National Institute of Technology Durgapur DEPARTMENT OF PHYSICS Syllabus for Ph.D. Admission Test

Mathematical Physics

Dimensional analysis. Vector algebra and vector calculus. Linear algebra, matrices, Cayley-Hamilton Theorem. Eigenvalues and eigenvectors. Linear ordinary differential equations of first & second order, Special functions (Hermite, Bessel, Laguerre and Legendre functions). Fourier series, Fourier and Laplace transforms. Elements of complex analysis, analytic functions; Taylor & Laurent series; poles, residues and evaluation of integrals. Green's function. Partial differential equations, Elements of computational techniques: root of functions, interpolation, extrapolation, integration by trapezoid and Simpson's rule, Solution of first order differential equation using Runge- Kutta method. Finite difference methods. elementary ideas about tensors: covariant and contravariant tensor, Levi-Civita and Christoffel symbols. Introductory group theory: SU(2), O(3).

Classical Mechanics

D'Alembert's principle, cyclic coordinates, variational principle, Lagrange's equation of motion, central force and scattering problems, rigid body motion; small oscillations, Hamilton's formalisms; Poisson bracket; special theory of relativity: Lorentz transformations, relativistic kinematics, mass-energy equivalence.

Electromagnetic Theory

Solutions of electrostatic and magnetostatic problems including boundary value problems; dielectrics and conductors; Maxwell's equations; scalar and vector potentials; Coulomb and Lorentz gauges; Electromagnetic waves, EM wave reflection, refraction, interference, diffraction and polarization; Poynting vector, Poynting theorem, energy and momentum of electromagnetic waves; Dispersion relations in plasma. Lorentz invariance of Maxwell's equation. Transmission lines and wave guides. Radiation- from moving charges and dipoles and retarded potentials.

Quantum Mechanics

Wave-particle duality. Schrödinger equation (time-dependent and time-independent). Eigenvalue problems (particle in a box, harmonic oscillator, etc.). Tunneling through a barrier. Wave-function in coordinate and momentum representations. Commutators and Heisenberg uncertainty principle. Dirac notation for state vectors. Motion in a central potential: orbital angular momentum, angular momentum algebra, spin, addition of angular momenta; Hydrogen atom. Stern-Gerlach experiment. Time- independent perturbation theory and applications. Variational method. Time dependent perturbation theory and Fermi's golden rule, selection rules. Identical particles, Pauli exclusion principle, spin-statistics connection.

Spin-orbit coupling, fine structure. WKB approximation. Elementary theory of scattering: phase shifts, partial waves, Born approximation. Relativistic quantum mechanics: Klein-Gordon and Dirac equations. Semi-classical theory of radiation.

Thermodynamics and Statistical Physics

Laws of thermodynamics; macrostates and microstates; phase space; ensembles; partition function, free energy, calculation of thermodynamic quantities; classical and quantum statistics; degenerate Fermi gas; black body radiation and Planck's distribution law; Bose-Einstein condensation; first and second order phase transitions, phase equilibria, critical point.

Atomic and Molecular Physics

Spectra of one- and many-electron atoms; LS and jj coupling; relativistic corrections for energy levels of hydrogen atom, hyperfine structure; Zeeman,Paschen-Bach & Stark effects; electric dipole transitions and selection rules; rotational and vibrational spectra of diatomic and polyatomic molecules; electronic transition in diatomic molecules, Franck-Condon principle; Raman effect; NMR, ESR, X-ray spectra; LASERs: Einstein coefficients, population inversion, two and three level systems.

Electronics and Experimental Methods

Semiconductor devices (diodes, junctions, transistors, field effect devices, homo- and hetero-junction devices), device structure, device characteristics, frequency dependence and applications. Optoelectronic devices (solar cells, photo-detectors, LEDs). Operational amplifiers and their applications. Digital techniques and applications (registers, counters, comparators and similar circuits). A/D and D/A converters. Microprocessor and microcontroller basics.

Data interpretation and analysis. Precision and accuracy. Error analysis, propagation of errors. Least squares fitting,

Condensed Matter Physics

Elements of crystallography; Bravais lattices, Reciprocal lattice, diffraction methods for structure determination, Bonding of solids. Elastic properties, phonons, lattice specific heat. Free electron theory and electronic specific heat. Response and relaxation phenomena. Drude model of electrical and thermal conductivity. Hall effect and thermoelectric power. Electron motion in a periodic potential, band theory of solids: metals, insulators and semiconductors. Superconductivity: type-I and type-II superconductors. Josephson junctions. Superfluidity. Defects and dislocations. Ordered phases of matter: translational and orientational order, kinds of liquid crystalline order. Quasi crystals.

Nuclear and Particle Physics

Basic nuclear properties: size, shape and charge distribution, spin and parity. Binding energy, semiempirical mass formula, liquid drop model. Nature of the nuclear force, form of nucleon-nucleon potential, charge-independence and charge-symmetry of nuclear forces. Deuteron problem. Evidence of shell structure, single-particle shell model, its validity and limitations. Rotational spectra. Elementary ideas of alpha, beta and gamma decays and their selection rules. Fission and fusion. Nuclear reactions, reaction mechanism, compound nuclei and direct reactions.

Classification of fundamental forces. Elementary particles and their quantum numbers (charge, spin, parity, isospin, strangeness, etc.). Gellmann-Nishijima formula. Quark model, baryons and mesons. C, P, and T invariance. Application of symmetry arguments to particle reactions. Parity non-conservation in weak interaction. Relativistic kinematics.

Date: 29/06/2021