2017-18

LINEAR ALGEBRA (Open Elective)

M 542

Full Marks: 70

Time: 3 hours

The figures in the margin indicate full marks.

Answer should be brief and to the point.

Answer Q. No. 1 and any four from the rest.

 $14 + (14 \times 4)$

- 1. (a) Prove or give a counterexample: composition of two linear transformations commutes. 4
 - (b) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear operator given by

$$T((x,y)) = (x-y,x+y), \forall (x,y) \in \mathbb{R}^2$$

Check whether T is invertible or not. If T is invertible, then find the standard matrices for T and T^{-1} . 2+6

- (c) Give an example of a system of linear equations with no solutions.
- 2. (a) Let $M_2(\mathbb{R})$ be an IPS with respect to the inner product $\langle A,B\rangle=tr(B^tA)$ for all $A,B\in M_2(\mathbb{R})$. Define the norm of a matrix A with respect to the above inner product.

What is the norm of $A = \begin{pmatrix} 5 & -3 \\ -5 & 1 \end{pmatrix}$? Are $B = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$

and $C = \begin{pmatrix} 6 & 3 \\ 3 & 27 \end{pmatrix}$ orthogonal? Justify it. Show that

G/52-100

[Turn Over]

 $\{B,C\}$ can't be a basis for $M_2(\mathbb{R})$. 1+2+1+2+2

- (b) Consider $S = \{(1, 0, 1), (0, 1, 2), (0, 1, 1)\} \subset \mathbb{R}^3$ with respect to the standard inner product. Can you find an orthonormal basis for \mathbb{R}^3 from here? If yes, find it; otherwise justify your answer.
- 3. (a) State and prove Dimension theorem. Verify it for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$T((x, y, z)) = (x + 2y - z, y + z, x + y - 2z)$$

for all $(x,y,z) \in \mathbb{R}^3$.

1+6+4

- (b) Find a basis for the vector space $M_n(\mathbb{R})$ of all $n \times n$ real matrices.
- 4. (a) Let $P_3(\mathbb{R})$ be the IPS with usual inner product generated by multiplying coefficients. Let $\{p,q\} \subset P_3(\mathbb{R})$ be an orthonormal set. Find ||p+q||.
 - (b) Give an example (with justification) of a matrix $A \in M_3(\mathbb{R})$ which can't be diagonable over any field.
 - (c) Show that $P_n(\mathbb{R})$ and \mathbb{R}^{n+1} are isomorphic linear spaces by presenting an explicit isomorphism. 5
- 5. (a) Solve the following system of equations using Gauss-Jordan elimination method:

$$x+2y+z-4w=1$$

$$x+3y+7z+2w=2$$

$$x-11z-16w = -1$$

7

(b). Show that the solution space of the following system of linear equations

$$x+2y+2z=0=x+y+5z$$

forms a subspace of \mathbb{R}^3 over \mathbb{R} . Also, find a basis for it and the dimension of it. 3+3+1

6. (a) Solve the following system of linear equations:

$$x_1 + x_2 + x_3 = 15$$

$$x_4 + x_5 + x_6 = 6$$

$$x_1 + x_4 = 8$$

$$x_2 + x_5 = 7$$

$$x_3 + x_6 = 6.$$

8

(b) The images of unit vectors under the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ are given by

$$T((1,0)) = (2,1,h)$$
 and $T((0,1)) = (3,k,0)$.

Determine all the values of the parameters h and k for which T is one-one.

- 7. (a) Can the vector (3,1,1) be expressed as a linear combination of the vectors (2,5,-1), (1,6,0),(5,2,-4)? Justify your answer.
 - (b) Let $S = \{(x,y,z) \in \mathbb{R}^3 | xy = z\}$. is S a subspace of \mathbb{R}^3 over \mathbb{R}^2 ?
 - (c) Obtain the Jordan canonical form of the following matrix

$$A = \begin{pmatrix} -3 & -2 & 5 & 3 \\ -1 & 0 & 1 & 2 \\ -4 & -3 & 6 & 4 \\ -1 & -1 & 1 & 3 \end{pmatrix}$$

by directly finding the eigen vectors and then find a basis which will yield the Jordan form.

Q. No. MA - 01 / 017

B. Tech./Odd 2017-18/Reg

2017-18

MATHEMATICS-I

MA - 01

Full Marks: 70

Time: Three Hours

The figures in the margin indicate full marks.

Answer Question No. 1 and any five from rest.

1. (a) If $u = \log(\tan x + \tan y)$ then

$$\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} = \underline{\qquad}$$

- (b) Test the convergence of the sequence $\{u_n\}$ where $u_n = 2(-1)^n$.
- (c) Find the points of inflexion of the curve $x = (\log y)^3$.
- 2. (a) Find the asymptotes of the following curve

$$x^3 - x^2y - xy^2 + y^3 + 2x^2 - 4y^2 + 2xy + x + y + 1 = 0$$

(b) Find the radius of curvature of following curve

$$r = ae^{\theta \cot \alpha}$$
 at any point θ . 6+6

P.T.O.

