Integral Fourier and Hankel Transform	
	9.4 Kernels of Finite Integral Transforms	
	9.5 Solution of some differential equations with variable coefficients:	
	Examples with industrially important problems	
	Text Books	
ext	Text books:	
ext ooks,	1. B. Weigand, Analytical Methods for Heat Transfer and Fluid Flow Problems, Sprin	nger,
ext ooks, nd/or	1. B. Weigand, Analytical Methods for Heat Transfer and Fluid Flow Problems, Sprin 2015.	nger,
ext ooks, nd/or eference	 B. Weigand, Analytical Methods for Heat Transfer and Fluid Flow Problems, Sprin 2015. G. Brenn, Analytical Solutions for Transport Processes: Fluid Mechanics, Heat and Sprin 2015. 	nger, d Mass
ext ooks, nd/or ference aterial	 B. Weigand, Analytical Methods for Heat Transfer and Fluid Flow Problems, Sprin 2015. G. Brenn, Analytical Solutions for Transport Processes: Fluid Mechanics, Heat and Transfer, Springer, 2017. 	nger, d Mass

Hall, 1964.
4. A. Aziz, T. Y. Na, Perturbation Methods in Heat Transfer, Hemisphere, 1984.
5. M. D. Van Dyke, Perturbation Methods in Fluid Mechanics, Parabolic Press, 1975.
6. M. N. Özişik, Boundary Value Problems in Heat Conduction, Dover, 1989.
7. K. D. Cole, J. V. Beck, A. Haji-Sheikh, B. Litkouhi, Heat Conduction Using Green's
Functions, CRC Press, 2011.
8. A. V. Luikov, Analytical Heat Diffusion Theory, Academic, 1968.
9. M. A. Biot, Varitional Principles in Heat Transfer, Oxford, 1970.
10. H. S. Carslaw, Introduction to the Mathematical Theory of Conduction of Heat in Solids,
Dover, 1945.
11. I. H. Sneddon, The Use of Integral Transforms, McGraw-Hill, 1972.
12. B. Finlayson, The Method of Weighted Residuals and Variational Principles, SIAM, 2014.
13. R. Schinzinger, P. A. A. Laura, Conformal Mapping: Methods and Applications, Dover,
2003.
14. A. K. Pramanick, The Nature of Motive Force, Springer, 2014.
Reference Books:
1. M. N. Ozisik, M. D. Mikhailov, Unified Analysis and Solution of Heat and Mass Diffusion,
Dover, 2003.
2. J. Fourier, Analytical Theory of Heat, Dover, 2003.
3. L. I. Sedov, Similarity and Dimensional Methods in Mechanics, CRC, 2018.
4. J. C. Slattery, Momentum, Energy, and Mass Transfer in Continua, McGraw-Hill, 1972.
5. R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I & II, Wiley-VCH, 2010.
6. Sir H. Jeffreys, Lady Jeffreys, Methods of Mathematical Physics, Cambridge, 1972.
7. A. N. Tikhonov, A. A. Samarski, Equations of Mathematical Physics, Dover, 2011.
8. S. Bergman, M. Schiffer, Kernel Functions and Elliptic Differential Equations in
Mathematical Physics, Dover, 2005.
9. H. S. Carslaw, J. C. Jaeger, Operational Methods in Applied Mathematics, Dover, 1963.
10. S. Sieniutycz, Conservation Laws in Variational Thermo-Hydrodynamics, Kulwer, 1994.
11. I. J. Kumar, Recent Mathematical Methods in Heat Transfer, In: Advances in Heat
Transfer, Editors: J. P. Hartnett, T. F. Irvive, Jr., Academic, 1972.
12. R. Bellman, G. Adomian, Partial Differential Equations: New Methods for Their Treatment
and Solution, Springer, 1984.
13. S. G. Mikhlin, Mathematical Physics: An Advanced Course (Translated: Multilingua),
North Holland, 1970.
14. A. Comte, The Philosophy of Mathematics (Translated: W. M. Gillespie), Dover, 2005.

SYLLABUS FOR ELECTIVES

Department of Mechanical Engineering									
Course	Title of the course	Program Core	Total Nu	Total Number of contact hours Cre					
Code		(PCR) /	Lecture	Tutorial	Practical	Total			
		Electives	(L)	(T)	(P) [#]	Hours			
		(PEL)							
ME9011	Applied	PEL	3	0	0	3	3		
	Computational								
	Methods								
	Topics Covered						Hours		
	Solution of linear sin	nultaneous equa	tions, matı	rix Inversio	on		6		
	Solution of non-line	ar equation of on	ne variable	and soluti	on of syster	m of	6		
	non-linear simultaneous equation								
	Interpolation and cur	rve fitting					4		
	Numerical differenti	ation and integra	ation				4		
	Solution of ordinary	differential equa	ations and	solution of	f partial		5		
	differential equation	S			-				
	Discrete and Fast Fo	ourier transforma	tion				5		
	Analysis of Eigen va	alue problems					4		
	Application to differ	ent types of Bou	ndary valu	ie, Initial v	value and E	igen	4		
	value problems	• •	•			C			
	Brief discussion on s	software for num	nerical solu	ition			2		
Text	Text Books:								
Books,	1. Advanced Enginee	ring Mathematics.	, E. Kreyszi	ig					
and/or	2. Numerical Method	s for Scientist and	Engineers,	R. W. Han	nming				
reference	Reference Books:								
material	1. Introduction to Nu	merical Analysis,	F. B. Hilde	brand					
	2. Fundamentals of E	ngineering Numer	rical analys	is, P. Moin					

	Department of Mechanical Engineering							
Course	Title of the	e course	Program	Total Number of contact hours Cr				Credit
Code			Core (PCR)	Lecture	Tutorial	Practical	Total	
			/ Electives	(L)	(T)	(P) [#]	Hours	
			(PEL)					
ME9014	Operation	s Research	PEL	3	0	0	3	3
Pre-requisi	tes		Course Assess	sment meth	ods (Continu	ous (CT) and	end assess	sment
			(EA))					
NIL			CT+EA					
Course Out	tcomes	CO1: Stud	ents will be able to discuss the history, concepts, formulations and					
		appli	cations of operations research.					
		CO2: Stud	ents will be able	e to analyze	and solve co	onflicting prob	olems on c	onstrained
		linear	r optimization pr	oblems hav	ving single ar	nd multiple ob	jectives.	
		CO3: Stude	ents will be able	to apply int	teger, dynam	ic programmi	ng method	ls for
	1	solvi	ng relevant prob	lems.				
Topics Covered						Hours		
	Origin, growth, definition, methodology and application of OR.						2	
	•						_	
	Page 14							

	1						
	Linear Programming, Mathematical Modelling, Graphical Method of Solution, Sensitivity Analysis.	7					
	Simplex Method, Big M and 2-Phase Methods, Duality in LP.	8					
	Transportation problem.						
	Assignment Problem. Sequencing problem.						
	Queuing model and Simulation.	3					
	Competitive Decision Making, Game Theory.	3					
	Duality Theory and Sensitivity Analysis.	3					
	Integer Programming, Binary Integer Programming.						
	Dynamic Programming.	3					
	LP- Softwares.	3					
Text Books, and/or reference material	 Text Books: 1. Basu, S. K., Pal, D. K., Bagchi, H., Operation Research for Engineers, 2nd Edition, IBH Publishing Co. Pvt. Ltd., 1998 2. Hillier, Fredrick S. and Lieberman, Gerald J., Introduction to Operations Research, 7 TMH, 2001. 3. Taha, H. A., Operation Research, McMillan Publishing Co., London, 1982. Reference Books: 1. Churchman, C. M., Ackoff, R. L., Arnoff, E.L., Introduction to Operation Rese Publishing o., 1962 2. Hanssmann, F., Operations Research in Production and Inventory Control, John Wile Inc., London, 1962. 	Oxford & 'th Edition, earch, Asia ey & Sons,					

	Department of Mechanical Engineering						
Course	Title of the course	Program Core	Total Number of contact hoursCredit				Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives	(L)	(T)	(P) [#]	Hours	
		(PEL)					
ME9018	Finite Element	PEL	3	0	0	3	3
	Methods						
Pre-requisi	ites	Course Assessn	nent method	ds (Continu	ous (CT) and	d end asse	ssment
_		(EA))					
NIL		CT+EA					
Course Ou	Itcomes	CO1: Students formulatio Element M CO2: Students problems of employing CO3: Students w and physic problems i computatio	will be ns and ap lethod. will be ab on applicat Finite Eler vill be able val solution n order to con.	able to applications ole to anal ions of crit nent Metho to apply van techniques compare the	understand of the ma yze and so ical uses of d as a code rious analytic to industrial em with the r	the basic athematics lve vario commerc cal, semi- and theor esults of	c concepts, s of Finite us practical ial software analytical, retical actual
	Topics Covered					Hours	
L	1						D 145

	M. TECH. IN THERMAL ENGINEERING	
	Brief review of mathematical concept, Matrix, gauss elimination method, Eigenvalue solution, Numerical Integration, Weighted residual methods, calculus of variation and Rayleigh-Ritz method.	5
	Introduction to finite element methods: Direct approach for standard discrete system. Potential Energy approach and virtual work approach, Variational approach and Galerkin's weighted residual approach for continuum.	6
	Interpolation polynomial – Lagrangian and Hermite. Natural Co-ordinates, Pascal triangle, concept of continuity, convergence criteria.	4
	Common elements: Bar elements, beam elements, triangular Elements, rectangular elements etc. Lagrangian Elements and Serendipity Elements. Concept of isoparametric elements.	5
	Concept of time-independent field problem and time independent field problem involving differential equations. Different types of Boundary conditions.	4
	Concept of mass matrix. Vibration problem and dynamic response problem.	4
	Application of finite element to structural problem: Plain stress / Plane strain problems, axisymmetric problems, plasticity and non-linear problems, Bending of plates, three-dimensional stress analysis problems, etc.	6
	Introduction to geometric non-linearity and material non-linearity in finite element analysis.	3
	Computer procedure for finite element analysis.	3
Text Books, and/or reference material	 Text Books: 1. An Introduction to the Finite Element Method, J. N. Reddy 2. Text book of Finite Element analysis, P. Seshu Reference Books: 1. The Finite Element Method in Engineering, S. S. Rao 2. The Finite Element Method its Basis and Fundamental, O. C. zienkiewich, R. L. Z. Zhu 	Taylor, J.

	Department of Mechanical Engineering							
Course	Title of th	f the course Program Total Number of contact hours				Credit		
Code			Core (PCR)	Lecture	Tutorial	Practical	Total	
			/ Electives	(L)	(T)	(P) [#]	Hours	
			(PEL)					
ME9020	Knowledg	ge Based	PEL	3	0	0	3	3
	Systems							
Pre-requisi	tes		Course Asses	sment meth	nent methods (Continuous (CT) and end assessment			
_	•			(EA))				
NIL			CT+EA					
Course Out	tcomes	CO1: Stude	ents will be able	to understa	and need of s	oft computin	g techniqu	ies
		CO2: Stude	ents will be able	to apply ki	nowledge of	different soft	computin	g
		meth	ods for solving	engineering	g problems		•	•
	CO3: Students will be able to apply combined soft-computing techniques							
COS. Students will be able to apply combined soft-computing techniques							r	
	Topics Covered						Hours	

	Introduction to expert systems – Definition, Need for expert systems, Methods of developing expert system – offline training/learning AND on-line training/learning Tools for developing expert systems – Hard Computing vs. Soft Computing.	5				
	Fuzzy Set Theory, Fuzzy Logic Controllers (FLC).	7				
	Neural Network (NN) Controllers – back propagation network, SOM, radial basis function networks, recurrent neural networks etc.	7				
	Learning/optimisation tools – traditional (direct search and gradient based) and non-traditional (genetic algorithms (GAs), simulated annealing etc.) techniques.	12				
	Combined techniques of soft computing – GA-FLC, GA-NN, NN-FLC, GA-FLC- NN Some Applications.	8				
	MatLab toolbox on GA, FLC and NN.	3				
Text	Text Books:					
Books,	1.D. K. Pratihar, Soft Computing, Narosa Publishers, 2011S.S. Rao, Engineering Opt	timization,				
and/or reference	Theory and Practics, 3rd Enlarged Edition, New Age International Publishers, New Delhi, 2010.					
material	2.David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, Mass, 1989.					
	3.Simon Haykin, Neural Network and Learning Machines, 3rd Edition, Person Education, India 4. Timothy J. Ross, Fuzzy Logic with Engineering Applications, 3rd Edition, Wiley, 2011.					
	Reference Books:					
	1. Soft Computing and Its Applications, Vol. 1 & 2, Kumar S. Ray, Apple Academic	Press.				

		Department of Med	chanical En	gineering				
Course	Title of the course	Program Core	Total Nu	mber of con	ntact hours		Credit	
Code		(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives	(L)	(T)	(P) [#]	Hours		
		(PEL)						
ME9025	Modelling and	PEL	3	0	0	3	3	
	Simulation of							
	Mechanical							
	Systems							
Pre-requis	ites	Course Assessn	nent method	ds (Continu	ous (CT) and	d end asse	ssment	
		(EA))						
NIL		CT+EA						
Course Ou	itcomes	CO1: Students	will be a	able to un	derstand th	e history	, concepts,	
		formulations and applications of fundamental mechanics						
		CO2: Students will be able to analyze and solve various practical						
		co2. Students will be able to analyze and solve valious plactica						
		problems on applications system theoretic approach.						
		CO3: Students will be able to apply the knowledge of Bondgraph						
		technique	to various i	ndustrial pr	oblems.			
	Topics Covered						Hours	
Elements of analytical mechanics; classification of constrains, Principles of					6			
	virtual work. Lagrange's first equation. Lagrange's second equation.							
	Hamilton's equations.							
	1 1							
							rage [17	

	Nonholonomic mechanical system dynamics, Routh and Gibb's equation,	6
	Kane dynamics with application to multi body systems.	1
	Modelling of systems involving continuous medium. Hamilton's principle	8
	for continuous medium. Elements of thermo-continuum and theory of	
	constitutive relations.	1
	Fundamental topics in bond graph modelling of physical systems: Elements	11
	of multi-bond graphs, Thermo-mechanical bond graphs and continuous	
	systems and other systems of typical interest. Introduction to various system	
	simulation software.	
	Basic elasticity theory. Strain Measurement Methods: Various types of	9
	strain gauges, Electrical Resistance strain gauges, semiconductor strain	
	gauges, strain gauge circuits, transducer applications, recording instruments	1
	for static and dynamic applications.	1
Text	Text Books:	
Books,	1. A. Mukherjee, R. Karmakar, Modelling and Simulation of Engineering Systems t	hrough
and/or	Bondgraphs, Narosa, 2000.	
reference	Reference Books:	
material	1. J. U. Thoma, Simulation by Bondgrphs: Introduction to a Graphical Method, Spri	nger, 2011.

Department of Mechanical Engineering								
Course	Title of th	e course	Program	Total Nu	mber of cont	act hours		Credit
Code			Core (PCR)	Lecture	Tutorial	Practical	Total	
			/ Electives	(L)	(T)	(P) [#]	Hours	
			(PEL)				-	
ME9029	Optimizat	ion in	PEL	3	0	0	3	3
	Engineerii	ng Design						
Pre-requisi	tes		Course Asses	sment meth	ods (Continu	ious (CT) and	d end asse	ssment
NUT			(EA))					
NIL			CT+EA					
Caura Out		CO1. 64-4		to december	and famousl			
Course Ou	comes		ents will be able				on proble	
		CO2: Stude	ents will be able	nts will be able to apply knowledge of different optimization methods				
		for so	olving engineeri	lving engineering problems				
		CO3: Stude	ints will be able to differentiate between optimization methods and					
		sugge	est a suitable tec	st a suitable technique applicable for a specific problem.				
	Topics Co	overed						Hours
	Introducti	on: Engineer	ring Application	, Statement	and Classifi	cation of the		3
	Optimizat	ion Problem	, Classification,	formulation	n procedures	•		
	Classical I	Methods: Sir	ngle Variable O	ptimization	; Multivariab	le Optimizati	ion	5
	without ar	ny Constrain	ts with Equality	and Inequa	lity Constrai	nts, Kuhn–T	ucker	
	Condition	s; Linear Op	timization Meth	ods, One-L	Dimensional	Minimization	l	
	Method. U	Inimodal Fu	nction.	1 171	. 10.11			2
	Elimination	n Methods: H	Exhaustive searc	ch, Fibonoc	ci and Golde	n Method.		3
	Internalati	on Mathad	Quadratia and	Cubic Inton	nolation Mat	had		1
	Interpolation Method – Quadratic and Cubic Interpolation Method.					1		
	Unconstrained Minimization Method Univariate, Conjugate Directions, Steepest						5	
	Descent (C	Cauchy) Met	hod, Newton's	Method, N	larquardt M	ethod, Quasi	-Newton	
	Method.							
L	1							1

	Constrained Minimization Method, Random Search Methods, Sequential Quadratic	5			
	Programming. Basic Approach of the Penalty Function Method, Interior Penalty				
	Function Method, Exterior Penalty Function Method.				
	Reduction of size of an optimization problem. Scaling of design variables and	1			
	constraints.				
	Multi-objective optimization problems, DPGA, NSGA	5			
	Introduction to optimization Toolbox in MATLAB.	2			
Text	Text Books:				
Books,	1. S.S. Rao, Engineering Optimization, Theory and Practics, 3rd Enlarged Edition, New Age				
and/or	International Publishers, New Delhi, 2010.				
reference	2.Ashok D. Belegundu and Tirupathi R Chandrupatla, Optimization Concepts and Applications				
material	in Engineering, Pearson Education 1999, First India Reprint, 2002.				
	Reference Books:				
	1. G. N. Vanderplaats, Numerical Optimization Techniques for Engineering De	esign with			
	Applications, McGraw-Hill, New York, 1984.				
	2. R. L. Fox, Optimization Methods for Engineering Design, Addison- Wesley, Reading, Mass, 1971.				

Department of Mechanical Engineering								
Course	Title of the course	Program	Total Nu	mber of cont	act hours		Credit	
Code		Core (PCR)	Lecture	Tutorial	Practical	Total		
		/ Electives	(L)	(T)	(P) [#]	Hours		
		(PEL)						
ME9045	Advanced Theory of	PEL	3	0	0	3	3	
	Turbomachinery							
Pre-requisi	tes	Course Assess	sment meth	ods (Continu	ous (CT) and	l end asses	ssment	
		(EA))						
NIL		CT+EA						
Course Out	tcomes	CO1: Students will be able to work on application of Fluid Mechanics						
		in designing verious Turbo Machinerias						
		CO2. Students will be able to engly and calve writing						
		CO2. Students will be able to analyze and solve various practical						
		problems on applications of Thermodynamics, Heat Transfer,						
		and Fluid Mechanics in fabricating various Turbo-Machineries.						
		CO3: Students will be able to apply various dimensional analyses to						
		solve industrial and theoretical problems.						
	Topics Covered						Hours	