G/16/39-25

3. (a) Apply mean value theorem and prove that

$$x > \sin x > x - \frac{1}{6}x^3$$
; $0 < x < \frac{x}{2}$

- (b) Using MVT prove that $\sqrt{101}$ lies between 10 and 10.05.
- 4. (a) Show that the function

$$f(x, y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

is continuous and possesses partial derivatives at .(0, 0) but is not differentiable at (0, 0).

(b) If
$$u = xf\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$$
, then show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = xf\frac{y}{x}$$
 and

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = 0.$$
 6+6

5. (a) Prove that the function

 $f(x, y) = x^2 - 2xy + y^2 + x^3 - y^3 + x^5$ has neither a maximum nor a minimum at the origin.

(b) If $u = x^2 + y^2$, $v = x^2 - y^2$ and $x = r\theta$, $y = r + \theta$ the find the value of the Jacobian $\frac{\partial(u, v)}{\partial(r, \theta)}$. 6+6

6. (a) Test the convergence of the following series:

$$\sum_{n=2}^{\infty} \frac{1}{n^p \ln n}.$$

(b)
$$\frac{x}{1} + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^5}{5} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{x^7}{7} + \dots \infty (x > 0, x \neq 1)$$

6+6

7. (a) Test the convergence of the following series:

$$\frac{1}{a} - \frac{1}{a+b} + \frac{1}{a+2b} - \frac{1}{a+3b} + \dots \ a > 0, \ b > 0.$$

(b) Reduce the equation

 $x^2-6xy+9y^2+4x-12y+4=0$ to the canonical form and determine the type of the conic represented by it.

- 8. (a) Find the equation of the cylinder whose generators are parallel to the line $\frac{x}{-1} = \frac{y}{2} = \frac{z}{1}$ and whose guiding curve is the ellipse $x^2 + 2y^2 = 1$, z = 3.
 - (b) Find the equation of the cone whose vertex is the point (-1, 1, 1) and whose guiding curve is $3x^2 y^2 = 1$, z = 0.

Q. No. MA - 331 / 706

B. Tech./Odd 2017-18/Reg

2017-18

MATHEMATICS - III

MA - 331

Full Marks: 70

Time: Three Hours

The figures in the margin indicate full marks.

The given symbols have their usual meanings.

Answer Question No. 1 and any five from the rest.

10+(12×5)

- 1. (a) Expand $f(z) = \frac{e^{2z}}{(z-1)^3}$ about z = 1 as a Laurent's series. Also indicate the region of convergence of the series.
 - (b) Form a PDE by eliminating the arbitrary function ϕ from $\phi(x+y+z, x^2+y^2+z^2)=0$.
 - (c) Evaluate $\iint_{S} \vec{r} \cdot \hat{n} dS$,

where S is any closed surface, \vec{r} is the position vector and \hat{n} is unit outward normal vector to the surface. Hence evaluate the same taking S as the surface of the sphere $x^2 + y^2 + z^2 = 9$.

P.T.O.

P/16/1-730

- 2. (a) Show that the mapping $w = \sqrt{z}$ transforms the family of circles |z-1| = c into the family of lemniscates |w-1|+|w+1| = c.
 - (b) Evaluate $\int_C \frac{z+1}{z^2+2z+4} dz$, where C is the circle |z+1+i|=2.
- 3. (a) State Cauchy's residue theorem. Evaluate $\int_C \frac{z^3 2z + 1}{(z i)^2} dz$, where C is the circle |z| = 2.

2+4

- (b) Find the analytic function f(z) = u(x, y) + iv(x, y) if $u+v = \frac{\sin 2x}{\cosh 2y \cos 2x}$.
- 4. (a) Find the Fourier series of the function

$$F(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$$

Hence show that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$. $4 + 2\pi$

(b) State a sufficient condition for the convergence of a Fourier series generated by a function. Find a Fourier series to represent x^2 in the interval (-l,l). 2+4

- 5. (a) Solve the PDE: $\left(D^2 4D'^2\right)z = \frac{4x}{y^2} \frac{y}{z^2}$.
 - (b) Obtain the canonical form of the PDE: $z_{xx} + x^2 z_{yy} = 0.$
- 6. (a) Find the general solution of the PDE: $xy^2p + y^3q = zxy^2 - 4x^3.$
 - (b) A spherical hole of radius b is made centrally through a sphere of radius a (a > b). Find the volume of the remaining sphere using double integration.
- 7. (a) Change the order of integration in

$$\int_{0}^{3} \int_{1}^{\sqrt{4-y}} (x+y) dx dy \text{ and hence evaluate it.}$$
 6

(b) Evaluate $\iiint_{W} e^{(x^{2}+y^{2}+z^{2})^{\frac{3}{2}} dx dy dz}$ where $W = \{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leq 1\}$.