	Introduction, Classification of turbo machinery. Application of TT – theorem in turbo machinery. Incompressible fluid in turbomachines – Effects of Reynolds Number and Mach number. Energy transfer between a fluid and a rotor - Euler turbine equation – components of energy transfer impulse and Reaction – Efficiencies. ; Radial flow pumps and compressors – head capacity relationship – Axial flow pumps and compressors – Degree of reaction dimensionless parameters – Efficiency and utilization factor in Turbo Machinery. ; Thermodynamics of Turbo machine processes – Compression and expansion efficiencies – Stage efficiency – Infinitesimal stage and finite stage efficiencies. ; Flow of fluids in Turbo machines – flow and pressure distribution over an airfoilsection – Effect of compressibility cavitations – Blade terminology- Cascades of blades – fluid deviation –Energy transfer of blades – Degree of reaction and blade spacing – Radial pressure gradient – Free vortex flow – losses in turbo machines. ; Centrifugal pumps and compressors – Inlet section – Cavitation – flow in the impller channel – flow in the discharge casing pump and compressor characteristic. ; Radial flow turbines –inward flow turbines for compressible fluids – inward flow hydraulic – velocity and flow coefficients – gas turbine blading – Kaplan turbine – pelton	33
	wheels.	
Text	Text Books:	
Books,	1. Lee, 'Theory and Design of Steam and Gas Turbine', McGraw Hill, 1954.	
and/or	2. Yahya, 'Turbines, Compressions & Fans', Tata McGraw Hill, 1983.	
reference	Reference Books:	
material	1. M. Gambini, M. Vellini, Turbomachinery: Fundamentals, Selection, and Primary D Springer, 2020.	esign,

	Department of Mechanical Engineering							
Course	Title of th	e course	Program	Total Number of contact hours			Credit	
Code			Core (PCR)	Lecture	Tutorial	Practical	Total	
			/ Electives	(L)	(T)	(P) [#]	Hours	
			(PEL)					
ME9047	Multiphas	e Flow and	PEL	3	0	0	3	3
	Heat Tran	sfer						
Pre-requisi	tes		Course Asses	sment meth	ods (Continu	ious (CT) and	l end asses	ssment
			(EA))					
NIL			CT+EA					
Course Out	tcomes	CO1: Lead	ls students tow	ard a clear	understand	ing and firm	grasp of	the basic
		principles of	of multi phase fl	ow and hea	t transfer.			
		CO2: Unde	rstands the fluid-dynamic involved in convection and multi-phase heat					
		transfer.						
		CO3: Perf	orms elementary analysis of most gas-liquid two-phase systems and					
		prepares to	use more advanced models.					
		CO4: Equi	ps the student with the analytical model to apply the fundamentals to a					
		wide varie	ty of complex engineering problems, formulate them and interpret the					
		results.						
		CO5: Stude	ent can analyze	Hydrodyna	mics of three	phase flows	and comp	are two
	1	phase	e flow situations	5.				
	Topics Co	overed						Hours
	Introduction, Flow Reg							5
Homogeneous Flow, Se			eparated Flow.					4
	Condensation.					2		
	One dimensional steady separated flow model.					6		
	Flow in wh	nich inertia et	ffects dominate,	energy equ	ations.			3

	The separated flow model for stratified and annular flow.	2
	General theory of drift flux model.	3
	Application of drift flux model to bubbly and slug flow.	4
	Hydrodynamics of solid-liquid and gas-solid flow.	4
	An introduction to three phase flow.	3
	Fluid-Population Balance Technique, Volume of Fluid Method, Lattice Boltzmann	6
	Model.	
Text	Text Books:	
Books,	1. Ghiaasiaan, S. M., Two-Phase flow, Boiling, and Condensation, Cambridge University	sity Press.
and/or	2. Brennen, C.E., Fundamentals of Multiphase Flow, Cambridge University Press	
reference	Collier, J. G. and Thome, J. R., Convective Boiling and Condensation, 3rd ed., Oxford	1
material	University Press	
	3. Wallis, G.B., One Dimensional Two Phase Flow, McGraw Hill Higher Education.	
	4. Hewitt, G.F., Measurement of Two Phase Flow Parameters.	
	5. Govier, G.W., and Aziz, k., Flow of Complex Mixtures.	
	Reference Books:	
	1. Hetsroni, G., Handbook of Multiphase systems.	

	Department of Mechanical Engineering						
Course	Title of the course	Program	Total Nu	mber of cont	act hours		Credit
Code		Core (PCR)	Lecture	Tutorial	Practical	Total	
		/ Electives	(L)	(T)	(P) [#]	Hours	
		(PEL)					
ME9053	Theory of	PEL	3	0	0	3	3
	Combustion						
Pre-requisit	es	Continuous as	ssessment (CA), Mid-ter	m (MT), End	l-term	
Courses in t	hermodynamics and	Evaluation: C	A+MT+ET				
fluid mecha	nics						
Course	CO1: Understand the	fundamentals o	f reacting s	ystems			
Outcomes	CO2: Correlate therm	odynamics, flui	d mechanic	s and chemic	al kinetics		
	CO3: Model the reac	ting systems					
	CO4: Describe comb	ustion driven ins	stabilities				
	CO5: Calculate flame	e properties and	emission ch	naracteristics			
	CO6: Appreciate the	measurement te	chniques of	a combustio	n system		-
	Topics Covered						Hours
	Introduction: Combu	stion and its app	olication. A	pproaches to	Combustion	study.	1
	Types of combustion.			PP10401105 00	e onno uotron	seady,	-
	Thermodynamics of	reacting system	s: Review	of Thermody	namics, Fuel	s.	6
	Stoichiometry, First la	w of reacting sy	stem, Enth	alpy of forma	tion, enthalp	y of	
	combustion, Adiabatic	c flame temperat	ure, Chemi	cal equilibriu	ım, Equilibri	um	
	constants, Full Equilib	orium model, Wa	ater Gas equ	uilibrium, Ca	se studies, O	xyfuel	
	combustion, Syngas c	ombustion.	_			-	
	Chemical kinetics: G	lobal and eleme	ntary reacti	ons, collision	theory, Chai	in	5
	reactions, Chemical ti	me scales, Kinet	tic rate coef	ficients, Mul	tistep mechai	nism,	
	Steady state approximation, Partial equilibrium approximation.						
	Simple reactor models: Constant pressure reactors, Constant volume reactors, 3						3
	Well stirred reactors,	Plug flow reacto	rs.				
	Conservation equation	o ns : Reynolds tr	ansport the	orem, Mass,	Momentum,	Energy,	3
	and Species conservat	ion, Entropy bal	ance equati	on.			

	M. TECH. IN THERMAL ENGINEERING					
	Laminar Premixed flames: Rankine-Hugoniot relations, Detonation and	6				
	deflagration waves, Flame propagation and flame speed, Determination of flame					
	speed, Factors affecting flame speed, Flame quenching and Ignition, Flame					
	stability, Liit-oii, Biowout, Flashback.	6				
	Laminar Non-premixed flames: Diffusion controlled systems, Conserved scalar formulation Shuch Zaldovich formulation Durks Schumenn flome. Counter flow	6				
	formulation, Snvab-Zeidovich formulation, Burke-Schumann flame, Counter-flow					
	Drankt and annow combustion. Sprey formation. Evaporation and combustion of	4				
	a single droplet High pressure convective affects. Sprey combustion Cos phase	4				
	a single droplet, right pressure-convective effects, spray combustion, Gas phase					
	Combustion, and dioplet equations.					
	gases Emissions of Particulate matter Abatement of emission Emission	5				
	quantification					
	Combustion diagnostics: Flow field measurement Temperature measurement	4				
	Species and concentration measurements Pressure measurement soot	-				
	measurement Droplet and spray measurement					
Text	Text Books:					
Books.	1. A. Mukhopadhvav and S. Sen, "Fundamentals of Combustion Engineering", CRC	C Press.				
and/or	Taylor & Francis Group.	,				
reference	2. Stephen R. Turns, "An Introduction to Combustion: Concepts and Applications"	, McGraw				
material	Hill					
	Reference Books:					
	1. C. K. Law, "Combustion Physics", Cambridge.					
	2. K. K. Kuo, "Principles of Combustion", John Wiley and Sons Inc.					

Department of Mechanical Engineering							
Course	Title of the	Program	Tota	al Number c	of contact he	ours	Credit
Code	course	Core	Lecture	Tutorial	Practical	Total	
		(PCR)/Electi	(L)	(T)	(P)	Hours	
		ves (PEL)					
ME9054	Renewable	PEL	3	0	0	3	3
	Energy Sources						
Pre-requisite	es	Course Ass	essment	methods (Continuous	(CT) a	and end
		assessment (EA))				
NA	NA CT+EA						
Course	CO1. Understand of	of renewable ar	nd non-ren	ewable sour	ces of energ	gy	
Outcomes	CO2. Gain knowle	dge about prine	ciple of va	rious solar e	energy syste	ms	
	CO3. Understand t	he principle of	wind ener	gy system.			
	CO4. Develop cap	ability to do ba	sic design	of bio gas p	lant.		
	CO5. Understand t	he applications	of differe	nt renewabl	e energy so	urces like	;
	oceanthermal	l, hydro, geothe	ermal ener	gy etc.			
Topics Cov	ered						Hours
INTRODU	CTION TO ENE	RGY STUDI	ES Intro	duction, Er	nergy scien	ice and	8
Technology	Forms of Energy.	Importance of	of Energy	Consumpti	ion as Mea	sure of	
Prosperity, Per Capita Energy Consumption, Roles and responsibility of Ministry of							
New and Renewable Energy Sources, Needs of renewable energy, Classification of							
Energy Resources, Conventional Energy Resources, Non-Conventional Energy							
Resources, V	World Energy Scenar	rio, Indian Ener	rgy Scenar	io.		- •	
							1

SOLAR ENERGY Introduction, Solar Radiation, Sun path diagram, Basic Sun-Earth Angles, Solar Radiation Geometry and its relation, Measurement of Solar Radiation on horizontal and tilted surfaces, Principle of Conversion of Solar Radiation into Heat, Collectors, Collector efficiency, Selective surfaces, Solar Water Heating system, Solar Cookers, Solar driers, Solar Still, Solar power, Solar Photovoltaic fundamentals, Characteristics, Classification, Construction of module, panel and array. Solar PV Systems (stand-alone and grid connected), Solar PV Applications. Government schemes and policies.					
WIND ENERGY Introduction, History of Wind Energy, Wind Energy Scenario of World and India. Basic principles of Wind Energy Conversion Systems (WECS), Types and Classification of WECS, Parts of WECS, Power, torque and speed characteristics, Electrical Power Output and Capacity Factor of WECS, Stand alone, grid connected and hybrid applications of WECS, Economics of wind energy utilization, Site selection criteria, Wind farm, Wind rose diagram					
BIOMASS ENERGY Introduction, Biomass energy, Biomass fuels, Biomass energy conversion technologies and applications, Urban waste to Energy Conversion, Biomass Gasification, Types and application of gasifier, Biomass to Ethanol Production, Biogas production from waste biomass, Types of biogas plants, Factors affecting biogas generation, Energy plantation, Environmental impacts and benefits, Future role of biomass Biomass programs in India					
HYDRO POWER AND OTHER RENEWABLE ENERGY SOURCES Hydropower Capacity and Potential, Small hydro, Environmental and social impacts. Tidal Energy Capacity and Potential, Principle of Tidal Power, Components of Tidal Power Plant, Classification of Tidal Power Plants. Principle of OTEC system, Methods of OTEC power generation. Geothermal Energy Capacity and Potential, Resources of geothermal energy.					
Text	Text Books:				
books,	1. Solar Energy Principle of Thermal Collection and Storage', S.P.Sukhatme,	/TMG,			
and/ or 2. N.K.Bansal, Renewable Energy Source and Conversion Technology/TMC					
reference Reference Books					
material	1. G.L. Johnson, Wind energy systems, Prentice Hall Inc. New Jersey.				
	2.Non-conventional Energy Sources D. S. Chauhan and S. K. Srivastava				

	Department of Mechanical Engineering							
Course	Title of the course	Program	Program Total Number of contact hours				Credit	
Code		Core (PCR)	Lecture	Tutorial	Practical	Total		
		/ Electives	(L)	(T)	(P) [#]	Hours		
		(PEL)						
ME9055	Power Plant	PEL	3	0	0	3	3	
	Engineering							
Pre-requisi	tes	Course Assessment methods (Continuous (CT) and end assessment						
		(EA))						
NIL		CT+EA						
Course Outcomes		CO1: Students will be able to understand the history, concepts,						
		formulations and applications of Thermodynamics, Heat						
		Transfer	, and Fluid	Mechanics ir	the Product	ion of Pov	ver.	

Page | 23

	M. TECH. IN THERMAL ENGINEERING	
	CO2: Students will be able to analyze and solve various problems on applications of Thermodynamics, Heat and Fluid Mechanics in the designing of various comp	practical Transfer, ponents of
	CO3: Students will be able to apply various analytical and gra techniques to solve industrial problems.	aphical
	Topics Covered	Hours
1	Introduction: Energy resources and their availability, types of power plants, selection of the plants, review of basic thermodynamic cycles used in power plants.	2
	Hydro Electric Power Plants: Rainfall and run-off measurements and plotting of various curves for estimating stream flow and size of reservoir, power plants design, construction and operation of different components of hydro-electric power plants, site selection, comparison with other types of power plants.	4
	Steam Power Plants: Flow sheet and working of modern-thermal power plants, super critical pressure steam stations, site selection, coal storage, preparation, coal handling systems, feeding and burning of pulverized fuel, ash handling systems, dust collection-mechanical dust collector and electrostatic precipitator.	10
	Steam generators and their accessories: High pressure Boilers, Accessories, Fluidized bed boiler.	4
	Condensers: Direct Contact Condenser, Surface Condensers, Effect of various parameters on condenser performance, Design of condensers, Cooling towers and cooling ponds	5
	Combined Cycles: Constant pressure gas turbine power plants, Arrangements of combined plants (steam& gas turbine power plants), re-powering systems with gas production from coal, using PFBC systems, with organic fluids, parameters affecting thermodynamic efficiency of combined cycles.	5
	Nuclear Power Plants: Principles of nuclear energy, basic nuclear reactions, nuclear reactors, BWR, CANDU, Sodium graphite, fast breeder, homogeneous; gas cooled. Advantages and limitations, nuclear power station, waste disposal.	5
	Power Plant Economics: load curve, different terms and definitions, cost of electrical energy, tariffs methods of electrical energy, performance & operating characteristics of power plants- incremental rate theory, input-output curves, efficiency, heat rate, economic load sharing, Problems.	5
Text Books, and/or reference material	Text Books: 1. Nag. P.K., Power Plant Engineering, 2nd Tata McGraw-Hill, 2011. 2. Power plant Technology by 'M.M.El-Wakil', McGraw Hill Com., 1985. Reference Books: 1. Black, Veatch, Power Plant Engineering, CBS, 2005. 2. Power plant engineering by 'Arrora & Domkundwar' Dhannet Pai & Song New Della	hi 2008

	Department of Mechanical Engineering							
Course	Title of the	course	Program	Total Nu	mber of cont	act hours		Credit
Code			Core (PCR) /	Lecture	Tutorial	Practical	Total	
			(PFI)	(L)	(T)	(P)*	Hours	
ME9071	Advanced E	Energy	PEL	3	0	0	3	3
	Conversion							
Pre-requisi	tes		Course Assess	ment metho	ods (Continue	ous (CT) and	end asses	sment
NII			(EA))					
INIL			CI+LA					
Course Ou	tcomes		tudents will be a	ble to unde	rstand the his	story concen	ts formul	ations and
		ar	polications of var	ious Power	Generation S	Systems.	ts, iorinui	ations and
		CO2: S	tudents will be a	able to anal	yze and solv	ve various pr	actical pro	oblems on
		ap	oplications of Pov	wer generat	ion systems.			
		CO3: St	tudents will be al	ole to apply	various solu	tion techniqu	es for solv	ving new
		ap	pplied and theore	tical proble	ms.			
	Topics Cov	vered						Hours
	Different en	nergy res	ources, Energy	Scenario ir	n India, Intro	oduction to 1	Different	2
	Energy Con	version s	ystems (AG		. 1 6. 1	1 51 11	1 1 1	
	Advanced combustion	Technolo	chnologies (AC	(T), Pulve	rized fired	and Fluidiz	zed bed	/
	Gasification	n based en	ergy conversion	Technologi	ies			4
	Advanced combined c	Power Go ycle, Integ	eneration Cycles grated Gasification	s: Supercri	tical power ed Cycle (IG	Plant, Coge CC)	neration,	5
	Biomass En	ergy conv	version Technolo	gies				2
	Direct Ener	gy Conve	rsion: Fuel Cell,	Magneto H	ydroDynami	c (MHD) sys	tem	6
	Nuclear Pov	wer Gener	cation Technolog	у				5
	Different C	O ₂ capture	e Technologies					2
Text Books, and/or reference	Text Books: 1.Principles of Energy Conversion by A.W. Culp, Tata McGraw Hill 2. Energy Conversion edited by D. Goswami, F. Kreith, CRC Press Reference Books:							
material	1.Fluidized 2PEM Fuel	Bed Tech Cells: Th	nology: Principle eory and Practice	es and App e by FranoE	lications by J Barbir, Acade	.R. Howard, mic Press	CRC Pres	S

Department of Mechanical Engineering								
Course	Title of the course	Program Core	Total Nu	mber of cont	tact hours		Credit	
Code		(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives	(L)	(T)	(P) [#]	Hours		
		(PEL)		_				
ME9072	Advanced I.C.	PEL	3	0	0	3	3	
	Engine							
Pre-requisi	tes	Course Assess	ment metho	ds (Continuo	ous (CT) and	end assess	ment	
		(EA))						
NIL		CT+EA						
Course Ou	tcomes	CO1. Un demotor	d the histor	m. concenta	formulation	and anni	inations of	
		COI. Understar		ry, concepts,	Tormutations	s and appn	ications of	
		various I.	C. Engines					
		CO2: Analyze a	and solve va	arious practio	cal problems	on applica	ations of I.	
		C. Engine	s					
		CO3: Apply var	rious solutio	on technique	s for solving	new applie	ed and	
		theoretica	l problems.					
	Topics Covered						Hours	
	Introduction: Class	sification Basic	geometry	Operating c	vele (A strok	ze and 2	2	
	stroke) SI and CI er	gine Multi-cylin	der configu	rations	yele (4 subr		2	
	Fuels and Thermo	chemistry: Com	hustion and	flames Cla	estification o	f flames	6	
	Thermodynamic p	concerties of a	mixture (⁷ omposition	of air an	d fuels	0	
	Composition Stoich	niometry. Air fu	iel ratio.	Equivalence	ratio. First	law of		
	Thermodynamics a	nd combustion.	Enthalpy	of formati	on. Heating	values.		
	Adiabatic flame tem	perature. Combus	tion Efficie	ency.				
	Mixture preparati	on of SI engine	: Mixture	requirements	s. Mixture fo	ormation,	4	
	Fuel characteristics,	Central fuel injec	tion, Port fu	uel injection,	Direct fuel in	njection,		
	Combustion in SI	engines: SI eng	gine combu	ustion proce	ss, Knocking	g, Flame	6	
	structure, Spark ig	gnition systems,	nition systems, Ignition fundamentals, Standard Ignition					
	systems, Abnormal	combustion, fuel	combustion, fuel factors in knocking, Octane number, knock					
	suppression.							
	Combustion in CI	engines: Types	oncept of	4				
	ignition delay, Fuel	Injection, Spray structure, Factors affecting ignition delay, gnition delay, Biodiesel						
	Fuel properties on ig							
	Application of dies	el engines in pov	ver field, n	nerit and den	nerits of dies	el engine	2	
	power plants, layout	of diesel engine j	power plant	S.				
	Supercharging/Tur	bo-charging: Ol	bjectives, I	Limitations,	Methods and	d Types,	4	
	Different arrangeme	nts of turbocharge	ers and supe	erchargers				
	Non-Conventional	Engines: Varia	able Com	pression Ra	atio (VCR)	Engine,	4	
	Stratified Charge En	gine, Dual Fuel E	Ingine, Free	Piston Engi	ne, Wankel E	Engine		
	Basics of Electroni	c Engine Contro	ls: Electron	nic Control n	nodule (ECM	I), Inputs	4	
	required and outpu	t signals from I	ECM, Sens	ors: Throttl	e Position,	Inlet Air		
	Temperature, Coola	nt Temperature, C	rankshaft	Position, Cai	mshaft Positi	on, Mass		
	Air flow and Exhau	ist Gas Oxygen s	ensors, the	IF CONSTRUCT	on and impo	rtance in		
	Alternative El-	ark control, Alf N	n Notreel	Concert Lie	speed contro		4	
	Alternative Fuels A	nconor - Hydroge	Goo De	Gas and L19	uerieu Petrol	Engine	4	
	– Dioulesel- Blog Modifications Mar	as - FIOUUCER	Gas - Pro	opernes -	suitability -	Engine		
	Finding Exhaust Er	nission and its of	ntrol Con	stituents of a	what aming	ion at ite	1	
	harmful effect on en	vironment and hu	iman health	Formation	of NOv HC	CO and	-	
	particulate emission	s Methods of a	controlling	emissions.	Catalytic co	nvertors		
	particulate trans. Ex	haust Gas Recircu	lation. EUI	RO and BHA	RAT norms.			
	in the second sec		, = 01				1	