- 8. (a) State the physical interpretation of the divergence of velocity vector for a fluid.
 - (b) Using Green's theorem evaluate the integration $\int_C (x^2 xy^3) dx + (y^2 2xy) dy \text{ where } C \text{ is the square with vertices } (0,0), (2,0), (2, 2) \text{ and } (0,2). 4$

P.T.O.

(c) Apply Stokes' theorem for $\vec{F} = (y, z, x)$ to evaluate $\int_C \vec{F} \cdot \vec{ds}$ where C is the curve of intersection of $x^2 + y^2 + z^2 = a^2$ and x + z = a.

533

Q. No. MAC - 01 /

B. Tech./Odd 2017-18/Reg

2017-18

MATHEMATICS - I

MAC - 01

Full Marks: 50

Time: Three Hours

The figures in the margin indicate full marks.

Answer Question No. 1 and any four from rest.

1. (a) Find the point(s) of inflection of the curve

$$y = \frac{x^3}{a^2 + x^2}.$$

(b) Suppose $y_1(t) = 5t^2$ and $y_2(t) = 3e^{-t}$ are two solutions of a second order homogeneous linear equation

$$\frac{d^2y}{dt^2} + p(t)\frac{dy}{dt} + q(t)y = 0.$$

Will the set $\{y_1, y_2\}$ form a set of fundamental solutions of this equation? Justify your answer.

(c) Find the radius of curvature at the point $\theta = \frac{\pi}{4}$ of the

curve $x = a\cos^3\theta$ and $y = a\sin^3\theta$.

1/2/23 00

W/16/40-730

P.T.O.

(axxx) (axxx) (axxxx)

(ax (xaxxx)

(axxxx) (axxxx)

(axxxx)

(axxxx)

(axxxx)

(axxxx)

(axxxx)

(axxxx)

(axxxx)

(axxxx)

SK

2. (a) Find the asymptotes of the curve

$$3x^3 + 2x^{3}y - 7xy^{2} + 2y^{3} - 14xy + 7y^{2} + 4x + 5y = 0.$$

(b) Apply mean value theorem to prove that

$$x > \log(1+x) > x - \frac{x^2}{2}, x > 0.$$
 5+5

3. (a) If
$$u = \frac{\left(x^2 + y^2\right)^n}{2n(2n-1)} + xf\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$$
, then prove that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = \left(x^{2} + y^{2}\right)^{n}.$$

(b) Discuss the continuity of the function

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0), \end{cases}$$

at (0, 0).

- 4. (a) The temperature T at any point (x, y, z) in space is given by $T = 400xyz^2$. Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$.
 - (b) Find a Fourier series representation of the function f(x) on $-\pi \le x \le \pi$, where

no fun

$$f(x) = \begin{cases} -\pi, & -\pi < x < 0, \\ x, & 0 \le x \le \pi, \end{cases}$$

and $f(x+2\pi) = f(x)$. Hence deduce that

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$$

5. Examine the convergence of the following infinite series:

(a)
$$\sum_{n=1}^{\infty} \frac{\left[(n+1)x \right]^n}{n^{n+1}}; x > 0$$

(b) $1+\frac{1}{2}+\frac{1.3}{2.4}+\frac{1.3.5}{2.4.6}+\dots$

$$(D^2-5D+6)y=x^2e^{3x}$$
, where $D=\frac{d}{dx}$

6. (a) Solve the differential equation
$$(D^2 - 5D + 6)y = x^2 e^{3x}, \text{ where } D \equiv \frac{d}{dx}.$$
(b) Solve the differential equation
$$\sin^2 x + \cos^2 x +$$

by the method of variation of parameters.

wenter)

P.T.O.

7. (a) Solve the following simultaneous ordinary differential equations:

$$\frac{dx}{x(y^2-z^2)} = \frac{dy}{y(z^2-x^2)} = \frac{dz}{z(x^2-y^2)}.$$

(b) If u, v and w are the roots of the equation

$$(\alpha-x)^3+(\alpha-y)^3+(\alpha-z)^3=0$$
 in α , then find

$$\frac{\partial(u,v,w)}{\partial(x,y,z)}$$

$$2 = \int e^{-2x} \cdot \sin x$$

= $\sin x \cdot \frac{e^{-2x}}{-2} - \int \cos x \cdot \frac{e^{-2}}{-2}$

v 2 sinx ex - scosx ex

$$sinx \cdot e^{-x} - \int cosx \cdot e^{-x}$$

$$= \frac{1}{2} - sinx \cdot e^{-x} + \int e^{-x} \cos x \cdot e^{-x} - \int sinx \cdot e^{-x} + \int cosx \cdot e^{-x} - \int cosx \cdot e^{-x$$