Text	Text Books:
Books,	1. Fundamentals of I.C.Engine by Ganeshan, Tata McGraw Hill
and/or	2. Fundamentals of I.C. Engines by H.B.Heywood, McGraw Hill
reference	Reference Books:
material	1.I.C.Engine Theory and Practices, Vol.I& II C.F.Taylor, MIT Press
	2. I.C. Engines /RK Rajput/Laxmi Publications

	Ι	Department of Mech	anical Engi	neering					
Course	Title of the course	Program Core	Program Core Total Number of contact hours C						
Code		(PCR) /	Total	-					
		Electives (PEL)	(L)	(T)	(P)	Hours			
			. ,						
ME9073	Biofluid Mechanics	PEL	3	0	0	3	3		
Pre-requi	sites	Course Assessmen	nt methods (Continuous	s (CT) and er	nd assess	ment		
1 ie-iequi	51(C)5	(EA))	n methods (Continuou		10 0350351	inein		
Fluid Mee	chanics.	CT+EA							
Thermody	ynamics and Heat	011211							
Transfer i	n B.Tech/BE Course								
Course	CO1: Students will	be able togain know	ledge about	basic princ	iples of biotr	ansport p	rocesses		
Outcomes	and the flow character	eristics of various bi	ological flui	ids	· · · · ·	1	1.1		
	biofluid mechanics in	be able to study the j	pressure and	I flow patte	rns in blood	vessels ai	nd the		
	CO3: Students will	be able toacquire an	idea about f	flow and pr	essure measu	rement			
	techniques in human	body							
	Topics Covered						Hours		
	Fundamentals of b	iotransport: Stress	Tensor; Co	nservation of	of mass, mon	nentum	11		
	and energy; pulsatil	e flow in rigid and e	lastic tubes;	Resistance	, Compliance	e and			
	Inertance; Concepts	of two-Phase Flows	s; Classifica	tion of non	-Newtonian I	Fluids;			
	Transfer: Application	n of Magnetic Field	in Hyperth	ermia	I ransier; Bio	oneat			
			in Hypertii	erina					
	Hematology and B	lood Rheology: Cor	nponents of	blood, Blo	od Viscosity	and Its	4		
	Aspects, Rheologica	al Models of Blood,	Blood Dise	ases					
	Circulatory Bioflu	id Mechanics: Mac	rocirculation	n System; N	Aicrocirculati	ion	7		
	System								
	Interstitial andSynovial fluid flow								
	Biofluid Mechanic	s of Organ Systems	: Cardiovas	cular Syste	m;Respirator	y	9		
	System; Urinary Sy	stem; The Liver							
	Flow and pressure	measurement tech	niques in l	numan bod	y: Indirect P	ressure	5		

	Measurements; Direct Pressure Measurement; Flow Measurement
Text	Text Books:
Books, and/or reference	 Biofluid Mechanics. Principles and Applications byA. Ostadfar Nano and Bio Heat Transfer and Fluid Flow by M. Ghassemi and A. Shahidian Biofluid Mechanics, An Introduction to Fluid Mechanics, Macrocirculation, and
material	Microcirculation by Rubenstein et al. 4. Applied Biofluid Mechanics by L. Waite, J. Fine Reference Books:
	 Fluid Mechanics by F.M. White Biofluid Dynamics Principles and Selected Applications by C. Kleinstreuer Introductory Biomechanics - From Cells to Organisms by C.R. Ethier and C.A.Simmons

Department of Mechanical Engineering									
Course	Title of th	e course	Program	n Total Number of contact hours					
Code			Core (PCR)	Lecture	Tutorial	Practical	Total		
			/ Electives	(L)	(T)	(P) [#]	Hours		
			(PEL)	-				-	
ME9074	Microscal	e	PEL	3	0	0	3	3	
	Transport	Transport							
Dra raquisi	Phenomer	la	Course Acces	amont moth	ada (Cantin		d and acca	comont	
Pre-requisi	les		Course Assessment methods (Continuous (C1) and end assessment (EA))						
Undergrad	uate Fluid M	echanics	CT+FA						
Engineerin	g Thermody	namics							
and Heat a	nd Mass Tra	nsfer							
Course Ou	tcomes	CO1:T	o learn the char	acteristics of	of microscale	flows and he	eat transfe	r	
		CO2:T	o learn various	modelling a	approaches fo	or transport in	n microcha	annel	
		CO3: 1	To applytheories	s of microsc	ale physics i	n practical pi	roblems.		
		CO4: 7	o apply modell	ing approad	ches in micro	scale transpo	ort problen	18.	
		CO5: 1	To learn microfa	brication p	rocesses and	techniques for	or design		
		CO6: 1	o learn measur	ement tech	niques in mic	roscale syste	ms	.1	
		CO/: 1	o design and ar	halyze micr	oscale system	ns for transpo	ort of neat.	, charge	
		Chemical s	necies						
-		Chemiears	pecies.						
	Topics Co	overed						Hours	
	Introd	notion. Defi	nition Mismon	aladarriaaa	and arratama	Amplication		2	
	Introd	uction: Den	muon, microse	aledevices	and systems,	Applications	.	Z	
	Scaling	g Analysis:	Natural systems	, Parallel pl	late capacitor	for sensor, N	Micro	2	
	droplet	s, Micro res	onator, Micro re	eactor, Mici	o heat excha	ngers.			
	Chann	el Flow: N-	S equations, Dis	ssipation ef	fect, Complia	ance of chann	nel wall.	3	
	Trans	nort Laws	Boundary slip	Momentum	accommoda	tion coefficie	nts	4	
	Therma	al accommod	lation coefficie	nt, Slip flov	v, Molecular	modelling.	,	т	
	Diffusi	ion, Dispers	ion and Mixing	g: Random	walk model	of diffusion.		4	
	Stokes-Einstein Law, Fick's law, Fixed and constant planar source diffusions,								
	Taylor	dispersion, l	Micromixers, So	oluble or ra	pidlyreacting	g wall, Revers	e		
	osmosi	s channel flo	DW.						
	Surfac	e Tension D	ominated Flov	vs: Microsc	opic model o	of surface ten	sion,	4	
	Gibbs	tree energy,	Young-Laplace	equation, (Contact angle	, Wetting, Su	iper		
	hydrop	nobicity and	nydrophilicity,	i hermo-ca	pillary flows	, Diffuso-cap	mary		

	flows, Electrowetting, Digital microfluidics, Marangoni convection and	
	instability	
	Charged Species Flow: Electrical conductivity and charge transport,	4
	Electrohydrodynamic transport theory, Transport equation of dilute binary	
	electrolyte, Electrolytic cell, Electric double layer or Debye sheath, Electro-	
	kinetic phenomena, Electro-osmosis, Electro-osmotic micro-channel devices	
	and systems, Electrophoresis, Dielectrophoresis.	
	Magnetism and Microfluidics: Magnetophoresis, Magnetic sorting, Magnetic	4
	separation, Ferrofluidic pump, Heat transfer enhancement using ferrofluid,	
	Magneto-hydrodynamics, MHD based microdevices	
	Microscale Heat Conduction: Energy Carriers, Scale effects, Kinetic theory,	4
	Boltzmann transport theoryHeat transport in thin films and at solid-solid	
	interfaces. Heat conduction in semiconductor devices. Laser heating.	
	Microscale Convection: Scaling laws, Temperature jump boundary condition.	4
	Convection in parallel plate channel flow with and without viscous dissipation.	
	Similarity and dimensionless parameters. Flow boiling in micro channels. Mini-	
	channel versus micro-channel Nucleate and convective boiling Dryout	
	incipience quality Condensation heat transfer in mini-micro channels Micro	
	heat nines	
	Micro Fabrication: Functional materials Lithography Subtractive technique	4
	Etching Paterning Deposition and growth Additive techniques	•
	Microforming, PDMS based molding Bonding Laser micro fabrication	
	technique	
	Measurements Techniques: Measurements techniques formicroscale systems	3
	Wedsurements reeninques. Medsurements teeninques formierosedie systems.	5
Text	Text Books:	
Books,	1. Introduction to Microfluidics, P. Tabeling, Oxford University Press, 2010.	
and/or	2. Theoretical Microfluidics, H. Bruus, Oxford University Press, 2008.	
reference	3. Fundamentals and Applications of Microfluidic 3rd edition, N.T. Nguyen and S.T.	Г.
material	Wereley, Artech House, 2019.	
	4. Transport Phenomena in Microfluidic Systems, Pradipta Kumar Panigrahi, Wiley	,· 2016.
	Reference Books:	
	1 Micro- and Nanoscale Fluid Mechanics Transport in Microfluidic Devices Brian	I Kirby
	Cambridge Univ Press, 2010.	
	2 Nanofluidics and Microfluidics Systems and Applications Shaurva Prakash	
	Junghoon Yeom Elsevier Science 2014	
	3. Physicochemical Hydrodynamics-An Introduction Ronald F Probatein Howard	Brenner
	Elsevier Science, 2013.	21011101,
	4. Physicochemical Hydrodynamics, V. Levich, Prentice Hall, 1962.	

	De	partment of Med	chanical En	gineering				
Course	Title of the course	Program Core	Core Total Number of contact hours Credit					
Code		(PCR)/Electiv	Lecture	Tutorial	Practical	Total		
		es (PEL)	(L)	(T)	(P)	Hours		
ME9075	Solar Thermal	PEL	3	0	0	3	3	
	Systems							
Pre-requisites	5	Course Assessment methods (Continuous (CT) and end assessment						
		(EA))						
NA		CT+EA						
Course	CO1 Understand th	a concept of vari	oue lawe ro	lated to solar	applications	1		
Outcomes	COI. Onderstand un	e concept of vari	ous laws le	fated to solar	applications			

CO2. To outline the basic idea of solar energy collection

CO3. To outline the basic idea of solar energy storage.

CO4. Develop capability to do basic design of solar thermal systems.

CO5. Understand the economics of solar thermal systems.

Topics Cove	red	Hours			
INTRODUC radiation, bea and tilted sur	CTION – Solar energy option, specialty and potential – Sun – Earth –Solar am and diffuse – measurement – estimation of average solarradiation on horizontal faces –problems – applications.	6			
LIQUID FL physical prin plate collect Orientation a	LIQUID FLATPLATE COLLECTORS –construction details – Capturing solar radiation – physical principles of collection – types – performance analysis – concentratingcollection – flat plate collectors, with planereflectors, evacuated collectors, cylindrical paraboliccollectors – Orientation and tracking – Performance analysis.				
OTHER SOLAR DEVICES – Solar air heaters, solar stills, solar cookers, dryers, solar ponds; solar chimney, solar refrigeration, active and passiveheating systems.					
THERMAL ENERGY STORAGE- Introduction – Need for – Methods of sensibleheat storage usingsolids and liquids – Packed bed storage – Latent heat storage –working principle – construction –application and limitations.					
POWER GENERATION – solar central receiver system – Heliostats and Receiver– Heat transport system –solar distributed receiver system – Power cycles, workingfluids and prime movers, concentration ratio.					
ECONOMICS- Principles of Economic Analysis – Discounted cash flow – Solarsystem – life cyclecosts – cost benefit analysis and optimization – cost basedanalysis of water heating systems.					
Text books, and/ or reference material	Text Books: 1.Solar energy: Principles of Thermal Collection and Storage/ Sukhatme/TMH 2. Solar energy/ Garg/TMH Reference Books 1. Solar energy thermal processes/ Duffie and Beckman/John Wiley & amp; Sons 2. Principles of solar engineering/ Kreith and Kreider/Taylor and Francis				

	Department of Mechanical Engineering								
Course	Title of th	e course	Program	Total Number of contact hours				Credit	
Code			Core (PCR)	Lecture	Tutorial	Practical	Total		
			/ Electives	(L)	(T)	(P) [#]	Hours		
			(PEL)						
ME9076	Thermody	ynamics of	PEL	3	0	0	3	3	
	Complex	Systems							
Pre-requisi	tes		Course Assessment methods (Continuous (CT) and end assessment						
_			(EA))						
NIL			CT+EA						
Course Out	tcomes	CO1: Stud	onto will be abl	la ta undar	stand the hig	torry concord	ta formul	ations and	
			tents will be able to understand the history, concepts, formulations and						
		appli	cations of The	rmodynami	cs, Heat Tra	ansfer, and	Fluid Mee	chanics in	
emerging areas of contemporary interest.									
	CO2: Students will be able to analyze and solve various practical problems on								

	M. TECH. IN THERMAL ENGINEERING	
	applications of Thermodynamics, Heat Transfer, and Fluid Me	echanics in
	emerging areas.	
	CO3: Students will be able to apply various analytical, semi-analytical, a	and
	physical solution techniques to industrial and theoretical problems	in order to
	compare them with the results of CFD and experimentation.	
	Topics Covered	Hours
	1 Magnetia Substances	4
	1. Thermodynamic processes in magnetic substances	4
	1.2 The magnetocaloric magnetostrictive and magnetoelastic effects	
	1.3 Adibatic demonetization	
	1.4 Magnetocaloric power cycles	
	2. Dielectrics	4
	2.1 Thermodynamic processes in dieectrics	
	2.2 Pizoelectric, electrostrictive, electrocaloric, and pyroelectric effects	
	2.3 The thermodynamics of an electrical capacitor	
	2.4 The ferroelectric converter cycle	
	3. Superconductivity	4
	3.1 The thermodynamics of the transition from the superconducting to the normal	
	state	
	3.2 Phase diagrams for superconductors	
	3.3 The heat capacities of the superconducting and normal phases: Rutger eqution	
	3.4 Magnetostriction in superconductors	
	4. Surface Phenomena	4
	4.1 Special properties of an interfacial surface	
	4.2 Surface tension	
	4.3 The influence of surface phenomena on thermodynamic properties	
	4.4 Capillarity	
	5. Fluids in Gravitational Field	4
	5.1 The basic thermodynamic relations for systems in a gravitational field	
	5.2 The entropy of a system in a gravitational field	
	5.5 Adiabatic flow in a gravitational field	
	5.4 The thermodynamics of the atmosphere	2
	6.1 A two phase system in weightlessness	5
	6.1 A two-phase system in weighteesness	
	6.3 Stable equilibrium in two-phase system	
	7 Radiation	3
	7.1 Equation of a state of a photon gas	5
	7.2 The entropy and chemical potential of a photon gas	
	7.3 Thermodynamic processes in a photon gas: Heat capacity	
	8. Elastic Solids	4
	8.1 The caloric properties of an elastically deformed rod	
	8.2 The thermodynamic processes of rod deformation	
	8.3 The elastocaloric effect	
	8.4 Accounting for the change in volume of a solid under stress	
	9. Voltaic Cells	3
	9.1 Gibbs-Helmholtz equations	
	9.2 The basic thermodynamic relations for a voltaic cell: The Helmholtz eqution	
	9.3 Thermodynamic processes in a voltaic cell	
Text	Text Books:	
Books,	1. V. V. Sychev, Complex Thermodynamic Systems (Translated: E. Yankovsky), M	ir, 1981.
and/or	2. J. L. Ericksen, Introduction to the Thermodynamics of Solids, Springer, 1998.	2000
reterence	3. D. R. Gaskell, Introduction to the Thermodynamics of Materials, Taylor & Francis	s, 2008.
		Page 31

materialReference Books:1. R. Kh. Dadashev, Thermodynamics of Surface Phenomena, Cambridge, 2009.2. P. Glansdorff, I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations,
Wiley-Interscience, 1971.

	D	epartment of Me	chanical En	gineering					
Course	Title of the course	Program	Total Number of contact hours Cred						
Code		Core (PCR)	Lecture	Tutorial	Practical	Total			
		/ Electives	(L)	(T)	(P) [#]	Hours			
		(PEL)							
ME9077	Advanced	PEL	3	0	0	3	3		
	Refrigeration and								
	Air-conditioning								
Pre-requisi	tes	(EA))	sment meth	ods (Continu	ous (CT) and	l end asse	ssment		
NIL		CT+EA							
Course Out	tcomes	CO1: Student	s will be	able to un	derstand the	history.	concepts.		
		formulat	ions and	applications	s of Ther	modvnam	ics. Heat		
		Transfer	and Fluid	Mechanics in	Cold Produ	ction	,		
			,						
		CO2. Student	will be a	able to analy	vze and solv	ve various	nractical		
		problem	s on applie	pations of T	hermodynam	vice Heat	Transfor		
		and Flui	d Machania	a in Pofrigor	nermouynam	Conditio	ning		
		and Fluid Mechanics in Kerrigeration and Air-Conditioning.							
		CO2. Standard		1. 4		a a 1 da a hari:	~~~ 4 ~		
		cO3: Student	s will be ab	etical problem	arious graphi	cartechni	ques to		
	Topics Covered	sorve madstra		etical proble			Hours		
	Actual vapor compres	sion system - Mı	5						
	Environment friendly	refrigerants – cas	scade syster	n.			10		
	Absorption refrigeration	on system – Thre	e fluid abso	orption system	n – comparis	son of	10		
	absorption with compl	ression system -	Analysis of	multistage s	ystems		10		
	Advanced psychromet of U factor –short met	ric calculations - hod calculation	Cooling lo	ad calculatio	ns – Determi	nation	10		
	Low temperature refri	geration - Joule	Thompson c	coefficient -	liquefaction of	of air –	10		
	hydrogen -helium - A	pplications of cr	yogenics.						
	Room air distribution	 Friction losses 	in ducts - D	Duct design, A	Air filters cle	an	5		
	rooms – Air curtain								
Text	Text Books:		1	0.1.1.5					
Books,	1. Arora, C.P., Refrige	ration and Air C	onditioning	$\frac{1}{2}$, 2nd ed., Ta	ta McGraw-I	Hill, 2004.			
and/or	2. Stoeker, W.P. and J	ones, J.W., Refri	geration an	d Air Condit	ioning, 2nd e	ed., Tata N	IcGraw-		
material	пііі, 1982.								
material	Reference Rooks								
	1. Manohar Prasad Re	efrigeration and	Air Conditio	oning. New A	Age Internatio	onal, 1996	_		
	2.Gosney, W.B., Princ	ciples of Refriger	ation, Cam	bridge Uni. P	ress, 1982.	, 1 <i>7</i> 70	•		
	,,	1	. ,		, , , ,				

	Department of Mechanical Engineering									
Course	Title of the course	Program	Total Nu	mber of cont	act hours		Credit			
Code		Core (PCR)	Lecture	Tutorial	Practical	Total				
		/ Electives	(L)	(T)	(P) [#]	Hours				
		(PEL)								
ME9078	Design of Thermal	PEL	3	0	0	3	3			
	Systems									
Pre-requisi	ites	Course Assessment methods (Continuous (CT) and end assessment								
		(EA))								
NIL		CT+EA								
Course Ou	tcomes	CO1: Student	s will be	able to un	derstand the	history.	concepts.			
			ions and	application	s of Ther	modynami	ics Heat			
		Transfer	and Flui	d Mechanic	r = r = r	Design pri	inciple of			
			, anu rhui 			esign pr	incipie of			
		especiali	y thermal s	ystems.						
		CO2: Students	s will be a	able to analy	yze and solv	ve various	s practical			
		problems	s on applic	cations of T	hermodynam	nics, Heat	Transfer,			
		and Fluid	d Mechanic	s in Thermal	Design.					
CO3: Students will be able to apply various ed					arious econor	mic consid	lerations			
to address industrial problems.										
	Topics Covered						Hours			
	Modelling of Therma	al Systems: type	s of model	s. mathemati	ical modellin	g. curve	8			
	fitting, linear algebrai	c systems, nume	nulation.	Ũ						
	methods for numerica	l simulation;			, -, -,	,				
	Acceptable Design of	a Thermal Syste	em: initial d	lesign, design	n strategies, o	design of	15			
	systems from differ	ent application	areas, ado	ditional cons	siderations f	for large				
	practical systems; E	conomic Consid	derations: of	calculation of	of interest, v	worth of				
	money as a function	of time, series of	of payments	s, raising cap	oital, taxes, e	conomic				
	factor in design, appli	cation to therma	l systems;	0 1						
	Problem Formulation	for Optimizat	ion: optimi	ization meth	ods, optimiz	ation of	17			
	thermal systems, pr	actical aspects	in optima	l design, L	agrange mu	ıltipliers,				
	optimization of const	rained and unco	onstrained p	problems, ap	plicability to	thermal				
	systems; search me	thods: single-va	ariable pro	blem, multi	variable con	nstrained				
	optimization, example	les of thermal	systems;	geometric,	linear, and	dynamic				
	programming and oth	her methods for	optimizati	on, knowled	lge-based de	sign and				
	additional consideration	ons, professiona	l ethics.							
Text	Text Books:									
Books,	1. W.F. Stoecker, Desi	gn of Thermal S	ystems - M	cGraw-Hill,	1971					
and/or	2. N.V. Suryanarayana	, Design & Sim	ulation of T	hermal Syste	ems - MGH, 2	2002.				
reference	Reference Books:		0.000		DOD	~-				
material	1. Y. Jaluria, Design a	nd Optimization	of Thermal	Systems –C	RC Press, 20	107.				
	2. Bejan, G. Tsatsaron	2. Bejan, G. Tsatsaronis, M.J. Moran, Thermal Design and Optimization - Wiley, 1996.								

	Department of Mechanical Engineering									
Course	Title of the course	Program	Total Nu	mber of cont	act hours		Credit			
Code		Core (PCR)	Lecture	Tutorial	Practical	Total				
		/ Electives	(L)	(T)	(P) [#]	Hours				
NE0070		(PEL)	2	0	0	2	2			
ME9079	Heat Transfer	PEL	3	0	0	3	3			
Pre-requisi	tes	Course Assess	sment meth	ods (Continu	Ious (CT) and	l end asser	sement			
i ic-icquisi		(EA))		lous (Continu			sinch			
NIL		CT+EA								
Course Out	tcomes	 CO1: Students will be able to understand the history, concepts, formulations and applications of Thermodynamics, Heat Transfer, and Fluid Mechanics in the design principle of various Heat Transfer Equipments. CO2: Students will be able to analyze and solve various practical 								
and Fluid Mechanics in designing Heat Transfer Equipme							ments.			
		CO3: Studen techni	ts will be a ques to sol	ble to apply ve industrial	various analy and theoretic	tical and r al problen	umerical			
	Topics Covered						Hours			
	Constructional Detail flow, shell and tube Industrial applications	s: Types, Fluid f heat exchanger, s;	low arrange Regenerate	ements, paral	llel, counter a perator, Cond	and cross lensers –	6			
	Heat Transfer: Modes resistance, Efficiency effectiveness;	s of Heat Transf 7. Temperature	er, Overall Distributio	heat transfer on and its i	coefficient, mplications,	Thermal LMTD,	6			
	Flow Distribution: E Flow nozzle, Diffuser	ffect of Turbule s, Bends, Baffle	nce, Frictions, Effect of	on Factor, Pr Channei Div	ressure Loss, rergence, Mar	Orifice, nifolds;	8			
	Stress in tubes, Heade Thermal stresses, Sh failures. ;	ers sets and Press lear stresses, T	sure vessels hermal sle	s: Differentia eves, Vibrat	l Thermal Ex ion, Noise,	xpansion, types of	10			
	Design Aspects: Heat transfer and pressure loss flow configuration effect of 10 baffles. Effect of deviations from ideality. Design of typical liquid-liquid, gas-gas-liquid heat exchangers. Design of cooling towers.									
Text Books, and/or reference material	Text Text Books: Books, 1. W.M. Kays and A.L. London., Compact Heat Exchangers', 3rd Ed., TMH,1984. and/or 2. A.P. Frass and M.N.Ozisik, Heat Exchanger Design,'John Wiley & Sons Inc, 1965. reference Reference Books: material 1. D. Q Kern, Process Heat Transfer', McGraw Hill Book Co., 1984. 2. E.A.D. Saunders., _Heat Exchangers', Longman Scientific and Technical, New York, 1988.									

	Department of Mechanical Engineering								
Course	Title of th	e course	Program	Total Nu	mber of cont	act hours		Credit	
Code			Core (PCR)	Lecture	Tutorial	Practical	Total		
			/ Electives	(L)	(T)	(P) [#]	Hours		
			(PEL)						
ME9080	Design wi	th	PEL	3	0	0	3	3	
	Constructa	al Law							
Pre-requisi	tes		Course Asses	sment meth	ods (Contin	uous (CT) and	d end asse	ssment	
			(EA))						
NIL			CT+EA						
~ ~ ~		[
Course Ou	tcomes	CO1: Stud	ents will be abl	le to under	stand the his	story, concept	ts, formul	ations and	
		appli	cations of The	rmodynami	cs. Heat Tr	ansfer, and	Fluid Me	chanics in	
		Ther	mal System Ar	alvsis. Svs	tem analysis	s is a predon	ninant par	t in everv	
		brand	h of engineerin	g It naves	the way for	system design	n system	simulation	
		and f	inally the manu	facturing	the way for		ii, system	sinulation	
			anto will be ob	la to opoly	vza and colu	a various pr	actical pr	ablama on	
		CO2. Stud	ents will be at	ne to allaly	Le alle solv	e various pr	d Maahan		
		appi	cations of Ther	nouynamic	s, Heat Iran	sier, and Fiui		1CS.	
		CO3: Stude	ents will be able	to apply va	arious analyt	ical, semi-an	alytical, ai	10 	
physical solution techniques to industrial and theoretical problems in or							n order to		
	Topics Covered						Hours		
	1 Elerri art			-: J. flore				2	
	1. Flow Sys	arization and	d sveltness	na now				3	
	1.1 vascula 1.2 Fluid fl	ow system a	nalysis in gener	ral					
	1.2 Heat tr	ansfer system	n analysis in gener	neral					
	1.4 Examp	les with app	ied industrial p	roblems					
	2. Distribu	tion of imp	erfections: Sec	ond law ba	sed approad	ch		3	
	2.1 Evoluti	on towards t	he least imperfe	ect possible					
	2.2 Imperfe	ection due to	heat transfer an	nd fluid flow	N				
	2.3 Analys	is of industri	ally important e	engineering	components				
	2.4 Examp	les with app	ied industrial p	roblems					
	3. Analysis	s of simple f	low configurat	ions				3	
	3.1 Flow of	f heat and flu	uid between two	points: Fe	rmat type flo	W			
	3.2 Interna	l spacing des	sign						
	3.5 Compe	on of toohno	s: Method of in	tersecting a	symptotes				
	J.4 Evoluti	tworks for	fluid flow and	hoot transf	or			3	
	4.1 Perform	nance versus	freedom to mo	rnh	ei			5	
	4.1 Strateg	ies for faster	design	ipii					
	4.3 Loop. i	unction, and	fractal-like tree	es					
	4.4 Examp	oles of asym	metry in some i	ndustrial p	roblems				
	5. Configu	rations for 1	heat conductio	n				3	
	5.1 Trees a	t micro and	nanoscales						
	5.2 Conduc	ction trees w	ith loops						
	5.3 Trees f	or cooling di	sk-shaped body	7					
	5.4 Evoluti	5.4 Evolution of technology from forced convection to solid-body conduction							
	6. Multisca	ale configur	ations					3	
	6.1 Multise	cale droplets	for max1mum n	nass transfe	r density				

	6.2 Multiscale cylinders in crossflow	
	6.3 Heat transfer rate density: the smallest scale	
	6.4 Distribution of heat sources for some industrial problem	
	7. Multiobjective configurations	3
	7.1 Thermal resistance versus pumping power	
	7.2 Complex flow structures are robust	
	7.3 Contemporary heat exchanger technology	
	7.4 Tree-shaped insulation design for distribution of hot water	
	8. Vascularized materials	3
	8.1 Vascularization: Natural design rediscovered	
	8.2 Self-healing materials	
	8.3 Counterflow line-to-line trees	
	8.4 Illustrations with industrially important problems	
	9. Configurations for mass transfer	3
	9.1 Scaling analysis of transport through porous media	
	9.2 Electrokinetic transport for biological systems	
	9.3 Migration through finite porous medium	
	9.4 Chosen applications to industrially important problems	
	10. Mechanical and flow structures combined	3
	10.1 Optimal flow of stresses	
	10.2 Mechanical structure resistant to thermal attack	
	10.3 Analogical study with vegetation	
	10.4 Case study with selected industrially important problems	
	11. Structure in Time: Rhythm	3
	11.1 Intermittent heat transfer	
	11.2 Defrosting refrigerators	
	11.3 Cleaning power plants	
	11.4 Applications to biologically inspired industrial systems	
Text	Text Books:	
Books,	1. A. Bejan, S. Lorente, Design with Constructal Theory, Wiley, 2008.	
and/or	2. A. Bejan, I. Dincer, S. Lorente, A. Miguel, H. Reis, Porous and Complex Flow Str	uctures in
reference	Modern Technologies, Springer, 2011.	
material	3. A. Bejan, Shape and Structure, from Engineering to Nature, Cambridge, 2000.	
	Reference Books:	
	1. A. Bejan, J. P. Zane, Design in Nature, Anchor Books, 2013.	
	2. A. Bejan, Entropy Generation Through Heat and Fluid Flow, Wiley, 1982.	

	De	epartment of Me	chanical En	gineering					
Course	Title of the course	Program	Total Nu	mber of cont	act hours		Credit		
Code		Core (PCR)	Lecture	Tutorial	Practical	Total			
		/ Electives	(L)	(T)	(P) [#]	Hours			
		(PEL)							
ME9081	Analysis of Thermal	PEL	3	0	0	3	3		
	Power Cycles								
Pre-requisites		Course Assessment methods (Continuous (CT) and end assessment							
		(EA))							
NIL		CT+EA							
Course Out	tcomes	CO1: Student formulat producin	s will be ions and a g Cycles.	able to un applications	derstand the of Thermod	history, lynamics	concepts, in Power		

	M. TECH. IN THERMAL ENGINEERING						
	CO2: Students will be able to analyze and solve various	s practical					
	problems on applications of Thermodynamics, Heat	Transfer,					
	and Fluid Mechanics.						
	CO3: Students will be able to apply various analytical techni solve industrial and theoretical problems.	iques to					
	Topics Covered	Hours					
	Steam power plant cycle - Rankine cycle - Reheat cycle - Regenerative cycle with10one and more feed heaters - Types of feed heaters - Open and closed types - Steam10traps types.10						
	Cogeneration - Condensing turbines - Combined heat and power - Combined cycles 10 - Brayton cycle Rankine cycle combinations - Binary vapour cycle. 10						
	Air standard cycles - Cycles with variable specific heat - fuel air cycle - Deviation from actual cycle.	8					
	Brayton cycle - Open cycle gas turbine - Closed cycle gas turbine - Regeneration - Inter cooling and reheating between stages.	6					
	Refrigeration Cycles - Vapour compression cycles - Cascade system - Vapour absorption cycles -GAX Cycle.	6					
Text	Text Books:						
Books,	1. Culp, R., Principles of Energy Conversion, McGraw-Hill, 2000.						
and/or	2. Nag. P.K., Power Plant Engineering, 2nd Tata McGraw-Hill, 2002.						
reference	Reference Books:						
material	1. Nag. P.K., Engineering Thermodynamics, 3rd ed., Tata McGraw-Hill, 2005.						
	2. Arora, C.P., Refrigeration and Air Conditioning, 2nd ed., Tata McGraw-Hill, 2004	· .					

	De	partment of Me	chanical En	gineering					
Course	Title of the course	Program	Total Nu	mber of cont	act hours		Credit		
Code		Core (PCR)	Lecture	Tutorial	Practical	Total			
		/ Electives	(L)	(T)	(P) [#]	Hours			
		(PEL)							
ME1051	Heat Transfer	PCR	0	0	4	4	2		
	Laboratory								
Course	CO1: Acquire an idea about conduction transport mechanism.								
Outcome	CO2: To learn the bas	ics of convectio	n transfer.						
S	CO3: To learn the bas	ic knowledge at	out radiatio	on heat transf	er.				
	Experiments Covere	d							
	Linear Heat conduction	m							
	Forced Convection								
	Radiation								
	Boiler								

SESSIONAL/LAB

	D	epartment of Mec	hanical Eng	gineering				
Course	Title of the course	Program Core	Total Nu	mber of con	ntact hours		Credit	
Code		(PCR) /	Lecture	Tutorial	Practical	Total		
		Electives	(L)	(T)	(P) [#]	Hours		
		(PEL)						
ME1052	Computational	PCR	1	0	4	5	3	
	Laboratory							
Course	CO1: Concept of alg	orithm to write dif	ferent num	erical meth	ods related t	o enginee	ring	
Outcomes	problems.							
	CO2: Writing Computer programming to solve various engineering problems by numerical							
	methods.							
	Programming using	g high level lang	uage (C/C-	++/Fortran	/MATLAB)		
	Computer program	ming for solving	linear sim	ultaneous	equations,	non-linea	ar	
	equations.							
	Numerical different	tiation and integ	ration					
	Solution of ordinar	y differential equ	ations and	l solution o	of partial di	fferential	equations	
	Eigen value problem	ms, Boundary va	lue, Initial	value pro	blems			
	Problems as assign	ed by the respect	tive teache	rs				

		Department of	Mechanical	Engineering	3				
Course	Title of the course	Program	Total Nu	mber of cont	act hours		Credit		
Code		Core (PCR)	Lecture	Tutorial	Practical	Total			
		/ Electives	(L)	(T)	(P) [#]	Hours			
		(PEL)							
ME2051	Thermal	PCR	0	0	4	4	2		
	Engineering								
	Laboratory								
Course	CO1: To learn the fundamentals of experimental techniques.								
Outcome	CO3: To perform exp	erimental valida	tion of theo	ry in heat tra	ansfer and exp	perimenta	l modelling.		
S	CO2: To learn the des	sign and analysis	s of experim	nents.					
		<i>c .</i>	•						
	Experiments Covere	d							
	Radial Heat conduction	on							
	Diesel Engine trial ru	n							
	Fluidization and Fluid	lized Bed Heat	Fransfer						
	Morse Test								

Department of Mechanical Engineering									
ME2072	Mini Project	PCR	0	0	0	6	3		
Pre-requisites	Course Assessment methods (Continuous (CT) and end assessment (EA)								
NA CT+EA									
Course Outcomes	CO1: To be for project CO2: Abilit CO3: Abilit CO4: To be per internat CO5: To be	CO1: To be able to conduct review of literature to arrive at selected advanced topic for project work. CO2: Ability to interpret ideas and thoughts into practice in a project. CO3: Ability to analyze the gap between theoretical and practical knowledge. CO4: To be able to write and present a technical report with suitable conclusion as per international standards							
Topics Covered	Project as d	ecided based on lit	erature surv	ey with cons	sultation wit	th the sup	ervisor		

		Department	of Mechanic	al Engineeri	ng			
Course	Title of	Program	Total Nur	nber of conta	ct hours		Credit	
Code	the	Core	Lecture	Tutorial	Practical	Total		
	course	(PCR) /	(L)	(T)	(P)	Hours		
		Electives						
		(PEL)						
ME3071	DISSERTATION	PCR	0	0	24	24	12	
	- I							
Pre-requisites		Course Assessment methods (Continuous (CT) and end assessment (EA))						
NA		CT+EA	CT+EA					
Course	CO1: Ability t	o interpret idea	s and thoug	hts into pract	ice in a proj	ect.		
Outcomes	CO2: Ability t	o analyze the g	ap between	theoretical an	nd practical	knowledg	ge. CO3:	
	Ability to com	pose technical	presentation	in the confe	rences.			
	CO4: Ability t	o prepare for p	ublishing pa	pers in journ	als.			
	CO5: Ability t	CO5: Ability to propose for the patent rights for the projects.						
Topics Cover	ed Project as deci	ded based on li	iterature sur	vey with cons	sultation wit	h the supe	ervisor	

			Department of	of Mechani	cal Engineer	ring				
Course	Title of	the	Program Core	Total Nu	mber of con	tact hours		Credit		
Code	course		(PCR) /	Lecture	Tutorial	Practical	Total			
			Electives (PEL)	(L)	(T)	(P)	Hours			
ME3072	3072 Seminar		PCR	0	0	4	4	2		
	(Non-Pi	roject)								
Pre-requisites			Course Assessment methods (Continuous (CT) and end assessment (EA))							
NA			CT+EA							
Course		CO1: 7	To be able to conduct review of literature to arrive at selected advanced topic for							
Outcomes		S	seminar.							
		CO2: 7	To be able to summa	ries the con	ncept of the	chosen top	ic system	natically after		
		C	considerable study o	of the conte	nt from prin	hary as well	l as seco	ndary sources		
		CO3: 1	To be able to write a	nd present	a technical r	eport with	suitable	conclusion as per		
international standards										
		CO4: 7	To be able to discuss	and depen	d the outcor	ne of the re	port in a	seminar		
Topics Co	vered	Topics	decided by consulta	ation with t	he superviso	or				

Department of Mechanical Engineering										
Course	Title of		Program	Total	Credit					
Code	the		Core (PCR) /	Lectur	Tutorial	Practical	Total Hours			
	course		Electives (PEL)	e (L)	(T)	(P)				
ME4071	DIS	SERTATIO	PCR	0	0	24	24	12		
	N -	II /								
	INI	DUSTRIAL								
	PR	OJECT								
Pre-requisites			Course Assessment methods (Continuous (CT) and end assessment (EA))							
NA			CT+EA							
Course CO1: Abilit		y to interpret ideas and thoughts into practice in a project.								
Outcomes CO2: Abilit		y to analyze the gap between theoretical and practical knowledge.								
CO3: Ability to co			to compose technical presentation in the conferences.							
CO4: Ability to prepare for publishing papers in journals.										
	CO5: Ability to propose for the patent rights for the projects.									
Topics Covered P		Project as decided based on literature survey with consultation with the supervisor								

Department of Mechanical Engineering										
Course	Title of	Program	Total Number of contact hours				Credit			
Code	the	Core (PCR) /	Lecture	Tutorial	Practical	Total				
	course	Electives (PEL)	(L)	(T)	(P)	Hours				
ME4072	Project Seminar	PCR	0	0	4	4	2			
Pre-requisite	2S	Course Assessment methods (Continuous (CT) and end assessment (EA))								
NA		CT+EA								
Course	CO1: Ability	CO1: Ability to assess knowledge in the subject and the project.								
Outcomes	CO2: Ability	CO2: Ability to integrate technical question through all the years of study.								
	CO3: Ability to express and communicate.									

-----XXX------